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Adjustable robust minimization problems in which the adjustable variables appear in a convex way are

difficult to solve. For example, if we substitute linear decision rules for the adjustable variables, then the

model becomes convex in the uncertain parameters, whereas for computational tractability we need concavity

in the uncertain parameters. In this paper we reformulate the original adjustable robust nonlinear problem

with a polyhedral uncertainty set into an equivalent adjustable robust linear problem, for which all existing

approaches for adjustable robust linear problems can be used. The reformulation is obtained by first dualizing

over the adjustable variables and then over the uncertain parameters. The polyhedral structure of the

uncertainty set then appears in the linear constraints of the dualized problem, and the nonlinear functions

of the adjustable variables in the original problem appear in the uncertainty set of the dualized problem. We

show how to recover the linear decision rule to the original primal problem. This paper also describes how

to effectively obtain lower bounds (for minimization problems) on the optimal objective value by linking the

realizations in the uncertainty set of the dualized problem to realizations in the original uncertainty set.

Key words : Adjustable robust optimization, nonlinear inequalities, duality, linear decision rules.

1. Introduction

1.1. Problem formulation

We consider the following general two-stage robust nonlinear minimization problem:

inf
x∈X

sup
ζ∈U

inf
y

{
f0(x) + g0(y)

∣∣∣∣∣ ζ>Fi·(x) + fi(x) + gi(y)≤ 0, i= 1, . . . ,m1, A(x)ζ +By= b(x)

}
.

(1)

Here X ⊆ Rnx , the functions fi : Rnx → R, gi : Rny → R are convex for all i = 0, . . . ,m1, Fi·(x) =

(Fi1(x), . . . ,Finζ (x)) and Fij : Rnx → R are real valued functions for all i = 1, . . . ,m1, and j =
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1, . . . , nζ . The matrices A(x) ∈ Rm2×nζ and the vector b(x) ∈ Rm2 depend on x ∈ Rnx in an affine

way:

A(x) =A0 +

nx∑
l=1

Alxl, b(x) = b0 +

nx∑
l=1

blxl, (2)

with Al ∈Rm2×nζ and bl ∈Rm2 for all l= 0, . . . , nζ . Note that Problem (1) has fixed recourse because

the functions gi, i= 0, ...,m1, and the matrix B do not depend on ζ. Therefore, there are no direct

interaction terms between ζ and y, such as products ζ>y. Throughout this paper we focus on

nonempty polyhedral uncertainty sets:

U = {ζ ≥ 0 :Dζ = d} , (3)

where D ∈Rp×nζ and d∈Rp.

1.2. Literature review

Problem (1) is generally intractable even if all the objective and constraint functions are linear.

Adjustable robust optimization techniques in the literature such as nonlinear decision rules, Ben-

ders decomposition, column-and-constraint generation method (Zeng and Zhao, 2013), copositive

approach (Hanasusanto and Kuhn, 2018; Xu and Burer, 2018), and Fourier-Motzkin elimination

(Zhen et al., 2017), are developed for linear adjustable problems and are not applicable for (1).

Furthermore, even if we impose linear decision rules

y(ζ) = y0 +

nζ∑
j=1

yjζj, (4)

where y0, . . . , ynζ ∈Rny , to the wait-and-see decision variables, the resulting conservative approxi-

mation of (1):

inf
x∈X
y0,yj

sup
ζ0∈U

{
f0(x) + g0(y(ζ))

∣∣∣∣∣ ∀ζ ∈ U :
ζ>Fi·(x) + fi(x) + gi(y(ζ))≤ 0, i= 1, . . . ,m1

A(x)ζ +By(ζ) = b(x)

}
(5)

is still difficult to solve. This difficulty is due to the fact that the objective and constraint functions

contain terms gi(y0 +
∑nζ

j=1 yjζj), i= 0, . . . ,m1, which are convex in the uncertain parameters if gi is

nonlinear and convex. The inner maximization problem in (5) tries to maximize a convex function

over a polyhedron, which is in general NP-hard.

There are only a few papers on adjustable robust nonlinear optimization known to the authors.

Pınar and Tütüncü (2005) study a two-period adjustable robust portfolio problem to identify

robust arbitrage opportunities when the uncertainty is ellipsoidal. They derive optimal decision

rules from exploiting the explicit structure of their formulation, but it is unclear how this can be

generalized to problems with more constraints, other uncertainty sets or other model formulations.
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Takeda et al. (2008) consider an adjustable robust nonlinear model with a polyhedral uncertainty

set, similar to the models considered in this paper. They solve a sampled model, while enumerating

all vertices of the polytope uncertainty set. This quickly becomes unviable for even medium sized

problems as the number of extreme points of the uncertainty set is exponential in the dimension of

the uncertain parameter. Boni and Ben-Tal (2008) consider adjustable robust optimization models

with conic quadratic constraints with ellipsoidal uncertainty sets. They approximate the model

with linear decision rules and finally end up with a semidefinite optimization model.

Our paper significantly extends the approach of Bertsimas and de Ruiter (2016) where only linear

problems are considered. Note that in the linear case, the original adjustable robust optimization

models could already be solved with techniques as Fourier-Motzkin elimination, linear and nonlinear

decision rules, Benders decomposition, and the column-and-constraint generation method of Zeng

and Zhao (2013). This is not the case (at least, not directly) for the nonlinear problems where the

original formulation cannot be solved with these techniques. However, in this paper we show that

the dual of the nonlinear problem is linear in the adjustable variables. For this dual problem, the

above mentioned well-known adjustable linear robust optimization techniques can be used.

1.3. Contributions

This paper uses the consecutive dualization scheme in Bertsimas and de Ruiter (2016) for linear

problems, and extends it to two-stage robust nonlinear problems that have a polyhedral uncertainty

set. The two major contributions of this paper are:

1. We apply a new relaxation technique to establish a close relation between linear decision rules

for the original nonlinear problem and its equivalent dual (linear) reformulation.

2. Since linear decision rules are in general conservative, we need to provide lower bounds on

the optimal objective value. We show how binding scenarios from the original uncertainty set can

be obtained from binding scenarios in the dual formulation. This new technique also considerably

improves the lower bounds proposed in Bertsimas and de Ruiter (2016) for the linear case.

We show that we can use our method to efficiently solve a distribution problem on a network

with commitments, to solve the same problem but then without commitments, and to find the

equilibrium of a system with piecewise-linear springs.

1.4. Paper organization and notation

The rest of this paper is organized as follows. In §2 we present our framework and derive our

dualized formulation and linear decision rule model. We recover the linear decision rule for the

original primal problem in §3. In §4 we explain how we obtain lower bounds on the optimal objective
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value to assess the quality of our solutions. Our numerical examples are presented in respectively

§3 and §4 of EC.

The function g∗ is the convex conjugate of the function g :Rnν →R and is defined by:

g∗(z) = sup
ν∈dom(g)

{
ν>z− g(ν)

}
,

where dom(g) is the domain of the function g. The perspective h : Rnν ×R+→R of a real-valued

convex function f : Rnν →R is defined for all ν ∈Rnν and t ∈R+ as h(ν, t) = tf(ν/t) if t > 0, and

h(ν,0) = lim inf(ν′,t′)→(ν,0) t
′f(ν ′/t′) (Rockafellar, 1970, p.67). For ease of exposition, we use tf(ν/t)

to denote the perspective function h(ν, t) in the rest of this paper.

2. The dual formulation

We first use the consecutive dualization approach of Bertsimas and de Ruiter (2016) to derive

an equivalent linear reformulation of (1). Linear decision rules are then applied to the linear

reformulation to obtain a conservative approximation. This constitutes a convex program that can

be efficiently solved using off-the-shelf solvers. To this end, we first assume that (1) has a relatively

complete recourse.

Assumption 1 (Relatively complete recourse). For all x ∈ X and all ζ ∈ U there exists a

y ∈Rny , such that {
ζ>Fi·(x) + fi(x) + gi(y)≤ 0 i= 1, . . . ,m1

A(x)ζ +By= b(x)

and for all i= 1, . . . ,m1 for which gi is nonlinear we have ζ>Fi·(x) + fi(x) + gi(y)< 0. �

This assumption implies that each here-and-now decision is strictly feasible. This assumption can in

practice be satisfied by ensuring that X contains only feasible decisions. In the following theorem,

we introduce a two-stage robust linear reformulation of (1).

Theorem 1 (Dual formulation). Let U be a polyhedral set as in (3) and assume that Assump-

tion 1 holds. The here-and-now decision x is feasible for (1) if and only if x is feasible for the

following dualized model:

inf
x∈X

sup
(u,v,w,z)∈V

inf
λ

{
m1∑
i=0

vifi(x) + d>λ−w>b(x)−
m1∑
i=0

zi

∣∣∣∣∣
p∑
k=1

Dkjλk ≥w>A·j(x) +

m1∑
i=1

viFij(x), j = 1, . . . , nζ

}
,

(6)

where u= (u0, . . . , um1
)∈R(m1+1)ny , ui ∈Rny for i= 0, ...,m1, and

V =

{
(u, v,w, z) : v≥ 0, v0 = 1, vi (gi)

∗
(
ui
vi

)
≤ zi, i= 0, ...,m1,

m1∑
i=0

ui =−B>w
}
.

Moreover, the infimum of (1) coincides with that of (6).
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Proof. See §1 of EC. �

Note that the linear structure of the uncertainty set appears in the constraints of the dual

formulation (6) and the convex structure of the adjustable variables is in the new uncertainty set V.

When Fi·(x), fi(x) and gi(y) are affine functions, Theorem 1 coincides with the result in Theorem

1 of Bertsimas and de Ruiter (2016).

The obtained two-stage robust linear reformulation (6) can be conservatively approximated via

linear decision rules. We impose the following linear decision rules to the wait-and-see variable λ,

λ(u, v,w, z) =

m1∑
i=0

Ψ>i ui +

m1∑
i=0

tivi + Φ>w+

m1∑
i=0

ηizi,

where Ψi ∈Rny×p, ti, ηi ∈Rp, for all i= 0, ...,m1, and Φ∈Rm2×p. The resulting conservative approx-

imation of (6) constitutes a robust optimization problem:

inf
x∈X ,ti
Ψi,Φ,ηi

sup
(u,v,w,z)∈V

v>F0(x) + d>λ(u, v,w, z)−w>b(x)−
m1∑
i=0

zi

s.t. ∀(u, v,w, z)∈ V :D>·jλ(u, v,w, z)≥w>A·j(x) +

m1∑
i=1

viFij(x) j = 1, . . . , nζ ,

(7)

where F0(x) = (f0(x), . . . , fm1
(x))> ∈Rm1+1, F·j(x)∈Rm1 and D·j ∈Rp are the j-th column vectors

of F (x) and D, respectively. It follows from Theorem 1 that (7) constitutes a conservative approx-

imation of (1). Since the uncertain parameters appear linearly in (7), and V is convex, one can use

standard robust optimization techniques to obtain the following tractable reformulation:

inf
x∈X

y0,yj ,Ψi
γ≥0,t,η,Φ

f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+ d>t0

s.t. γ0jg0

(
yj −Ψ0D·j

γ0j

)
≤D>·j t0 j = 1, . . . , nζ

fi(x) + γi0gi

(
y0 + Ψid

γi0

)
+ d>ti ≤ 0 i= 1, . . . ,m1

Fij(x) + γijgi

(
yj −ΨiD·j

γij

)
≤D>·j ti i= 1, . . . ,m1, j = 1, . . . , nζ

γi0 + d>ηi = 1 i= 0, . . . ,m1

γij =D>·jηi i= 0, . . . ,m1, j = 1, . . . , nζ

By0 + Φd= b(x)

A·j(x) +Byj = ΦD·j j = 1, . . . , nζ ,

(8)

where yj ∈ Rny for all j = 0, ..., nζ , Ψi ∈ Rny×p, ti, ηi ∈ Rp, for all i = 0, ...,m1, γ ∈ R(m1+1)×(nζ+1)

and Φ∈Rm2×p.
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Due to the introduction of the additional optimization variables, i.e., yj ∈Rny for all j = 1, ..., nζ ,

Ψi ∈Rny×p, ti, ηi ∈Rp, for all i= 0, ...,m1, γ ∈R(m1+1)×(nζ+1) and Φ∈Rm2×p, there are significantly

more optimization variables in (8) than in the original problem (1). The original problem has only

(nx+ny) variables, but is intractable due to its nature. The tractability of (8) relies on the functions

f0, g0, fi, Fij and gi for all i= 1, . . . ,m1, and j = 1, . . . , nζ . For example, if all these functions are

conic quadratic functions, then (8) simply constitutes a conic quadratic program. More generally,

the perspective function of a conically representable function can be represented in the same cone

(Roos et al., 2018, Theorem 8). Therefore, the perspective functions do not lift model (8) to a

higher complexity class if the original functions admit a conic representation.

Finally, we remark that if the uncertainty set U in (1) is non-polyhedral, one can outer approx-

imate U by a polyhedral set before applying the approach developed in this section. For instance,

if U is a conic representable set, one can use the developed scheme in Ben-Tal and Nemirovski

(2001) to outer approximate U efficiently via a bounded polyhedron.

3. Recover a primal linear decision rule

We show that we can obtain a feasible linear decision rule for the primal model (1) from the linear

decision rule model used to solve the dual model (8). For the proof, we need a novel perspective

relaxation, which can be seen as an extended version of Jensen’s inequality.

Lemma 1 (Perspective relaxation). If the function f : Rnx → R is convex, then for any

x1, . . . , xN ∈Rnx, α∈RN+ and γ ∈RN+ such that
∑N

i=1αiγi = 1, we have:

f

(
N∑
i=1

αixi

)
≤

N∑
i=1

αiγif

(
xi
γi

)
. (9)

Proof. For any x1, . . . , xN ∈Rnx and α∈RN+ , let γ ∈RN+ satisfy
∑N

i=1αiγi = 1. Then, we have:

f

(
N∑
i=1

αixi

)
= f

(
N∑
i=1

αiγi
γi

xi

)
≤

N∑
i=1

αiγif

(
xi
γi

)
,

where the inequality follows from Jensen’s inequality, which applies because f is convex and∑N

i=1αiγi = 1, where αiγi ∈ [0,1], for all i= 1, ...,N . �

We now show that a feasible primal linear decision rule is directly obtained from variables that

constitute a solution to (8).

Theorem 2 (Primal linear decision rule). If x, yj, j = 0, . . . , nζ are feasible for (8), then x,

y(ζ) = y0 +
∑nζ

j=1 yjζj is feasible for the primal linear decision rule model (1) and its objective value

is at most the objective value of (8).
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Proof. Suppose x, yj, j = 0, . . . , nζ are feasible for (8). We first show that x, together with linear

decision rule y(ζ) = y0 +
∑nζ

j=1 yjζj, results in an objective value that is at most as high as the

solution for (8). Let ζ ∈ U , Ψ0 ∈Rny×p and let γ0j ≥ 0, j = 0, . . . , nζ such that γ00 +
∑nζ

j=1 γ0jζj = 1.

Then we have

f0(x) + g0 (y(ζ)) = f0(x) + g0

(
y0 +

nζ∑
j=1

yjζj

)

= f0(x) + g0

(
y0 + Ψ0d+

nζ∑
j=1

(yj −Ψ0D·j)ζj

)

≤ f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+

nζ∑
j=1

γ0jζ0jg0

(
yj −Ψ0D·j

γ0j

)
.

For the second equality we used the fact that for any Ψ0 ∈Rny×p we have Ψ0d−
∑nζ

j=1 Ψ0D·jζj = 0

since for any ζ ∈ U we have Dζ = d. The last inequality follows from Lemma 1. Using this relation

we can further derive that

sup
ζ∈U
{f0(x) + g0 (y(ζ))}

≤ sup
ζ∈U

inf
γ0≥0

{
f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+

nζ∑
j=1

γ0jζjg0

(
yj −Ψ0D·j

γ0j

)∣∣∣∣∣ γ00 +

nζ∑
j=1

γ0jζj = 1

}

≤ inf
γ0≥0

sup
ζ∈U

{
f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+

nζ∑
j=1

γ0jζjg0

(
yj −Ψ0D·j

γ0j

)∣∣∣∣∣ γ00 +

nζ∑
j=1

γ0jζj = 1

}
,

where in the second inequality we used weak duality. The obtained minimax problem is still

intractable. However, it can be conservatively approximated by the following robust optimization

problem:

inf
γ0≥0

sup
ζ0∈U

{
f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+

nζ∑
j=1

γ0jζ0jg0

(
yj −Ψ0D·j

γ0j

)∣∣∣∣∣ ∀ζ ∈ U : γ00 +

nζ∑
j=1

γ0jζj = 1

}

= inf
γ0≥0,t0,η0

{
f0(x) + γ00g0

(
y0 + Ψ0d

γ00

)
+ d>t0

∣∣∣∣∣ γ0jg0

(
yj −Ψ0D·j

γ0j

)
≤D>·j t0, j = 1, . . . , nζ

γ00 +

p∑
k=1

η0kdk = 1, γ0j =D>·jη0, j = 1, . . . , nζ

}
.

The resulting objective function and constraint are contained in (8). One can apply the same

approximation steps to show feasibility of the the constraints. That is, analogous it can be derived

that for i= 1, . . . ,m1, the i-th constraint

ζ>Fi·(x) + fi(x) + gi(y(ζ))≤ 0
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is satisfied because the following set of constraints is satisfied in (8) for some Ψi ∈ Rny×p and

ηi ∈Rnζ :

fi(x) + γi0gi

(
y0 + Ψid

γi0

)
+ d>ti ≤ 0,

Fij(x) + γijgi

(
yj −ΨiD·j

γij

)
≤D>·j ti j = 1, . . . , nζ ,

γi0 + d>ηi = 1,

γij =D>·jηi j = 1, . . . , nζ .

Finally, using standard techniques in robust optimization, without perspective relaxation, one can

show that A(x)ζ + By(ζ) = b(x) is satisfied whenever there exists Φ ∈ Rm2×p that satisfies the

remaining constraints of (8):

By0 + Φd= b(x),

A·j(x) +Byj = ΦD·j j = 1, . . . , nζ .

�

To relate the objective value of the primal linear decision rule model (1) to the dual linear decision

rule model (8) we use several conservative approximations in the proof of Theorem 2. Hence, the

true objective value of the primal linear decision rule model could be lower than the value obtained

of (8); see Remark 1 in §3 of EC for a numerical demonstration.

4. Lower bounds on the optimal value

A model with a finite sample of scenarios can provide a lower bound on the optimal value of (1).

The sampled version of the dualized model is:

inf
τ,x∈X

λ1,...,λS≥0

τ

s.t. f0(x) +

m1∑
i=1

vsi fi(x) + d>λs− (ws)>b(x)−
m1∑
i=0

zsi ≤ τ ∀s= 1, . . . , S

p∑
s=1

Dkjλ
s
k ≥ (ws)>A·j(x) +

m1∑
i=1

(vsi )Fi,l(x) ∀j = 1, . . . , nζ , s= 1, . . . , S,

(10)

where {(u1,w1, v1, z1), . . . , (uS,wS, vS, zS)} is a finite subset V with a single optimization variable

λs for each scenario s= 1, . . . , S. Note that this is a standard convex optimization model, but only

guarantees feasibility of the here-and-now decisions for a small set of scenarios. The question is of

course how to choose scenarios to get strong lower bounds. One way to obtain an effective finite

set is described by Hadjiyiannis et al. (2011).



9

If we have a set of scenarios {(u1,w1, v1, z1), . . . , (uS,wS, vS, zS)} for the sampled version of the

dualized model, we can link and recover primal scenarios {ζ1, . . . , ζS} to obtain stronger lower

bounds. To establish the link, we first dualize over λ1, . . . , λK in (10), which yields

inf
x∈X

sup
ζ∈U

sup
1≤s≤S

f0(x) +

m1∑
i=1

vsi
(
ζ>Fi·(x) + fi(x)

)
+ (A(x)ζ − b(x))

>
ws−

m1∑
i=0

zsi . (11)

For a fixed x we can now obtain primal scenarios ζs for each s as the maximizers of model (11):

ζs ∈ arg max
ζ∈U

{
m1∑
i=1

vsi
(
ζ>Fi·(x)

)
+ (ws)

>
(A(x)ζ − b(x))

}
. (12)

The resulting set of scenarios {ζ1, . . . , ζs} can then be used in a sampled model of (1).

A special case arises for right-hand-side uncertainty, where primal scenarios obtained by (12)

provide stronger bounds than the dual scenarios. We say that there is only right-hand-side uncer-

tainty if there is no direct interaction between the here-and-now decisions x and ζ. The more formal

definition is given below.

Definition 1 (Right-hand-side uncertainty). Model (1) has right-hand-side uncertainty if

there exist F̄i· ∈Rnζ and Ā∈Rm2×nζ such that A(x) = Ā and Fi·(x) = F̄i· for all x∈X , i= 1, . . . ,m1.

Using this definition, we can now formally prove that primal scenarios obtained from dual scenarios

yield stronger lower bounds for right-hand-side uncertainty.

Theorem 3 (Primal-dual scenarios). Let {(u1,w1, v1, z1), . . . , (uS,wS, vS, zS)} be a finite set of

dual scenarios and {ζ1, . . . , ζS} be a set of primal scenarios obtained from (12). If there is only

right-hand-side uncertainty in model (1), then the objective value of

inf
τ,x∈X
y1,...,yS

τ

s.t. f0(x) + g0(ys)≤ τ ∀s= 1, . . . , S

(ζs)>F̄i·+ fi(x) + gi(y
s)≤ 0 ∀i= 1, . . . ,m1, s= 1, . . . , S

Āζs +Bys = b(x) ∀s= 1, . . . , S

(13)

is at least as high as the objective value of (10).

Proof. By duality for linear programming, (10) is equivalent to (11). The latter formulation

can be written as

inf
x∈X

sup
s∈{1,...,S}

{
f0(x) +

m1∑
i=1

vsi

(
(ζs)

>
F̄i·+ fi(x)

)
+ (ws)

> (
Āζs− b(x)

)
−

m1∑
i=0

zsi

}
, (14)

where ζs are the primal scenarios obtained by (12). Since (us,ws, vs, zs) are in V for all s= 1, . . . , S,

the value of (14) must be smaller than or equal to

inf
x∈X

sup
s

sup
(us,ws,vs,zs)∈V

{
f0(x) +

m1∑
i=1

vsi

(
(ζs)

>
F̄i·+ fi(x)

)
+ (ws)

> (
Āζs− b(x)

)
−

m1∑
i=0

zsi

}
,
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since we maximize over (us,ws, vs, zs) in the full V, instead of a subset. The value of this optimiza-

tion problem is, by dualizing over (us,ws, vs, zs), equivalent to (13). Hence, the optimal objective

value is at least as high as the optimal objective value of (10). �

The intuition behind the strength of the primal scenarios for right-hand-side uncertainty can

be found in the fact that primal scenarios have no direct interaction with here-and-now decisions.

That is, for right-hand-side uncertainty only, there are no terms in which both x and ζ appear.

The dual model always includes the interaction terms with here-and-now decisions via the terms∑m1

i=1 v
s
i fi(x) and (ws)>b(x), even with right-hand-side uncertainty in the primal sampled model.

Therefore, dual scenarios could be strong for some here-and-now decision x, but very weak for

other here-and-now decisions. In that case, the feasible region of the dual sampled model is larger

and therefore results in a lower objective value and thus a weaker lower bound.

For linear adjustable robust optimization models, Theorem 3 can also significantly improve lower

bounds. In §5 of EC, we evaluate the performance of the lower bounding scheme proposed in this

subsection using the same numerical experiment considered in Bertsimas and de Ruiter (2016).

Original optimality gaps reported for the larger instances were more than halved when primal

scenarios were obtained using (12). For the largest instance the linked primal scenarios reduced the

gap from 10.7% to 5.2%. We do note that the numerical examples all satisfied the assumption of

right-hand-side uncertainty. If there is no right-hand-side uncertainty, then a dual sampled model

can yield tighter lower bounds than its primal sampled counterpart. A very small example showing

this is given in §2 of EC. Therefore, the assumption of right-hand-side uncertainty assumption is

crucial in Theorem 3.
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1. Proof for Theorem 1

Proof of Theorem 1. We adopt a similar proof strategy as for Theorem 1 in Bertsimas and

de Ruiter (2016). We consider the inner infimum of (1) over y for a given x ∈ X and ζ ∈ U .

Since Assumption 1 holds we can apply the Lagrangian principle to (1), and obtain the following

equivalent reformulation:

inf
x∈X

sup
ζ∈U
v≥0,w

inf
y
f0(x) + g0(y) +

m1∑
i=1

vi
(
ζ>Fi·(x) + fi(x) + gi(y)

)
+w> (A(x)ζ +By− b(x)) .

We then use the definition of the conjugate functions and calculus rules for conjugate functions

(specifically Rule 5 in Table 2 of Roos et al. (2020) for the conjugate of the sum of convex functions)

to obtain the following inf-sup-sup reformulation:

inf
x∈X

sup
ζ∈U

sup
(u,v,w)∈W

f0(x) +

m1∑
i=1

vi
(
ζ>Fi·(x) + fi(x)

)
+w> (A(x)ζ − b(x))−

m1∑
i=0

vi (gi)
∗
(
ui
vi

)
,

where W =

{
(u, v,w) : v ≥ 0, v0 = 1,

∑m1

i=0 ui =−B>w
}
. We can then switch the order of supre-

mum such that the inner supremum is over ζ ∈ U . Since the inner supremum model is linear in ζ,

we can apply strong duality for linear optimization to obtain the inf-sup-inf reformulation:

inf
x∈X

sup
(u,v,w)∈W

inf
λ

{
m1∑
i=0

vifi(x) + d>λ−w>b(x)−
m1∑
i=0

vi (gi)
∗
(
ui
vi

) ∣∣∣∣∣
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p∑
k=1

Dkjλk ≥w>A·j(x) +

m1∑
i=1

viFij(x), j = 1, . . . , nζ

}
.

We then introduce epigraph variables zi for every vi (gi)
∗
(
ui
vi

)
, i= 0, ...,m1, and finally obtain (6).

�

2. Example when conditions in Theorem 3 are violated

Consider the following problem:

min
(x1,x2)∈X

max
(ζ1,ζ2)∈U

min
y

{
−y | − 1 +x1ζ1 +x2ζ2 + y2 ≤ 0

}
,

where X = {(x1, x2)≥ 0 | x1 + x2 = 1} and U = {(ζ1, ζ2)≥ 0 | ζ1 + ζ2 ≤ 1}. This problem satisfies

the strong relatively complete recourse condition, because for all (x1, x2) ∈ X and (ζ2, ζ2) ∈ U the

wait-and-see decision y = 0 is feasible. Using Theorem 1 we can obtain the dual version of this

problem:

min
(x1,x2)∈X

max
v≥0

min
λ≥0

{
− 1

4v
− v+λ | λ≥ vx1, λ≥ vx2

}
.

For this small problem the optimal solution can be determined without heavy computations. The

optimal objective value for these problems is − 1√
2

and is obtained for here-and-now decision x∗1 =

x∗2 = 1
2
, and wait-and-see decision y∗ = 1√

2
in the primal formulation and λ∗ = 1

2
v in the dual

formulation. The worst-case objective value in the dual formulation is achieved for v∗ = 1√
2
. Suppose

we solve the sampled version of the problem for only this worst-case scenario v∗. In that case, the

sampled model looks like:

min
(x1,x2)∈X ,λ̄≥0

{
− 2

2
√

2
− 1√

2
+ λ̄ | λ̄≥ 1√

2
x1, λ̄≥ 1√

2
x2

}
,

which has optimal objective value of − 1√
2
. Hence, the lower bound that follows from the sampled

version of the dual formulation is tight. If we now want to match a critical scenario ζ∗ using (12)

we get

ζ∗ ∈arg max
ζ∈U

{v∗(x∗1ζ1 +x∗2ζ2)}

= arg max
ζ∈U

{
v∗( 1

2
ζ1 + 1

2
ζ2)
}

= {ζ1, ζ2 ≥ 0 | ζ1 + ζ2 = 1} .

Notice that there is no unique maximizer to (12) for this problem. If we take extreme point

(ζ∗1 , ζ
∗
2 ) = (1,0), then the sampled version of the primal formulation is

min
(x1,x2)∈X ,ȳ

{
−ȳ | − 1 +x1 + ȳ2 ≤ 0

}
,
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which has optimal objective value of −1, which is strictly lower than the optimal solution to the

original problem of − 1√
2
. Hence, in contrast to instances with only right-hand-side uncertainty,

the sampled version of the dual formulation can give tighter lower bounds with left-hand-side

uncertainty.

3. Example 1: distribution on a network with commitments

3.1. Problem formulation

This problem is adapted from Bertsimas and de Ruiter (2016). For the distribution on a network

we determine the stock allocation xi for location i, and the contracted transporting units zij from

location i to location j, i, j = 1, ...,N , prior to knowing the realization of the demand at each

location. The demand ζ is uncertain and assumed to be in a budget uncertainty set:

U =
{
ζ ≥ 0 : ζ ≤ ζ̂, e>ζ ≤ Γ

}
,

where ζ̂i ∈ R+ denotes the maximum demand at location i, i = 1, ...,N , and Γ ∈ R+ denotes the

maximum total demand. After we observe the realization of the demand we can transport stock

yij from location i to location j at cost tij in order to meet all demand, i, j = 1, ...,N . The aim is to

minimize the worst case total costs, which includes the storage costs (with unit costs ci), the cost

arising from shifting the products from one location to another (after the demands are realized),

and the cost from violating the committed contract. A contract is violated if the transporting units

yij differentiate from the committed units zij, i, j = 1, ...N . This distribution model can now be

written as a specific instance of the primal problem as follows:

inf
x∈X
z,τ

sup
ζ∈U

inf
y≥0

{
N∑
i=1

cixi + τ

∣∣∣∣∣
∑N

i,j=1 tijyij + 1
2

∑N

i,j=1 tij(yij − zij)2 ≤ τ∑N

j=1 yji−
∑N

j=1 yij ≥ ζi−xi i= 1, ...,N

}
, (1)

where the quadratic terms in the first constraint captures the cost of contract violation, and

X =
{
x∈RN+ | e>x≥ Γ, xi ≤Ki i= 1, ...,N

}
. The set of linear constraints in (1) are the balance

equations: we have to shift stock to and from location i such that the initial storage plus the net

shift in stock still exceeds the demand at i. The constraints in X restrict the capacity of the stock at

location i to at most Ki, i= 1, ...,N , as well as the total stock to be at least the maximum demand.

The dualized formulation we obtain after consecutive dualization over the adjustable variables y

and the uncertain parameters ζ is given below:

inf
x∈X
z,τ

sup
(u,v,w)∈V

inf
λ≥0


N∑
i=1

cixi + τ

∣∣∣∣∣
∑N

i=1(ζ̂λi−uixi) + Γλ0 ...

−
∑N

i,j=1

[
(uj −ui− tij − vij)zij + 1

2
wij
]
≤ τ

λ0 +λi ≥ ui i= 1, ...,N

 , (2)

where V = {(u, v,w)≥ 0 : (ui−uj + vij − tij)2 ≤wijtij ∀i, j = 1, ...N} . Note that in both problem

formulations (1) and (2), the epigraphical auxiliary variable τ can be eliminated, then it can be

verified that the resulting formulations satisfy (strongly relative) complete recourse.
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3.2. Numerical setting

We choose N ∈ {5,10,20,30,40,50,60} locations uniformly at random from [0,10]2. Let tij, the

cost to transport one unit of demand from location i to j, be the Euclidean distance. The unit

storage cost ci are equal to 6 for i= 1, ..., dN/10e+ 1 warehouses and 10 for i= dN/10e+ 1, ...,N

stores. The individual maximum demand ζ̂ and the capacity Ki, i = 1, ...,N , of each location is

set to 30 units. The total demand in the network is set to 20
√
N . As an illustration, Figure 1

depicts a distribution on a network obtained from solving (2) with linear decision rules, which takes

around 100s. All computations were carried out with MOSEK 8.0 (MOSEK ApS, 2017) on an Intel

Core(TM) i5-4590 Windows computer running at 3.30GHz with 8GB of RAM. All modeling was

done using the modeling package XProg (http://xprog.weebly.com). All the reported numbers

in the tables are the average of 10 randomly generated instances.

0 2 4 6 8 10

0

2

4

6

8

10

Figure 1 Stock allocation for N = 40 with 35 stores (squares) and 5 warehouses (circles) for one random instance.

The filled dots have stock and the larger the dots are, the more stock is allocated.

3.3. Results on linear decision rules and bounds

For all cases we use linear decision rules to find solutions to the dualized model (2). For the smaller

instance sizes, we also use the Fourier-Motzkin elimination of up to 10 adjustable variables. Since

the model only has right-hand-side uncertainty, Theorem 3 states that we only have to use primal

sampled scenarios to obtain a strong lower bound. The results are depicted in Table 1.
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Table 1 Numerical results for distribution on a network with commitments. Objective values for the linear

decision rule solution, Fourier-Motzkin up to 10 variable elimination and the sampled lower bound model using

primal scenarios are depicted. The time refers to the computing time for the linear decision rule solution. All the

numbers are the average of 10 randomly generated instances.

N 5 10 20 30 40 50 60

Linear decision rules 703 1029 1377 1606 1790 1962 2115
Fourier-Motzkin 635 944 1350 ∗ ∗ ∗ ∗

Lower bound 632 935 1272 1495 1681 1856 2004
Time linear decision rules (s) < 0.1 0.3 14 31 118 337 665

We observe that in all cases the linear decision rules give good performance, with objective

values within 10% of the lower bound for the smaller cases and within 5% for the larger cases.

Furthermore, the nonlinear models with linear decision rules can all be solved within seconds for

the smaller cases. For a larger number of locations the number of variables grows quadratically,

which explains the computation time increases to several minutes for N = 60. The Fourier-Motzkin

elimination only find a solution within one hour of computation time for N ≤ 20, but has the

potential to get the solution closer to the lower bound.

Remark 1. It follows from Theorem 2 that the infimum of (1) with primal linear decision rules

lower bounds that of (2) with dual linear decision rules. We propose to numerically evaluate the

difference between the obtained infima from solving (1) and (2) with linear decision rules for N = 5.

From Table 1 we observe that for N = 5, the average optimal value of (2) with dual linear decision

rules is 703. By a vertex enumeration, we obtain the average optimal value of (1) with primal linear

decision rules, i.e., 665. The obtained average optimal values from solving (1) and (2) with linear

decision rules are suboptimal because they are higher than that from Fourier-Motzkin elimination

(i.e., 635, see Table 1).

4. Example 2: worst-case energy configuration of system with piecewise-linear
springs

4.1. Problem formulation

The problem described in this section is adopted from Lobo et al. (1998). We consider a mechanical

system that consists of N nodes at positions x1, . . . , xN ∈R2, with node i connected to node i+ 1,

for i= 1, . . . ,N − 1, by a nonlinear spring. The nodes x1 and xN are fixed at given values a and b,

respectively. The tension in spring i is a nonlinear function of the distance between its endpoints,

i.e., ‖xi−xi+1‖2:

s
(
‖xi−xi+1‖2− l

0
i

)
+
,

where z+ = sup{z,0}, s∈R+ is the stiffness of the springs, and l0i ∈R+ is the natural (no tension)

length of spring i. In this model the springs can only produce positive tension (which would be the
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Figure 2 System of nodes (weights) connected by springs from Lobo et al. (1998). The first and last node positions,

i.e., x1 and xN , are fixed.

case if they buckled under compression). Each node has a mass of weight w attached to it. This

is shown in Figure 2. The problem is to compute the equilibrium configuration of the system, i.e.,

values of x1, . . . , xN such that the net force on each node is zero. This can be done by finding the

minimum energy configuration, i.e., solving a second-order cone optimization problem:

inf
x≥0

w
N∑
i=1

xi2 +
s

2

N−1∑
i=1

[(
‖xi−xi+1‖2− l

0
i

)
+

]2

s.t. x1 = a, xN = b,

(3)

where xi2 is the second element of the vector xi. For more detailed description of this problem,

we refer to the original paper Lobo et al. (1998). Suppose the length of the springs are uncertain.

The uncertainty may arise due to variations in the production process. Of course other parameters,

e.g., weight(w), stiffness(s), initial location of x1 and xN , may also be uncertain. Here we focus

on uncertainty in the length of the springs, i.e., l(ζ) = l0 − ζ (because only positive tension is

considered), and the uncertain parameter ζ ∈RN−1 resides in a budget uncertainty set:

U =
{
ζ ≥ 0 : ζ ≤ ζ̂, e>ζ ≤ Γ

}
,

where ζ̂i ∈R+ denotes the maximum deviation from the nominal length l0 of spring i, i= 1, ...,N−1,

and Γ∈R+ denotes the maximum total deviation of the springs. The minimum energy configuration

model becomes a robust optimization model:

inf
x≥0

sup
ζ∈U

{
w

N∑
i=1

xi2 +
s

2

N−1∑
i=1

[
(‖xi−xi+1‖2− li(ζ))

+

]2 ∣∣∣∣∣ x1 = a, xN = b

}
, (4)

which can be rewritten as a two-stage robust optimization problem:

inf
x≥0

sup
ζ∈U

inf
y≥0

{
w

N∑
i=1

xi2 +
s

2

N−1∑
i=1

y2
i

∣∣∣∣∣ ‖xi−xi+1‖2− li(ζ)≤ yi i= 1, ...,N − 1
x1 = a, xN = b

}
. (5)
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It can be verified that models (4) and (5) are equivalent, that is, eliminating all the yi’s for

i= 1, . . . ,N − 1 in (5) we obtain (4). We solve the dualized formulation of (5) via linear decision

rules. Note that here the strong relatively complete recourse assumption is satisfied.

4.2. Numerical setting

We consider N ∈ {15,20,30,45,60,100} nodes that are connecting N −1 springs. The nodes x1 and

xN are fixed at given values a = (0,90) and b = (100,50), respectively. The natural (no tension)

nominal length is l0i = 1 + εi, where εi is a random number drawn from a uniform distribution

U(0,4), i= 1, . . . ,N − 1, and the stiffness of the springs is s= 2. Each node has a mass of weight

w = 1
10

attached to it. The upper-bound ζ̂i is set at 15%l0i for i = 1, . . . ,N − 1, and Γ = 1
2
e>ζ̂.

The computations is carried out with MOSEK 8.1 (MOSEK ApS, 2017) on an Intel(R) Xeon(R)

E3-1241 v3 Windows computer running at 3.50GHz with 16GB of RAM. All modeling was done

using the modeling package XProg (http://xprog.weebly.com).

4.3. Results

Figure 3 illustrates the static and robust locations of the nodes for N = 45, which shows that

in order to minimize energy configuration under length uncertainty, in the solution from linear

decision rules consecutive nodes are placed closer to each other than in the solution from static

decision rules. Figure 4 depicts the robust locations obtained from solving the dualized model of

(5) with linear decision rules. It shows that as N increases, the curvature of the connection between

x1 and xN becomes severer; if N is large enough, i.e., N = 100, then there are too many nodes

with positive weights, all the useless nodes will simply be closely placed on the ground.

Since the infimum obtained from linear decision rule coincides with its lower bound (LB-P) in

Table 2, which implies that the approximations from solving the dualized model of (5) via linear

decision rules are tight. For small N , we observe that the infimum from primal static decision rule

values are larger than that from solving the dualized model of (5) via linear decision rules, which

means that the approximated solutions obtained via static decision rules are suboptimal. Since

the robust problem (5) becomes easier to solve as N becomes larger, the infimum from primal

static decision rule values becomes closer to that from solving the dualized model of (5) with linear

decision rules.

5. Distribution on a network without commitments

Consider the linear variant of Problem (1) considered in §3, that is, distribution on a network

without commitments, which can be written as the following two-stage robust linear optimization

problem:

inf
x∈X

sup
ζ∈U

inf
y≥0

{
N∑
i=1

cixi +
N∑

i,j=1

tijyij

∣∣∣∣∣
N∑
j=1

yji−
N∑
j=1

yij ≥ ζi−xi i= 1, ...,N

}
. (6)
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Table 2 Equilibrium of system with N − 1 piecewise-linear springs for N ∈ {15,20,30,45,65,100}. Objective

values for the primal static decision rule solution, the linear decision rule solution and the sampled lower bound

model using primal scenarios are depicted. The time refers to the computing time for the linear decision rule

solution.

N 15 20 30 45 65 100

Static decision rule 535.8 344.5 254.1 213.7 189.1 180.7
Linear decision rule 507.6 320.2 239.0 202.8 183.5 180.7

Lower bound 507.6 320.2 239.0 202.8 183.5 180.7

Time(s) 0.05 0.06 0.13 0.42 1.50 4.97

Figure 3 System of nodes (weights) connected by 44 springs for N = 45. The diamonds and dots represent the

robust locations of the nodes from solving (5) and its dualized formulation with static decision rules

and linear decision rules, respectively.

We choose N ∈ {10,20,30,40,50} locations uniformly at random from [0,10]2. Let tij, the cost to

transport one unit of demand from location i to j, be the Euclidean distance. The unit storage cost

ci are equal to 10 for i= 1, ...,N stores. The individual maximum demand ζ̂ and the capacity Ki,

i= 1, ...,N , of each location is set to 20 units. The total demand in the network is set to 20
√
N .

Note that here we consider the exact same problem setting as in Bertsimas and de Ruiter (2016),

and compare the numerical performance of the lower bounding scheme proposed in §4 with the

primal-dual lower bounding scheme proposed in Bertsimas and de Ruiter (2016). Table 3 reports

the numerical results. One can observe that the optimality gaps obtained from our method almost

halve the ones obtained from using the technique of Bertsimas and de Ruiter (2016), where the
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Figure 4 System of nodes (weights) connected by N−1 springs for N ∈ {15,20,30,45,65,100}. The dots represent

the robust location of the nodes.

optimality gap is computed via:

p% =
v(DL)− v(LB)

v(DL)
× 100%,

where v(·) denotes the optimal value of the corresponding problems, e.g., v(DL) is the optimal

value obtained from solving the dualized model of (6) with linear decision rules, while LB∈{LB-P,

LB-BR}.

Table 3 Lot-sizing problem with N ∈ {10,20,30,40,50}. LB-P and LB-BR denotes the approximated optimality

gap using the primal scenarios (see §4) and using the primal and dual scenarios in Bertsimas and de Ruiter (2016).

All the numbers are the average of 10 randomly generated instances.

N 10 20 30 40 50

LB-P 6.0% 5.7% 6.0% 5.0% 5.2%
LB-BR 13.9% 12.9% 10.4% 11.2% 10.7%
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