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Experimental design is a classical statistics problem and its aim is to estimate an unknown m-dimensional

vector β from linear measurements where a Gaussian noise is introduced in each measurement. For the com-

binatorial experimental design problem, the goal is to pick k out of the given n experiments so as to make

the most accurate estimate of the unknown parameters, denoted as β̂. In this paper, we will study one of

the most robust measures of error estimation - D-optimality criterion, which corresponds to minimizing the

volume of the confidence ellipsoid for the estimation error β− β̂. The problem gives rise to two natural vari-

ants depending on whether repetitions of experiments are allowed or not. We first propose an approximation

algorithm with a 1
e

-approximation for the D-optimal design problem with and without repetitions, giving the

first constant factor approximation for the problem. We then analyze another sampling approximation algo-

rithm and prove that it is (1− ε)-approximation if k≥ 4m
ε

+ 12
ε2

log( 1
ε
) for any ε∈ (0,1). Finally, for D-optimal

design with repetitions, we study a different algorithm proposed by literature and show that it can improve

this asymptotic approximation ratio.

Key words : D-optimal Design; approximation algorithm; determinant; derandomization.

History :

1. Introduction Experimental design is a classical problem in statistics [5, 17, 18, 23, 31] and

recently has also been applied to machine learning [2, 39]. In an experimental design problem, its

aim is to estimate an m-dimensional vector β ∈Rm from n linear measurements of the form yi =

aTi β+ ε̃i for each i∈ [n] := {1,2, . . . , n}, where vector ai ∈Rm characterizes the ith experiment and

{ε̃i}i∈[n] are i.i.d. independent Gaussian random variables with zero mean and variance σ2 (i.e.,

ε̃i ∼N (0, σ2) for all i∈ [n]). Due to limited resources, it might be quite expensive to conduct all the

n experiments. Therefore, as a compromise, in the combinatorial experimental design problem,

we are given an integer k ∈ [m,n], and our goal is to pick k out of the n experiments so as to

make the most accurate estimate of the parameters, denoted as β̂. Suppose that a size k subset of

experiments S ⊆ [n] is chosen, then the most likelihood estimation of β (cf., [21]) is given by

β̂=

(∑
i∈S

aia
>
i

)−1∑
i∈S

yiai.

There are many criteria on how to choose the best estimation among all the possible size k subsets

of n experiments (see [5] for a review). One of the most robust measures of error estimation is
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known as D-optimality criterion, where the goal is to choose the best size k subset S to maximize[
det
(∑

i∈S aia
>
i

)] 1
m , i.e., the following combinatorial optimization problem:

max
S

f(S) :=

[
det

(∑
i∈S

aia
>
i

)] 1
m

: Supp(S)⊆ [n], |S|= k

 , (1)

where Supp(S) denotes the support of set S and |S| denotes the cardinality of set S. Note that

optimization model (1) corresponds to minimizing the volume of the confidence ellipsoid for the

estimation error β − β̂. Equivalently, the objective function of (1) can be chosen as determinant

itself (i.e., det
(∑

i∈S aia
>
i

)
), or log-determinant log det

(∑
i∈S aia

>
i

)
) [21]. However, both objective

functions are problematic with the following reasons: (1) the determinant function is nonconvex

and has numerical issue especially when k,m,n are large; and (2) albeit log-determinant function

is concave, it can also be numerically unstable, in particular when the determinant is close to

zero. Therefore, in this paper, we follow the work in [32] and consider mth root of determinant

function, which is concave and numerically stable.

In the problem description, the same experiment may or may not be allowed to choose mul-

tiple times. We refer the problem as D-optimal design with repetitions if we are allowed to pick an

experiment more than once and D-optimal design without repetitions otherwise. Correspondingly,

forD-optimal design with repetitions and without repetitions, in (1), the subset S denotes a multi-

set, where elements of S can be duplicated, and a conventional set, where elements of S must be

different from each other, respectively. The former problem has been studied very extensively in

statistics [23, 31, 32]. The latter problem has also been studied as the sensor selection problem [21],

where the goal is to find the best subset of sensor locations to obtain the most accurate estimate

of unknown parameters. It is easy to see that D-optimal design with repetitions is a special case

of the D-optimal design problem without repetitions. To do so, for the D-optimal design with

repetitions, we can create k copies of each vector, which reduces to the D-optimal design without

repetitions with nk vectors.

The remainder of the paper is organized as follows. Section 2 details the problem setting,

reviews related literature, and summarizes our contributions. Section 3 develops and analyzes

a randomized algorithm, its approximation results and deterministic implementation. Sec-

tion 4 proposes another randomized algorithm and its deterministic implementation as well

as asymptotic behavior. Section 5 analyzes a randomized algorithm for D-optimal design with

repetitions proposed by literature, and investigates its deterministic implementation as well as

approximation ratios. Finally, Section 6 concludes the paper.
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Notations: The following notation is used throughout the paper. We use bold-letters (e.g., x,A) to

denote vectors or matrices, and use corresponding non-bold letters to denote their components.

We let e be the all-ones vector. We let R+,Q+,Z+ denote the sets of positive real numbers, ratio-

nal numbers and integers, respectively. Given a positive integer N and a set Q, we let [N ] :=

{1, . . . ,N}, N ! =
∏
i∈[N ] i, |Q| denote its cardinality, Supp(Q) denotes the support of Q and

(
Q
N

)
denote all the possible subsets of Q whose cardinality equals to N . Given a multi-set Q, for each

i ∈ Supp(Q)⊆ [n], we let function MQ(i) denote the number of occurrences of i in Q, and for any

i∈ [n], Q(i) denotes its ith component. Given a matrix A and two sets R,T , we let det(A) denote

its determinant if A is a square matrix, let AR,T denote a submatrix of A with rows and columns

from sets R,T , let Ai denote ith column of matrix A and let AR denote submatrix of A with

columns from set R. For any positive integer r, we let Ir denote r × r identity matrix. We use

S̃ to denote a random set. For notational convenience, give a set S ∈ [n] and vector x ∈ Rn+, we

define f(S) =
[
det
(∑

i∈S aia
>
i

)] 1
m and f(x) =

[
det
(∑

i∈[n] xiaia
>
i

)] 1
m

. Additional notation will

be introduced as needed.

2. Model Formulation, Related Literature and Contributions

2.1. Model Formulation To formulate D-optimal design problem (1) as an equivalent mathe-

matical program, we first let setB denote the set of all nonnegative numbers (i.e.,B =R+) if repe-

titions are allowed, otherwise, B = [0,1]. Next, we introduce integer decision variable xi ∈B ∩Z+

to represent how many times ith experiment will be chosen for each i ∈ [n]. With the notation

introduced above, the D-optimal design problem can be formulated as a mixed integer convex

program below:

w∗ := max
x,w

w :w≤ f(x) =

det

∑
i∈[n]

xiaia
>
i

 1
m

,
∑
i∈[n]

xi = k,x∈Bn ∩Zn+

 , (2)

where for notational convenience, we let f(x) to denote the objective function. Note that if B =

R+, (2) is equivalent to D-optimal design with repetitions and if B = [0,1], then (2) corresponds

to D-optimal design without repetitions.

It can be easily shown that f(x) =
[
det
(∑

i∈[n] xiaia
>
i

)] 1
m

is concave in x (cf., [8]). Therefore,

a straightforward convex relaxation of (2) is to relax the binary vector x to continuous, i.e., x ∈

[0,1]n, which is formulated as below:

ŵ := max
x,w

w :w≤

det

∑
i∈[n]

xiaia
>
i

 1
m

,
∑
i∈[n]

xi = k,x∈Bn

 . (3)
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Note that (3) is a tractable convex program (cf., [21]), thus is efficiently solvable. Recently, in

[32], the authors proposed an alternative second order conic program (SOCP) formulation for (3),

which can be solved by a more effective interior point method or even off-the-shelf solvers (e.g.,

CPLEX, Gurobi, MOSEK). We remark that according to [8], the time complexity of solving (3) is

O(n5).

2.2. Related Literature As remarked earlier, experimental design is a classical area in Statis-

tics. We refer the reader to Pukelsheim [31], Chapter 9 on details about D-optimality criterion

as well as other related (A,E,T )-criteria. The combinatorial version, where the number of each

experiment needs to be chosen is an integer as in (2), is also called exact experimental design.

It turns out that the D-optimality criterion is proven to be NP-hard [40]. Thus, there has been

plenty of works on heuristic methods, including local search and its variants, to obtain good solu-

tions [18, 21].

From an approximation algorithm viewpoint, D-optimal design has received a lot of atten-

tion recently. For example, Bouhou et al. [9] gave a
(
n
k

) 1
m -approximation algorithm, and Wang et

al. [39] building on [6] gave a (1+ε)-approximation if k≥ m2

ε
. Recently, Allen-Zhu et al [2] realized

the connection between this problem and matrix sparsification [7, 36] and used regret minimiza-

tion methods [3] to obtain O(1)-approximation algorithm if k ≥ 2m and (1 + ε)-approximation

when k ≥ O
(
m
ε2

)
. We also remark that their results are general and also are applicable to other

optimality criteria.

Another closely related problem is the largest j-simplex problem, whose problem description

is as follows:

(largest j-simplex problem) Given a set of n vectors a1, . . . ,an ∈Rm and integer k≤m, pick a

set of S of k vectors to maximize the kth-root of the pseudo-determinant of X =
∑

i∈S aia
>
i ,

i.e., the geometric mean of the non-zero eigenvalues of X .

The problem has also received much attention recently [22, 27, 38] and Nikolov[27] gave a 1
e
-

approximation algorithm. Observe that the special case of k =m of this problem coincides with

the special case of k =m for the D-optimal design problem. Indeed, Nikolov’s algorithm, while

applicable, results in a e− k
m -approximation for the D-optimal design problem. Recently, matroid

constrained versions of the largest j-simplex problem have also been studied [4, 28, 37].

TheD-optimality criterion is also closely related to constrained submodular maximization [26],

a classical combinatorial problem, for which there has been much progress recently [14, 24].

Indeed, the set function m log f(S) := log det
(∑

i∈S aia
>
i

)
is known to be submodular [33]. Unfor-

tunately, this submodular function is not necessarily non-negative, a prerequisite for all the results

on constrained submodular maximization and thus these results are not directly applicable. We
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also remark that for a multiplicative guarantee for the det objective, we would aim for an additive

guarantee for log det objective.

2.3. Contributions In this paper, we make several contributions to the approximations of D-

optimal design problems both with and without repetitions. Our approximation algorithms are

randomized, where we sample k experiments out of n with given marginals. This type of sam-

pling procedure has been studied intensively in the approximation algorithms and many different

schemes have been proposed [11], where most of them exhibit a negative correlation of various

degrees [10]. In this work, we will study sampling schemes which exhibit approximate positive

correlation and prove the approximation ratios of these algorithms.

All the proposed approximations come with approximation guarantees. Given an approximation

ratio γ ∈ (0,1], a γ-approximation algorithm for D-optimal design returns a solution x̄∈Bn ∩Zn+,

such that
∑

i∈[n] x̄i = k and f(x̄) ≥ γw∗, i.e., the solution is feasible and has an objective value

at least γ times the optimal value. The approximation ratios of our randomized algorithms only

hold in the sense of expectation. To improve them, we further propose polynomial-time deter-

ministic implementations for all the randomized algorithms with iterated conditional expectation

method, which also achieve the same approximation guarantees. Following is a summary of our

contributions.

1. We develop a 1
e
-approximation algorithm and its polynomial-time deterministic implemen-

tation, giving the first constant factor approximation for D-optimal design problem for both

with and without repetitions. Previously, constant factor approximations were known only

for a restricted range of parameters [2, 6, 39] (see related work for details).

2. We study a different sampling algorithm and its polynomial-time deterministic implementa-

tion, showing that its solution is (1− ε) optimal if k ≥ 4m
ε

+ 12
ε2

log( 1
ε
) for any given ε ∈ (0,1).

This results substantially improve the previous work [2, 39].

3. For D-optimal design with repetitions, we investigate a simple randomized algorithm sim-

ilar to that in Nikolov [27], study its polynomial-time deterministic implementation and

provide a significant different analysis of the approximation guarantee. We show that the

proposed algorithm yields (1 − ε)-approximation for the D-optimal design problem with

repetitions when k≥ m−1
ε

.

Note that the preliminary version of the paper has appeared in ACM-SIAM Symposium on Dis-

crete Algorithms (SODA18) [34]. Compared to [34], the current paper has the following major

improvement: (1) for the constant-factor approximation algorithm presented in Section 3, we

simplify its polynomial-time deterministic implementation and improve its analysis, (2) for the

asymptotically optimal algorithm in Section 4, we simplify its sampling procedure and derive
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its polynomial-time deterministic implementation, and (3) for the approximation algorithm of

D-optimal design with repetitions, we improve its approximation ratio analysis and propose its

polynomial-time deterministic implementation.

3. Approximation Algorithm for D-optimal Design Problem In this section, we will pro-

pose a sampling procedure and prove its approximation ratio. We also develop an efficient way

to implement this algorithm and finally we will show its polynomial-time deterministic imple-

mentation with the same performance guarantees.

First of all, we note that for D-optimal design problem with repetitions, i.e., B = R+ in (2), it

can be equivalently reformulated as D-optimal design problem without repetitions by creating k

copies of vectors {ai}i∈[n]. Therefore, the approximation for D-optimal design problem without

repetitions directly apply to that with repetitions. Hence, in this and next sections, we will only

focus on D-optimal design problem without repetitions, i.e., in (2) and (3), we only consider B =

[0,1].

3.1. Sampling Algorithm and Its Efficient Implementation In this subsection, we will intro-

duce a sampling procedure and explain its efficient implementation.

In this sampling algorithm, we first suppose (x̂, ŵ) to be an optimal solution to the convex

relaxation (3), where x̂ ∈ [0,1]n with
∑

i∈[n] x̂i = k and ŵ = f(x̂). Then we randomly choose a

size-k subset S̃ according to the following probability:

P[S̃ = S] =

∏
j∈S x̂j∑

S̄∈([n]
k )

∏
i∈S̄ x̂i

(4)

for every S ∈
(

[n]
k

)
, where

(
[n]
k

)
denotes all the possible size-k subsets of [n].

Note that the sampling procedure in (4) is not an efficient implementable description since

there are
(
n
k

)
candidate subsets to be sampled from. Therefore, we propose an efficient way (i.e.,

Algorithm 1) to obtain a size-k random subset S̃ with probability distribution in (4). We first

observe a useful way to compute the probabilities in Algorithm 1 efficiently.

Observation 1 Suppose x∈Rt and integer 0≤ r≤ t, then
∑

S∈([t]
r )
∏
i∈S xi is the coefficient of yr of the

polynomial
∏
i∈[t](1 +xiy).

In fact, it has been shown that the product of two polynomials with degree at most t can be done

inO(t log t) amount of time by the Fast Fourier Transform (FFT) [16]. Thus, by divide-and-conquer

approach, it takes O(t log2 t) time to expand the polynomial
∏
i∈[t](1 + xiy), i.e., it takes O(t log2 t)

time to compute the coefficient of yr of the polynomial
∏
i∈[t](1 +xiy).
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Note that we need to compute the probability P[S̃ = S] in (4) efficiently. The main idea of the

efficient implementation is to sample elements one by one based on conditioning on the chosen

elements and unchosen elements and update the conditional probability distribution sequentially.

Indeed, suppose that we are given a subset of chosen elements S with |S| < k and a subset of

unchosen elements T with |T |< n− k which can be empty, then probability that the jth experi-

ment with j ∈ [n] \ (S ∪T ) will be chosen is equal to

P[j will be chosen|S,T ] =

x̂j

(∑
S̄∈([n]\(S∪T )

k−1−|S| )

∏
τ∈S̄ x̂τ

)
(∑

S̄∈([n]\(S∪T )
k−|S| )

∏
τ∈S̄ x̂τ

) .

In the above formula, the denominator and numerator can be computed efficiently based on

Observation 1. Thus, we flip a coin with success rate equal to the above probability, which clearly

has the following two outcomes: if j is chosen, then update S := S ∪ {j}; otherwise, update T :=

T ∪ {j}. Then, go to next iteration and repeat this procedure until |S| = k. By applying iterated

conditional probability, the probability that S is chosen equal to
∏
j∈S x̂j∑

S̄∈([n]
k )

∏
j∈S̄ x̂j

, i.e., (4) holds. The

detailed implementation is shown in Algorithm 1. Note that the time complexity of Algorithm 1

is O(n2).

3.2. m-wise α-positively Correlated Probability Distributions In this subsection, we will

introduce the main proof idea of the approximation guarantees, which is to analyze the proba-

bility distribution (4) and show that it is approximately positively correlated (see, e.g., [13]). The

formal derivation will be in the next subsection.

Recall that a set of random variables X1, . . . ,Xn are pairwise positively correlated if for each

i, j ∈ [n], we have E[XiXj]≥ E[Xi] ·E[Xj], which for {0,1}-valued random variables translates to

P[Xi = 1,Xj = 1] ≥ P[Xi = 1] · P[Xj = 1]. This definition aims to capture settings where random

variables are more likely to take similar values than independent random variables with the same

marginals. More generally, given an integer m, {0,1}-valued random variables X1, . . . ,Xn are

called m-wise positively correlated random variables if P[Xi = 1 ∀i ∈ T ]≥
∏
i∈T Pr[Xi = 1] for all

T ⊆ [n] where |T |=m. Below we provide an generalized definition of positive correlation that is

crucial to our analysis.

Definition 1 Given x∈ [0,1]n such that
∑

i∈[n] xi = k for integer k≥ 1, let µ be a probability distribution

on subsets of [n] of size k. Let X1, . . . ,Xn denote the indicator random variables, thus Xi = 1 if i ∈ S̃ and

0 otherwise for each i ∈ [n] where random set S̃ of size-k is sampled from µ. Then X1, . . . ,Xn are m-wise

α-positively correlated for some α∈ [0,1] if for each T ⊆ [n] such that |T |=m, we have

P [Xi = 1 ∀i∈ T ] = P
[
T ⊆ S̃

]
≥ αm

∏
i∈T

xi.
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Algorithm 1 Efficient Implementation of Sampling Procedure (4) with Constant Factor Approxi-

mation
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B = [0,1], where x̂ ∈

[0,1]n with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize chosen set S̃ = ∅ and unchosen set T = ∅

3: Two factors: A1 =
∑

S̄∈([n]
k )

∏
i∈S̄ x̂i,A2 = 0

4: for j = 1, . . . , n do

5: if |S̃|== k then

6: break

7: else if |T |= n− k then

8: S̃ = [n] \T

9: break

10: end if

11: Let A2 =

(∑
S̄∈([n]\(S̃∪T )

k−1−|S̃| )

∏
τ∈S̄ x̂τ

)
12: Sample a (0,1) uniform random variable U

13: if x̂jA2/A1 ≥U then

14: Add j to set S̃

15: A1 =A2

16: else

17: Add j to set T

18: A1 =A1− x̂jA2

19: end if

20: end for

21: Output S̃

With a slight abuse of notation, we call the distribution µ to bem-wise α-positively correlated with

respect to x if the above condition is satisfied. Observe that if α = 1, then the above definition

implies that the random variables X1, . . . ,Xn are m-wise positively correlated.

The following lemma shows the crucial role played by m-wise approximate positively corre-

lated distributions in the design of algorithms for D-optimal design.

Lemma 1 Suppose (x̂, ŵ) is an an optimal solution to the convex relaxation (3). Then for any α ∈ (0,1],

if there exists an efficiently computable distribution that is m-wise α-positively correlated with respect to
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x̂, then the D-optimal design problem has a randomized α-approximation algorithm, i.e.,E

det

∑
i∈S̃

aia
>
i


1
m

≥ αw∗

where random set S̃ with size k is the output of the approximation algorithm.

The proof of Lemma 1 relies on the polynomial formulation of matrix determinant and convex

relaxation of the D-optimal design problem. We show that a m-wise α-positively correlated dis-

tribution leads to a randomized algorithm for the D-optimal design problem that approximates

each of the coefficients in the polynomial formulation. Note that the approximation ratio α in

Lemma 1 only holds in the sense of expectation. Therefore, one might need to derandomize the

algorithm to achieve the approximation ratio.

Before proving Lemma 1, we would like to introduce some useful results below. The following

lemmas follow from Cauchy-Binet formula [12] and use the fact that a matrix’s determinant is

polynomial in entries of the matrix. Interested readers can find the proofs in the appendix.

Lemma 2 Suppose ai ∈Rm for i∈ T with |T | ≥m, then

det

(∑
i∈T

aia
>
i

)
=
∑
S∈(Tm)

det

(∑
i∈S

aia
>
i

)
. (5)

Proof: See Appendix A.1. �

Lemma 3 For any x∈ [0,1]n, then

det

∑
i∈[n]

xiaia
>
i

=
∑

S∈([n]
m)

∏
i∈S

xi det

(∑
i∈S

aia
>
i

)
. (6)

Proof: See Appendix A.2. �

Now we are ready to prove the main Lemma 1.

Proof: (Proof of Lemma 1) Note that (x̂, ŵ) is an optimal solution to (3), and the distribution µ

given by Lemma 1 for this x̂ which satisfies the conditions of Definition 1. We now consider

the randomized algorithm that samples a random set S̃ from this distribution µ. We show this

randomized algorithm satisfies the guarantee claimed in the Lemma. All expectations and prob-

abilities of events are under the probability measure µ and for simplicity, we drop it from the

notation.
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Since
[
det
(∑

i∈[n] x̂iaia
>
i

)] 1
m

is at least as large as the optimal value to D-optimal design prob-

lem (3) with B = [0,1], we only need to show thatE

det

∑
i∈S̃

aia
>
i


1
m

≥ α

det

∑
i∈[n]

x̂iaia
>
i

 1
m

,

or equivalently

E

det

∑
i∈S̃

aia
>
i

≥ αm det

∑
i∈[n]

x̂iaia
>
i

 . (7)

This indeed holds since

E

det

∑
i∈S̃

aia
>
i

=
∑

S∈([n]
k )

P
[
S̃ = S

]
det

(∑
i∈S

aia
>
i

)
=
∑

S∈([n]
k )

P
[
S̃ = S

] ∑
T∈(Sm)

det

(∑
i∈T

aia
>
i

)

=
∑

T∈([n]
m)

P
[
T ⊆ S̃

]
det

(∑
i∈T

aia
>
i

)
≥ αm

∑
T∈([n]

m)

∏
i∈T

x̂i det

(∑
i∈T

aia
>
i

)
= αm det

∑
i∈[n]

x̂iaia
>
i


where the first equality is because of definition of probability measure µ, the second equality is

due to Lemma 3, the third equality is due to the interchange of summation, the first inequality is

due to Definition 1 and the fourth equality is because of Lemma 3.

�

3.3. Analysis of Sampling Scheme In this subsection, we will analyze the proposed sampling

procedure, i.e., deriving the approximation ratio α of sampling procedure (4) in Lemma 1. The

key idea is to derive lower bound for the ratio

P
[
T ⊆ S̃

]
∏
i∈T x̂i

for any T ∈
(

[n]
m

)
, where (x̂, ŵ) is an optimal solution to (3) with B = [0,1].

By the definition of random set S̃ in (4), the probability P
[
T ⊆ S̃

]
is equal to

P[T ⊆ S̃] =

∑
S∈([n]

k ):T⊆S

∏
j∈S x̂j∑

S̄∈([n]
k )

∏
i∈S̄ x̂i

. (8)

Observe that the denominator in (8) is a degree k polynomial that is invariant under any permu-

tation of [n]. Moreover, the numerator is also invariant under any permutation of T as well as any

permutation of [n] \T . These observations allow us to use inequalities on symmetric polynomials

and reduce the worst-case ratio of P[T ⊆ S̃] with
∏
i∈T x̂i to a single variable optimization problem

as shown in the following proposition. We then analyze the single variable optimization problem

to prove the desired bound.
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Proposition 1 Let S̃ be the random set defined in (4). Then for any T ⊆ [n] such that |T |=m, we have

P[T ⊆ S̃]≥ 1

g(m,n,k)

∏
i∈T

x̂i := αm
∏
i∈T

x̂i,

where

g(m,n,k) = max
y

{
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)
m−τ

(y)
τ

:
mk

n
≤ y≤m

}
. (9)

Proof: See Section A.3. �

Next, we derive the upper bound of g(m,n,k) in (9), which is a single-variable optimiza-

tion problem. To derive the desired results, we first observe that for any given (m,k) with m ≤

k, g(m,n,k) is monotone non-decreasing in n. This motivates us to find an upper bound on

limn→∞ g(m,n,k), which leads to the proposition below.

Proposition 2 For any n≥ k≥m, we have

α−1 = [g(m,n,k)]
1
m ≤ lim

τ→∞
[g(m,τ, k)]

1
m ≤min

{
e,1 +

k

k−m+ 1

}
. (10)

Proof: See Appendix A.4. �

Finally, we present our first approximation result blow.

Theorem 1 For any positive integers m≤ k ≤ n, Algorithm 1 yields 1
e
-approximation for the D-optimal

design problem.

Proof: The result directly follows from Lemma 1 and Proposition 2 given that n≥ k≥m. �

We also note that when k is large enough, Algorithm 1 is a near 0.5-approximation.

Corollary 1 Given ε∈ (0,1) and positive integers m≤ k≤ n, if k≥ m−1
2ε

, then Algorithm 1 yields (0.5−

ε)-approximation for the D-optimal design problem.

Proof: For any ε ∈ (0,1), from Proposition 2, let the lower bound approximation ratio α ≥

[min{e,1 + k
k−m+1

}]−1 ≥ 0.5− ε, or equivalently, let

1 +
k

k−m+ 1
≤ 1

0.5− ε
.

Then the conclusion follows. �
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3.4. Deterministic Implementation The approximation ratios presented in the previous sub-

section only hold in the sense of expectation. In this subsection, we will overcome this issue and

present a deterministic Algorithm 2 with the same approximation guarantees. The key idea is to

derandomize Algorithm 2 using the method of conditional expectation (cf., [35]), and the main

challenge is how to compute the conditional expectation efficiently. We next will show that it can

be done by evaluating a determinant of a n× n matrix whose entries are linear polynomials in

three indeterminates.

In this deterministic Algorithm 2, suppose we are given a subset S ⊆ [n] such that |S|= s≤ k.

Then the expectation of mth power of objective function given S is

H(S) :=E

det

∑
i∈S̃

aia
>
i

∣∣∣∣S ⊆ S̃


=
∑

U∈([n]\S
k−s )

∏
j∈U x̂j∑

Ū∈([n]\S
k−s )

∏
i∈Ū x̂i

det

(∑
i∈U

aia
>
i +

∑
i∈S

aia
>
i

)

=

 ∑
Ū∈([n]\S

k−s )

∏
i∈Ū

x̂i


−1 ∑

U∈([n]\S
k−s )

∏
j∈U

x̂j
∑

R∈(U∪Sm )

det

(∑
i∈R

aia
>
i

)

=

∑
R∈([n]

m),r:=|R\S|≤k−s
∏
j∈R\S x̂j det

(∑
i∈Raia

>
i

)∑
W∈([n]\(S∪R)

k−s−r )

∏
j∈W x̂j∑

Ū∈([n]\S
k−s )

∏
i∈Ū x̂i

, (11)

where the second equality is a direct computing of the conditional probability, the third equality

is due to Lemma 2 and the last one is because of interchange of summation.

Algorithm 2 Derandomization of Algorithm 1
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B = [0,1], where x̂ ∈

[0,1]n with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize chosen set S = ∅

3: do

4: Let j∗ ∈ arg maxj∈[n]\S̃H(S ∪ j), where H(S ∪ j) is define (11), and its denominator and

numerator can be computed by Observation 1 and Proposition 3, respectively

5: Add j∗ to set S̃

6: while |S|<k

7: Output S

Note that the denominator in (11) can be computed efficiently according to Observation 1. Next,

we show that the numerator in (11) can be also computed efficiently.
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Proposition 3 Let matrixA= [a1, . . . ,an]. Consider the following function

F (t1, t2, t3) = det
(
In + t1 diag(y)

1
2A>Adiag(y)

1
2 + diag(y)

)
, (12)

where t1, t2, t3 ∈R,y ∈Rn are indeterminate and

yi =

{
t3, if i∈ S
x̂it2, otherwise .

Then, the coefficient of tm1 t
k−s
2 ts3 in F (t1, t2, t3) equals to

∑
R∈([n]

m),r:=|R\S|≤k−s

∏
j∈R\S

x̂j det

(∑
i∈R

aia
>
i

) ∑
W∈([n]\(S∪R)

k−s−r )

∏
j∈W

x̂j. (13)

Proof: First of all, we can rewrite F (t1, t2, t3) as

F (t1, t2, t3) = det (In + diag(y))det
(
In + t1 diag(e +y)−

1
2 diag(y)

1
2A>Adiag(y)

1
2 diag(e +y)−

1
2

)
=
∏
i∈S

(1 + t3)
∏

i∈[n]\S

(1 + x̂it2)det
(
In + t1W

>W
)

where the ith column of matrix W is

Wi =


√

t3
1+t3

ai, if i∈ S√
x̂it2

1+x̂it2
ai, otherwise

.

Note that the coefficient of tm1 in det (In + t1W
>W ) is equal to the one of

∏
i∈[n](1 + t1Λi), where

{Λi}i∈[n] are the eigenvalues ofW>W . Thus, the coefficient of tm1 is

∑
R∈([n]

m)

∏
i∈R

Λi =
∑

R∈([n]
m)

det
(
(W>W )R,R

)
=
∑

R∈([n]
m)

det

(∑
i∈R

WiW
>
i

)
=
∑

R∈([n]
m)

det

(∑
i∈R

WiW
>
i

)

where PR1,R2
denotes a submatrix of P with rows and columns from sets R1,R2, the first equality

is due to the property of the eigenvalues (Theorem 1.2.12 in [19]), and the second inequality is

because the length of each column of W is m, and the third equality is because the determinant

of singular matrix is 0.

Therefore, the coefficient of tm1 t
k−s
2 ts3 in F (t1, t2, t3) is equivalent to the one of

∏
i∈S

(1 + t3)
∏

i∈[n]\S

(1 + x̂it2)
∑

R∈([n]
m)

det

(∑
i∈R

WiW
>
i

)
.

By Lemma 3 with n=m and the definition of matrix W , the coefficient of tm1 t
k−s
2 ts3 in F (t1, t2, t3)

is further equivalent to the one of

∏
i∈S

(1 + t3)
∏

i∈[n]\S

(1 + x̂it2)
∑

R∈([n]
m)

tm1
∏
j∈R\S

x̂j
1 + t2x̂j

∏
j∈R∩S

t3
1 + t3

det

(∑
i∈R

aia
>
i

)
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= tm1
∑

R∈([n]
m)

t
|R\S|
2 t

|R∩S|
3 (1 + t3)

|S\R| ∏
i∈[n]\(S∪R)

(1 + x̂it2)
∏
j∈R\S

x̂j det

(∑
i∈R

aia
>
i

)

which is equal to (13) by collecting coefficients of tm1 t
k−s
2 ts3. �

Note that the characteristic function of a matrix can be computed efficiently by using Faddeev-

LeVerrier algorithm [20]. Thus, the polynomial F (t1, t2, t3) is efficiently computable with time

complexity of O(n4).

Algorithm 2 proceeds as follows. We start with an empty subset S of chosen elements, and for

each j /∈ S, we compute the expected mth power of objective function that j will be chosen H(S ∪

j). We add j∗ to S, where j∗ ∈ arg maxj∈[n]\SH(S ∪ j). Then go to next iteration. This procedure

will terminate if |S|= k. Note that Algorithm 2 requires O(nk) evaluations of function H(S ∪ j),

thus its the time complexity is O(n5k). Hence, in practice, we recommend Algorithm 1 due to its

shorter running time.

The approximation results for Algorithm 2 are identical to Theorem 1 and Corollary 1, which

are summarized as follows:

Theorem 2 For any positive integers m≤ k≤ n,

(i) deterministic Algorithm 2 is efficiently computable and yield 1
e
-approximation for the D-optimal

design problem; and

(ii) given ε ∈ (0,1), if k ≥ m−1
2ε

, then deterministic Algorithm 2 yields (0.5− ε)-approximation for the

D-optimal design problem.

4. Improving Approximation Bound in Asymptotic Regime In this section, we propose

another sampling Algorithm 3 which achieves asymptotic optimality, i.e. the output of Algorithm

3 is close to be optimal when k/m→∞. We also show the derandomization of Algorithm 3. Simi-

lar to previous section, in this section, we considerD-optimal design problem without repetitions,

i.e., in (2) and (3), we let B = [0,1].

In Algorithm 3, suppose that (x̂, ŵ) is an optimal solution to the convex relaxation (3) with

B = [0,1], ε ∈ (0,1) is a positive threshold and N is a random permutation of [n]. Then for each

j ∈ N , we select j with probability xj
1+ε

, and let S̃ be the set of selected elements. If |S̃|< k, then

we can add k− |S̃| more elements from [n] \ S̃. On the other hand, if |S̃|> k, then we repeat the

sampling procedure. Algorithm 3 has time complexity O(n). In addition, note that the difference

between Algorithm 1 and Algorithm 3 is that in Algorithm 3, we inflate the probability of choosing

jth experiment by 1
1+ε

. This condition guarantees that when k�m, according to concentration

inequality, the probability of size-m subset T to be chosen will be nearly equal to
∏
j∈T

xj
1+ε

.
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Algorithm 3 Asymptotic Sampling Algorithm
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B = [0,1], where x̂ ∈

[0,1]n with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize S̃ = ∅ and a positive number ε > 0

3: do

4: Let set N be a random permutation set of {1, . . . , n}

5: for j ∈N do

6: Sample a (0,1) uniform random variable U

7: if U ≤ x̂i
1+ε

then

8: Add j to set S̃

9: end if

10: end for

11: while |S̃|>k

12: if |S̃|<k then . Greedy step to enforce |S̃|= k

13: Let j∗ ∈ arg maxj∈[n]\S̃
[
det
(∑

i∈S̃ aia
>
i +aja

>
j

)] 1
m

14: Add j∗ to set S̃

15: end if

16: Output S̃

4.1. Analysis of Sampling Algorithm 3 To analyze sampling Algorithm 3, we first show the

following probability bound. The key idea is to prove the lower bound 1∏
i∈T x̂i

P
{
T ⊆ S̃

∣∣∣∣|S̃| ≤ k}
by using Chernoff Bound [15].

Lemma 4 Let ε > 0 and S̃ ⊆ [n] be a random set output from Algorithm 3. Given T ⊆ [n] with |T |=m≤

n, then we have

αm :=
1∏
i∈T x̂i

P
{
T ⊆ S̃

∣∣∣∣|S̃| ≤ k}≥ (1 + ε)−m
(

1− e−
(εk−(1+ε)m)2

k(2+ε)(1+ε)

)
, (14)

where α is in Definition 1. In addition, when k≥ 4m
ε

+ 12
ε2

log( 1
ε
), then

αm ≥ (1− ε)m . (15)

Proof: We note that S̃ ⊆ [n] is a random set, where each i∈ [n] is independently sampled according

to Bernoulli random variable Xi with the probability of success x̂i
1+ε

. According to Definition 1
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and by ignoring the greedy procedure Algorithm 3, it is sufficient to derive the lower bound of
1∏

i∈T x̂i
P
{
T ⊆ S̃

∣∣∣∣|S̃| ≤ k}, i.e.,

P
{
T ⊆ S̃

∣∣∣∣|S̃| ≤ k}∏
i∈T x̂i

=
P
{
T ⊆ S̃, |S̃| ≤ k

}
∏
i∈T x̂iP

{
|S̃| ≤ k

} ≥ (1 + ε)−mP

 ∑
i∈[n]\T

Xi ≤ k−m


where the first inequality is due to P{|S̃| ≤ k} ≤ 1.

Therefore, it is sufficient to bound the following probability

P

 ∑
i∈[n]\T

Xi ≤ k−m

 .

SinceXi ∈ {0,1} for each i∈ [n], and E[
∑

i∈[n]\T Xi] = 1
1+ε

∑
i∈[n]\T x̂i. According to Chernoff bound

[15], we have

P

 ∑
i∈[n]\T

Xi > (1 + ε̄)E

 ∑
i∈[n]\T

Xi

≤ e− ε̄2

2+ε̄E[
∑
i∈[n]\T Xi].

where ε̄ is a positive constant. Therefore, by choosing ε̄= (1+ε)(k−m)∑
i∈[n]\T x̂i

− 1, we have

(1 + ε)−mP

 ∑
i∈[n]\T

Xi ≤ k−m

≥ (1 + ε)−m

(
1− e−

ε̄2
∑
i∈[n]\T x̂i

(2+ε̄)(1+ε)

)
. (16)

Note that k−m≤
∑

i∈[n]\T Xi ≤ k, ε−(1+ε)m
k
≤ ε̄≤ ε and εk−(1+ε)m≤ ε̄

∑
i∈[n]\T x̂i ≤ ε(k−m).

Suppose that k≥ 1+ε
ε
m, then the left-hand side of (16) can be further lower bounded as

(1 + ε)−m

(
1− e−

ε̄2
∑
i∈[n]\T x̂i

(2+ε̄)(1+ε)

)
≥ (1 + ε)−m

(
1− e−

(εk−(1+ε)m)2

k(2+ε)(1+ε)

)
.

To prove(15), it remains to show

1− e−
(εk−(1+ε)m)2

k(2+ε)(1+ε) ≥ ((1− ε)(1 + ε))
m
,

or equivalently,

log
[
1−

(
1− ε2

)m]≥−(εk− (1 + ε)m)
2

k(2 + ε)(1 + ε)
, (17)

which holds if

k≥
(

1 +
1

ε

)(
2m−

(
1 +

2

ε

)
log
[
1−

(
1− ε2

)m])
.

We note that − log
[
1− (1− ε2)

m] is non-increasing over m≥ 1, therefore is upper bounded by

2 log( 1
ε
). Hence, (17) holds if k≥ 4m

ε
+ 12

ε2
log( 1

ε
).

�
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Finally, we state our main approximation result as below.

Theorem 3 For any integers m ≤ k ≤ n and ε ∈ (0,1), if k ≥ 4m
ε

+ 12
ε2

log( 1
ε
), then Algorithm 3 is a

(1− ε)-approximation for the D-optimal design problem.

Proof: The result directly follows from Lemmas 1 and 4. �

4.2. Deterministic Implementation Similar to Section 3.4, the approximation ratios pre-

sented in the previous subsection only hold in the sense of expectation. In this subsection, we

will overcome this issue and present a deterministic Algorithm 3 with the same approximation

guarantees.

In this deterministic Algorithm 4, S denotes a subset such that |S|= s≤ k. Then the expectation

of mth power of objective function given S is

H(S) :=E

det

∑
i∈S̃

aia
>
i

∣∣∣∣S ⊆ S̃, |S̃| ≤ k


=

∑k

κ=s

∑
U∈([n]\S

κ−s )
∏
j∈U

x̂i
1+ε

∏
j∈[n]\(S∪U)

(
1− x̂i

1+ε

)
det
(∑

i∈U aia
>
i +

∑
i∈S aia

>
i

)
∑k

κ=1

∑
Ū∈([n]\S

κ−s )
∏
i∈Ū

x̂i
1+ε

∏
j∈[n]\(S∪Ū)

(
1− x̂i

1+ε

)

=

 k∑
κ=s

∑
Ū∈([n]\S

κ−s )

∏
i∈Ū

x̂i
1 + ε− x̂i


−1

k∑
κ=s

∑
U∈([n]\S

κ−s )

∏
j∈U

x̂i
1 + ε− x̂i

∑
R∈(U∪Sm )

det

(∑
i∈R

aia
>
i

)

=

∑k

κ=s

∑
R∈([n]

m),r:=|R\S|≤κ−s
∏
j∈R\S

x̂j
1+ε−x̂j

det
(∑

i∈Raia
>
i

)∑
W∈([n]\(S∪R)

κ−s−r )
∏
j∈W

x̂j
1+ε−x̂j∑k

κ=s

∑
Ū∈([n]\S

κ−s )
∏
i∈Ū

x̂i
1+ε−x̂i

, (18)

where the second equality is a direct computing of the conditional probability, the third equality

is due to Lemma 2, dividing both denominator and numerator by
∏
j∈[n]\S

(
1− x̂i

1+ε

)
and the con-

vention, set
(
S
τ

)
= ∅ if τ > |S| or τ < 0 and the fourth one is because of interchange of summation.

Note that the κth entry with κ∈ {s, . . . , k} of the denominator in (18) can be computed efficiently

according to Observation 1 by letting xi := x̂i
1+ε−x̂i

. Meanwhile, κth entry with κ ∈ {s, . . . , k} of

the numerator in (11) can be also computed efficiently by Proposition 3 by letting x̂i := x̂i
1+ε−x̂i

.

Therefore, the conditional expectation in (11) is efficiently computable

In summary, Algorithm 4 proceeds as follows. We start with an empty subset S of chosen ele-

ments, and for each j /∈ S, we compute the expectedmth power of objective function that j will be

chosen, i.e. H(S ∪ j). We update S := S ∪{j∗}, where j∗ ∈ arg maxj∈[n]\SH(S ∪ j). Then go to next

iteration. This procedure will terminate if |S|= k. Similar to Algorithm 2, the time complexity of

Algorithm 4 is O(n5k2). Hence, in practice, we recommend the more efficient Algorithm 3.

The approximation result for Algorithm 4 is identical to Theorem 3, which is summarized as

follows:
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Theorem 4 For any positive integers m ≤ k ≤ n and ε ∈ (0,1), deterministic Algorithm 4 is efficiently

computable and yield 1− ε-approximation for the D-optimal design problem if k≥ 4m
ε

+ 12
ε2

log( 1
ε
).

Algorithm 4 Derandomization of Algorithm 3
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B = [0,1], where x̂ ∈

[0,1]n with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize chosen set S = ∅

3: do

4: Let j∗ ∈ arg maxj∈[n]\S̃H(S ∪ j), where H(S ∪ j) is define (18), and all of the entries of its

denominator and numerator can be computed by Observation 1 by letting xi := x̂i
1+ε−x̂i

and

Proposition 3 by letting x̂i := x̂i
1+ε−x̂i

, respectively

5: Add j∗ to set S

6: while |S|<k

7: Output S

5. Approximation Algorithm for D-optimal Design Problem with Repetitions In this sec-

tion, we consider theD-optimal design problem with repetitions, i.e., we letB =R+ in (2) and (3).

We will propose a new analysis of the algorithm proposed by [27], derive its approximation ratio

and show its deterministic implementation. Again, in this section, we also let (x̂, ŵ) be an optimal

solution to the convex relaxation (3), where x̂ ∈Rn+ with
∑

i∈[n] x̂i = k and ŵ = f(x̂). Since the set

of all nonnegative rational vectors is dense in the set of all nonnegative real vectors, thus without

loss of generality, we assume that x̂ is a nonnegative rational vector (i.e., x̂∈Qn
+).

In [27], the author suggested to obtain k-sample set S̃ with replacement, i.e. S̃ can be a multi-

set. The sampling procedure can be separated into k steps. At each step, a sample s is selected

with probability P{s= i}= x̂i
k

(note that x̂ ∈Rn+ with
∑

i∈[n] x̂i = k). The detailed description is in

Algorithm 5. This sampling procedure can be interpreted as follows: let {Xi}i∈[n] be independent

Poisson random variables whereXi has arrival rate x̂i. We note that conditioning on total number

of arrivals equal to k (i.e.,
∑

i∈[n]Xi = k), the distribution of {Xi}i∈[n] is multinomial (cf., [1]), where

there are k trials and the probability of ith entry to be chosen is x̂i
k

. We terminate this sampling

procedure if the total number of arrivals equals to k. Note that the time complexity of Algorithm 5

is O(n).

To analyze Algorithm 5, let us consider another Algorithm 6, which turns out to be arbitrarily

close to Algorithm 5. As x̂ is a nonnegative rational vector (i.e., x̂ ∈ Qn
+), we let q be a common

multiple of the denominators of rational numbers x̂1, . . . , x̂n, i.e. qx̂1, . . . , qx̂n ∈Z+. Next, we create
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Algorithm 5 Sampling Algorithm for D-optimal Design with Repetitions
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B =R+, where x̂∈Qn

+

with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize chosen multi-set S̃ = ∅

3: for j = 1, . . . , k do

4: Sample s from [n] with probability P{s= i}= x̂i
k

5: Let S̃ = S̃ ∪ {s}

6: end for

7: Output S̃

a multi-setAq, which contains qx̂i copies of index i for each i∈ [n], i.e. |Aq|= qk. Finally, we sample

a subset S̃q of k items from set Aq uniformly, i.e. with probability
(
qk
k

)−1
. The detailed description

is in Algorithm 6. In this case, the sampling procedure has the following interpretation. Since sum

of i.i.d. Bernoulli random variables is Binomial, hence we let {X ′i}i∈[n] be independent binomial

random variables where X ′i has number of trials qx̂i and probability of success 1
q

for each i ∈ [n].

We terminate the sampling procedure if the total number of succeeded trials equals to k.

The following lemma shows that the probability distributions of outputs of Algorithms 5 and 6

can be arbitrarily close.

Lemma 5 Let S̃ and S̃q be outputs of Algorithms 5 and 6, respectively. Then S̃q
µ−→ S̃, i.e. the probability

distribution of S̃q converges to S̃ as q→∞.

Proof: Consider two classes of independent random variables {Xi}i∈[n], {X ′i}i∈[n], where Xi is

Poisson random variable with arrival rate x̂i for each i ∈ [n] and X ′i is binomial random variable

with number of trials qx̂i and probability of success 1
q

for each i∈ [n], respectively.

Given a size-k multi-setRwith support SuppR⊆ [n] and MR(i) denoting the number of occur-

rences of i inR, according to the description of Algorithm 6, we have

P
{
S̃ =R

}
= P

Xi =MR(i),∀i∈ [n]

∣∣∣∣∑
i∈[n]

Xi = k

=
P
{
Xi =MR(i),∀i∈ [n],

∑
i∈[n]Xi = k

}
P
{∑

i∈[n]Xi = k
}

= I (|R|= k)

∏
i∈[n] P{Xi =MR(i)}

P
{∑

i∈[n]Xi = k
} ,

where the first equality is from the description of Algorithm 5, the second equality is by the defi-

nition of conditional probability, the third equality is because {Xi}i∈[n] are independent from each

other and I(·) denotes indicator function. Similarly, we also have

P
{
S̃q =R

}
= I (|R|= k)

∏
i∈[n] P{X ′i =MR(i)}

P
{∑

i∈[n]X
′
i = k

} .
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Algorithm 6 Approximation of Algorithm 5
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B =R+, where x̂∈Qn

+

with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Let q be a common multiple of the denominators of rational numbers x̂1, . . . , x̂n, i.e.

qx̂1, . . . , qx̂n ∈Z+

3: Duplicate qx̂i copies of index i for each i∈ [n] as set Aq, i.e. |Aq|= qk

4: Sample a subset S̃q of k items from set Aq with probability
(
qk
k

)−1

5: Output S̃q

Followed by the well-known Poisson limit theorem (cf. [30]), Xi and X ′i have the same distri-

bution as q→∞ for any i∈ [n]. Therefore,

P
{
S̃q =R

}
→ P

{
S̃ =R

}
,

when q→∞, i.e., the outputs of Algorithm 5 and 6 have the same distribution when q→∞.

�

Now we are ready to present our approximation results for Algorithm 5. The proof idea is

based on Lemma 5, i.e., we first analyze Algorithm 6 and apply its result to Algorithm 5 by letting

q→∞.

Proposition 4 Let S̃ and S̃q be outputs of Algorithms 5 and 6, respectively. Then(
E[(f(S̃q))m]

) 1
m

≥
(
E[(f(S̃))m]

) 1
m

≥ g(m,k)−1w∗,

where

g(m,k) =

[
(k−m)!km

k!

] 1
m

≤min

{
e,

k

k−m+ 1

}
. (19)

Proof: We will first show the approximation ratio of Algorithm 6 and then apply it to Algorithm 5

by Lemma 5 when q→∞.

(i) Let (x̄′q, w̄
′
q) be output of Algorithm 6, and . Similar to the proof of Theorem 1, we have

E[(w̄′q)
m] =

∑
S∈(Aqk )

1(
qk
k

) det

(∑
i∈S

aia
>
i

)
=

qm(
qk
k

) ∑
S∈(Aqk )

1

qm
det

(∑
i∈S

aia
>
i

)

=
qm(
qk
k

) ∑
S∈(Aqk )

1

qm

∑
T∈(Sm)

det

(∑
i∈T

aia
>
i

)
=
qm
(
qk−m
k−m

)(
qk
k

) ∑
T∈(Aqm )

1

qm
det

(∑
i∈T

aia
>
i

)
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=
qm
(
qk−m
k−m

)(
qk
k

) det

∑
i∈[n]

x̂iaia
>
i

≥ k!

(k−m)!km
[f(x̂)]

m ≥ k!

(k−m)!km
(w∗)

m

where the first and second equalities are due to Algorithm 6, the third equality is because

of Lemma 2 and k ≥ m, the fourth equality is due to interchange of summation, the fifth

equality is because of the identity
∑

i∈[n] x̂iaia
>
i =

∑
i∈Aq

1
q
aia

>
i , the first inequality holds

because (qk)m(qk−m)!

(qk)!
≥ 1, and the last inequality is because x̂ is an optimal solution of the

continuous relaxation.

(ii) From Lemma 5, we know that the output of Algorithm 6 has the same probability distribu-

tion as the output of Algorithm 5 when q→∞. Thus, we have

E[(w̄)m] = lim
q→∞

E[(w̄′q)
m] = lim

q→∞

qm
(
qk−m
k−m

)(
qk
k

) det

∑
i∈[n]

x̂iaia
>
i


=

k!

(k−m)!km
det

∑
i∈[n]

x̂iaia
>
i

=
k!

(k−m)!km
[f(x̂)]

m
.

(iii) Next, let

g(m,k) =

[
(k−m)!km

k!

] 1
m

,

and we would like to investigate its bound.

First note that

log

(
g(m,k+ 1)

g(m,k)

)
=m log

(
1 +

1

k

)
+ log

(
1− m

k+ 1

)
which is nondecreasing over k ∈ [m,∞). Thus,

log

(
g(m,k+ 1)

g(m,k)

)
≤ lim

k′→∞
log

(
g(m,k′+ 1)

g(m,k′)

)
= 0,

i.e., g(m,k)≤ g(m,m) =
[
mm

m!

] 1
m ≤ e.

On the other hand, since (k−m)!

k!
≤ 1

(k−m+1)m
, thus

g(m,k)≤
[

km

(k−m+ 1)m

] 1
m

=
k

k−m+ 1
.

Hence, g(m,k)≤min
{
e, k

k−m+1

}
.

�

From Proposition 4, we note that when k is large enough, the output of Algorithm 5 is almost

optimal.

Finally, we present our approximation results blow.
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Theorem 5 For any positive integers m≤ k≤ n,

(i) both Algorithm 5 and Algorithm 6 yield 1
e
-approximation for the D-optimal design problem with

repetitions; and

(ii) given any ε∈ (0,1), if k≥ m−1
ε

, then both Algorithm 5 and Algorithm 6 yield (1− ε)-approximation

for the D-optimal design problem with repetitions.

Proof: The first result directly follows from Proposition 4. For the second one, given ε ∈ (0,1), by

Proposition 4, let
k−m+ 1

k
≥ 1− ε.

Then the conclusion follows by letting k≥ m−1
ε

. �

To conclude this part, we remark that although the results from previous sections hold for D-

optimal design with repetitions as well, Algorithm 5 has tighter approximation ratios. Therefore,

investigating the convex relaxation solution and approximation algorithms of D-optimal design

with repetitions alone does help us improve the approximation bounds.

5.1. Deterministic Implementation Similar to Section 3.4, the approximation ratios pre-

sented in the previous subsection hold in the sense of expectation. Recall that (x̂, ŵ) is an optimal

solution of (3) with x̂ ∈Qn
+, q is a common multiple of the denominators x̂1, . . . , x̂n and multi-set

Aq of size qk contains qx̂i copies of index i for each i∈ [n]. In this subsection, we will show that the

deterministic Algorithm 7 applies to Algorithm 5, which achieves the same approximation ratios.

In this deterministic Algorithm 7, let S be a subset such that |S|= s≤ k. Let S̃q, S̃ be outputs of

Algorithm 5, Algorithm 6, respectively. We know that from Lemma 5, S̃q
µ−→ S̃ when q→∞. Thus,

the expectation of mth power of objective function given S is

H(S) :=E

det

∑
i∈S̃

aia
>
i

∣∣∣∣S ⊆ S̃
= lim

q→∞
E

det

∑
i∈S̃q

aia
>
i

∣∣∣∣S ⊆ S̃q


= lim
q→∞

∑
U∈(Aq\Sk−s )

1
qk∑

Ū∈(Aq\Sk−s )
1
qk

det

(∑
i∈U

aia
>
i +

∑
i∈S

aia
>
i

)

= lim
q→∞

(
qk− s
k− s

)−1 ∑
U∈(Aq\Sk−s )

∑
R∈(U∪Sm )

det

(∑
i∈R

aia
>
i

)

= lim
q→∞

min{k−s,m}∑
r=1

qr
(
qk−s−r
k−s−r

)(
qk−s
k−s

) ∑
R∈(Aqm ),|R\S|=r

q−r det

(∑
i∈R

aia
>
i

)

=

min{k−s,m}∑
r=1

lim
q→∞

qr
(
qk−s−r
k−s−r

)(
qk−s
k−s

) lim
q→∞

∑
R∈(Aqm ),|R\S|=r

q−r det

(∑
i∈R

aia
>
i

)
,
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=

min{k−s,m}∑
r=1

(k− s)!
kr(k− s− r)!

lim
q→∞

∑
R∈(Aqm ),|R\S|=r

q−r det

(∑
i∈R

aia
>
i

)
(21)

where the second equality is due to S̃q
µ−→ S̃ when q→∞, third equality is a direct computing of

the conditional probability, the fourth equality is due to Lemma 2, the fifth and last equalities is

because both limq→∞
qr(qk−s−rk−s−r )

(qk−sk−s )
and limq→∞

∑
R∈(Aqm ),|R\S|=r q

−r det(
∑

i∈Raia
>
i ) exist and are finite

for each r ∈ {1, . . . ,min{k− s,m}}.

Algorithm 7 Derandomization of Algorithm 6
1: Suppose (x̂, ŵ) is an optimal solution to the convex relaxation (3) with B = [0,1], where x̂ ∈

[0,1]n with
∑

i∈[n] x̂i = k and ŵ= f(x̂)

2: Initialize chosen set S = ∅

3: do

4: Let j∗ ∈ arg maxj∈[n]\S̃H(S ∪ j), where H(S ∪ j) is define (21), and the limit can be com-

puted by Lemma 6

5: Add j∗ to set S

6: while |S|<k

7: Output S

We note that from Lemma 3, for each r= 1, . . . ,min{k− s,m}, the limit in (21) can be computed

efficiently according to the following lemma.

Lemma 6 For each r= 1, . . . ,min{k− s,m},

(i) the term
∑

R∈(Aqm ),|R\S|=r q
−r det

(∑
i∈Raia

>
i

)
is equal to the coefficient tr of the following determi-

nant function

det

 t

q

∑
i∈Aq\S

aia
>
i +

∑
i∈S

aia
>
i

 ;

(ii) the term limq→∞
∑

R∈(Aqm ),|R\S|=r q
−r det

(∑
i∈Raia

>
i

)
is equal to the coefficient tr of the following

determinant function

det

t∑
i∈[n]

x̂iaia
>
i +

∑
i∈S

aia
>
i

 .

Proof:

(i) The results follow directly by Lemma 3.
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(ii) By part (i), the term limq→∞
∑

R∈(Aqm ),|R\S|=r q
−r det

(∑
i∈Raia

>
i

)
is equal to the coefficient tr

of the following determinant function

lim
q→∞

det

 t

q

∑
i∈Aq\S

aia
>
i +

∑
i∈S

aia
>
i

 .

Since limq→∞
1
q

∑
i∈Aq\S aia

>
i =

∑
i∈[n] x̂iaia

>
i and det(·) is a continuous function, thus we

arrive at the conclusion.

�

Algorithm 7 proceeds as follows. We start with an empty subset S of chosen elements, and for

each j /∈ S, we compute the expected mth power of objective function that j will be chosen H(S ∪

j). We update S := S ∪ {j∗}, where j∗ ∈ arg maxj∈[n]\SH(S ∪ j). Then go to next iteration. This

procedure will terminate if |S|= k. Similar to Algorithm 2 and Algorithm 4, the time complexity

of Algorithm 7 is O(m4nk2). Thus, in practice, we recommend Algorithm 5 for D-optimal design

problem with repetitions.

The approximation results for Algorithm 7 are identical to those in Theorem 5, which is

Theorem 6 For any positive integers m≤ k≤ n and ε∈ (0,1),

(i) deterministic Algorithm 7 is efficiently computable and yields 1
e
-approximation for the D-optimal

design problem with repetitions; and

(ii) given ε ∈ (0,1), if k ≥ m−1
ε

, then deterministic Algorithm 7 yields (1 − ε)-approximation for the

D-optimal design problem with repetitions.

6. Closing Remarks and Conclusion In this section, we make our final remarks about the

proposed algorithms and present a conclusion of this paper.

Closing Remarks: We first remark that the proposed methods work also for A-optimality design,

which has been studied in [29]. In their paper, the authors also showed that the proposed methods

might not work for other criteria. For D-optimal Design Problem without repetitions, if k ≈m,

then we recommend sampling Algorithm 1 due to its efficiency and accuracy; if k�m, then we

recommend sampling Algorithm 3 because of its efficiency and asymptotic optimality. For D-

optimal Design Problem with repetitions, we recommend sampling Algorithm 5 since it is much

more efficient than its deterministic counterpart.

Conclusion: In this paper, we show that D-optimal design problem admits 1
e
- approximation

guarantee. That is, we propose a sampling algorithm and its deterministic implementation, whose

solution is at most 1
e

of the true optimal objective value, giving the first constant approximation

ratio for this problem. We also analyze a different sampling algorithm, which achieves the asymp-

totic optimality, i.e., the output of the algorithm is (1− ε)-approximation if k ≥ 4m
ε

+ 12
ε2

log( 1
ε
) for
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any ε∈ (0,1). For D-optimal design problem with repetitions, i.e., each experiment can be picked

multiple times, our sampling algorithm and its derandomization improves asymptotic approxi-

mation ratio, i.e., the output of the algorithm is (1− ε)-approximation if k≥ m−1
ε

for any ε∈ (0,1).

For future research, we would like to investigate if more sophisticated relaxation schemes can be

used to improve the approximation analyses. Another direction is to prove the tightness of the

approximation bounds. In particular, we conjecture that for D-optimal design problem with or

without repetitions, to achieve (1− ε)-approximation, one must have k= Ω(m/ε).
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[10] Petter Brändén and Johan Jonasson. Negative dependence in sampling. Scandinavian Journal of Statis-

tics, 39(4):830–838, 2012.



Mohit Singh, Weijun Xie: Approximation Algorithms forD-optimal Design
26

[11] Ken RW Brewer and Muhammad Hanif. Sampling with unequal probabilities, volume 15. Springer

Science & Business Media, 2013.

[12] Joel G Broida and Stanley Gill Williamson. A comprehensive introduction to linear algebra. Addison-

Wesley Reading, Mass., 1989.

[13] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved

approximation for k-median, and positive correlation in budgeted optimization. In Proceedings of the

twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, pages 737–756. SIAM, 2014.

[14] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular
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Appendix A. Proofs

A.1 Proof of Lemma 2

Lemma 2 Suppose ai ∈Rm for i∈ T with |T | ≥m, then

det

(∑
i∈T

aia
>
i

)
=
∑
S∈(Tm)

det

(∑
i∈S

aia
>
i

)
. (5)

Proof: Suppose that T = {i1, . . . , i|T |}. Let matrix A= [ai1 , . . . ,ai|T | ], then

det

(∑
i∈T

aia
>
i

)
= det

(
AA>

)
. (22)

Next the right-hand side of (22) is equivalent to

det
(
AA>

)
=
∑
S∈(Tm)

det (AS)
2

=
∑
S∈(Tm)

det
(
ASA

>
S

)
=
∑
S∈(Tm)

det

(∑
i∈S

aia
>
i

)
,

where AS is the submatrix of A with columns from subset S, the first equality is due to Cauchy-

Binet Formula [12], the second equality is because AS is a square matrix, and the last inequality is

the definition of ASA>S . �

A.2 Proof of Lemma 3

Lemma 3 For any x∈ [0,1]n, then

det

∑
i∈[n]

xiaia
>
i

=
∑

S∈([n]
m)

∏
i∈S

xi det

(∑
i∈S

aia
>
i

)
. (6)

Proof: [Proof of Lemma 3]Let P = diag(x) ∈ Rn×n be the diagonal matrix with diagonal vector

equal to x and matrix A= [a1, . . . ,an]. By Lemma 2, we have

det

∑
i∈[n]

xiaia
>
i

= det

∑
i∈[n]

(
√
xiai)(

√
xiai)

>

=
∑

S∈([n]
m)

det

(∑
i∈S

xiaia
>
i

)
. (23a)

Note that
∑

i∈S xiaia
>
i = ASPSA

>
S , where AS is the submatrix of A with columns from subset

S̃, and PS is the square submatrix of P with rows and columns from S. Thus, (23a) further yields

det

∑
i∈[n]

xiaia
>
i

=
∑

S∈([n]
m)

det

(∑
i∈S

xiaia
>
i

)
=
∑

S∈([n]
m)

det
(
ASPSA

>
S

)
=
∑

S∈([n]
m)

det (AS)
2
det (PS)

=
∑

S∈([n]
m)

∏
i∈S

xi det

(∑
i∈S

aia
>
i

)
(23b)

where the third and fourth equalities are because the determinant of products of square matrices

is equal to the products of individual determinants. �
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A.3 Proof of Proposition 1 Before proving Proposition 1, we first introduce two well-known

results for sum of homogeneous and symmetric polynomials.

Lemma 7 (Maclaurin’s inequality [25]) Given a set S, an integer s ∈ {0,1, · · · , |S|} and nonnegative

vector x∈R|S̃|+ , we must have

1

|S|

(∑
i∈S

xi

)
≥ s

√√√√√√ 1(|S|
s

)
 ∑
Q∈(Ss)

∏
i∈Q

xi

.
And

Lemma 8 (Generalized Newton’s inequality [41]) Given a set S, two nonnegative positive integers s, τ ∈

Z+ such that s, τ ≤ |S| and nonnegative vector x∈R|S|+ , then we have(∑
R∈(Ss)

∏
j∈R xj

)
(|S|
s

)
(∑

R∈(Sτ)
∏
i∈R xi

)
(|S|
τ

) ≥

∑
Q∈( S

s+τ)
∏
i∈Q xi( |S̃|

s+τ

)
Now we are ready to prove the main proposition.

Proposition 1 Let S̃ be the random set defined in (4). Then for any T ⊆ [n] such that |T |=m, we have

P[T ⊆ S̃]≥ 1

g(m,n,k)

∏
i∈T

x̂i := αm
∏
i∈T

x̂i,

where

g(m,n,k) = max
y

{
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)
m−τ

(y)
τ

:
mk

n
≤ y≤m

}
. (9)

Proof: According to Lemma 1 and sampling procedure in (4), we have

P
[
T ⊆ S̃

]
=
∏
j∈T

x̂j

∑
R∈([n]\T

k−m)

∏
j∈R x̂j∑

S̄∈([n]
k )

∏
i∈S̄ x̂i

=
∏
j∈T

x̂j

∑
R∈([n]\T

k−m)

∏
j∈R x̂j∑m

τ=0

∑
W∈(Tτ)

∏
i∈W x̂i

(∑
Q∈([n]\T

k−τ )

∏
i∈Q x̂i

)
where the second equality uses the following identity(

[n]

k

)
=

m⋃
τ=0

{
W ∪Q :W ∈

(
T

τ

)
,Q∈

(
[n] \T
k− τ

)}
.

We now let

AT (x) =

∑m

τ=0

∑
W∈(Tτ)

∏
i∈W x̂i

(∑
Q∈([n]\T

k−τ )

∏
i∈Q x̂i

)
∑

R∈([n]\T
k−m)

∏
j∈R x̂j

. (24a)
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According to Definition 1, it is sufficient to find a lower bound to 1∏
i∈T x̂i

P
[
T ⊆ S̃

]
, i.e.,

1

g(m,n,k)
≤min

x

 1∏
i∈T x̂i

P
[
T ⊆ S̃

]
=

1

AT (x)
:
∑
i∈[n]

x̂i = k,x∈ [0,1]n

 .

Or equivalently, we would like to find an upper bound of AT (x) for any x which satisfies∑
i∈[n] x̂i = k,x∈ [0,1]n, i.e., show that

g(m,n,k)≥max
x

AT (x) :
∑
i∈[n]

x̂i = k,x∈ [0,1]n

 . (24b)

In the following steps, we first observe that in (24a), the components of {xi}i∈T and {xi}i∈[n]\T

are both symmetric in the expression of AT (x). We will show that for the worst case, {xi}i∈T are

all equal and {xi}i∈[n]\T are also equal. We also show that x̂j ≤ x̂i for each i∈ T and j ∈ [n]\T . This

allows us to reduce the optimization problem in R.H.S. of (24b) to a single variable optimization

problem, i.e., (9). The proof is now separated into following three claims.

(i) First, we claim that

Claim 1 The optimal solution to (24b) must satisfy the following condition - for each i ∈ T and

j ∈ [n] \T , x̂j ≤ x̂i.

Proof: We prove it by contradiction. Suppose that there exists i′ ∈ T and j′ ∈ [n] \ T , where

x̂i′ < x̂j′ . By collecting the coefficients of 1, x̂i′ , x̂j′ , x̂i′ x̂j′ , we have

AT (x) =
b1 + b2x̂i′ + b2x̂j′ + b3x̂i′ x̂j′

c1 + c2x̂j′

where b1, b2, b3, c1, c2 are all non-negative numbers with

b1 =
∑

S̄∈([n]\{i′,j′}
k )

∏
i∈S̄

x̂i, b2 =
∑

S̄∈([n]\{i′,j′}
k−1 )

∏
i∈S̄

x̂i, b3 =
∑

S̄∈([n]\{i′,j′}
k−2 )

∏
i∈S̄

x̂i

c1 =
∑

R∈([n]\(T∪{j′})
k−m )

∏
j∈R

x̂j, c2 =
∑

R∈([n]\(T∪{j′})
k−m−1 )

∏
j∈R

x̂j.

Note that

x̂i′ x̂j′ ≤
1

4
(x̂i′ + x̂j′)

2
.

Therefore, AT (x) has a larger value if we replace x̂i′ , x̂j′ by their average, i.e. x̂i′ := 1
2
(x̂i′ +

x̂j′), x̂j′ :=
1
2
(x̂i′ + x̂j′). �

(ii) Next, we claim that
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Claim 2 for any feasible x to (24b), and for each S ⊆ [n] and s∈ {0,1, · · · , |S|}, we must have

∑
Q∈(Ss)

∏
i∈Q

x̂i ≤
(|S|
s

)
|S|s

(∑
i∈S

x̂i

)s
.

Proof: This directly follows from Lemma 7. �
And also

Claim 3 for each T ⊆ [n] with |T |= k and τ ∈ {0,1, · · · ,m},

∑
Q∈([n]\T

k−τ )

∏
i∈Q

x̂i ≤
(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

)
 ∑
R∈([n]\T

k−m)

∏
j∈R

x̂j


 ∑
i∈[n]\T

x̂i

m−τ

.

Proof: This can be shown by Claim 2 and Lemma 8(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

)
 ∑
R∈([n]\T

k−m)

∏
j∈R

x̂j


 ∑
i∈[n]\T

x̂i

m−τ

≥
(
n−m
k−τ

)(
n−m
m−τ

)(
n−m
k−m

)
 ∑
R∈([n]\T

k−m)

∏
j∈R

x̂j


 ∑
S∈([n]\T

m−τ )

∏
i∈S

x̂i

≥ ∑
Q∈([n]\T

k−τ )

∏
i∈Q

x̂i

where the first inequality is due to Claim 2, and the last inequality is because of Lemma 8. �
(iii) Thus, by Claim 3, for any feasible x to (24b), AT (x) in (24a) can be upper bounded as

AT (x)≤
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

)
 ∑
i∈[n]\T

x̂i

m−τ ∑
W∈(Tτ)

∏
i∈W

x̂i

≤
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

 ∑
i∈[n]\T

x̂i

m−τ (∑
i∈T

x̂i

)τ

≤max
y

{
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)
m−τ

(y)
τ

:
mk

n
≤ y≤m

}
:= g(m,n,k) (24c)

where the second inequality is due to Claim 2, and the last inequality is because we let

y =
∑

i∈T x̂i which is no larger than m, maximize over it and Claim 1 yields that y/m ≥
(k− y)/(n−m), i.e. mk

n
≤ y≤m. This completes the proof.

�

A.4 Proof of Proposition 2

Proposition 2 For any n≥ k≥m, we have

α−1 = [g(m,n,k)]
1
m ≤ lim

τ→∞
[g(m,τ, k)]

1
m ≤min

{
e,1 +

k

k−m+ 1

}
. (10)
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Proof:

(i) First of all, we prove the following claim.

Claim 4 For any m≤ k≤ n, we have

g(m,n,k)≤ g(m,n+ 1, k).

Proof: Let y∗ be the maximizer to (9) for any given m≤ k≤ n, i.e.,

g(m,n,k) =
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y∗)m−τ (y∗)
τ
.

Clearly, y∗ is feasible to (9) with pair (m,n+ 1, k). We only need to show that

g(m,n,k)≤
m∑
τ=0

(
n+1−m
k−τ

)
(n+ 1−m)m−τ

(
n+1−m
k−m

) (mτ )
mτ

(k− y∗)m−τ (y∗)
τ
.

In other words, it is sufficient to show for any 0≤ τ ≤m,(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) ≤ (
n+1−m
k−τ

)
(n+ 1−m)m−τ

(
n+1−m
k−m

) ,
which is equivalent to prove

n− k
n−m

· n− k− 1

n−m
· · · n− k−m+ τ + 1

n−m
≤ n+ 1− k
n+ 1−m

· n+ 1− k− 1

n+ 1−m
· · · n+ 1− k−m+ τ + 1

n+ 1−m
.

The above inequality holds since for any positive integers p, q with p < q, we must have
p
q
≤ p+1

q+1
. �

(ii) By Claim 4, it is sufficient to investigate the bound limn′→∞ g(m,n′, k), which provides an

upper bound to g(m,n,k) for any integers n ≥ k ≥ m. Therefore, from now on, we only

consider the case when n→∞ for any fixed k≥m.

Note that for any given y,
∑m

τ=0

(n−mk−τ )
(n−m)m−τ(n−mk−m)

(mτ )
mτ

(k − y)m−τyτ is the coefficient of tk in

the following polynomial:

R1(t) :=
(n−m)k−m

(k− y)k−m
(
n−m
k−m

) (1 +
k− y
n−m

t

)n−m (
1 +

y

m
t
)m

which is upper bounded by

R2(t) :=
(n−m)k−m

(k− y)k−m
(
n−m
k−m

) (1 +
k− y
n−m

t+
1

2!

(
k− y
n−m

t

)2

+ . . .

)n−m(
1 +

y

m
t+

1

2!

( y
m
t
)2

+ . . .

)m
=

(n−m)k−m

(k− y)k−m
(
n−m
k−m

) (e k−yn−m t
)n−m (

e
y
m t
)m
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because of the inequality er = 1 + r+ 1
2
r2 + . . . for any r and t≥ 0. Therefore, we also have

lim
n→∞

1

k!

dkR1(t)

dtk

∣∣∣∣
t=0

= lim
n→∞

m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)m−τyτ

≤ lim
n→∞

m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)m−τyτ

+
m∑
τ=0

∑
ij∈Z+,∀j∈[n]∑
j∈[n−m] ij=k−τ∑
j∈[n]\[n−m] ij=τ

maxj∈[n] ij≥2

1∏
j∈[n] ij!

1

(n−m)m−τ
(
n−m
k−m

) 1

mτ
(k− y)m−τyτ := lim

n→∞

1

k!

dkR2(t)

dtk

∣∣∣∣
t=0

= lim
n→∞

kk

k!

(n−m)k−m

(k− y)k−m
(
n−m
k−m

) ≤ lim
n→∞

kk

k!

(n−m)k−m

(k−m)k−m
(
n−m
k−m

)
=
kk

k!

(k−m)!

(k−m)k−m
:=R3(m,k)

where the first inequality is due to the non-negativity of the second term of 1
k!

dkR2(t)

dtk

∣∣∣∣
t=0

,

the second and third equalities are because of two equivalent definitions of R2(t), the last

inequality is due to y≤m and the fourth equality holds because of n→∞.

Note that R3(m,k) is nondecreasing over k ∈ [m,∞). Indeed, for any given m,

log
R3(m,k+ 1)

R3(m,k)
= k log

(
1 +

1

k

)
− (k−m) log

(
1 +

1

(k−m)

)
,

whose first derivative over k is equal to

log

(
1 +

1

k

)
− 1

k+ 1
− log

(
1 +

1

(k−m)

)
+

1

k−m+ 1
≤ 0,

i.e., log R3(m,k+1)

R3(m,k)
is nonincreasing over k. Therefore,

log
R3(m,k+ 1)

R3(m,k)
= k log

(
1 +

1

k

)
− (k−m) log

(
1 +

1

(k−m)

)
≥ lim

k→∞
log

R3(m,k+ 1)

R3(m,k)
= 0

Thus, R3(m,k) is upper bounded when k→∞, i.e.,

R3(m,k)≤ lim
k′→∞

R3(m,k′) = lim
k′→∞

[(
1− m

k′

)− k′m]m (k′−m)m

k′(k′− 1) · · · (k′−m+ 1)
= em,

where the last equality is due to the fact that limk′→∞
(
1− m

k′

)− k′m = e and

limk′→∞
(k′−m)m

k′(k′−1)···(k′−m+1)
= 1. Therefore,

lim
n→∞

[g(m,n,k)]
1
m = lim

n→∞

[
max
y

{
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)m−τyτ :
mk

n
≤ y≤m

}] 1
m

≤ [R3(m,k)]
1
m ≤ e
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(iii) We now compute another bound 1 + k
k−m+1

for [g(m,n,k)]
1
m , which can be smaller than e

when k is large. By Claim 4, we have

g(m,n,k)≤ lim
n′→∞

g(m,n′, k) = max
y

{
m∑
τ=0

(k−m)!

(k− τ)!

(
m
τ

)
mτ

(k− y)m−τyτ : 0≤ y≤m

}
.

Note that 0≤ y≤m, thus k− y≤ k. Therefore, we have

lim
n→∞

g(m,n,k)≤
m∑
τ=0

(k−m)!
(
m
τ

)
(k− τ)!

km−τ ≤
m∑
τ=0

(
k

k−m+ 1

)m−τ
=

(
1 +

k

k−m+ 1

)m
,

where the last inequality is due to (k−m)!

(k−τ)!
= 1

(k−τ)···(k−m+1)
≤
(

1
k−m+1

)m−τ
.

Therefore, we have

[g(m,n,k)]
1
m =

[
max
y

{
m∑
τ=0

(
n−m
k−τ

)
(n−m)m−τ

(
n−m
k−m

) (mτ )
mτ

(k− y)m−τyτ :
mk

n
≤ y≤m

}] 1
m

≤ 1 +
k

k−m+ 1

for any m≤ k≤ n.

�
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