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Abstract

This document presents a (mostly) chronologically ordered bib-
liography of scientific publications on the superiorization method-
ology and perturbation resilience of algorithms which is compiled
and continuously updated by us at: http://math.haifa.ac.il/yair/bib-
superiorization-censor.html.

Since the beginnings of this topic we try to trace the work that
has been published about it since its inception. To the best of our
knowledge this bibliography represents all available publications on
this topic to date, and while the URL is continuously updated we
will revise this document and bring it up to date on arXiv approx-
imately once a year. Abstracts of the cited works, and some links



and downloadable files of preprints or reprints are available on the
above mentioned Internet page. If you know of a related scientific
work in any form that should be included here kindly write to me on:
yair@math.haifa.ac.il with full bibliographic details, a DOI if avail-
able, and a PDF copy of the work if possible. The Internet page was
initiated on March 7, 2015, and has been last updated on March 1,
2022.

Comment: Some of the items have on the above mentioned In-
ternet page more information and links than in this report.

Acknowledgment: This work was supported by the ISF-NSFC
joint research program grant No. 2874/19.

1 Trailer

We replace the text that appeared in this section in the first version of the
report with a quotation from the preface to the special issue Y. Censor,
G.T. Herman and M. Jiang (Guest Editors), “Superiorization: Theory and
Applications”, Special Issue of the journal Inverse Problems, Volume 33,
Number 4, April 2017 [50]!, followed by some additional notes.

“The superiorization methodology is used for improving the
efficacy of iterative algorithms whose convergence is resilient to
certain kinds of perturbations. Such perturbations are designed
to ‘force’ the perturbed algorithm to produce more useful results
for the intended application than the ones that are produced by
the original iterative algorithm. The perturbed algorithm is called
the ‘superiorized version’ of the original unperturbed algorithm.
If the original algorithm is computationally efficient and useful
in terms of the application at hand and if the perturbations are
simple and not expensive to calculate, then the advantage of this
method is that, for essentially the computational cost of the orig-
inal algorithm, we are able to get something more desirable by
steering its iterates according to the designed perturbations.

This is a very general principle that has been used success-
fully in some important practical applications, especially for in-

L All references refer to the bibliography in the next section of this report.



verse problems such as image reconstruction from projections,
intensity-modulated radiation therapy and nondestructive test-
ing, and awaits to be implemented and tested in additional fields.

An important case is when the original algorithm is ‘feasibility-
seeking’ (in the sense that it strives to find some point that is
compatible with a family of constraints) and the perturbations
that are introduced into the original iterative algorithm aim at
reducing (not necessarily minimizing) a given merit function. In
this case superiorization has a unique place in optimization theory
and practice.

Many constrained optimization methods are based on meth-
ods for unconstrained optimization that are adapted to deal with
constraints. Such is, for example, the class of projected gradi-
ent methods wherein the unconstrained minimization inner step
‘leads’ the process and a projection onto the whole constraints
set (the feasible set) is performed after each minimization step in
order to regain feasibility. This projection onto the constraints
set is in itself a non-trivial optimization problem and the need
to solve it in every iteration hinders projected gradient methods
and limits their efficiency to only feasible sets that are ‘simple
to project onto.” Barrier or penalty methods likewise are based
on unconstrained optimization combined with various ‘add-on’s
that guarantee that the constraints are preserved. Regulariza-
tion methods embed the constraints into a ‘regularized’ objective
function and proceed with unconstrained solution methods for
the new regularized objective function.

In contrast to these approaches, the superiorization method-
ology can be viewed as an antipodal way of thinking. Instead of
adapting unconstrained minimization algorithms to handling con-
straints, it adapts feasibility-seeking algorithms to reduce merit
function values. This is done while retaining the feasibility-seeking
nature of the algorithm and without paying a high computational
price. Furthermore, general-purpose approaches have been devel-
oped for automatically superiorizing iterative algorithms for large
classes of constraints sets and merit functions; these provide al-
gorithms for many application tasks.”



To a novice on the superiorization methodology and perturbation re-
silience of algorithms we recommend to read first the recent reviews in [16,
25, 39]. For a recent description of previous work that is related to superi-
orization but is not included here, such as the works of Sidky and Pan, e.g.,
[6], we direct the reader to [24, section 3]. The SNARK14 software package
[42], with its in-built capability to superiorize iterative algorithms to improve
their performance, can be helpful to practitioners. Naturally there is vari-
ability among the bibliography items below in their degree of relevance to
the superiorization methodology and perturbation resilience of algorithms.
In some, such as in, e.g., [23] below, superiorization does not appear in the
title, abstract or introduction but only inside the work, e.g., [23, Subsection
6.2.1: Optimization vs. Superiorization].

A word about the history. The terms and notions “superiorization” and
“perturbation resilience” first appeared in the 2009 paper of Davidi, Herman
and Censor [7] which followed its 2007 forerunner by Butnariu, Davidi, Her-
man and Kazantsev [3]. The ideas have some of their roots in the 2006 and
2008 papers of Butnariu, Reich and Zaslavski [2, 4]. All these culminated in
Ran Davidi’s 2010 Ph.D. dissertation [13].
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