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ABSTRACT
Drawing on statistical learning theory, we derive out-of-sample and suboptimal guar-
antees about the investment strategy obtained from a regularized portfolio optimiza-
tion model which attempts to exploit side information about the financial market in
order to reach an optimal risk-return tradeoff. This side information might include
for instance recent stock returns, volatility indexes, financial news indicators, etc.
In particular, we demonstrate that an investment policy that linearly combines this
side information in a way that is optimal from the perspective of a random sample
set is guaranteed to perform also relatively well (i.e., within a perturbing factor of
O(1/

√
n)) with respect to the unknown distribution that generated this sample set.

Finally, we evaluate the sensitivity of these results in a high dimensional regime
where the size of the side information vector is of an order that is comparable to
the sample size.

KEYWORDS
Portfolio optimization; Generalization bound; Utility maximization; learning
theory

1. Introduction

There is no doubt that modern portfolio management theory has been dramatically
affected by two important historical events. First, Markowitz in 1952 highlighted in
his seminal paper Markowitz (1952) how investment decisions needed to inherently
trade-off between risk (typically measured using variance) and returns (in the form
of expected returns). This was later reinterpreted as a special case of characterizing
risk aversion using expected utility theory von Neumann and Morgenstern (1944).
The flexibility of such a theory has since then been demonstrated in many occasions
regarding the wide diversity of investors’ risk aversion that it can represent (see In-
gersoll (1987) and reference therein for an overview of the type of attitudes that can
be modeled).

The second turning point of this theory can be considered to have occurred with
the financial crisis of 2008 which provided strong evidence that the use of statistics
such as variance and value-at-risk, and of distribution models that are calibrated using
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historical data could provide a false sense of security Salmon (2009). In an attempt
to address some of these new challenges, researchers have proposed using more robust
statistical estimators Madan et al. (1998); Goldfarb and Iyengar (2003); Olivares-Nadal
and DeMiguel (2018) while others encouraged the use of robust portfolio management
models that are designed to produce out-of-samples guarantees by exploiting the use
of a confidence region for the distribution of future returns Delage and Ye (2010);
Huang et al. (2010); Esfahani and Kuhn (2017); Bertsimas and Van Parys (2017).

In this work, we draw on statistical learning theory to establish what are the out-
of-sample guarantees that can be obtained when using regularization in an expected
utility model that allows to exploit side information about the financial markets (see
Brandt et al. (2009) where non-regularized version was introduced). This side informa-
tion could consist of fundamental analysis (as was famously done in Fama and French
(1993)), but also of technical analysis, of financial news, etc. Overall, we consider our
contribution to be three-fold.

(1) We derive a lower bound on the out-of-sample performance of the investment
strategy returned by this regularized model. In this respect, our results differ
from the usual statistical learning and stability theory results in the sense that
our guarantees will not be in terms of quality of fit of a model (e.g., expected
squared loss, hinge loss, etc.), but rather in terms of the actual performance
perceived by the investor (through the notion of a certainty equivalent).

(2) We derive an upper bound on the suboptimality of the investment strategy when
compared to the optimal strategy that would be derived using the full knowledge
of the sample distribution. Note that such guarantees have not been established
for data-driven or distributionally robust optimization.

(3) Considering that nowadays a growing amount of side-information can be ex-
ploited by individuals to make their investments, we establish precisely how
these bounds are affected at a high-dimensional (or “big data”) regime.

It is worth mentioning that the above contributions are similar in spirit to those of
Rudin and Vahn (2015) who applied stability theory to provide generalization bounds
for a newsvendor problem. There are however a number of distinctions regarding how
stability theory needs to be articulated for the two applications. For example, our
paper deals with a more general performance function which is non-linear and possibly
unbounded on both sides, and we focus on generalization and sub-optimality bounds
which, in our opinion, are more informative than the measure that is bounded in
Rudin and Vahn (2015). Moreover, we attempt to be more precise in our analysis on
characterizing the effect of data dimensionality on the out-of-sample performance.

The rest of the paper is divided as follows. First, we formally introduce our model
and assumptions in Section 2. Section 3 then presents what kind of out-of-sample
guarantees can be provided on the certainty equivalent (CE) of the investor using a
sample of market returns and side information when assuming a stationary market
distribution. We then proceed in Section 4 to show that the same kind of guarantees
can also be derived for the CE suboptimality, before showing in Section 5 what kind of
behaviour can be expected in “big-data” situation. We then conclude in Section 6. All
proofs have been pushed to the appendix section. Additional discussions on this topic
can also be found in Bazier-Matte (2017), i.e., the thesis from which these results are
drawn.
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2. Model and Assumptions

We consider a classical financial portfolio selection problem involving a risky asset with
random return rate R and a risk-free asset with return rate of 0% for simplicity. We also
suppose that the investor’s risk aversion can be characterized using expected utility
theory using a strictly increasing concave utility function u, and that the investor has
access to side information regarding the returns. This information might be the result
of processing the most recent financial or economic news, etc. We let this information
be described as a vector of p normalized random features [X1, X2, . . . , Xp]. In this
context, if the the distribution F of the pair (X,R) of side information and return is
known, a linear investment policy that exploits the side information optimally for this
investor can be obtained by solving the following optimization problem:

maximize
q∈Rp

EF [u(R · qTX)] , (1)

where it is assumed that short-selling is permitted.
In practice however, the exact distribution describing the relation between X and R

is not available at the time of designing the investment policy and one might instead
need to exploit a sample set sn := {(xi, ri)}ni=1 drawn independently and identically
from F . Unfortunately, when the sample size n is relatively small compared to p,
it is well known that the problem (1) using the empirical distribution F̂ obtained
from sample sn can suffer from severe overfitting and produce investment policies that
perform badly out of sample. This is for instance illustrated in the following example.

Example. Consider for instance a case where n = p and each feature Xi is indepen-
dantly and identically drawn from a Gaussian distribution. Given that it is well known
that the probability that the random matrix Ξ := [X1 X2 . . . Xn] be singular is null,

then one can easily establish that problem (1) with F̂ is unbounded. Indeed, one can

verify that riq̄
Txi = 1 for all i = 1, . . . , n when q̄ is set to Ξ−1T [1/r1 1/r2 . . . 1/rn]T .

Hence, one can achieve an arbitrarily large empirical expected utility by investing
according to αq̄ for α > 0.

To prevent issues associated to overfitting, one might instead seek the optimal so-
lution of the following regularized empirical expected utility maximization problem:

maximize
q∈Rp

EF̂ [u(R · qTX)] + λ‖q‖2 . (2)

Note that when it exists, we will refer to the optimal solution of this problem as q̂.

3. Out-of-sample performance bounds

The question remains of understanding what guarantees does one have regarding out
of sample performance of the portfolio investment policy obtained from such a regular-
ized problem. In particular, since utility functions are expressed in units without any
physical meaning for the investor, any guarantees derived using learning theory should
be reinterpreted in terms of a guarantee on the certainty equivalent1 (in percent of
return) of the risky investment produced by q̂TX. In other words, we will be interested

1The fact that c is the certainty equivalent of a random return R implies that the investors is indifferent
between being exposed to the risk of R or getting involved in a risk free investment that has a return rate of c.
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in bounding how different the in-sample certainty equivalent performance of q̂ might
be compared to the out-of-sample certainty equivalent performance.

In order to shed some light on this question, we first make the following assumptions.

Assumption 1. The random return R is supported on a bounded interval SR ⊆ [−r̄, r̄]
such that P (|R| ≤ r̄) = 1.

Assumption 2. The random vector of side-information X is supported on bounded
set SX such that P (‖X‖ ≤ ξ) = 1.

Assumption 3. The utility function is normalized such that u(0) = 0 and
limr→0+ u′(r) = 1. Furthermore, it is Lipschitz continuous with a Lipschitz constant
of γ, i.e., for any r1 ∈ R and r2 ∈ R, we have that |u(r1)− u(r2)| ≤ γ|r1 − r2|.

The first assumption is relatively realistic given that one can usually assess from
historical data a large enough interval of returns which could be assumed to contain R
with probability one. For instance, when looking at the last 35 years of daily returns
for an index such as S&P 500, this interval can legitimately be set to [−25%, 25%]
daily returns. If some side information are not known to be bounded, the second
assumption might require one to pre-process the vector of side information in order to
rely on the results that will be presented. This could typically be done by projecting
this vector on the surface of a ball of radius ξ when ‖X‖ > ξ, which is as simple
as replacing X with (ξ/‖X‖) ·X. This assumption will be further studied in Section
5. Finally, while the last assumption is fairly common for establishing generalization
bounds and can certainly accommodate any piecewise linear utility function (often
used by numerical optimization methods), it is important to mention that it is not
one that is commonly made in modern portfolio theory. If, for instance, an investor
expresses an absolute risk aversion uniformly equal to α, this suggests the use of
u(r) := (1/α)(1−exp(−αr)) which is not Lipschitz continuous. Fortunately, the theory
that will be used only exploits the fact that the function is Lipschitz continuous on
the interval [−r̄2ξ2/(2λ), r̄2ξ2/(2λ)].

We are now in a position to exploit a well-known learning theory result to establish a
bound on the out-of-sample portfolio performance of q̂ based its in-sample estimation:

Theorem 1. Given that assumptions 1, 2 and 3 are satisfied, the certainty equivalent
of the out-of-sample performance is at most O(1/

√
n) worse than the in-sample one.

Specifically,

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω1/ lim
ε→0−

u′(CE(q̂; F̂ ) + ε) ,

where

CE(q̂;F ) := u−1(EF [u(R · q̂TX)]) ,

CE(q̂; F̂ ) := u−1(n−1
n∑
i=1

u(ri q̂
Txi)) ,

and where

Ω1 :=
r̄2ξ2

2λ

(
γ2

n
+

(2γ2 + γ + 1)
√

log(1/δ)√
2n

)
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with probability 1− δ,

Our proof of Theorem 1 proceeds as follow. First, borrowing from the terminology
introduced by Bousquet and Elisseeff (2002), we show that the algorithm generates q̂
from the sample set is β-stable. We then show that for any q̂ generated from a sample
of F , the amount of utility generated from implementing the q̂ decision necessarily
lies on an interval of bounded size. Given that these two conditions are satisfied,
we can then rely on Bousquet-Ellisseef’s out-sample error bound theorem (typically
used for inference problems) in order to establish out-of-sample guarantees in terms
of expected utility. By exploiting the concavity of u(·), we are finally able to describe
the implications in terms of certainty equivalent that are expressed in our theorem.

4. Suboptimality performance bounds

We now turn our attention to the suboptimality of the problem, i.e., we would like
to understand the behaviour of the performance of the empirical investment policy
q̂ compared to the optimal policy q? := arg maxq EF [u(R · qTX)]. It is important to
realize that in general, there are situations in which the optimal performance according
of (1) could be unbounded. Thus, if one wishes to establish a bound on the sub-
optimality of an investment policy, it is necessary to impose additional assumptions
on the class of problem that he is facing. The two following examples motivate these
assumptions.

Example. Consider for instance a risk neutral investor, i.e., such that u(r) = r and
suppose EXi = 0. The expected utility simply becomes

EF [u(R · qTX)] =

n∑
i=1

qi Cov(R,Xi).

If we simply let q̄i = Cov(R,Xi), it follows immediately that the expected utility of
αq̄ can become arbitrarily large as α goes to infinity.

Example. Consider another example in which there exist a j for which feature Xj

induces arbitrage over F , namely that P{RXj > 0} = 1. In such a case, if we let
q̄i = 1 only when i = j and otherwise zero, then the expected utility of αq̄ can once
again take an arbitrarily large value as α goes to infinity.

Given those two examples, we now introduce two new assumptions that will ensure
that problem (1) is bounded, i.e., it has a finite optimal solution.

Assumption 4. The utility function is sublinear, i.e., u(r) = o(r).

Assumption 5. The side information X induces no arbitrage opportunities, that is,
for all Xi, P{RXi < 0} > 0 and P{RXi > 0} > 0.

In a financial context, assumption 4 is certainly realistic since a financial investor
behaviour is usually taken to be risk averse, thus implying asumption 4. As for assump-
tion 5, this notion or arbitrage relates directly to the notion or market efficiency, and
in particular to the semi-strong version of it, which states that it should be impossible
for an investor to constantly beat the market using publicly available information. See
Malkiel and Fama (1970) and Fama (1991) for more details.

Theorem 2. Given that assumptions 1, 2, 3 are satisfied, the suboptimality of the
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policy q̂ can be expressed with confidence 1− δ by

CE(q̂;F ) ≥ CE(q?;F )− Ω2/ lim
ε→0−

u′(CE(q̂;F ) + ε) ,

where

Ω2 = λ‖q?‖2 +
8γ2ξ2(32 + log(1/δ))

nλ
+

2γr̄ξ2

λ

√
32 + log(1/δ)

n
.

Furthermore, if assumptions 4 and 5 are satisfied, then CE(q?;F ) is finite.

The first term in Ω2 shows that, unless the regularization constant λ is brought
to zero as n increases, the empirical maximization problem (2) will asymptotically
converge toward a constant suboptimality bound based on the particular market
distribution F and on λ. The two other terms in Ω2 show that this bound will
be reached at a O(1/

√
n) rate in the same fashion as with Theorem 1. Therefore,

the best suboptimality performance that can be hoped to be reached is at most
−λ‖q?‖2/ limε→0− u′(CE(q̂;F ) + ε).

5. Big Data Phenomenon

In this section, we question how realistic assumption 2 is in a big data context. In
particular, we expose two sets of natural conditions for the generation of the side
information vector X that leads to motivating the use of a support set which diameter
grow proportionally to the square root of p.

Example. Consider a case where every terms of X are independant from each other,
while each Xi has a mean E[Xi] = 0, a variance Var[Xi] = 1, and are supported on
their respective intervals P (Xi ∈ [−ν, ν]) = 1 for all i. By Hoeffding’s inequality, one
can establish that

P

(∣∣∣‖X‖2 − p∑
i=1

E[X2
i ]
∣∣∣ ≤√2p log(δ/2)ν2

)
≥ 1− δ

so that |‖X‖2 ∈ [p −
√

2p log(δ/2)ν2, p +
√

2p log(δ/2)ν2] with probability 1 − δ.
Hence, any ball of fixed radius ξ will contain X with a probability that asymptotically
converges to zero as p increases, more specifically P (‖X‖2 ≤ ξ2) ≤ 2 exp(−2p(1 −
ξ2/
√
p)2/ν2). On the other hand, this inequality somehow also prescribes that the

diameter of the support SX should increase proportionally to
√
p in order to still

contain X with high probability as p increases.

Example. Consider a similar case as above but where the independence assumption
is dropped. In this context, although we might not have as much of a strong argument
to discredit the use of a constant diameter for SX , there is still a good motivation
for employing a radius that grows proportionally to

√
p. Namely, if each Xi has a

mean E[Xi] = 0 and a variance Var[Xi] = 1 then the random variable Z := ‖X‖2
is necessarily positive with an expected value of p. Based on Markov inequality, this
implies that with probability 1− δ, we have that ‖X‖ ≤

√
p/δ.

Since we believe these two examples provide strong arguments for replacing assump-
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tion 2 with the assumption that it is within a ball of radius ξ
√
p, we reformulate our

previous two results as follows.

Corollary 1. Given that assumptions 1 and 3 are satisfied, and that P (‖X‖ ≤ ξ√p) =
1, the certainty equivalent of the out-of-sample performance is at most O(p/

√
n) worse

than the in-sample one. Specifically, with probability 1− δ,

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω3/ lim
ε→0−

u′(CE(q̂; F̂ ) + ε) ,

where

Ω3 :=
γr̄2ξ2

λ

(
γp

2n
+

(1 + γ)p
√

log(1/δ)√
2n

)
.

Likewise, the suboptimality of the decision q̂ will reach a constant bound due to regu-
larization at a rate of at most O(p/

√
n):

CE(q̂;F ) ≥ CE(q?;F )− Ω4/ lim
ε→0−

u′(CE(q̂;F ) + ε) ,

where

Ω4 = λ‖q?‖2 +
8γ2pξ2(32 + log(1/δ))

nλ
+

2γr̄pξ2

λ

√
32 + log(1/δ)

n
,

with probability 1− δ.

Note that assumption 2 was inspired by an early version of Rudin and Vahn (2015)
who also studied asymptotic properties of a regularized decision problem in its Big data
regime, i.e., when n and p go to infinity simultaneously. Our analysis indicate that the
convergence in accuracy that is reported with such an assumption can be misleading
for many problems, e.g., when the features can be considered independent from each
other. In particular, Corollary 1 states that asymptotic convergence in accuracy is only
guaranteed to occur when p = o(

√
n) and λ→ 0.

However, it is important to understand that Corollary 1 serves as a worst case
scenario and that we don’t necessarily expect to observe downgrading performances
as soon as n = o(p2). Still, no matter what, there is a cost to pay in pouring more
and more features into such a portfolio selection problem, and this cost is directly
exhibited through ξ2 and the loosening of the guarantees bound. One might therefore
wish to be prudent when facing such high-risk regimes.

6. Discussion

As a conclusion, we would like to review the main messages we hope to deliver from
this paper. First off, it is possible to use side information from the market, such as
market news, financial indicators, economic variables and so on in order to build a
portfolio with actual performance guarantees on the out-of-sample. Second, it is also
possible to obtain performance bounds on the suboptimality of the empirical decision
in comparison to what might have been the best decision, given full knowledge of
the market. Third, there might be a cost to pay for increasing the number of side
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information treated by the model when the sample size on which the decision is based
on is not large enough.

That said, for “small-data” situations where p = o(
√
n), we believe our framework

can be particularly well suited for aggregating and treating market side information
in order to make a sound investment decision that is guaranteed to appeal to the
investor’s perception of risk.
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7. Appendix

7.1. Proof of Theorem 1

In this proof, we will employ a theorem made famous by Bousquet-Ellisseef to analyse
relevant asymptotic statistical properties of the following estimator.

Definition 7.1. Let q̂ : R(p+1)×n → Rp be the procedure that generates the optimal
solution of problem (2) based on a sample set {(xi, ri)}ni=1.

We start by presenting two lemmas that establish some important properties of
problem (2).

Lemma 7.2. When assumptions 1 and 3 are satisfied, the estimator q̂(·) has β-

stability with β = (γr̄ξ)2

2λn . Namely, for any two sample sets s1
n := {(x1

i , r
1
i )}ni=1 and

s2
n := {(x2

i , r
2
i )}ni=1 that are exactly identical except for the j-th sample, i.e., (x1

i , r
1
i ) =

(x2
i , r

2
i ) for all i 6= j, the following holds:

|u(r q̂(s1
n)Tx)− u(r q̂(s2

n)Tx)| ≤ β , ∀x ∈ SX , ∀ r ∈ SR .

Proof. First, following the terminology presented in Bousquet and Elisseeff (2002)
(see Definition 19), we can establish that q̂(·) has σ-admissibility of γr̄. This is simply
done by exploiting the fact that SR is bounded and that u(·) is Lipschitz continuous.
The detailed derivations consider that for any pair (q1, q2) ∈ Rp × Rp, one has that

|u(r qT1 x)− u(r qT2 x)| ≤ γ|rqT1 x− rqT2 x| ≤ γr̄ |qT1 x− qT2 x| , ∀ r ∈ SR , ∀x ∈ SX .

The β-stability of q̂(·) then follows directly from Theorem 22 in Bousquet and Elisseeff
(2002).

Lemma 7.3. When assumptions 1, 2 and 3 are satisfied, the maximum difference in
amount of utility attained by implementing two investment strategies obtained using
different sample sets s1

n and s2
n is bounded by

|u(r q̂(s1
n)Tx)− u(r q̂(s2

n)Tx)| ≤ urange :=
(γ + 1)ξ2r̄2

2λ
, ∀x ∈ SX , ∀ r ∈ SR .

Proof. This proof relies mostly on demonstrating that ‖q̂(sn)‖ ≤ B for some B > 0
with probability one for all possible sample sets sn. Indeed, when this is the case, then
we have that

|u(r q̂(s1
n)Tx)− u(r q̂(s2

n)Tx)| ≤ u(r̄ξB)− u(−r̄ξB) ≤ (γ + 1)r̄ξB .

In order to show that q̂(sn) is bounded, we reformulate problem (2) as follows

maximize
s∈R,v∈Rp

1

n

n∑
i=1

u(sRiX
T
i v)− λs2

s. t. s ≥ 0 , ‖v‖ = 1 ,

such that q̂(sn) = s∗ · v∗ when (s∗, v∗) is the pair of optimal assignments for this
optimization problem. It is therefore clear that s∗ = ‖q̂(sn)‖ and our proof reduces
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to establishing an upper bound for s∗. By recognizing that s∗ = arg maxs≥0 g(s) :=
1
n

∑n
i=1 u(sRiX

T
i v
∗) − λs2 and that g(s) is a concave function, then it is necessarily

the case that if there exists a s̄ ≥ 0 such that g(·) is non-increasing at s̄ then s∗ ≤ s̄.
We can actually show that this is the case for s̄ := r̄ξ/(2λ) by upper bounding the
impact of taking a step of ∆ > 0:

g(s̄+ ∆)− g(s̄) =
1

n

n∑
i=1

(u((s̄+ ∆)RiX
T
i v
∗)− u(s̄RiX

T
i v
∗))− λ((s̄+ ∆)2 − s̄2)

≤ 1

n

n∑
i=1

(u((s̄+ ∆)|RiXT
i v
∗|)− u(s̄|RiXT

i v
∗|))− λ((s̄+ ∆)2 − s̄2)

≤ 1

n

n∑
i=1

∆RiX
T
i v
∗ − λ(2s̄∆ + ∆2)

≤ ∆r̄ξ − 2λs̄∆−∆2 = −∆2 ≤ 0 ,

where we first used the fact that u(·) is increasing, next that u(y + ∆) ≤ u(y) + ∆
when ∆ ≥ 0 since it is a concave function with a subgradient of one at zero. Finally,
we exploited assumptions 1 and 2. This completes our proof.

Having established the above properties, the following theorem follows directly from
Theorem 3. While we omit to describe the original theorem in this article for sake of
compactness, we refer interested readers to the form presented in Theorem 11.1 of
Mohri et al. (2012) for more details.

Theorem 3 (Bousquet-Ellisseef Outsample Error Theorem). Given that as-
sumptions 1, 2, and 3 are satisfied, then one has with confidence of 1− δ that

EF [u(R · q̂(sn)TX)] ≥ EF̂ [u(R · q̂(sn)TX)]− β −
(
2nβ + ûabs

)√ log(1/δ)

2n
,

where β refers to the β-stability of q̂ and ûabs refers to a uniform bound

P (|u(Rq̂(sn)X)| ≤ ûabs) = 1. Overall, this reduces to EF [u(R · q̂(sn)TX)] ≥
EF̂ [u(R · q̂(sn)TX)]−Ω1. Hence, the out-of-sample performance in terms of expected
utility of the investment policy q̂(sn) is at most O(1/

√
n) worse than the in-sample

one.

We conclude this section by demonstrating how Theorem 1 follows from Theorem
3. In particular, by concavity of the utility function, we have that

u(CE(q̂;F )) ≤ u(CE(q̂; F̂ )) + (CE(q̂;F )− CE(q̂; F̂ )) ∂u(CE(q̂; F̂ )) ,

where ∂u(r) denotes any supergradient of u(·) at r. In particular, since u(·) is an

increasing concave function, it follows that limε→0− u′(CE(q̂; F̂ ) + ε) ≥ 0 is one of the

supergradient at CE(q̂; F̂ ). Combining this inequality with the inequality presented in
Theorem 3, we get

u(CE(q̂; F̂ ))− Ω1 ≤ u(CE(q̂; F̂ )) + (CE(q̂;F )− CE(q̂; F̂ ))∂u(CE(q̂; F̂ ))
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so that

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω1/∂u(CE(q̂; F̂ ))

follows since it was assumed that u(·) is strictly increasing. This completes the proof
of Theorem 1.

7.2. Proof of Theorem 2

First, in order to tidy up the proof, let us define EU(q) := EF (u(R · qTX))
and EUλ(q) := EF (u(R · qTX)) − λ‖q‖2, with q? := arg minq EU(q) and q?λ :=
arg minq EUλ(q).

Theorem 4 (Theorem 1 and surrounding text in Sridharan et al. (2009)).
Given that assumptions 1, 2, and 3 are satisfied, and since the function EUλ is 2λ-
strongly convex, then one has with confidence of 1− δ that

−λ‖q̂ − q?λ‖2 ≥ EUλ(q̂)− EUλ(q?λ) ≥ −ω,

where

ω =
4γ2ξ2(32 + log(1/δ))

λn
.

Notice that Theorem 4 implies with confidence 1− δ that

EU(q̂)− EU(q?λ) ≥ λ
(
‖q̂‖2 − ‖q?λ‖2

)
− ω ≥ −λ

(
‖q̂ − q?λ‖2 + 2‖q̂‖‖q̂ − q?λ‖

)
− ω.

As shown in Section 7.1, ‖q̂‖ ≤ r̄ξ/(2λ). Theorem 4 further implies concerning the same

1− δ probability outcomes that ‖q̂ − q?λ‖2 ≤ ω/λ, and therefore ‖q̂ − q?λ‖ ≤
√
ω/λ, so

that we end up with

EU(q̂)− EU(q?λ) ≥ −2ω − r̄ξ
√
ω

λ
.

with probability 1− δ. Finally, note that since by the definition of q?λ, we have that

EU(q?)− λ‖q?‖2 ≤ EU(q?λ)− λ‖q?λ‖2 ,

it follows that

EU(q?)− EU(q?λ) ≤ λ
(
‖q?‖2 − ‖q?λ‖2

)
≤ λ‖q?‖2,

so that we can bound the suboptimality of the policy q̂ with probability 1 − δ in the
following fashion:

EU(q̂) = EU(q?) + EU(q̂)− EU(q?λ) + EU(q?λ)− EU(q?)

≥ EU(q?)− λ‖q?‖2 − r̄ξ
√
ω

λ
− 2ω.
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This relation can be exploited in a similar way as in the proof of Theorem 1 (see
Section 7.1) to derive the relation between certainty equivalents that is presented in
our theorem. the same trick as in Section .

Next, we show that CE(q?;F )−CE(q̂;F ) is bounded by proving that ‖q?‖ is finite.
Since the other terms of the upper bound established above are also finite, the second
part of Theorem 2 follows.

Instead of optimizing q directly, as was done previously, we can reformulate problem
(1) in terms of both an orientation vector and a scale decision variable. This gives us

maximize
s∈R,v∈Rp

E[u(sRXT v)]

s. t. s ≥ 0 , ‖v‖ = 1 .

Based on assumption 5, since no feature induce arbitrage, it follows that, there exists
a δ > 0 such that P{RXT v < −δ} = % > 0 for all v with a norm of one. Now, let B be a
discrete random variable with two states such that P{B = −δ} = 1−P{B = r̄ξ} = %.
Since |RXT v| < r̄ξ, we have that P{B ≥ r} ≥ P{RXT v ≥ r} for all r ∈ R,
i.e. that B stochastically dominates RXT v, so that it must necessarily follow that
E[u(sB)] ≥ E[u(sRXT v)]. But, by the sublinearity asumption on u,

lim
s→∞

E[u(sRXT v)] ≤ lim
s→∞

E[u(sB)] = lim
s→∞

(
%u(−sδ) + (1− %)u(sr̄ξ)

)
≤ lim

s→∞
−%sδ + (1− %)o(s) = −∞

for all v of norm one, which shows that s?, and therefore ‖q?‖, is bounded.
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