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Abstract This paper studies mathematical programming formulations for
solving optimization problems with piecewise polynomial (PWP) constraint
functions. We elaborate on suitable polynomial bases as a means of efficiently
representing PWPs in mathematical programs, comparing and drawing con-
nections between the monomial basis, the Bernstein basis, and B-splines. The
theory is presented for both continuous and semi-continuous PWPs. Using a
disjunctive formulation, we then exploit the characteristic of common poly-
nomial basis functions to significantly reduce the number of nonlinearities,
and to suggest a bound-tightening technique for PWP constraints. Upon a
standard big-M reformulation yielding an MINLP model, we derive three ex-
tensions using logarithmic number of binary variables, Bernstein cuts and
an expanded Bernstein basis. Numerical results from solving three test sets of
MINLPs to global optimality compares the formulations. The proposed frame-
work shows promising numerical performance, and facilitates the solution of
PWP-constrained optimization problems using standard MINLP software.

Keywords Piecewise polynomials - Splines - Mixed integer programming -
Disjunctions

1 Introduction

Modeling of optimization problems frequently involves representing functions
that are piecewise, discontinuous or nonsmooth. This includes inherently piece-
wise economical and physical characteristics [32,74,8,39], construction of sur-
rogate models by sampling of simulators [37,59,41,24,72,80,46], and approxi-
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mate or exact representation of nonconvex functions [15,3,54,66,13,51]. In this
paper, we study the problem of efficiently representing and solving optimiza-
tion problems containing piecewise polynomial (PWP) constraints. Piecewise
polynomials are used in a wide range of disciplines, including efficiency curve
modeling in electric-power unit commitment [45,55,60], rigid motion systems
[48,16], image processing and data compression [17,58,71], flow networks [8,
24,33] and in optimal control [56,6,18].

We consider optimization problems where either or both of the objective
function and a subset of the constraints are piecewise polynomial functions.
Each polynomial may be nonconvex, and the piecewise polynomial function
itself lower semi-continuous. There exists few targeted optimization methods
for this class of optimization problems, while some approaches that exploit
special structures of nonsmooth optimization problems are applicable, subject
to certain modification methods: Womersley and Fletcher [84] developed a
descent method for solving composite nonsmooth problems made up from
a finite number of smooth functions. Conn and Mongeau [12] constructed a
method based on non-differentiable penalty functions for solving discontinuous
piecewise linear optimization problems, sketching an extension to problems
with PWP constraints. Scholtes [66] developed an active-set method for dealing
with nonlinear programs (NLPs) with underlying combinatorial structure in
the constraints. Li [44] used a conjugated gradient method for minimizing an
unconstrained, strictly convex, quadratic spline. None of these methods are
currently available in standard optimization software.

From a broader perspective, applicable solution approaches to PWP op-
timization problems include methods based on general nonsmooth optimiza-
tion, smoothing techniques and mixed integer programming (MIP). Bundle-
type and subgradient methods [70,29], originally developed for nonsmooth
convex optimization, may be applied to optimization problems with general
nonsmooth structures such as PWPs through Clark’s generalized gradients
[67,66]. These generalized methods for nonsmooth optimization are known to
have poor convergence properties for nonconvex structures [66]. Smoothing
techniques for nonsmooth functions encompass a variety of techniques, seek-
ing to ensure sufficient smoothness for gradient-based methods [86]. Many of
these methods are, however, designed for optimizing a nonsmooth function on
a convex set, e.g [11,53]. Meanwhile, smoothing techniques for discontinuities
by means of step-function approximations (e.g. [86,10]) are known to be prone
to numerical instabilities, particularly for increasing accuracies of the disconti-
nuity [12,22,83]. Exploitation of MIP for solving PWP optimization problems
beyond complete approximative linearization [51] and direct solution as a non-
convex mixed integer nonlinear programming (MINLP) problem appears to be
limited.

We adopt disjunctive representations of PWP constraints, drawing upon
the extensive work on disjunctive programming (DP) formulations and repre-
sentation of piecewise linear (PWL) functions [2,54,69, 76]. Modeling piecewise
functions as disjunctions enables application of MIP techniques [78], or spe-
cialized branch-and-bound or branch-and-cut schemes with a set condition for
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representing the piecewise constraints [3,43,54,38]. Still, using MIP to solve
PWP-constrained optimization problems puts high requirement on the con-
straint formulation in order to overcome the inherent problem complexity. To
this end, polynomial spline formulations [68], such as the B-spline, may be ap-
plied. Polynomial splines are constructed from overlapping (piecewise) polyno-
mials with local support, and embodies a large and versatile set of techniques
for modeling PWPs with favorable smoothness and numerical properties. For
decades, polynomial splines, which we simply refer to as splines in this pa-
per, have played an important role in function approximation and geometric
modeling. In particular, they have been popular as nonlinear basis functions
in regression problems [19,65,28], for example in kernel methods [20,85,30],
and in finite element methods [31]. Yet, there are few references [24,8] using
splines within mathematical programming beyond the optimization of spline
design parameters [82,62,61].

The availability of spline-compatible optimization algorithms and codes is
limited. In a recent work, [25] develop a spatial branch-and-bound (sBB) algo-
rithm for global optimization of spline-constrained problems. While the algo-
rithm is shown to be highly efficient, it is only available as a specialized code
and requires software for spline generation [26]. To address the comparably
high modeling and implementation effort required for using the specialized sBB
algorithm of [25], [23] propose an explicit constraint-formulation for continuous
splines, yielding a mixed-integer quadratically constrained program (MIQCP).
In this paper, we build upon and extend the spline-constraint framework of [25]
and [23]. Our main contribution is a general-purpose framework for mathemat-
ical programming formulations of piecewise polynomial constraints, subsum-
ing spline constraints. We derive relations between Bernstein polynomial basis
for PWPs and spline constraints, and extend this to lower semi-continuous
PWPs. From a disjunctive PWP formulation, we construct an exact MINLP
formulation with an associated bound-tightening technique, Bernstein cuts and
reduced, logarithmic formulations to improve the computational efficiency.

The remainder of the paper is organized as follows. In Section 2, we present
the theory of Bernstein polynomials, exploited as basis functions for piecewise
polynomials in Section 3. Following this, we explore in Section 4 PWPs in
the framework of the B-spline to highlight their applicability as a modeling
tool for constraints. In Section 5, we present a disjunctive formulation of the
PWPs. Using this disjunctive polynomial formulation, we present in Section
6 several MINLP formulations with cutting planes derived from the Bernstein
polynomials. In Section 7, we present computational results from the proposed
formulations, comparing the results with existing methods for optimizing PWP
functions.

2 Polynomial bases

This section provides background material on polynomial functions to cover
the theory needed for developing an optimization framework for piecewise
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polynomial functions. The theory is presented as a series of propositions that
summarize some classical results for polynomials. For brevity, most proposi-
tions are given without rigorous proofs; each proposition may, however, be
proved by simple algebraic manipulations. To further simplify the disposition,
we have put some computational details in Appendix A.

We begin by introducing the monomial and Bernstein basis for polynomi-
als in one variable. Several propositions are provided that ultimately enables
computation of lower and upper bounds on any polynomial. These results are
then extended to the multivariate case.

2.1 Univariate polynomials and the Bernstein basis

Let P, denote the vector space of polynomial functions in one real variable
with degree less than or equal to p € N, i.e.

P, =span{M;}}_,, M,:R—R, M;x)=2" 0<i<p. (1)

The set {M;}?_, is commonly referred to as the monomial basis or power basis
of P,. Any polynomial f € P, can be written as

fz) = Z a; Mi(z) = a' My(2), (2)

where the vector of coefficients a = [a;]}_, € RPT!, and the vector of monomial
basis functions M, (z) = [M;(x)]t_, € RPFL
An alternative basis for P, is the Bernstein basis

Bi, = <Z;):z:i(1z)pi, 0<i<p. (3)

Since span{B;,}'_, = P,, any polynomial f € P, may be expressed in the
Bernstein basis as

f(@) = 3" iBip(a) = ¢ Bya), (@

where the vector of coefficients ¢ = [¢;]?_, € RPT!, and the vector of Bernstein
basis functions By (z) = [B; ,(z)?_, € RPTL.

The monomial and Bernstein basis are related via the linear mapping
M, = Q,B,, where Q, € RPTUX+1) is the transformation matriz given
in Appendix A.1. Consequently, a” M,,() = ¢" B, (), given that ¢ = Q;a.

The Bernstein polynomials possess several useful properties that facilitate
the study of signs and bounds on polynomial functions. These properties, to
be presented next, will later be utilized to devise bounds on PWPs.
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Lemma 1 (Convex combination property of Bernstein polynomials)
The following holds true for a set of degree p Bernstein polynomials {B; ,}7_:

B;p(z) >0, Vzxe[0,1], ¢=0,...,p

p

5
Y Biy(z)=1, VzeR (5)
1=0

Proof The lemma is proved by applying Newton’s binomial identity to (3). O

Proposition 1 (Bounds on Bernstein polynomials) Let f € P, be a
polynomial expressed in the Bernstein basis (4), and denote c* = min{¢;}}_,
and ¥ = max{c;}_,. Then, a valid bound on f is L' < f(z) < Y vz € [0,1].

Proof Tt follows from Lemma 1 that

P P
f(z) = ZCZ-BW(:U) < ZCUBW(;E) =Y,
i=0 =0
P P
=3 ""Biy(x) <> aBip(a) = f(2),
i=0 =0
which proves the proposition. a

Observe that Proposition 1 holds for « € [0, 1]. To obtain a bounding box

on a general domain [z, 2Y], we perform an affine change of variable.

Proposition 2 (Reparametrization of polynomial) Let f € P, be a poly-
nomial f(z) = a'M,(z), for x € [zF, 2Y]. Consider the affine change of
variables = (zV — zL)u + 2%, with w € [0,1]. The polynomial f can be
reparametrized from x to u via the linear mapping M, (x) = R, Mp(u), where
R, € REHOX®HY) s the reparametrization matriz given in Appendiz A.2.

Proof Cf. [57]. |

By combining Propositions 1 and 2, we obtain a bound for polynomials on
a general domain z € [zL 2Y].

Proposition 3 (Polynomial bounds on general intervals) Let a be the
coefficients of a polynomial f € P, in the monomial basis. Furthermore, let c =
(R,Q,)Ta be the coefficients obtained by first reparametrizing the monomial
basis from x € [xL,2Y] to u € [0,1], and then transforming the monomial basis
to the Bernstein basis in u. From Proposition 1, it follows that

< flx) <V vaelzt 2l (6)

L

where ¢ = min{c¢;}}_, and ¢V = max{c;}!_,.

Proof The result follows directly from Propositions 1 and 2. O
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2.2 Multivariate polynomials

A vector space of multivariate polynomials f : R — R in the variables
x = (z1,...,24) € R? can be constructed by taking the tensor product of uni-
variate polynomial bases. Specifically, we construct a multivariate polynomial
basis as

d
M; (@) = (R My (z). (7

where M, (z;) = [M;(x;)]_, is a vector of p + 1 monomial basis functions in
the variable x;.

In (7), Mg is a vector of n = (p + 1)? polynomials of degree less than or
equal to dp in d variables: i.e. each multivariate basis function results from d
products of univariate polynomial basis functions of degree less than or equal to
p. The basis spans a (tensor product) vector space of multivariate polynomials,
denoted IP’Z = span{Mﬁp}?gol. For notational brevity, we assume in the above
construction that the polynomial basis and degree are equal for all variables.
This assumptions can be removed without loss of generality as the multivariate
basis may be constructed from any combination of univariate polynomial bases
of varying degrees. Subsequently, we consider also the multivariate Bernstein
basis for IE”g, which we denote by Bg.

Using the multivariate polynomial basis, we may express any polynomial
fe ]P’g as

f@) =3 aM, (z) = aT Mi(z). (®)
1=0

The basis M is orthogonal and hence dim(P¢) = (p+1)%. The exponential
growth in the number of basis functions with the number of variables d, is a
phenomenon often referred to as the curse of dimensionality [5], limiting most
practical applications of tensor product bases to 5-6 variables.

The important property of the bounding box in Proposition (1) naturally
extends to the multivariate case.

Proposition 4 (Multivariate polynomial bounds on the unit cube)
Let f € Pg be a polynomial expressed in the multivariate Bernstein basis

d

f(@) = e"By(z) = ¢ Q) By(x;). (9)

j=1
Then, &' < f(z) < YV vz € [0,1]¢, where & = min{c; ;’:_01 and U =
max{c; }1 .
Proof For any 1 < r <d, let

d
By (@)= Q) Bylzj). (10)

j=1.g#r
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Then, given n = m? = (p + 1)%, it follows from Lemma 1 that

md—l D m(dfl)—l

d,—r
5 ng@):(z&,pm) S B
i=0 i=0 i=0

md-D_1

d,—r
= Y BY(x).
=0

The above relation implies that
n—1
> Bl (@) =1. (12)
i=0

The identity in (12), combined with Lemma 1, ensures that for all = € [0, 1]¢

n—1 n—1
f@)=>"eiBf,(x) <> Bl (@) <,
=0 1=0

n—1 n—1 (13)
g < CL Z B;i,p(w) < Z CZB;i,p(w) = f(w)7
i=0 i=0
which proves the proposition. O

Proposition 4 provides bounds on a polynomial expressed in the multivari-
ate Bernstein basis for & constrained to the unit cube [0, 1]%. Analogous to the
univariate case, we obtain bounds for general domains by reparametrizing the
basis.

Proposition 5 (Multivariate polynomial bounds on general domains)
Let f € ]P’g be a polynomial expressed in the multivariate monomsial basis

d

f(@) = a’ Q) My(z;), (14)
Jj=1
for x € [al 2V x ... x [2L,2Y] = [xL,2Y]. For each variable z;, let R, ;
be the reparametrization matriz that reparametrizes the monomial basis from
zj € [xf, 2] to u; € 10,1], computed according to (44) in Appendiz A.2. Fur-
thermore, let Q,, be the transformation matriz computed as in (43) in Appendiz
A.1. Then, f may be mapped to the multivariate Bernstein basis as follows:

d
flu) = aT® Ry, jQpBy(u;)
j=1

d
=a’ ®Rp,jQp ®Bp(uj) :CT®Bp(Uj)
=1 ‘
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where .
c"=a" Q) R, Q. (16)
j=1
Finally, we may apply Proposition 4 to obtain the bounds
< fle) < Ve ez 2Y), (17)
where ¢ = min{c;}~) and ¥ = max{c;}]7; .
Proof The result follows directly from Proposition 4. O

3 Piecewise polynomial functions

In this section, we describe to piecewise polynomial functions (PWPs) to which
we first give a formal definition for the continuous case. We then depart from
the continuity requirement in order to consider the more general case of lower
semi-continuous PWPs. The definitions given below provide a framework for
the development of the mathematical programming formulations in Sec. 5 and
6.

Definition 1 (Continuous piecewise polynomial function) Let D € R?
be a compact set. A function f : D C R? — R is a continuous piecewise
polynomial if and only if there exists a finite family of polytopes IT such that
D =Upepy P and

flz)={fp(x), xe P, VP eI, (18)
where fp: P CR? - R and fp € IF’Z for all P € II, and some degree p € Ny.

Note that the domain D does not need to be connected or convex. Con-
tinuity of f on D is ensured since fp,(z) = fp,(z) if ® € P, N P, for two
adjacent polytopes Py, P, € II.

In the above definition, the polynomial pieces {fp}pc are constructed
from some basis that spans the space IP’g. A special case occurs when d = 1
and p = 1, for which {fp}pen are linear functions in one variable, and f
a continuous piecewise linear function. Furthermore, for d > 1 and p = 1,
f is a continuous piecewise multilinear function due to the tensor product
construction of ]P’g. In general, the polynomial pieces are of degree less than or
equal to dp € Np.

3.1 Polytopes on a Rectilinear Grid

Def. 1 of continuous PWPs does not prescribe the polytopes; they may for
instance be given as the convex hull of a finite number of points, or as a
system of linear inequalities. Some formulations for piecewise linear functions
require the polytopes to be simplices resulting from a triangulation of D [77].
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For most practical applications of PWPs, the polytopes are assumed to be
n-orthotopes (hyperrectangles/boxes) arranged on an axis-aligned rectilinear
grid.! In the rest of this paper, we will assume that the domain D is partitioned
on such a rectilinear grid, for which the polytopes in IT are characterized as
follows.

For i € {1,...,d}, let 7 = {nf,..., @, } € R denote a strictly monoton-
ically increasing sequence of m; real numbers, e.g. 7§ < 7 < ... < W}n Let
G denote the rectilinear grid with vertices V(G) = {(v1,...,vq) : v; € 7* Vi €
{1,...,d}}. Furthermore, let V(G™) = {(v1,...,vq) : v; € «" \ {mh,, } Vi €
{1,...,d}} C V(G) denote the vertices of G, except the ‘rightmost’ vertices
in the grid. We index a vertex v € V(G) with I(v) = k = (k1, ..., kq) so that
v = Wél, ey Vg = ’ﬂ'gd.

A box in G, identified by its ‘leftmost’ vertex v € V(G ™), is given as

Po={zeR':7m, <az;<mj ., Vie{l,...,d}:k=1I()}. (19

In compliance with Def. 1, the n-orthotope P, is a bounded polytope and Il
is given as the set of n-orthotopes on the grid G, i.e. Il := { Py} ev(G-)- The
number of boxes in I is |IIg| = my - - - mq. Subsequently, we will simply drop
the subscript and write /T = IIg. We will also denote with P#(G) the space of
piecewise degree p polynomials with a partition of the domain D given by the
rectilinear grid G.

3.2 The epigraph of piecewise polynomials

A continuous PWP f : D C R™ — R may be modeled by its epigraph epi(f) :=
{(z,z) € DxR: f(x) < z}. We assume that D is a bounded domain and
that f participates in a constraint on the form f(x) < 0 or in an objective
function to be minimized. That is, the constraint f(x) < 0 can be modeled as
(z, 2) € epi(f), z <0, and the objective f can be modeled as the minimization
of z subject to (x, z) € epi(f).

The epigraph of f can be expressed as the union of epigraphs of its pieces
fp, ie.

epi(f) = [ epi(fp). (20)
pell

where epi(fp) := {(x,2) € P xR: fp(x) < z}. As illustrated by Fig. 1, the
epigraph of a piecewise function is in general a nonconvex set. Note that
epi(fp) is convex if and only if fp is convex on P. Furthermore, f may be
nonconvex, even if fp (and epi(fp)) is convex for all P € II.

The theory developed by Jeroslow and Lowe [34-36] shows that epi(f) can
be modeled as a MILP if and only if f is piecewise linear and lower semi-
continuous. Based on this theory, Vielma et al. [77,78] derived new MILP

1 To understand why a rectilinear grid is practical, consider a domain partitioned into
a set of non-regular polytopes (resembling a shattered window). Patching together higher
order polynomials on these polytopes in order to ensure continuity on all faces is non-trivial.
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(c) (d)

Fig. 1 Continuous piecewise polynomials and their epigraph (colored grey). The five pieces
of the piecewise polynomial are linear in (a), quadratic in (b), cubic in (c), and quartic in

(d).

models and presented a unifying framework for piecewise linear functions. To
follow on these works, we continue by extending Def. 1 to handle lower semi-
continuous piecewise polynomials.

3.3 Extension to lower semi-continuous piecewise polynomials

Below we provide a definition of PWPs that are not necessarily continuous.
This allows us to analyze and integrate in the framework the subset of discon-
tinuous PWPs that are lower semi-continuous. The extended definition lets us
tie our PWP framework to the B-spline modeling framework, which facilitates
construction of PWPs with predefined smoothness.

Before extending Definition 1 of PWPs, we consider the property of lower
semi-continuity with some simple examples. Formally, a function f is lower
semi-continuous if for any xyg € D

liminf f(x) > f(xo). (21)
X
The importance of lower semi-continuity comes from the fact that the epigraph
of a function is closed if and only if it is lower semi-continuous. It is hence a
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requirement for the epigraph model in Sec. 3.2. Since a continuous function is
lower semi-continuous, the requirement always holds for continuous PWPs. To
illustrate this property, consider the two PWPs in Fig. 2. Both PWPs consist
of five pieces defined on the intervals [0,1), [1,2), [2,3), [3,4), and [4,5]; the
open end of the intervals are marked with white-filled circles. The PWP in
Fig. 2a is lower semi-continuous at z = 2, but not at points x = 1 and x = 3.
Thus, it is not a lower semi-continuous PWP and its epigraph not closed. On
the other hand, the PWP in Fig. 2b has one discontinuity (z = 2) at which
it is lower semi-continuous. It is thus a lower semi-continuous function and its
epigraph is closed. To summarize, we may model the PWP in Fig. 2b by its
epigraph since it is a closed set, but not the epigraph of the PWP in Fig. 2a.

(a) (b)

Fig. 2 Discontinuous piecewise polynomials and their epigraph (colored grey). The five
pieces of the piecewise polynomial are constant in (a), and linear in (b).

To allow discontinuities, Vielma, Ahmed, & Nemhauser [77] employed a
characterization of the domain using copolytopes (sets defined by a finite set
of strict and non-strict linear inequalities). Similarly, we use copolytopes to
define not necessarily continuous PWPs as follows.

Definition 2 (Piecewise polynomial function) Let D € R¢ be a compact
set. A (not necessarily continuous) function f : D C R? — R is piecewise
polynomial if and only if there exists a finite family of copolytopes II such
that D = Jpey P and

f(x) ={fp(x), z€ P, VPeIl, (22)
where fp: P CR? - R and fp € IF’Z for all P € II, and some degree p € Ny.

With a minor adjustment to the continuous case, we may express the epi-
graph of a function f defined according to Def. 2, as the union of epigraphs of
its pieces fp. That is, we model

epi(f) = |J epi(fp), (23)

pPell
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where we now use epi(fp) = {(x,2) € PxR: fp(x) <z} in which P is
the closure of P. Recall that epi(f) is closed if and only if f is lower semi-
continuous.

Similar to continuous PWPs, we consider a partition of the domain on a
rectilinear grid G. However, we now compose the grid of left half-closed boxes.
A left half-closed box in IIg, with leftmost vertex v € V(G™), is given as

Po={zeR':n, <a;<m  Vie{l,...,d}:k=1I(v)} (24)

Note that P,, being a left half-closed box, is a special type of copolytope. Fig. 3
illustrates left half-closed boxes of dimensions one, two, and three, respectively.

[a,b) x [c,d) [a,b) x [c,d) x [e,f)

[a,b)
2 @————Ob

(a,c,e)

Fig. 3 Figure illustrating left half-closed boxes in one (line), two (rectangle), and three
(cube) dimensions.

A technicality arises with this partitioning in that the rightmost boundaries
of D are open, and hence D is open, which breaks compatibility with Def. 2.
To close these boundaries we must require that the rightmost boundaries of
the rightmost boxes are closed; i.e. in (24) we must replace m, < x; < 7}, 4
with 7r}€ <z < 71',1c 41 if ki +1 =m,;. The addition of this requirement on the
partitioning ensures that the domain is closed and hence compatible with Def.
2.

4 B-splines

With piecewise linear functions one is often concerned with C° continuity at
intersections & € P,N Py, where P;, P, € II. For PWPs, C', C2, or higher-order
continuity at the intersections is an obtainable and often desired property.
Def. 1 only guarantees C° continuity, but does not exclude PWPs with higher
order continuity. Below, we introduce the B-spline framework which enables
construction of PWPs with a desired degree of smoothness.

A B-spline consists of overlapping polynomial basis functions, constructed
under continuity constraints to control the order of continuity at the points
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where the polynomials pieces connect (known as knots). The B-spline ba-
sis may be regarded as an extension of the Bernstein basis, generalizing the
description of a single polynomial on a continuous interval to piecewise poly-
nomial functions over partitioned domains, specified by a knot sequence [21].
It retains the non-negativity and partition-of-unity properties of the Bernstein
basis; cf. [57,68].

In the following, we show how a B-spline may be brought to the form
of piecewise polynomials in Def. 2, in which the polynomial pieces are non-
overlapping. This procedure can be used to construct piecewise polynomial
constraint functions from B-splines.

4.1 B-spline basis functions.

A B-spline of degree p in the variable x is expressed as

Fa) = 3 ey (), (25)
=0

where {¢; ?:_01 € R are coefficients and {N; ?:_01 are B-spline basis functions

defined as?
x —t; t; 1— X
_ : “Nip-1(2;t) + %Niﬂ,p—l(%t%
tH—p tz t2+p+l tz+1
L 1, ¢ <z <ty
Nio(:t) = {O7 otherwise.

Nip(x;t) =
(26)

The parameter t = {ti}?iop is a non-decreasing sequence of real numbers,
ie. tg <ty < --- < tpyp, referred to as a knot sequence. A knot sequence
is said to be regular if it also abides to the requirement that t; < t;1p41;
i.e. the largest multiplicity of any knot is p + 1. Repetition of knots is used
to control the continuity of the B-spline. At a single knot, CP~! continuity is
ensured. Generally, at a knot of multiplicity m > p, CP~™ continuity is ensured
[7]. At knots of multiplicity m = p + 1, discontinuities may appear. Observe
that a B-spline may be CP~! continuous at any knot, even if the knot has
multiplicity larger than one, as long as the coefficients ¢ are chosen correctly.
In the following, we will simplify the notation by omitting the dependence of
the basis functions on t so that N, ,(x) = N, ,(z;t).

The B-spline basis functions are piecewise polynomials by definition. Hence,
the B-spline, being a linear combination of PWPs, is itself a piecewise poly-
nomial function of degree equal to that of the basis functions. Furthermore,
a B-spline f lies in the vector space S,(t) = span{N; ,}""}; i.e. f lies in the
space spanned by degree p B-spline basis functions parametrized by the knot
sequence t. Note that S,(t) is defined by the degree p and the partition of the
domain, as prescribed by the knot sequence t.

2 Division by zero is handled by a ‘0/0 = 0’ convention.
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The following lemma gives some important properties of B-spline basis
functions.

Lemma 2 (Properties of B-spline basis functions) The following holds
true for a set of degree p B-spline basis functions {N; p}:

Nip(z)>0, i=1,...,n, VxelR
Nip(®) =0, Vo & [ti,titpr1)
Z Ni’p(x) =1, Vze [tj7tj+1)

1=j—p

The three respective properties in Lemma 2 are referred to as the property of
nonnegativity, local support, and partition of unity. These properties and the
overlapping feature of the B-spline basis functions are displayed in Fig. 4.

0,8 Nos Nz

Ny Nys

Nip(x)
=]
(=2}
T T

0,4

il / \
O L L
0 1 2 X 3 4 5

Fig. 4 B-spline basis functions for degree p = 3 and knot sequence t

[0,0,0,0,1,2,3,4,5,5,5,5]. Basis functions that have support in the knot span [t5,t¢] =
[2, 3], namely {N2 3, N3 3, N4 3, N5 3}, are accentuated.

From the properties in Lemma 2 it may not be immediately clear that
B-spline basis functions are closely related to Bernstein polynomials. The re-
lationship is nicely summarized by the following proposition.

Proposition 6 (Equivalence between B-spline and Bernstein basis)
The B-spline basis functions {N; ,(z;t)}'_, in the variable x € [0,1) defined
by the regqular knot sequence

t=1{0,...,0,1,...,1}, (28)
—— ——

p+1 p+1

are equivalent to the Bernstein polynomials

No(ait) = (7)1 - 0P = By o) (29)

Proof Cf. [57,68]. O
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Another useful property of the B-spline basis is that it is invariant to
an affine change of variable, as shown by Proposition 7 in Appendix B. By
combining Proposition 6 and 7, we easily obtain the result in the following
corollary, linking the B-spline basis function on x € [a,b) to the Bernstein
basis on y € [0, 1).

Corollary 1 Consider a B-spline basis {N; p(z;t)}_, in the variable x €
[a,b) defined by the regular knot sequence

t=A{a,...,a,b,...,b}. (30)
—— —
p+1 p+1

Then, for i € {0,...,p} and y € [0,1), we have that N; ,((b — a)y + a;t) =
B »(y), where B; ,(y) is the Bernstein basis.

Proof The corollary follows immediately from Proposition 6 and 7. O

Finally, before proceeding to the multivariate case, we address the tech-
nicality that the support of a B-spline is restricted to the half-open domain
D, = [to, tn+p). To close the domain we define

f(tn-H)) = lim f(x)v (31)

T—tn4p
xSt7l+p

and simply refer to the domain of a B-spline f as D = cl(D,) = [to, tntp)-

4.2 Multivariate B-splines

Multivariate B-splines, also known as tensor product B-splines, are constructed
using the Kronecker product, analogous to the construction of multivariate
polynomials in Section 2.2. Consider the multivariate B-spline basis functions

d
Ni(@:;T) = Q) Ny(3t;), (32)

j=1

where N, (z;;t;) = [Ni,p(xj;tj)]?ial is a vector of n; degree p B-spline basis
functions on the knot sequence t; in the variable z;, and T = {¢; }?:1 is the
set of knot sequences. Similar to the description of multivariate polynomials,
we have assumed without loss of generality that the univariate basis functions
share a common degree p to ease the notation.

Using the basis in (32), we may construct a multivariate B-spline as

N-1
f®)=> Ny (7)), (33)
i=0
where the number of multivariate basis functions N = ny ---ng4. The space of
B-splines spanned by the above basis is denoted SI(T)) = Sp(£1) X - - - x Sy (ta),
where the knot sequences T' parametrize the partition of the domain.
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From its construction by the Kronecker product of univariate B-spline basis
functions, a special property of multivariate B-splines is that they are defined
on a rectilinear grid of left half-closed boxes aligned to the variable axes. The
partition is thus the same as the one we introduced for the piecewise polynmials
in Sec. 3. This allows the space of piecewise polynomials ]P’g(G) to be repre-
sented in terms of B-splines Sg(T), given appropriate knot sequences T'. This
relationship was first stated for the univariate case in the Curry-Schoenberg
theorem [14]. Using our notational framework, we restate this relationship for
the multivariate case in the following lemma.

Lemma 3 (Relationship between B-splines and PWPs) Given the space
]P’g(G) of piecewise degree p polynomials on a bounded domain D partitioned
on a rectilinear grid G of left half-closed boxes. Then Sg(T) = Pg(G), if the

knot sequences T = {t;}_, are given as

t; = {ﬁé,...,ﬂé,...,ﬁ,@,...,Wi,...,wfm,...,ﬂfm} Vie{l,...,d}. (34)
—— —— —_——————
p+1 p+1 p+1
That is, the knot sequence t; for variable x; contains all partition points with
multiplicity p + 1.

Proof Consider the one-dimensional case first (d = 1). The specified knot
sequence parametrizes the B-spline to have p 4+ 1 supported basis functions in
each half-open knot interval [r}, 7¢ +1); the partition is thus equivalent to the
partition of D by the grid G. According to Cor. 1, these basis functions are
equivalent to the Bernstein basis functions, and hence spans the space P, on
D. For the general case of d > 1, we utilize the fact the multivariate B-spline
basis functions are constructed using the Kronecker product in (32). D is thus
partitioned into left half-open boxes [m} , 7} 1) x---x[xf @l ), equivalent
to the partition given by G. Furthermore, the multivariate B-spline basis is
equivalent to the multivariate Bernstein basis since they both are constructed
by the Kronecker product. It follows that the multivariate B-spline basis spans
the space P¢ on D, and by equivalence of the bases S4(T') = P4(G). O

The knot sequences in Lemma 3 are special since all knots have multiplicity
p+ 1. Consequently, any B-spline can be transformed to an equivalent B-spline
with such knot sequences. This transformation is done by inserting knots into
the knot sequences until all knots have multiplicity p+1, using a knot insertion
method. The effect of raising the multiplicity of all knots to p + 1 is that the
B-spline is decomposed into a set of disjoint (non-overlapping) polynomial
pieces, as illustrated by Figure 5. This procedure, provided in Appendix B,
uses knot insertion to bring any B-spline to the PWP form in Def. 2.

In Lemma 3, the domain D is not required to be closed since the support of
the B-spline is restricted to a half-open domain. However, a compact domain
may be considered if the definition of the B-spline is extended to include
support on the right boundary as described in Sec. 4.1, and the rightmost
boxes in G are closed as in (31). To complete the comparison of B-splines with
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0 1 2 3 4 5

Fig. 5 B-spline basis functions for p = 3, n = 8, and knot sequence t =
[0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5]. Each basis function spans only a sin-
gle knot interval. In each knot interval, the cubic B-spline is a cubic polynomial expressed by
four basis functions that are equivalent to the Bernstein polynomials (on the unit interval).

our definition of PWPs, we note that a B-spline is lower semi-continuous if
no internal knot is repeated more than p times. Discontinuous B-splines, for
which the multiplicity of one or more internal knots are p 4+ 1, may still be
lower semi-continuous.

5 Disjunctive formulations for piecewise polynomial functions

In this section, we apply disjunctive constraint formulation as a means of
representing PWP constraints. Consider a piecewise polynomial f : D — R,
defined in Def. 1, with a rectangular domain D = {z : z¥ < x < 2V} =
Upen P C R The epigraph of f, epi(f) = {(z,z) € D x R: f(z) < 2z}, can
be represented by the disjunction [1,34]

v xeP
pen |fp(x) <z

The disjunction DP-1 of |II| terms restricts « to exactly one polytope
P € II, with each disjunctive term given by the epigraph epi(fp) of a piece
fp of f. The disjunction (DP-1) thus models epi(f) as the union of epigraphs
in (20). DP-1 is also a valid model for lower semi-continuous PWPs according
to Def. 2, if we replace in each term the domain constraint with € P, where
P = cl(P). In both cases, DP-1 is a proper disjunction [2,75] in the sense that
no single polytope covers the entire feasible region. Observe that Def. 1 ensures
continuity in the overlap between the polytopes constituting the disjunction. In
the derivations that follow we assume that f is a continuous PWP, but remark
that the resulting formulations are also valid for lower semi-continuous PWPs
subject to the mentioned domain-substitution.

When P is an n-orthotope, it may be expressed as P = {x : :vlL; <z < :L'g},
where a:{; and :cg denote lower and upper bounds on @, respectively. The
constraint & € P then simplifies to the box constraints

(DP-1)

xhk <ax <a¥. (35)
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The disjunction DP-1 contains a nonlinear, possibly nonconvex inequality
for each term, thereby severely impeding the scalability of the formulation and
hence its practical application. As a partial remedy, we may utilize that each
polynomial fp can be expressed as a linear combination of the basis functions
spanning Pg, that is, fp € ]P’g, for all P € II. This salient characteristic allows
us to exploit that the basis functions are independent of P, and hence be
extracted outside the disjunction as a common set of nonlinearities. Together
with the box constraints (35), this simplifies DP-1 to

v zh <z <Y
perr | apB<z |’

B =M (z),

(DP-2)

where fp is hence expressed as a linear combination of the n = dim(P)
multivariate monomial basis functions 3 = Mg. We stress that even though
it is always possible to substitute nonlinearities with new variables to obtain
linear disjunctions as in DP-2, the benefit comes solely from having common
basis functions and hence reducing the number of nonlinear constraints.
Generally, DP-2 requires n = dim(]P)g) = (p+1)? polynomial constraints to
model a PWP, invariant to the discretization of the domain. Consider a PWP
defined on a rectilinear grid of |IT| = m? boxes, resulting from a discretization
with m > 1 intervals in each of the d variables. DP-1 requires m? polynomial
constraints to model this PWP. Thus, when m > p + 1, m? > (p + 1)¢, and
the formulation in DP-2 is likely preferable to DP-1. To summarize the above
argument: modeling the polynomial function space IP’g via its n basis functions,
as opposed to modeling each of the |II| polynomial pieces separately, will
generally result in fewer nonlinear constraints. It is worth noticing, however,
that the exponential increase with d in the number of nonlinear constraints
puts a practical limit on formulations derived from either DP-1 or DP-2.

Remark 1 Piecewise McCormick envelopes and other linear relaxations (e.g.
[27,40]) for bilinear terms fp(z) = zix9, with (z1,22) € P, can be derived
from DP-1. This special case of DP-1, however, renders linear approximations,
compared to DP-2 which is an exact formulation.

5.1 Reformulation of disjunction

Algorithmic approaches for mathematical programming problems with dis-
junctions either reformulates the disjunction to enable mixed-integer program-
ming, or seeks to exploit the disjunctive constraints explicitly in a branch-and-
bound or cutting-plane algorithm, possibly through combinations thereof [4,
73,63]. Linear [2] and convex nonlinear disjunctions [9] may be reformulated
either by its convex hull representations or by big-M reformulations. Pertain-
ing to the linear disjunction in DP-2, the convex hull formulation [2] is at
least as tight as big-M reformulations, though requiring more variables and
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constraints. Big-M formulations, on the other hand, are known to be prone to
the choice of the big-M parameters, and often yield weaker relaxations. For
large nonlinear, possibly nonconvex disjunctive programming problems, it is
important to keep the size of reformulation small, in which big-M reformu-
lations may be advantageous [75]. A prerequisite for the numerical efficiency,
however, is that strong big-M values can be derived.

5.2 Bounds on polynomial constraints

Deriving strong big-M values for DP-2 amounts to finding an upper bound on
the constraint a3 < z for some P € II. Suppose that a3 € [mk, m¥] and
that 2% < z for any € D. We may then define MY :=mY — 2L so that, for
any € € D,
apB—2< M. (36)
To obtain a valid upper bound M g , we must determine the values of mg
and zL. We observe that any feasible solution must satisfy fp = aL3 < z for
some P € II. Thus, a valid lower bound on z is z > 2% = min{m&} pc 7, and
we may rewrite the upper bound on the polynomial constraint to

ME =mY —min{mb}pcr. (37)

It is then obvious that computing MY for each P € II requires a lower and
upper bound on all polynomials {fp}prcrr.

Returning to DP-2, there is a subtlety due to the substitution of the non-
linearities that impedes the derivation of tight bounds on the polynomials. The
issue is that the bounds on fp(z) = ab8 € [m5, mY¥] must be valid for all
z € [zF, Y], not only for the subinterval [z%, %] on which the polynomial
piece is modeled. This poses numerical problems since the piecewise polynomi-
als may become prohibitively large on [z, Y], resulting in undesirably large
bounds.

To solve this issue and obtain tighter bounds on the polynomials { fp} perr,
we utilize the procedure in Proposition 5 to perform a reparametrization before
computing the polynomial bounds. Let u € [0,1] € R? and fp = ap, M (z) =
cp Bl (u), where the coefficients of the reparametrized polynomial in Bernstein
form are given as

d
ch=ap Q) Ry Q. (38)
j=1

Using the multivariate Bernstein basis B;l(u) for 0 < u < 1 enables reformu-
lation of DP-2 to the disjunction

L U
zp <z <xp

— (U oL L
Pl w—(pr Tp)u+Tp |,
cpB <z (DP-3)
B:Bg(u),

0<u<l1
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Within each term P € II in DP-3, the variables  and w are linearly
dependent. The reformulation DP-3 enables computation of bounds on the
reparametrized polynomials. In parcticular, by invoking Proposition 4 we ob-
tain ch < cLB < ¥, where ¢k = min{c; p}I) and c¥ = max{c; p}7~; . This
allows us to redefine

ME =% —min{ch} per, (39)

and thereby obtain a valid upper bound ¢L8 — 2 < MY for all u € [0,1] and
Pecll

Finally, we note that the bound in (39) corresponds to an upper bound
on fp — z for x € [k, 2%] C D. This upper bound must be less than or
equal to the upper bound on fp — z for * € D = [z, Y], as required for a

reformulation of DP-2.

Remark 2 The special case of an equality constraint c},@ = z can be handled
by writing 0 < e¢5L3 — 2z < 0. Using the same arguments as above we obtain
the bounds

011—:’/8 —z< Mg?

40
chB— 2> ME, (40)

L._ L U
where Mg := c¢p — max{cp}per.

6 MINLP formulations for piecewise polynomial functions

In this section, we exploit the disjunctive formulation DP-3 of PWP func-
tions with the associated strengthening procedure of big-M values described
in Section 5.2 to construct mixed integer programming formulations. A basic
MINLP formulation is obtained by performing elementary big-M reformulation
of DP-3, yielding

< (2p —2)yp + 27, P e I,

x> (wp —x")yp +a”, VP e I,

x— (2% —xb)yu — 2k < (¥ —2h)(1 —yp), VP eI,

x — (xp —xplu—ap > (2" —xP)(1—yp), VPEI,

chB—2< MY(1—yp), VP eIl (\INLP-BM)
B =Bj(u),

Z yp =1,

Pell

0<u<l,

yp € {0,1}, VP e 11,

where MY = c% — min{cE} perr, and a binary variable yp is introduced for
each P € II. MINLP-BM has n = dim(PZ) nonlinear constraints; all other
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constraints are linear. The formulation requires d + n continuous auxiliary
variables w and 8, and |II| binary variables {yp}per.

Subsequently, we derive three variants of the MINLP-BM formulation be-
fore we investigate their efficiency in a numerical study.

6.1 Logarithmic number of binary variables

Compared to MINLP-BM, requiring a linear number of binary variables with
respect to the number of pieces in the PWP constraint, we may obtain a
formulation with logarithmic number of binary variables for PWP constraints
by means of the MILP modeling technique proposed by [77,78] for piecewise
linear functions. To this end, each polytope P € II is identified by a binary
vector in {0, 1}M°82 1T through an injective function J : IT — {0, 1}1o&2 1111
We introduce [log, |IT|] binary variables y € {0,1}M#z11111 to enforce the
constraints in the disjunction when y = J(P). The resulting formulation has
no requirement on the family of polytopes II, and is given by

x < (2% —2¥)vp + Y, VP e Il,
x> (xh —xlywp + ) VP e I,
x— (2% —xb)u — x5 < (¥ — xE)(1 - vp), VP e Il
x — (2% —zb)u — zk > (2 — 28)(1 — vp), VP e Il
chB—2< ME(1 —vp), VP € II,
B =Bj(w),
S vp=1, (MINLP-LOG)
Pell

Y e <y, vl € L(IT),
Pemt(Jl)

Yo v < (-, vl e L(ID),
PeIo(J,l)
0<u<1,
y € {0,1}, vl e L(I),

where J : IT — {0, 1}1°82 1711 is any injective function, IT°(J,1) := {P € IT :
B(P), =0}, I (J,)l) :={P €Il : J(P),=1},and L(II) := {1,..., [log, |II|]}.
MINLP-LOG has [log, [II|] binary variables {yi};ecr(m). The reduction in
number of binary variables comes at the cost of introducing |II| continuous
variables {vp}perr and 2|L(IT)| additional linear constraints.
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6.2 Bernstein cuts

The MINLP-BM formulation can be augmented with polyhedral cuts that may
strengthen its relaxation and expedite the solution process. Here, we include
cuts based on the inherent properties of the Bernstein polynomials similar
to [23]. The nonnegativity of Bernstein basis functions in Lemma 1 and the
identity in (12) are explicitly stated via nonnegativity cuts and partition-of-
unity cuts, respectively. The cuts are expressed as 3> 0 and 173 = 1, where
0 and 1 are vectors of n zeros and ones.

z < (2% —zY)yp + 2V, VP e I,
z > (xp —z")yp + ¥, VP e I,
@~ (zp —zp)u—ap < (@ —xp)(1-yp), VPEIL,
@~ (zp —@p)u—ap > (@ —ap)(1 —yp), VPEII,
cpB— 2z < Mp(1—yp), VP e I, (MINLP-CUT)

yp € {0,1}, VP e II.

Compared to MINLP-BM, MINLP-CUT has n + 1 additional constraints
for the linear cuts.

6.3 Expanded Bernstein basis

The preceding formulations do not utilize the structure of the tensor product
basis functions in Bg, cf. (9). The multivariate basis is formed by the product of
all the univariate bases, resulting in constraints with polynomials of degree dp.
In the following formulation, the multivariate basis is expanded to exploit the
inherent structure due to the tensor product. Specifically, the univariate bases
of degree p are assigned to continuous auxiliary variables. The multivariate
basis is then formed as the product of these auxiliary variables, which results
in polynomial constraints of degree d. The maximum degree of any polynomial
in the set of constraints is thus reduced to max{d, p}. Another benefit of this
expansion is that it permits additional polyhedral cuts on the univariate basis
functions.

To expand the multivariate Bernstein basis we introduce p + 1 auxiliary
variables & = B,(u;) for ¢ € K = {1,...,d}. The total number of auxiliary
variables is d(p + 1). Using these variables we may express the multivariate
basis as

d
B=Q¢. (41)
i=1
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The auxiliary variables represent univariate Bernstein basis functions. We may
add nonnegativity and partition-of-unity cuts, as was done for the multivariate
basis MINLP-CUT. These cuts are given as

£zZOa V’LGK’

42
17¢, =1, Viek, (42)
where 0 and 1 is a vector of p 4+ 1 zeros and ones, respectively.

The resulting formulation, with the expanded Bernstein basis and addi-
tional cuts, is given below.

x < (zp —x")yp + 2", VP e II,
z > (zp —z")yp + ", VP e II,
x—(z}p —ap)u—ap < (& —xp)(1-yp), VPEI,
x— (2% —xE)u —xk > (¥ —2Y%)(1 —yp), VP eI,
chB—2z < ME(1—yp), VP € II,
& = By(ui), & >0, 17¢ =1, Vi€ K,

(MINLP-EXP)
d

B=Q)&, B>0,18=1,
=1
Z Yyp = 17
Pell
0<u<1,
yp € {0,1}, VP eIl

Compared to MINLP-CUT, MINLP-EXP has d(p+1) additional auxiliary
variables, d(p + 1) + d additional linear cuts, and d(p + 1) extra nonlinear
constraints representing the univariate basis functions.

6.4 Summary of formulations

The size of the formulations in terms of number of variables and constraints
are summarized in Table 1.

Note that all formulations, except MINLP-EXP, have exactly n = dim(P)
nonlinear equality constraints. These constraints model the Bernstein basis
functions that span IP’Z , and are nonconvex since the Bernstein basis functions
are polynomials of degree dp. MINLP-EXP has an additional d(p + 1) poly-
nomial constraints of degree p. These constraints enable a reduction in the
degree of the n polynomial constraints that model 3 to d (compared to dp for
the other formulations).
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Table 1 Size of formulations.

# Constraints # Variables

Formulation* Linear Nonlin. Cont. Binary

MINLP-BM 5| +2d+1 n n+2d+1 ||

MINLP-LOG 5|IT) + 2d + n  n+2d+1+ || [logs |1T]]
1+ 2[log, | IT[]

MINLP-CUT  5|IT|+2d+2+n n n+2d+1 ||

MINLP-EXP 51| + d(p + n+dp+d n+dp+3d+1 |1T]
4)+n+2

* n = dim(P).

7 Numerical study

To benchmark the performance of the proposed MINLP formulations, three
sets of test problems were created by randomly generating cubic splines. The
three sets contain problems with a piecewise polynomial objective function
in one, two, and three variables, respectively. For the monovariable problems
(random1d), the variable is discretized into 10 intervals, leading to 10 polyno-
mial pieces. The set of problems in two variables (random2d) have an objective
function defined on a 10 x 10 grid, leading to 100 polynomial pieces. Finally,
the problems with three variables (random3d) have an objective function de-
fined on a 6 x 6 x 6 grid, for a total of 216 n-orthotopes. Thus, the hardest
problems (random3d) contain 216 polynomial pieces of degree dp = 3 x 3 = 9.
Properties of the sets of test problems are summarized in Table 2.

Table 2 Test sets of piecewise polynomial problems.

Problem d D pd | 11| Number of

instances
randomld 1 3 3 10 100
random2d 2 3 6 100 100
random3d 3 3 9 216 100

The problems are on the epigraph form min {z  fe) <z, xzeDC Rd},

where f : D — R is a piecewise polynomial function. Continuous cubic B-
splines with equidistant knots are constructed by randomly drawing coeffi-
cients from a Gaussian distribution with zero mean and unity standard de-
viation, that is ¢; ~ N (0,1), Vi = 0,...,n — 1. Figure 6 shows one of the
generated univariate cubic splines. Using the procedure in Sec. B, the B-spline
is transformed into a piecewise polynomial f compatible with Def. 2.

The four formulations MINLP-BM, MINLP-LOG, MINLP-CUT, and MINLP-
EXP were solved using the global optimization solver BARON [64]. We compare
the computational performance of the proposed MINLP formulations with the
two MIQCP formulations for spline-constrained problems proposed in [23].



Mathematical Programming Formulations for Piecewise Polynomial Functions 25

f(x)

Fig. 6 A cubic spline with randomly generated coefficients. The function has several local
minima. The global minimum for « € [0, 10] lies close to z = 8.

These two latter formulations, denoted MIQCP and MIQCP-CUT, were also
solved using BARON. We further include the results from solving the test prob-
lems using the special-purpose spline solver CENSO, which solves spline con-
strained problems as NLPs using a spatial branch-and-bound algorithm [25].

All solvers were run with an absolute e-convergence termination criteria of
e = 1-107%. Remaining settings were left at default values. The problems were
solved on a laptop computer equipped with an Intel Core i7-5600U 2.6 GHz
processor and 8 GB of RAM memory.

Results in terms of solve times are shown in Figures 7-9. The box plots show
the median (in red) inside the box extended from the first to third quartile.
The whiskers extending from the box represent the lower and upper value still
within the lower and upper 1.5 interquartile range, respectively. An outlying
value is indicated with a grey circle. A complete table of results can be found
in Appendix C, Table 3.

Among the MINLP formulations, the MINLP-EXP formulation performed
best overall. Comparing mean and median solve times, this formulation outper-
formed the MIQCP formulations on all three test sets. On the problems with
three variables, however, the MIQCP-CUT formulation had only a slightly
higher mean solve time than MINLP-EXP. CENSO [25] had the lowest solve
time on all problems, and a mean solve time one-two orders of magnitude lower
than MINLP-EXP.

Comparing the MINLP-BM and MINLP-LOG, it seems clear that reducing
the number of binary variables at the cost of introducing additional constraints
and variables yields little in terms of performance on the test sets. However, the
introduction of cuts in MINLP-CUT and MINLP-EXP, significantly reduces
the solve times. The benefit of utilizing the structure of the Kronecker product
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Fig. 9 A boxplot showing the results for random3d.

by modeling the univariate bases separately becomes evident for the 2-D and
3-D PWPs, as expected.

It seems that the main difficulty in solving these problems lies in the mod-
eling of the polynomial basis I[Dg, rather than the dichotomy of the grid. The
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d(p+1) additional nonlinear constraints in MINLP-EXP, which contains poly-
nomials of degree p, made it possible to lower the degree of the remaining n
nonlinear constraints that model the multivariate basis from dp to d. This had
a positive effect on the solve times. In the extreme case, one may factorize the
nonlinear constraints until all nonlinear constraints are bilinear, as done in the
MIQCP formulations from [23].

8 Concluding remarks

This paper has presented a MIP modeling framework for solving mathemati-
cal programs with continuous and semi-continuous PWPs. Such problems have
previously been restricted from mathematical optimization due lack of solver
support. By enabling use of standard optimization-modeling software, the im-
plementation efforts for spline- and PWP-constrained optimization problems
are significantly reduced. Moreover, it facilitates exploitation of the advance-
ment in global optimization solvers for MINLPs and MIQCPs [64,49,50,79).

There is still a significant gap to the performance of the special-purpose
spline-based solver CENSO, indicating that improvements can be made to
the formulations herein. Ideas from polynomial optimization, such as sum-
of-squares and semidefinite program relaxations [42,81] and the Bernstein
branch-and-prune algorithm [52], may be explored in combination with the
proposed framework to improve the modeling of ]P’g. We also emphasize that
the formulations presented are exact; approximations of these formulations
may hence aid efforts put in reducing the computational demand of solving
PWP optimization problems

Finally, our strategy of modeling a PWP via its epigraph provides a gen-
eral framework compatible with semi-continuous piecewise polynomials and
B-splines, encompassing a broad set of spline modeling techniques. The mod-
eling approach in this paper may hence enable formulation of a broad set of
spline models in optimization problems, beyond the B-spline employed in this
framework.
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A Polynomials

In this appendix we provide some transformations that are useful for manipulating polyno-
mials. These transformations can be found in most textbooks treating polynomials and are
reproduced here without proofs. The interested reader may refer to the book by [57].

A.1 Transformation between the monomial and Bernstein basis

There exist a linear mapping Qp € R@+TDX(@+1) that transforms a p-th degree Bernstein
basis By, = {B; »}!_, to a p-th degree monomial basis My, = {M;}?_; that is, M}, = QpBp.
The transformation matrix @y is an upper triangular matrix given as:

y 1>

. 0
wn={lye iZ] e

Conversely, the inverse mapping Bp = Q,TlMp transforms a monomial basis to a Bernstein
basis.

A.2 Reparametrization of the monomial basis

There exist a linear mapping R, € RP+DX(P+1) that reparametrizes a monomial basis
M, (u) on u € [0,1], to a monomial basis Mp(x) on x € [a,b]; that is, My (z) = RpMp(u).
Ry is a lower triangular matrix given as:

0 , 1< ]

(Yb—a)yai=i i

Rp(i,j) = { (44)

Conversely, the inverse mapping Mp(u) = R;lMp (z) reparametrizes a monomial basis from
x to u.



32 Bjarne Grimstad, Brage Rugstad Knudsen

B B-splines
B.1 Reparameterization of the B-spline basis

The B-spline basis is invariant to an affine change of variables, as shown by the following
proposition.

Proposition 7 (Invariance to affine change of variables) Consider a B-spline basis
{N; p(z;8)}_, in the variable x € [a,b) defined by the regular knot sequence

t={a,...,a,b,...,b}. (45)
N N —
p+1 p+1

The B-spline is invariant to the affine change of variables x = (b—a)y+a, y € [0,1). That
is, Nip(x;t) = N p(y; s), Vi, p, where s is the scaled knot sequence

s={0,...,0,1,...,1}, (46)
—— ——
p+1 p+1
obtained as s; = (t; —a)/(b— a), Vi.
Proof The proposition is proved by induction. Considering the base case for p = 0 in (26),
simple algebra yields

1, s; <y<sit1,
Nio((b—a)y+a;(b—a)s+a)= { 0 ofcherzvise.ZH

(47)
proving that N; o(x;t) = N; o(y; s), Vi, .

The next step of the proof is to show that, assuming N; ,_1(z;t) = N; p—1(y; s) Vi, x,
it will also be true that N; p(x;t) = N; p(y; s) Vi, z. Inserting the change of variable into
(26) gives

Nip(;t) = Nip((b—a)y +a;(b—a)s +a)

Y—Si Sitp+1 — Y

=—Nipa1(y;8) + Nit1,p-1(y; 8) (48)
Sitp — Si Sitp+1 — Si+l
= Nip(y; 8),
which concludes the proof. 0O

Remark that the special structure of the knot sequence t in Proposition 7 was not
utilized in the proof. In fact, Proposition 7 holds for any regular knot sequence t [57].

B.2 Decomposition using knot insertion
Knot insertion, as described in the following lemma, can be used to decompose a B-spline
into a set of disjoint (non-overlapping) polynomial pieces.

Lemma 4 (Knot insertion) Consider the following two degree p B-spline bases Np =

[Ni,p(x;t)]?;ol and Np = [Ni,p(x;T)]?;Ol, where T = {Ti}fiop, t= {ti}zjop, n<n, and T
is a refinement of t (any real number occurs at least as many times in T as in t). Then,
span{Ni p(z;t)}1=" = Sp(t) C Sp(1) = span{N; p(z; 7)} . (49)

Furthermore, there exists an 7t X n matriz A so that Np = ATN,. And thus,
n—1
f@) =" ciNip(@;t) = "Ny (a;t) = (Ac) "Ny (; 7), (50)
i=0

where Ac are the coefficients of the new basis. The matriz A is known as the knot insertion
matriz and can be efficiently computed using the Oslo Algorithm 1 [47].
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Proof See [47] and related works. O

The practical interpretation of Lemma 4 is that knots may be inserted into the knot
sequence to change the basis, without geometrically altering the spline. By combining knot
insertion with the relationship between the B-spline and Bernstein basis functions, we may
device a procedure that brings any B-spline to the form of a PWP in Def. 2. The algorith-
mic steps of the following procedure can also be found in [57], and are commonly used to
decompose a B-spline into a Bézier curve.

1. Apply knot insertion as in Lemma 4, to increase the knot multiplicity of all knots to
p + 1. This effectively decomposes the B-spline into a set of non-overlapping degree p
polynomials, with p + 1 basis functions in each (non-empty) knot interval.

2. For each knot interval, select the coefficients corresponding to the p+ 1 supported basis
functions. These coefficients are equivalent to the coefficients of the polynomial if it was
expressed in Bernstein form on the unit interval.

3. (Optional) Perform a reparametrization of the Bernstein form from the unit interval to
the range defined by the knot span using Proposition (2).

C Numerical results

The numerical results from the numerical study in Section 7 are listed in Table 3.

Table 3 Solve times on test problems.

Problem Formulation Solver Thed Tmean Tstd Trin Tmax

randomld MICQP BARON  0.210 0.202 0.098 0.030 0.450
MICQP-CUT BARON  0.140 0.149 0.083 0.001 0.380
MINLP-BM BARON  0.090 0.082 0.042 0.001 0.160
MINLP-LOG  BARON  0.100 0.092 0.047 0.001 0.260
MINLP-CUT BARON  0.040 0.046 0.024 0.001 0.130
MINLP-EXP  BARON  0.060 0.057 0.027 0.001 0.110
NLP CENSO  0.013 0.014 0.009 0.001 0.040

random2d MICQP BARON  13.22 13.95 4.227 4.710 35.51
MICQP-CUT BARON  4.075 5.082 4.346 0.320 27.28
MINLP-BM BARON  6.770 10.73 9.700 0.740 40.76
MINLP-LOG  BARON  6.995 11.87 10.89 0.490 46.92
MINLP-CUT BARON 1.425 2.955 3.457 0.300 15.91
MINLP-EXP  BARON 1.270 1.789 1.392 0.290 7.690
NLP CENSO  0.092 0.098 0.053 0.003 0.228

random3d MICQP BARON 4278 602.3 648.0 99.57 3600
MICQP-CUT BARON 35.44 54.46 47.21 3.670 231.6
MINLP-BM BARON  961.3 1364 1014 18.91 3600
MINLP-LOG  BARON 912.6 1216 1018 17.15 3600
MINLP-CUT BARON 82.24 185.5 256.3 2.270 1414
MINLP-EXP  BARON 3491 47.29 55.71 3.790 386.3
NLP CENSO  0.226 0.246 0.124 0.039 0.877

Times are given in seconds.



