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Abstract

Yuan’s lemma is a basic proposition on homogeneous quadratic function system. In

this paper, we extend Yuan’s lemma to 4th-order tensor system. We first give two gen-

eralized definitions of positive semidefinite of 4th-order tensor, and based on them, two

extensions of Yuan’s lemma are proposed. We illustrate the difference between our ex-

tensions and existing another extension of Yuan’s lemma. We also put forward several

4th-order tensor optimization problems and show extended Yuan’s lemma how to be

applied.
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1 Introduction

Having been studied for many years, nonlinear optimization and related solution methods

play a central role in the mathematical programming community, among which, the well-

known trust-region method is admitted as one of the most efficient methods for nonlinear

optimization problems. The convergence analysis of the trust-region method heavily relies on
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a lemma proved in [35], which is known to as the Yuan’s lemma. Yuan’s lemma builds the

equivalence between the nonnegativity of the maximum of two homogeneous quadratic forms

and the positive definiteness of a convex combination of the associated Hessian matrices of

the quadratic functions, and is usually referred to as the Yuan’s theorem of alternative. As

an alternative theorem, it finds applications in the development of optimality conditions of

optimization problems [6] as well.

Closely related to Yuan’s lemma is the so-called S-lemma established by Yakubovich [33]

half a century ago. S-lemma concerns the solvability of a system of two quadratic inequalities.

Most of its applications may be found in control theory, but its theoretical development has

been popularized by the optimization community, as it serves as a fundamental tool for linear

matrix inequalities, and is crucial in certain nonconvex quadratic programming [1]. The close

relationship with Yuan’s lemma lies in that its validity can be deduced from Yuan’s lemma;

see the excellent survey on the S-lemma [23]; [34] established the equivalence between the

two lemmas under certain assumptions. Other related theorems of alternative can be found

in [3, 7–9,11,21,22,29] and so on.

As the above two lemmas hold for only two quadratic forms, people naturally wish to

extend them to three or more than three quadratic forms. However, such extensions are in

general hopeless; counterexample can be found in [23]. Nevertheless, effects have been devoted

to the generalizations under certain conditions. For example, [8] extends Yuan’s lemma to the

system of three quadratic inequalities, by allowing the convex combination of the associated

Hessian matrices contains at most one negative eigenvalue. [24] and [13] study the setting

of three quadratic forms, where the former assumes that certain linear combination of the

quadratic functions is a nonnegative form, while the latter holds by assuming that at least

one of the Hessian is negative definite. [21] extends Yuan’s lemma to finitely many quadratic

forms under the criterion that all the Hessian matrices are essentially nonpositive, namely,

the off-diagonal entries of the matrices are nonpositive; also known as Z-matrices. [17] shows

that several theorems of alternative are still valid with a regular cone. In the complex case,

the S-lemma holds for three quadratic forms [11], while Yuan’s lemma has been generalized to

the setting of four complex quadratic forms, under certain positive definiteness regularity [2].

Note that these results have been applied to study the strong duality of quadratic programs

with two nonconvex constraints, both in real and complex fields [2, 4]. More generalizations

and extensions can be found in [23].

Another way of generalizations considers going beyond quadratic forms, namely, trying to

extend the theorems of alternative to higher-degree polynomials. It should be mentioned that,

such kind of generalizations does not hold generally even when the system consists of two

polynomials only. Nonetheless again, theorems of alternative of higher-degree polynomials

are still valid in some situations. [13] shows that S-lemma is true for the system of two

even-degree polynomials under certain positive semidefiniteness regularities. For system of

finitely many polynomials, a type of Yuan’s lemma has been established, provided all the

2



associated symmetric tensors1 of the polynomials are essentially nonpositive. [12] obtains an

S-lemma for higher-degree polynomials in the sense that the combination parameters have

been replaced by certain polynomials. Higher-degree S-lemma has also been studied in the

context of homogeneous polynomials with respect to dilation [36]. Last but not least, Hilbert’s

Nullstellensatz is also a theorem of alternative for polynomials; see e.g., [5, 23].

This work is focused on the generalizations of Yuan’s lemma to a special system of quadratic

forms characterized by 4-th order tensors. Its specificity lies in that the variable of each

quadratic form is restricted onto the positive semidefinite cone, which is different from the

existing work. We show that Yuan’s lemma holds for this type of systems consisting of

finite many inequalities, provided the associated 4-th order tensors are essentially nonpositive.

Based on this result, we are able to show the semidefinite relaxation of a class of tensor

optimization problems is tight.

Another consideration in this work is the solvability of the BEC problem. Although the

BEC problem seems to be nonconvex, it is shown that its semidefinite relaxation is tight, which

itself is a convex quadratic semidefinite program; hence it can be solved to its optimality.

This paper is organized as follows. Several notations and definitions are provided in Sec-

tion 2. Our main results concerning the extension of Yuan’s lemma and its applications are

presented step by step in Section 3. Section 4 studies the solvability of the BEC problem.

Some numerical experiments are conducted in 5. Conclusions are drawn in Section 6.

2 Preliminaries on 4th-order Tensors and Notations

A tensor is a multidimensional array and is the generalization of the concept of matrices. An

mth-order n-dimensional tensor A consists of nm entries in real number: A = (Ai1i2...im), 1 ≤
ij ≤ n, j = 1, ...,m. In this paper, we focus on 4th-order tensor and related properties. For a

4th-order tensor A, we call it completely symmetric if its elements Aijkl are invariant under

any permutation of its indices {i, j, k, l}. We call A partial-symmetric if

Aijkl = Ajikl = Aijlk = .Aklij, 1 ≤ i, j, k, l ≤ n.

In this section, we will generalize the concept of positive semidefinite tensors to partial-

symmetric tensors. First we recall some concepts and notations.

Definition 2.1. Let A,B be 4th-order n-dimensional tensors; define the inner product of A
and B by

〈A,B〉 =
n∑

i,j,k,l=1

AijklBijkl.

1A tensor is a multi-way array. Analogous the Hessian matrix associated with a homogeneous quadratic

form, a homogeneous d-degree polynomial can be uniquely characterized by a d-th order tensor.
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Moreover, let X ∈ Rn×n, and let AX denote a matrix with entries being (AX)ij =
∑n

k,l=1AijklXkl;

then the inner product between X and AX is

〈X,AX〉 =
n∑

i,j,k,l=1

AijklXijXkl.

We recall essentially nonpositive tensors.

Definition 2.2 (Essentially nonpositive tensor). Define the index set I by

I = {(i, i, . . . , i) ∈ Nm : 1 ≤ i ≤ n}.

We say that an mth-order n-dimensional tensor A is

(i) essentially nonnegative if Ai1,...,im ≥ 0 for all {i1, . . . , im} /∈ I;

(ii) essentially nonpositive if Ai1,...,im ≤ 0 for all {i1, . . . , im} /∈ I.

The class of essentially nonpositive tensor was introduced in [15,37]. The positive semidef-

initeness of is defined as follows [25].

Definition 2.3. Let A be an mth-order n-dimensional symmetric tensor with m being even.

If 〈A, x⊗m〉 ≥ 0,∀x ∈ Rn, we say A is positive semidefinite. Here x⊗m represents the rank-1

tensor x ◦ x · · · ◦ x where ◦ denotes the outer product.

Now we give two generalized definitions of positive semidefinite for partial-symmetric 4th-

order tensor.

Definition A1. Let A be a 4th-order n-dimensional partial-symmetric tensor. If 〈X,AX〉 ≥
0,∀X ∈ Sn, we say A is positive semidefinite. We denote the set of such tensors as PSD4,n.

Definition A2. Let A be 4th-order n-dimensional partial-symmetric tensor. If 〈X,AX〉 ≥
0,∀X ∈ Sn+, we say A is positive semidefinite. Also we denote the set of such tensors as

PSD+
4,n.

When 4th-order tensor A is symmetric, Definition 1 is given and relative properties are

researched in [18].

3 Extensions of Yuan’s Lemma and Applications

To begin with, we recall Yuan’s Lemma stated in [35].

Lemma 3.1 (Yuan’s lemma). Let A,B ∈ Sn; E,F be two closed sets in Rn such that E∪F =

Rn and

xTAx ≥ 0 x ∈ E; xTBx ≥ 0 x ∈ F.

Then there exists a λ ∈ [0, 1] such that λA+ (1− λ)B � 0.
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Before extending Yuan’s Lemma to 4th-order tensor system, we recall a result on rank-one

decomposition of positive semidefinite matrices [28] that will be used later.

Lemma 3.2 (c.f. [6]). Let A,B ∈ Sn,X � 0. Then there exists an x ∈ Rn such that

A ◦X = xTAx, and B ◦X = xTBx.

First, we give an extension of Yuan’s Lemma to 4th-order tensor system where the tensor

is positive semidefinite under Definition A1. Define a set C0 = conv{X ⊗X,X ∈ Sn}, where

”conv” denotes the convex hull of a set; here X ⊗X denotes a 4th-order tensor given by the

out product of X and X, i.e., (X ⊗X)ijkl = XijXkl, i, j, k, l = 1, . . . , n.

Lemma 3.3. Let A1,A2 be partial-symmetric 4th-order n-dimensional tensors. Then the

following two statements are equivalent:

(i) ∃X ∈ Sn such that 〈X,A1X〉 < 0, 〈X,A2X〉 < 0;

(ii) ∃X ∈ C0 such that 〈X ,A1〉 < 0, 〈X ,A2〉 < 0.

Proof. (i)⇒(ii) is obvious. We mainly prove (ii)⇒(i). Suppose there exists an X ∗ ∈ C0 such

that

〈X ∗,A1〉 < 0, 〈X ∗,A2〉 < 0.

Let A1, A2, Z be the matricization of A1,A2,X ∗, respectively. Here the matricization A of a

4th-order n-dimensional tensor A means

A(i−1)n+j,(k−1)n+l = Aijkl, i, j, k, l = 1, . . . , n.

Then we have A1, A2, Z ∈ Sn
2
. As X ∗ ∈ C0, there exists Xi ∈ Sn, i = 1, . . . , r such that

X ∗ =
∑r

i=1Xi ⊗Xi, and correspondingly Z =
∑r

i=1 xix
T
i , where xi is the associated vector-

ization of Xi. Clearly, Z � 0. From Lemma 3.2, there exists an x̄ ∈ Rn2
such that

〈A1,X ∗〉 = 〈A1, Z〉 = x̄TA1x̄, and

〈A2,X ∗〉 = 〈A2, Z〉 = x̄TA2x̄.

Denote X̄ as the folding matricization of x̄, namely, X̄ij = x̄(i−1)n+j, i, j = 1, ...n.

Let X = X̄+X̄T

2
; then X ∈ Sn and it holds that

〈X,A1X〉 =
∑
ijkl

aijkl
X̄ij + X̄ji

2

X̄kl + X̄lk

2

=
1

4

∑
ijkl

aijkl(X̄ijX̄kl + X̄ijX̄lk + X̄jiX̄kl + X̄jiX̄lk)

= 〈X̄,A1X̄〉 = x̄TA1x̄.
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The above equation can be obtained from the symmetric structure of A1, so we have

〈X,A1X〉 = 〈A1,X ∗〉 < 0 and 〈X,A2X〉 = 〈A2,X ∗〉 < 0.

hence (i) holds. This completes the proof.

Based on Lemma 3.3, we have the following results.

Theorem 3.1. Let A1,A2 be partial-symmetric 4th-order n-dimensional tensors. Then one

and exactly one of the following statements holds:

(i) ∃X ∈ Sn such that 〈X,A1X〉 < 0, 〈X,A2X〉 < 0;

(ii) ∃λ ∈ [0, 1] such that λA1 + (1− λ)A2 ∈ PSD4,n.

Proof. Suppose that statement (ii) holds; then there exists a λ ∈ [0, 1] such that λA1 + (1−
λ)A2 ∈ PSD4,n. If (i) holds, then there exists anX ∈ Sn such that 〈X,A1X〉 < 0, 〈X,A2X〉 <
0. It then follows that

0 ≤ 〈X, (λA1 + (1− λ)A2)X〉 = λ〈X,A1X〉+ (1− λ)〈X,A2X〉 < 0,

which is impossible. So (i) fails to hold.

Conversely. if (i) fails, it means the following system

〈X,A1X〉 < 0, 〈X,A2X〉 < 0

has no solution. Then Lemma 3.3 implies that the system

〈X ,A1〉 < 0, 〈X ,A2〉 < 0

has no solution whenever X ∈ C0. By the generalized Farkas lemma [23], there exists a

λ ∈ [0, 1] such that

〈λA1 + (1− λ)A2,X〉 ≥ 0, ∀X ∈ C0,

from which one has

λA1 + (1− λ)A2 = PSD4,n,

where C⊕0 = PSD4,n could be got analogy as the proof of Lemma 2.3 in [14]. Then we

complete this proof.

The following proposition extends the above result to the inhomogeneous case.

Lemma 3.4. Let A1,A2 be partial-symmetric 4th-order n-dimensional tensors and B1, B2 ∈
Sn, c1, c2 ∈ Rn. Then the following statements are equivalent:

(i) ∃X ∈ Sn, 〈X,A1X〉+ 2〈B1, X〉+ c1 < 0,

〈X,A2X〉+ 2〈B2, X〉+ c2 < 0;
(3.1)

(ii) ∃X ∈ C0, X ∈ Sn,X −X ⊗X ∈ PSD4,n,

〈X ,A1〉+ 2〈B1, X〉+ c1 < 0,

〈X ,A2〉+ 2〈B2, X〉+ c2 < 0.

(3.2)
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Proof. (i)⇒ (ii) is obvious. We then prove (ii)⇒ (i). Suppose that (ii) holds; then there exists

X ∗, X∗ satisfying (3.2). Denote A1, A2, X̄
∗ as the matricization of A1,A2,X ∗ and b1, b2, x̄

∗ as

the vectorization of B1, B2, X
∗. Then (3.2) can be written as[

A1 b1

bT1 c1

]
◦

[
X̄∗ x̄∗

x̄∗T 1

]
< 0,[

A2 b2

bT2 c2

]
◦

[
X̄∗ x̄∗

x̄∗T 1

]
< 0.

Since X ∗ − X∗ ⊗ X∗ ∈ PSD4,n and is partially symmetric, ∀u ∈ Rn2
, let U be the folding

matricization of u; we have

uT (X̄∗ − x̄∗x̄∗T )u = 〈U, (X ∗ −X∗ ⊗X∗)U〉

= 〈U + UT

2
, (X ∗ −X∗ ⊗X∗)U + UT

2
〉 ≥ 0.

So X̄∗ − x̄∗x̄∗T � 0. Then the system[
A1 b1

bT1 c1

]
◦ Z < 0,[

A2 b2

bT2 c2

]
◦ Z < 0,

Z � 0, Zn2+1,n2+1 = 1.

has a solution. From [23], there exists a p ∈ Rn2
such that[

p

1

]T [
A1 b1

bT1 c1

][
p

1

]
< 0,[

p

1

]T [
A2 b2

bT2 c2

][
p

1

]
< 0.

Let P be the folding matricization of p; then

〈P + P T

2
,A1

P + P T

2
〉 = 〈P,A1P 〉 = pTA1p and

〈P + P T

2
, B1〉 = 〈P,B1〉 = pT b1.

So we have

〈P + P T

2
,A1

P + P T

2
〉+ 2〈P + P T

2
, B1〉+ c1 < 0,

〈P + P T

2
,A2

P + P T

2
〉+ 2〈P + P T

2
, B2〉+ c2 < 0.

which implies that (i) holds.

Using Lemma 3.4, we have the following results.
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Theorem 3.2. Let A1,A2 be partial-symmetric 4th-order n-dimensional tensors, and B1, B2 ∈
Sn, c1, c2 ∈ Rn. Then one and exactly one of the following statements holds:

(i) ∃X ∈ Sn, 〈X,A1X〉+ 2〈B1, X〉+ c1 < 0,

〈X,A2X〉+ 2〈B2, X〉+ c2 < 0;

(ii) ∃λ ∈ [0, 1] ∀X ∈ C0, X ∈ Sn,X −X ⊗X ∈ PSD4,n,

〈X , λA1 + (1− λ)A2〉+ 2〈λB1 + (1− λ)B2, X〉+ λc1 + (1− λ)c2 ≥ 0.

Proof. (ii)⇒ not (i). Suppose that statement (ii) holds, then there exists λ ∈ [0, 1] such that

∀X ∈ C0, X ∈ Sn,X −X ⊗X ∈ PSD4,n. We have

〈X , λA1 + (1− λ)A2〉+ 2〈λB1 + (1− λ)B2, X〉+ λc1 + (1− λ)c2 ≥ 0.

Assume that (i) holds also, namely, there exists an X∗ ∈ Sn such that

〈X∗,A1X
∗〉+ 2〈B1, X

∗〉+ c1 < 0 and

〈X∗,A2X
∗〉+ 2〈B2, X

∗〉+ c2 < 0.

Let X ∗ = X∗ ⊗X∗; it is obvious that X ∗ ∈ C0 and X ∗ −X∗ ⊗X∗ ∈ PSD4,n. Then we have

0 ≤ 〈X ∗, λA1 + (1− λ)A2〉+ 2〈λB1 + (1− λ)B2, X
∗〉+ λc1 + (1− λ)c2

= λ(〈X∗,A1X
∗〉+ 2〈B1, X

∗〉+ c1) + (1− λ)(〈X∗,A1X
∗〉+ 2〈B1, X

∗〉+ c1) < 0,

which is impossible, so (i) must fail.

We then show that not (i) ⇒ (ii). If (i) fails, it means that the following system has no

solution,

∃X ∈ Sn, 〈X,A1X〉+ 2〈B1, X〉+ c1 < 0, 〈X,A2X〉+ 2〈B2, X〉+ c2 < 0.

Lemma 3.4 implies that system

∃X ∈ C0, X ∈ Sn,X −X ⊗X ∈ PSD4,n,

〈X ,A1〉+ 2〈B1, X〉+ c1 < 0,

〈X ,A2〉+ 2〈B2, X〉+ c2 < 0

has no solution. From the generalized Farkas lemma [23], there exists a λ ∈ [0, 1] such that

∀X ∈ C0, X ∈ Sn,X −X ⊗X ∈ PSD4,n,

〈X , λA1 + (1− λ)A2〉+ 2〈λB1 + (1− λ)B2, X〉+ λc1 + (1− λ)c2 ≥ 0.

This completes the proof of theorem.

Hu et al. [14] extended Yuan’s lemma to even-order symmetric tensor system based on the

usual definition of positive semidefiniteness (c.f. Definition 2.3) and under the assumption of

essential nonpositivity (c.f. Definition 2.2). We recall there results.
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Theorem 3.3. Let n, p ∈ N and let m be an even number. Let Fl, l = 0, 1, . . . , p be mth-order

n-dimensional symmetric tensors. Suppose that there exists a nonsingular matrix P such that

PmFl, l = 0, 1, . . . , p are all essentially nonpositive tensors. Then, one and exactly on of the

following statements holds:

(i) (∃x ∈ Rn)(〈Fl, x⊗m〉 < 0, l = 0, 1, . . . , p);

(ii) (∃λl ≥ 0, l = 0, 1, . . . , p,
∑p

l=0 λl = 1)(
∑p

l=0 λlFl ∈ SOSm,n).

In what follows, we present another extension of Yuan’s lemma to 4th-order tensor system

with the definition of positive semidefiniteness in Definition A2, and also under the assump-

tion of essential nonpositivity.

Lemma 3.5. Let F l be partial-symmetric essentially nonpositive 4th-order n-dimensional

tensors, l = 0, 1, . . . , p. Then, the following statements are equivalent:

(i) ∃X ∈ Sn+ such that 〈X,F lX〉 < 0, l = 0, 1, . . . , p;

(ii) ∃X ∈ conv{X ⊗X,X ∈ Sn+} , C such that 〈X ,F l〉 < 0, l = 0, 1, . . . , p.

Proof. (i)⇒ (ii) is obvious. To get (ii) ⇒ (i), suppose that there exists an X ∈ C such that

〈X ,F l〉 < 0, l = 0, 1, . . . , p.

Since C is a closed and convex cone, there exists Xj ∈ Sn+ such that

X =
J∑
j=1

Xj ⊗Xj.

It is easy to see that Xiiii ≥ 0. Denote X̄ ∈ Sn by

X̄ij = 4
√
XiiiiXjjjj, i, j, k, l = 1, ..., n.

Let x̄ = ( 4
√
X1111, . . . ,

4
√
Xnnnn)T ; then there holds that

X̄ = x̄x̄T ,

and so X̄ ∈ Sn+. Then, using the same step of proof for Proposition 3.1 in [14], we have, for

each l = 0, 1, . . . , p,

〈X̄,F lX̄〉 = 〈F l, x̄⊗4〉 = 〈F l,X〉 < 0.

Hence (i) holds.

Theorem 3.4 (Extension of Yuan’s Lemma). Let F l, l = 0, 1, . . . , p be 4th-order n-dimensional

essentially nonpositive partial-symmetric tensors. If 〈X,F lX〉 ≥ 0, X ∈ El, El ⊆ Sn+, l =

0, 1, . . . , p, and ∪pl=0E
l = Sn+, then there exist λl ≥ 0, l = 0, 1 . . . , p,

∑p
l=0 λl = 1 such that

p∑
l=0

λlF l ∈ PSD+
4,n.
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Proof. First, the assumptions means that the following system

〈X ,F l〉 < 0, l = 0, . . . , p, ∀X ∈ C (3.3)

has no solution. If not, then there exists a solution X ∗ to (3.3). From Lemma 3.5, we know

that there exists an X∗ ∈ Sn+ such that

〈X∗,F lX∗〉 < 0, l = 0, . . . , p. (3.4)

Since ∪pl=0E
l = Sn+, there must be an i such that X∗ ∈ Ei, and 〈X∗,F iX∗〉 ≥ 0, which

contradicts (3.4). So system (3.3) is not solvable. Hence for any ε > 0, the system

〈X ,F0〉 < 0, 〈X ,F l〉+ ε ≤ 0, l = 1, . . . , p, X ∈ C

is not solvable. From the generalized Farkas lemma, there exists λlε ≥ 0, l = 1, . . . , p such that

〈X ,F0〉+

p∑
l=1

λlε(〈X ,F l〉+ ε) ≥ 0 ∀X ∈ C,

which equals

1

1 +
∑p

l=1 λ
l
ε

〈X ,F0〉+

p∑
l=1

λlε
1 +

∑p
l=1 λε

(〈X ,F l〉+ ε) ≥ 0 ∀X ∈ C. (3.5)

Without loss of generality, we may assume that 1
1+

∑p
l=1 λ

l
ε
→ λ0(ε → 0+) and λlε

1+
∑p
l=1 λ

l
ε
→

λl(ε → 0+)(l = 1, . . . , p); then λl ∈ [0, 1], l = 0, . . . , p and
∑p

l=0 λl = 1. In (3.5), let ε → 0+,

one has

〈X ,
p∑
l=0

λlF l〉 ≥ 0, ∀X ∈ C.

This completes the proof.

Lemma 3.6. Let F l, l = 0, 1, . . . , p, be 4th-order n-dimensional essentially nonpositive partial

symmetric tensors, Bl be nonpositive matrices, cl ∈ R, l = 0, 1, . . . , p. Then, the following

statements are equivalent:

(i) ∃X ∈ Sn+ such that 〈X,F lX〉+ 2〈Bl, X〉+ cl < 0, l = 0, 1, . . . , p;

(ii) ∃X ∈ C,X ∈ Sn+ and X −X ⊗X ∈ PSD+
4,n such that

〈X ,F l〉+ 2〈Bl, X〉+ cl < 0, l = 0, 1, . . . , p.

Proof. (i)⇒ (ii) is obvious. To get (ii) ⇒ (i), suppose that there exists an X ∈ C,X ∈
Sn+,X −X ⊗X ∈ PSD+

4,n such that

〈X ,F l〉+ 2〈Bl, X〉+ cl < 0, l = 0, 1, . . . , p.

Define X̄ ∈ Sn given by

X̄ij = 4
√
XiiiiXjjjj.
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Then from X −X ⊗X ∈ PSD+
4,n and X ∈ Sn+, we get

X̄ij = 4
√
XiiiiXjjjj ≥

√
XiiXjj ≥ Xij.

It follows from the nonpositivity of Bl that

〈Bl, X̄〉 ≤ 〈Bl, X〉.

From the proof of Lemma 3.5, we know that X̄ ∈ Sn+ and

〈X̄,F lX̄〉 ≤ 〈X ,F l〉.

Combine the above pieces together, we have

〈X̄,F lX̄〉+ 〈Bl, X̄〉+ cl ≤ 〈X ,F l〉+ 〈Bl, X〉+ cl, l = 0, 1, . . . , p.

and the proof is completed.

The following result provides the inhomogeneous version of generalized Yuan’s lemma.

Theorem 3.5. Let F l, l = 0, 1, . . . , p, be 4th-order n-dimensional essentially nonpositive par-

tial symmetric tensors, Bl be nonpositive matrix, cl ∈ R, l = 0, 1, . . . , p. If 〈X,F lX〉 +

2〈Bl, X〉 + cl ≥ 0, X ∈ El, El ⊆ Sn+, l = 0, 1, . . . , p, and ∪pl=0E
l = Sn+, then there exist

λl ≥ 0, l = 0, 1 . . . , p,
∑p

l=0 λl = 1 such that ∀X ∈ C,X ∈ Sn+,X −X ⊗X ∈ PSD+
4,n,

〈(
p∑
l=0

λlF l),X〉+ 2〈(
p∑
l=0

λlBl), X〉+

p∑
l=0

λlcl ≥ 0.

Proof. The condition in the theorem means that the following system

〈F l,X〉+ 2〈Bl, X〉+ cl < 0, l = 0, 1, . . . , p,

∀X ∈ C,X ∈ Sn+,X −X ⊗X ∈ PSD+
4,n

(3.6)

has no solution. If there exists a pair of solutions X ∗, X∗, from Lemma 3.6, we know there

exists an X̄ ∈ Sn+ such that

〈X̄,F lX̄〉+ 2〈Bl, X̄〉+ cl < 0, l = 0, . . . , p. (3.7)

Since ∪pl=0E
l = Sn+, there exists an i such that X̄ ∈ Ei, and 〈X̄,F iX̄〉 + 2〈Bi, X̄〉 + ci ≥ 0,

which contradicts (3.7). So system (3.6) is not solvable. Using similar arguments in the proof

of Theorem 3.4, the required result follows.

One difference between our extension of Yuan’s lemma and [14] is that when applying to

4th-order polynomial optimization without odd terms, we first relax the 4th-order polynomial

optimization to quadratic Semidefinite programming. If this quadratic matrix programming
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is convex, we could solve it by SDP. Otherwise, we may further relax quadratic SDP pro-

gramming to linear 4th-order tensor optimization, and investigate the relationship between

them with the extended Yuan’s lemma. In Addition, a kind of quadratic matrix program-

ming, with form 〈X,FX〉 + 2〈B,X〉 + c as objective and constrained functions while F is

partial-symmetric 4th-order tensor, B is nonpositive symmetric matrix, we may use Theorem

3.5 to get the strong duality of this kind of matrix programming.

4 The discretization of the BEC Problem and corre-

sponding SDP relaxation

Consider the following tensor optimization of the form [32]:

(P ) min f(x) = 〈A, x⊗4〉+ 〈B, x⊗2〉
s.t. xTx ≤ 1,

where A is a 4th-order partial-symmetric tensor and B is a symmetric matrix. All off-diagonal

entries of A and B are nonpositive.

We then consider the semidefinite relaxation of (P), which is a quadratic matrix program-

ming:

(RP ) min g(X) = 〈X,AX〉+ 〈B,X〉
s.t. 〈I,X〉 ≤ 1

X � 0

We have the following proposition, where v(·) denotes the optimal value of the concerned

problem.

Proposition 4.1. The semidefinite relaxation (RP ) is tight, i.e., v(P ) = v(RP ).

Proof. Note that v(P ) ≥ v(RP ) is obvious, so we just need to prove v(P ) ≤ v(RP ). Assume

that X∗ is solution of (RP ); denote x∗ =
√

diag(X∗). First we observe that x∗Tx∗ = 〈I,X∗〉 ≤
1. So x∗ is a feasible point of (P ). Since X∗ is positive semidefinite, we get

X∗ij ≤
√
X∗iiX

∗
jj.

As all off-diagonal entries of B are nonpositive, we have

〈B, x∗⊗2〉 =
∑
i,j=1

Bijx
∗
ix
∗
j =

∑
i,j=1

Bij

√
X∗iiX

∗
jj

≤
∑
i,j=1

BijX
∗
ij = 〈B,X∗〉.

12



It follows from the nonpositivity of A that

〈A, x∗⊗4〉 =
∑
i,j=1

∑
k,l=1

Aijklx∗ix∗jx∗kx∗l

≤
∑
i,j=1

∑
k,l=1

AijklX∗ijX∗kl = 〈X∗,AX∗〉.

So we have f(x∗) ≤ g(X∗), yield v(P ) ≤ v(RP ). This completes the proof.

We illustrate an application about nonlinear eigenvalue problem. For instance, the calcu-

lation of the Gross-Pitaevskii equation describing the ground states of Bose-Einstein conden-

sates [30, 31]. In [27], the following problem was considered:
−4u+Wu+ ζ|u|2u = λu, in Ω,

u = 0, on ∂Ω,∫
Ω

u2dΩ = 1,

where Ω denotes the three dimensional domain [0, 1]3, ζ = 1 and W = x2
1 + x2

2 + x2
3. By using

mesh grid and discretization, one obtains the following problem:{
Au3 +Bu = λu

‖u‖2
2 = (1/h)3.

(4.8)

In one dimensional case, A is a 4th-order partial-symmetric tensor whose diagonal entries is

1 and all off-diagonal entries are 0. B is the following matrix,

B = 1/h2


2 −1

−1 2 −1
. . .

−1 2

 + h2


12

22

. . .

(n− 1)2,


where h is the length of grid and n is number of grid. So the off-diagonal entries of B is

nonpositive as well. Equation (4.8) is the nonlinear eigenvalue problem. Here we are concerned

with the solution of the minimum eigenvalue. We can see that (4.8) is the optimal condition

of the following problem

(P1) min (1/2)Ax4 +Bx2

s.t. ‖x‖2
2 = (1/h)3.

The optimal solution is a eigenvector of (4.8), but it might not be eigenvector corresponding

to minimum eigenvalue. So (P1) gives a upper bound of minimum eigenvalue and we denote

it as λsup. The lower bound is given from the following problem which we denote as λinf .

(P2) min Ax4 +Bx2

s.t. ‖x‖2
2 = (1/h)3.

13



Since (P1), (P2) are not convex problem, we consider the semidefinite relaxation problem

(RP1)

(RP1) min 1/2〈X,AX〉+ 〈B,X〉
s.t. 〈I,X〉 = (1/h)3, X � 0,

and (RP2) is analogous to (RP1). Since A and B have nonpositive off-diagonal entries, Propo-

sition 4.1 tells us that that v(P1) = v(RP1) and v(P2) = v(RP2). Moreover, the proof of

Proposition 4.1 implies that and if Xi is an optimal solution to (RP1), then
√

diag(Xi) is an

optimal solution to (Pi), i = 1, 2.

5 Numerical Experiments

In this section, we present numerical results on the semidefinite relaxations on the BEC prob-

lem and overdamped condition. The supporting software is cvx1.2.1 in MATLAB 2014.a, The

configuration of the computer is: Intel(R) Core(TM) i5-2410M CPU @2.30GHZ, RAM=2GB.

Example 1. The corresponding numerical results of 4 are presented in Table 1(one dimen-

sion), Table 2(two dimension) and Table 3(three dimension)

n λsup λinf error cpu(λsup) cpu(λinf )

100 11.6421 11.6391 0.0030 0.21 0.28

200 11.6427 11.6398 0.0029 0.63 0.99

300 11.6428 11.6399 0.0029 1.23 1.01

400 11.6429 11.6399 0.0030 2.05 1.99

500 11.6429 11.6399 0.0030 3.59 3.66

600 11.6429 11.6399 0.0030 5.01 4.97

700 11.6429 11.6400 0.0029 6.98 7.23

Table 1: one dimensional case Ω = [0, 1]

n λsup λinf error cpu(λsup) cpu(λinf )

10×10 22.3486 22.3352 0.0134 0.49 0.97

20×20 22.4724 22.4597 0.0127 1.44 1.21

30×30 22.4954 22.4828 0.0126 7.00 7.17

40×40 22.5196 22.5031 0.0164 20.38 17.52

50×50 22.5233 22.5068 0.0165 86.54 92.41

Table 2: two dimensional case Ω = [0, 1]2
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n λsup λinf error cpu(λsup) cpu(λinf )

10×10×10 33.4450 33.4053 0.0397 5.38 5.65

12×12×12 33.5763 33.5214 0.0549 33.69 34.71

14×14×14 33.6223 33.5681 0.0542 131.93 128.61

Table 3: three dimensional case Ω = [0, 1]3

In the BEC problem, the energy functional is defined as

E(φ) =

∫
Rd
|∇φ(x)|2 + V (x)|φ(x)|2 +

β

2
|φ(x)|4dx.

The ground state of a BEC is usually defined as the minimizer of the energy function on a

spherical constraint S

φg = arg min
φ∈S

E(φ),

where S is defined as

S = {φ|E(φ) <∞,
∫
Rd
|φ(x)|2dx = 1}.

When energy function and constraint be discretized, it becomes a 4th-order polynomial prob-

lem
min (1/2)Ax4 +Bx2

s.t. ‖x‖2
2 = (1/h)3,

which is (P1). So the solution of (P1) we got is the eigenvector of (4.8) and minimizer of

the energy function. From the table, we could see the difference between two bounds is very

little. It means that the minimizer of the energy function is a eigenvector of (4.8) and the

corresponding eigenvalue is closed to minimum eigenvalue. But how we estimate the error

is a question. However, Xie et al. (citation missing) solved the original nonlinear eigenvalue

problem directly by a full multigrid method. So whether the solution they got is the minimizer

of the energy function or not is a question. In [16], they also computed the BEC problem and

they also relaxed this problem to SDP. But they didn’t consider the special structure of A
and B. So the original problem and relaxed problem are not tight.

Example 2. (See [10]) In structural mechanics, the differential system is said to be over-

damped when the overdamping condition

min
‖x‖2=1

[(xTCx)2 − 4(xTMx)(xTKx)] > 0

is satisfied [26]. Where M,C and K are real symmetric, M � 0, C � 0 and K � 0. We can

rewrite this problem as

min
‖x‖2=1

〈C ⊗ C − 2M ⊗K − 2K ⊗M,x⊗4〉 > 0,

and we could solve this problem by the relaxation. If the off-diagonal entries of tensor C ⊗
C − 2M ⊗K − 2K ⊗M are nonpositive, then two problem have the same optimal value.
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In the connected damped mass-spring system. The mass matrix M = diag(m1, . . . ,mn)

is diagonal matrix and damping matrix C and stiffness matrix K are symmetric tridiagonal.

If we take all the spring(respectively, dampers) to have the same constant and take mi = 1.

Then

M = I, C = τtridiag(−1, 3,−1), K = κtridiag(−1, 3,−1).

We take n = 50 and first choose κ = 5 and τ = 3. The problem is not overdamped. Second

,we take κ = 5 and τ = 10. The system is overdamped. Now we use our method to solve

this problem. The corresponding results are represented in Table 4. The Y (resp. N) in last

column represent the system is overdamped (resp. not overdamped).

n τ κ optimal value time overdamped

50 3 5 -27777.8 0.44 N

50 10 5 201711 0.36 Y

50 3 10 -111111 0.43 N

50 10 10 151521 0.52 Y

200 3 5 -444444 2.50 N

200 10 5 3.20176e+06 2.67 Y

200 3 10 -1.77778e+06 1.97 N

200 10 10 2.40156e+06 2.37 Y

Table 4:

And we find that the results are correct.

Example 3. Let f be a 4th-order polynomial on Rn, and Let F be the coefficient tensor of

f such that

f(x) = 〈F , x̃⊗4〉,

where x̃ = (xT , 1)T .

Consider the following 4th-order polynomial optimization where Fl, l = 0, 1, . . . , p have

the nonpositive off-diagonal elements

(P ) min f0(x) = 〈F0, x̃
⊗4〉

s.t. fl(x) = 〈Fl, x̃⊗4〉 ≤ 0, l = 1, . . . , p

x̃ = (xT , 1)T .

The semidefinite relaxation of (P ) is (RP )
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(RP ) min f0(x) = 〈X̃,F0X̃〉
s.t. fl(x) = 〈X̃,FlX̃〉 ≤ 0, l = 1, . . . , p

X̃ � 0, Xn+1,n+1 = 1.

From [32], we know that v(P ) = v(RP ). If (RP ) is a convex problem, we can solve it by

semidefinite programming. However, If it is not convex, we have to further relax it to

(RRP ) min f0(x) = 〈F0, X̃ 〉
s.t. fl(x) = 〈Fl, X̃ 〉 ≤ 0, l = 1, . . . , p

X̃ ∈ conv{X ⊗X,X � 0}, X̃n+1,n+1,n+1,n+1 = 1.

From Theorem 3.4, we have v(RP ) = v(RRP ). But we note that checking the membership

problem X̃ ∈ conv{X ⊗ X,X � 0} is a hard problem.If Fl, l = 0, 1, . . . , p are completely

symmetric tensors, denote X̄ as the complete symmetrization of X̃ . Then

〈Fl, X̄ 〉 = 〈Fl, X̃ 〉, l = 0, 1, . . . , p,

and problem (RRP ) becomes

(RRP1) min f0(x) = 〈F0, X̃ 〉
s.t. fl(x) = 〈Fl, X̃ 〉 ≤ 0, l = 1, . . . , p

X̃ ∈ conv{x⊗4, x ∈ Rn+1}, X̃n+1,n+1,n+1,n+1 = 1.

Wile [18] showed that conv{x⊗4, x ∈ Rn+1} is the complete symmetrization of conv{X ⊗
X,X � 0}. Then (RRP1) is exactly the relaxed problem in Hu et.al [14], where (RRP1) can

be computed by the following SOS program

(SOS) max µ

s.t. f0(x) +

p∑
l=1

λlfl − µ = σ0

λl ≥ 0, l = 1, . . . , p, σ0 is SOS, degσ0 ≤ 4,

and v(SOS) = v(RRP1), so we can get the optimal value of the original problem (P ) by

solving the above SOS program.

We consider the following homogeneous polynomial optimization problem

(HP ) min f0(x1, x2, x3) = x4
1 + x4

2 + x4
3 − 20x1x2x

2
3

s.t. f1(x1, x2, x3) = x4
1 + x4

2 + x4
3 − 1 ≤ 0

By computing the corresponding the SOS program of (HP ) via YALMIP [19, 20], we obtain

min(HP) = -6.0711.
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6 Concluding Remarks

In this paper, by generalizing the definition of positive semidefinite tensors, we extend the

Yuan’s Lemma to a special quadratic system of quadratic forms characterized by 4th-order

tensors. We also consider the difference between our extension and Hu [14]. As an application,

we consider the BEC problem which is minimizing a polynomial function over a sphere surface.

Because of the special structure of this problem, we show that there is no gap between the

corresponding SDP relaxation and the original problem. As a result, we can solve the BEC

problem by solving its SDP relaxation. The drawback is that the computational cost of the

SDP relaxations is usually more expensive. For small-size cases, we obtain good results. And

we will continue our research on large-scale problems.
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