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Abstract Superiorization reduces, not necessarily minimizes, the value of a
target function while seeking constraints-compatibility. This is done by tak-
ing a solely feasibility-seeking algorithm, analyzing its perturbations resilience,
and proactively perturbing its iterates accordingly to steer them toward a fea-
sible point with reduced value of the target function. When the perturbation
steps are computationally efficient, this enables generation of a superior result
with essentially the same computational cost as that of the original feasibility-
seeking algorithm. In this work, we refine previous formulations of the superi-
orization method to create a more general framework, enabling target function
reduction steps that do not require partial derivatives of the target function.
In perturbations that use partial derivatives the step-sizes in the perturba-
tion phase of the superiorization method are chosen independently from the
choice of the nonascent directions. This is no longer true when component-
wise perturbations are employed. In that case, the step-sizes must be linked
to the choice of the nonascent direction in every step. Besides presenting and
validating these notions, we give a computational demonstration of superi-
orization with component-wise perturbations for a problem of computerized
tomography image reconstruction.
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1 Introduction

In this introduction, we first describe briefly the superiorization methodology
and mention some of the previous work on it. Then we describe in general
terms the proposed approach of derivative-free component-wise perturbations
and the computational demonstration that we report about here.

The superiorization methodology. The superiorization methodology (SM)
is an algorithmic scheme that can be considered to reside between feasibility-
seeking and constrained minimization. Rather than attempting to solve a full-
fledged minimization problem, the SM takes a feasibility-seeking algorithm and
proactively steers its iterates to find a feasible point that is superior, though
not necessarily optimal, with respect to the value of a target function, to the
output obtained by the feasibility-seeking algorithm. This approach originates
from the discovery that many feasibility-seeking algorithms are perturbation
resilient in the sense that, even if certain kinds of changes are made at the
end of each iterative step, the algorithms still produce constraints-compatible
solutions [3, 7, 14,28].

When the steps to compute perturbations of the iterates of a feasibility-
seeking algorithm to reduce the target function value are computationally
efficient, a superior result is obtained with essentially the same computational
cost as that of the original feasibility-seeking algorithm. Thus, the SM is use-
ful for constrained minimization problems where either an exact algorithm has
not been discovered or existing exact algorithms are exceedingly time consum-
ing or require too much computer space for realistically large problems to be
solved on commonplace computers. In these cases, the SM enables efficient
feasibility-seeking algorithms, which provide constraints-compatible solutions,
to be turned into efficient algorithms that will be practically useful from the
point of view of reducing the value of the underlying target function.

Previous work on superiorization. In the SM, the superiorized version
of an iterative feasibility-seeking algorithm consists of two parts. The first
part performs perturbations that aim to reduce the value of the target func-
tion. The other is a part where the operator for the feasibility-seeking al-
gorithm is applied. As noted in [8], several works have made use of this
idea with proposed algorithms for exact constrained minimization (e.g., see
[2, 12, 13, 15, 21, 22, 29, 33, 34]). However, these approaches are unable to do
what is accomplished by the superiorization approach, which is to automati-
cally generate a heuristic constrained optimization algorithm from an iterative
feasibility-seeking algorithm. The underlying idea of the SM is quite general
and provides application in many areas. The mathematical principles of the
SM over general consistent “problem structures” with the notion of bounded
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perturbation resilience were formulated in [7]. The framework of the SM was
extended to the inconsistent case by using the notion of strong perturbation
resilience in [5, 8]. In [8], the efficacy of the SM was also demonstrated by
comparing it with the performance of the projected subgradient method for
constrained minimization problems.

A comprehensive overview of the state of the art and current research on su-
periorization appears in our continuously updated bibliography Internet page
which currently contains 76 items [4]. Research works in this bibliography in-
clude a variety of reports ranging from new applications to new mathematical
results of the foundation of superiorization. A special issue entitled: “Supe-
riorization: Theory and Applications” of the journal Inverse Problems, has
recently appeared [9].

Derivative-free component-wise perturbations. In the SM, the pertur-
bation part interlaces target function reduction steps into the feasibility-seeking
algorithm. Until now, generation of nonascent directions, used for target func-
tion reduction steps, was mostly based on theorems such as [24, Theorem
1] and its variants such as [16, Theorem 1] and [17, unnumbered Theorem on
page 7]. All these theorems make the assumption on the constructed nonascent
direction g whose existence is guaranteed by the theorem that: “Let g ∈ RJ
satisfy the property: For 1 ≤ j ≤ J , if the jth component gj of g is not zero,

then the partial derivative ∂φ
∂xj

(x) of φ at x exists and its value is gj .” Thus,

φ must have at least one partial derivative (which is nonzero) at points in the
domain of φ. Otherwise, these theorems would apply only to the zero-vector,
which is a useless nonascending vector because it renders the SM ineffective.

To summarize this point, the definition of nonascending vectors (see Def-
inition 3 below) does not require differentiability but in almost all existing
works φ must obey the condition to have at least one partial derivative (which
is nonzero) at points in its domain. The paper [18] is a possible exception
since no derivatives are used there, but it refers only to the specific `1-norm
and still does not answer the general question of how to implement the SM in
cases when the above mentioned theorems do not apply due to total lack of
partial derivatives. This question makes sense for cases in which only target
function values can be calculated but nothing else about the function, such
as, for example, functions that are defined by tables of values. Many such
derivative-free objective functions are available in the field of derivative-free
optimization, see, e.g., [30].

In this paper, we offer an approach how to handle target functions φ which
do not obey the above condition of having at least one nonzero partial deriva-
tive or for which one is unable to verify it. Our main contribution is to propose
the use of component-wise perturbations within the SM. When component-wise
perturbations are employed, the classical notion of nonascent does not neces-
sarily apply because if a point at a certain distance from a given point, along
some coordinate, has a lower target function value it does not guarantee that
any other point in the neighborhood of the given point does so. In such a case,
the step-sizes of the perturbations must be properly linked to the choice of
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the nonascent direction in every step, giving rise to a new notion of “local
nonascent” of the target function, see Definition 4 below). These notions of
local nonascent and component-wise perturbations have not been used in supe-
riorization until now and they have both theoretical and practical significance.
Such formulation of superiorization is logically more generally applicable than
previously studied superiorization methods since it allows a wider selection of
target function reduction steps and enables the SM to be applied with target
functions for which not even one partial derivative is available.

Computational demonstration. By considering component-wise perturba-
tions, we generalize previous superiorization schemes to enable use of a wider
selection of methods for step-wise reduction of the target function. As a first
step in showing that component-wise perturbations in the SM work, we present
a new superiorization scheme for reducing total variation (TV) during image
reconstruction, i.e., total variation superiorization (TVS). We decided to do
component-wise perturbations on iterates to reduce the TV function although
it has calculable partial derivatives. This way, we have something to compare
our results with. Surprisingly, we found that, even for this sub-differentiable
target function, component-wise perturbations can outperform negative gradi-
ent perturbations within the SM. This is not to say or claim that component-
wise perturbations always outperform perturbations based on derivative in-
formation. On the contrary, it is expected that gradient-based perturbations
will, in general, be more efficient in the SM. The true merit of component-
wise perturbations is that it opens of the door for derivative-free perturba-
tions in the SM, e.g., by applying it to superiorization of biological merit
functions in intensity-modulated radiation therapy (IMRT). Another compu-
tational demonstration of derivative-free perturbations in the SM, based on the
ideas presented here that we communicated to the authors, appears in [19, Sec-
tion 4.3].

What is in this paper. The remainder of this work is outlined as follows. In
Section 2, we present the mathematical framework of the SM in the context
of solving a convex feasibility problem, which is followed by our proposed
scheme for TVS with component-wise perturbations in Section 3. Then Section
4 provides an example of the specific proposed scheme for TVS applied to
image reconstruction, juxtaposing our approach with a negative gradient-based
approach based on previous works (e.g., [8, 24]). Discussion and conclusions
are provided, respectively, in Section 5 and Section 6.

2 Superiorization with Local Nonascent

2.1 The superiorization framework

In order to make the paper to some extent self-contained, we briefly review
the SM framework as developed in earlier publications, see, e.g., [5,7,8,10,24].



Derivative-Free Superiorization 5

Given a collection of closed convex subsets Ci ⊂ RL for i = 1, 2, . . . ,m, in the
L-dimensional Euclidean space, the convex feasibility problem (CFP) is to find
a point x∗ ∈ ∩mi=1Ci. In the superiorization method, one seeks a solution to the
CFP that is superior, although not necessarily optimal, with respect to some
target function φ. A superior solution is here considered to be a better solution,
with respect to the target function value, than that which would have been
found by the given feasibility-seeking algorithm without superiorization steps.
Suppose that we have a feasibility-seeking algorithmic operator A : RL → RL
with which we define an iterative process for the solution of a CFP

xk+1 = A(xk) for all k ≥ 0 with arbitrary x0 ∈ RL. (1)

This process is called “the basic algorithm” and the sequence of iterates it
produces can be evaluated using a notion of proximity to the sets of the CFP.
Let {Ci}mi=1 be a finite family of closed convex sets and suppose the existence of
a nonempty subset Λ ⊂ RL such that Ci ⊂ Λ for all i = 1, 2, . . . ,m,. We denote
this CFP by T and associate with it a proximity function ProxT : Λ → R+

that indicates how compatible an x ∈ Λ is with the constraints. Given any
positive ε, any point x ∈ Λ for which ProxT (x) ≤ ε is called an ε-compatible
solution of the CFP. Thus, the basic algorithm can be terminated when the
proximity function gives a value less than some positive ε. We define this
as the ε-output of a sequence of points generated by an iterative algorithmic
operator, see [7, page 5].

Definition 1 Given a family of constraints sets {Ci}mi=1 of a CFP T , a prox-
imity function ProxT : Λ → R+, a sequence {xk}∞k=0 ⊂ Λ and an ε > 0, an
element xK of the sequence which has the properties:

i) ProxT (xK) ≤ ε, and
ii) ProxT (xk) > ε for all 0 ≤ k < K,

is called the ε-output of the sequence {xk}∞k=0 with respect to the pair
(T,ProxT ).

The ε-output xK of a sequence is denoted byO
(
T, ε, {xk}∞k=0

)
. Such an output

may not exist; however, when it does, it is unique. Furthermore, when the
sequence {xk}∞k=0 is generated by a basic algorithm for solving a CFP, the point
O
(
T, ε, {xk}∞k=0

)
gives the output of the basic algorithm when the stopping

criterion is ε-compatibility.

The following version of the SM, presented in [24], is known as strong su-
periorization. (See [5] for a review of strong and weak superiorization.) Here
the solution set C of the CFP T may be empty and solving the CFP is then
understood to mean finding a point that is within a given proximity of the
constraints. The “superiorized version of a basic algorithm” is created by tak-
ing advantage of the fact that successive iterates of the basic algorithm can, in
some instances, be systematically perturbed without losing overall convergence
of the iterates. Our problem at hand is stated as follows.
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Problem 1 Let {Ci}mi=1 be a family of closed convex sets of a CFP T , Ci ⊆
Λ ⊆ RL for all i, let φ : RL → R be a given target function and let A : Λ→ RL
be an iterative algorithmic operator defining a basic algorithm for solving the
associated CFP. The function reduction problem is to use a superiorized
version of the basic algorithm to find a point x∗ that is ε-compatible with C
and has a lesser value of the function φ than that of another ε-compatible
point that would have been obtained by applying the basic algorithm alone.

Strong perturbation resilience is a property that describes the ability of a
basic algorithm to be perturbed and not lose its ability to yield an ε-compatible
solution of the CFP. This notion was termed “bounded perturbation resilience”
in [24, Subsection II.C] and is defined as follows.

Definition 2 Assume we are given family of constraints {Ci}mi=1 of a CFP T ,
a proximity function ProxT , an algorithmic operator A and an x0 ∈ Λ. We
use {xk}∞k=0 to denote the sequence generated by the basic algorithm when it
is initialized at x0. The basic algorithm is said to be strongly perturbation
resilient iff the following hold:

i) there exist an ε > 0 such that the ε-output O
(
T, ε, {xk}∞k=0

)
exists for

every x0 ∈ Λ; and
ii) for every ε > 0, for which the ε-output O

(
T, ε, {xk}∞k=0

)
exists for every

x0 ∈ Λ, the ε′-output O
(
T, ε′, {yk}∞k=0

)
also exists for every ε′ > ε and

for every sequence {yk}∞k=0 generated by

yk+1 := A
(
yk + βkv

k
)
, for all k ≥ 0, (2)

where the vector sequence {vk}∞k=0 is bounded and the scalars {βk}∞k=0

are such that βk ≥ 0 for all k ≥ 0 and the βk are summable, i.e.,

∞∑
k=0

βk <∞. (3)

Sufficient conditions for strong perturbation resilience of a basic algorithm
were proven in [24, Theorem 1].

2.2 Locally nonascending directions

The chief motivation to perturb iterates of a basic algorithm by sequences
{βk}∞k=0 and {vk}∞k=0 is to reduce the values of the target function φ by em-
ploying directions of nonascent. Below we present the definition of nonascent
that is in use in all works on the SM, see [8, Subsection II.D].

Definition 3 Given a function φ : RL → R and a point y ∈ RL, we say that
a vector d ∈ RL is nonascending for φ at y iff ‖d‖ ≤ 1 (‖ · ‖ denotes the
Euclidean norm) and there is a δ > 0 such that

for all µ ∈ [0, δ] we have φ (y + µd) ≤ φ (y) . (4)
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This definition asserts that the nonascent inequality in (4) holds throughout
the interval [0, δ] . Under such circumstances, one can dictate the step-sizes in
the perturbation phase of the SM independently of the choice of the nonascent
vector. However, in order to employ component-wise perturbations or other
perturbations which do not assume the availability of any partial derivative
of the target function φ at y, we need to use a different definition of nonascent
directions. We wish to allow the user to look in a neighborhood of the current
point y for a point where the target function value is lower without assuming
that it is lower in an interval around the current point (this could be the case,
e.g., with nonconvex target functions). To do this, the choice of nonascent
direction and the perturbation step-size must be linked together to guarantee
the reduced target function value. Therefore, we relax the above definition of
nonascending vectors so that we may use a wider class of perturbations such
as, in particular, component-wise perturbations.

Definition 4 Given a target function φ : ∆ → R where ∆ ⊂ RL, a point
y ∈ ∆, and a positive δ ∈ R, we say that d ∈ RL is a nonascending δ-bound
direction for φ at y if ‖d‖ ≤ δ and φ(y + d) ≤ φ(y). The collection of all
such vectors is called a nonascending δ-ball and is denoted by Bδ,φ(y), i.e.,

Bδ,φ(y) := {d ∈ RL | ‖d‖ ≤ δ, φ(y + d) ≤ φ(y)}. (5)

The zero vector is contained in each nonascending δ-ball, i.e., 0 ∈ Bδ,φ(y) for
each δ > 0 and y ∈ ∆. This definition will allow us to use as a nonascent
direction any vector d ∈ RL at which φ(y + d) ≤ φ(y) holds, which might be
detected by only function value calculations. This will be useful even when
φ is not convex, or if we do component-wise search for a point with reduced
target function value. Even functions defined by tabular representations are
valid candidates for this nonascending δ-bound directions. We refer to this
kind of nonascent as “local nonascent”.

2.3 Superiorized version of a basic algorithm with locally nonascending
directions

The superiorized version of the basic algorithm presented here in Algorithm 1
assumes that we have a summable sequence {η`}∞`=0 of positive real numbers
generated by η` := a` where a ∈ (0, 1), called kernel in [6], is user-chosen. This
summable sequence is used to perturb iterates with the goal to reduce the
value of the target function φ while maintaining convergence of the iterates
to a solution of the original CFP. Each η` is used to generate a nonascending
η`-ball for φ about iterates produced by applying the basic algorithmic oper-
ator A. Points chosen from each of these η`-balls generate sequences {vk}∞k=0

and {βk}∞k=0, corresponding to the sequences in Definition 2. These sequences
aim to steer the sequence to a lesser value of φ. This superiorized version of
the basic algorithm also depends on a chosen initial point ȳ and a sequence
{Nk}∞k=0 of positive integers bounded by some positive integer N . With this,
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the superiorized version of the basic algorithm is presented in Algorithm 1 by
its pseudo-code.

Algorithm 1: Superiorized version using local nonascent of a strongly
perturbation resilient basic algorithm

1 k ← 0

2 yk ← ȳ
3 `← 0
4 while stopping criterion not met

5 yk,0 ← yk

6 for n = 0 to (Nk − 1) do

7 Let vk,n ∈ Bη`,φ(yk,n) (see Definition 4)

8 yk,n+1 ← yk,n + vk,n

9 `← `+ 1
10 end for

11 yk+1 ← A
(
yk,Nk

)
12 k ← k + 1
13 end while

The behavior of this superiorized version of a basic algorithm is analyzed
here according to how well it achieves feasibility and according to how well
it reduces the target function values. For the feasibility question, we have the
following lemma, which resembles the arguments in [24, Subection II.E] but
differs in the use of local nonascending directions.

Lemma 1 Assume that a basic algorithm represented by the algorithmic op-
erator A is strongly perturbation resilient and produces an ε-compatible output
for some ε > 0. If {η`}∞`=0 is a summable sequence of positive real numbers,
then the superiorized version of the basic algorithm using local nonascent, given
by Algorithm 1, produces an ε′-compatible output for each ε′ > ε.

Proof We have to show that if O
(
T, ε, {yk}∞k=0

)
is defined for each y0 ∈ RL,

then for any ε′ > ε, Algorithm 1 produces an ε′-compatible output. The strong
perturbation resilience of A guarantees this if there exist a summable sequence
{βk}∞k=0 of nonnegative real numbers and a bounded sequence {vk}∞k=0 of
vectors in RL such that

yk+1 = A(yk + βkv
k) ∀ k ≥ 0. (6)

Indeed, define
βk := max{‖vk,n‖ | 0 ≤ n ≤ Nk − 1} (7)

and

vk :=


∑Nk−1
n=0

1

βk
vk,n, if βk > 0,

0, otherwise.
(8)
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Since yk,0 = yk, it follows from Steps 5-10 that these definitions result in
yk,Nk = yk + βkv

k. From Step 7 it follows that {βk}∞k=0 is a subsequence of
{η`}∞`=0 and, hence, it is a summable sequence of nonnegative real numbers.
Because the sequence {η`}∞`=0 is summable and each ‖vk,n‖ ≤ η`, for appropri-
ate `, it follows that {vk}∞k=0 is bounded. Hence the superiorized version using
local nonascent, given by Algorithm 1, produces an ε′-compatible output for
each ε′ > ε. ut

Algorithm 1 works as follows. Initially, the iteration number k is set to 0 and
y0 is set to its initial value ȳ. The index ` for picking the next term of the
sequence {η`}∞`=0 is initialized to ` = 0 and is repeatedly incremented by Step
9. Steps 4-13 do a full iterative step, from yk to yk+1, and repetitions of these
steps generate the sequence {yk}∞k=0. During one iterative step, there is one
application of the operator A, in Step 11, but there are Nk steering steps
aimed at reducing the value of φ; the latter are done by Steps 6-10. These
steps produce a sequence of inner loop points yk,n, where 0 ≤ n ≤ Nk with
yk,0 = yk and yk,n ∈ RL.

To our knowledge, except for [10], no proof has been published to date as-
serting the precise behavior of a superiorized version of an algorithm regarding
the target function values. However, here we claim that Algorithm 1 system-
atically reduces target function values within the inner loops of perturbations,
similarly to the analysis in [24, Subection II.E].

Theorem 1 Under the conditions of Lemma 1, sequences of inner loop points
yk,n, generated by Algorithm 1, where 0 ≤ n ≤ Nk with yk,0 = yk and yk,n ∈
RL, have the property that for all k = 0, 1, 2, . . . , and all 0 ≤ n ≤ Nk,

φ(yk,n) ≤ φ(yk). (9)

Proof The proof is by induction. Fix an integer k ≥ 0. For n = 0 we have
yk,0 = yk and so φ(yk,0) = φ(yk). Now assume, for any 0 ≤ n < Nk, that
φ(yk,n) ≤ φ(yk). Next we show that Steps 6-10 lead from yk,n to yk,n+1 that
gives φ(yk,n+1) ≤ φ(yk). The vector vn,k in Step 7 is chosen, by Definition 4,
such that φ(yk,n + vk,n) ≤ φ(yk,n). But, in Step 8, yk,n+1 = yk,n + vk,n and,
by the induction hypothesis, φ(yk,n) ≤ φ(yk). Thus,

φ(yk,n+1) = φ(yk,n + vk,n) ≤ φ(yk,n) ≤ φ(yk). (10)

Therefore, we conclude that φ
(
yk,n

)
≤ φ

(
yk
)

for all 0 ≤ n ≤ Nk. ut

After going through the inner loop Nk times, Step 11 is executed to produce
yk+1. Then, increasing the value of k allows us to move to the next iterative
step. Infinitely many repetitions of such steps produces the sequence of points
{yk}∞k=0. Due to the repeated steering, by Steps 6-10, toward reducing the
value of the target function φ, we can expect that the output of the superiorized
version using local nonascent will be superior, from the point of view of φ, to
the output that would have been obtained, with everything else being equal
by the basic algorithm. This “expected” outcome has been observed in all
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published experimental reports to date, see, e.g., the many papers mentioned
in [4], but has not been yet mathematically proven. On this theoretical side,
there is, as far as we know, only the result of [10].

3 Total Variation Superiorization with Component-Wise
Perturbations

3.1 The application, the approach, and the numerical demonstration

Total variation (TV) superiorization (TVS) has been used before in image
reconstruction from projections with very good experimental performance, as
can be seen in several of the papers posted on [4]. Since TV has everywhere
a subgradient, all previous work on TVS used negative subgradients of TV as
nonascent directions for the perturbations in the superiorized version of the
basic feasibility-seeking algorithm.

In situations of superiorization in the SM with respect to other target
functions for which there is no guarantee to have at least one non-zero partial
derivative at points in the domain of the function, the notion of δ-bound
nonascending perturbations, developed above, plays an important role. As
mentioned before, such situations will arise when attempting to apply the SM
to target functions φ which are not convex, or to functions defined by tabular
representations.

The purpose of the numerical demonstration presented in the sequel is
to show that superiorization with component-wise perturbations works at all.
We do not present a full-fledged methodological numerical investigation and,
therefore, the findings do not allow to draw general conclusions yet. It would
be interesting to see future results when using a larger sample of datasets
(e.g., randomized variations of the phantom) and get more statistical infor-
mation about how superiorization with component-wise perturbations fares in
comparison with gradient-based perturbations in the SM.

To explore the numerical behavior of the SM with component-wise pertur-
bations, we wish to have something to compare it with. Therefore, we apply it
to TVS without resorting to calculations of its subgradients and compare the
results with those obtained from TVS with negative subgradients as directions
of nonasecent.

Our computational work surprisingly shows that even in this case in which
the target function lends itself to gradient or subgradient calculations, such
as TV, component-wise perturbations may be advantageous. Obviously, we
do not make any general claim to this effect since more work is needed to
investigate the numerical behavior of component-wise perturbations in the
SM.
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3.2 Image representation

Series expansion methods in image reconstruction from projections, see, e.g.,
[23], assume that a two-dimensional (2D) image can be represented using a
linear combination of a set of fixed basis functions. Let f : R2 → R be a 2D
image. Then a digital approximation of f is defined at each point r ∈ R2 by

f(r) ≈
L∑
`=1

u` · b`(r), (11)

where b` denotes the `-th basis function of some finite set {b`}L`=1 of appropri-
ately chosen basis functions and each component u` of the vector u ∈ RL gives
a weighting factor for the contribution of b`. For a given set of basis functions,
the image estimate in (11) is uniquely determined by u, which is called the
image vector.

Pixels form the set of basis functions used in this work. These are picture
elements that cover the entire image. Each pixel has the support of a square
and is defined by

b`(r) :=

{
1, if r is inside the `-th pixel,
0, otherwise.

(12)

When using pixel basis functions, each u` in (11) gives the average value of the
image f inside the `-th pixel. Hereafter, we denote the image approximation
in (11) simply by u and use double-indexing ui,j for i, j = 1, 2, . . . , J, to denote
the value of the digital approximation in (11) at the pixel location (i, j) where
the support of u is composed of L = J2 pixels.

3.3 Total variation in imaging

The introduction of noise in reconstructed images is inevitable in practice.
However, as introduced in [31], image restoration based on total variation has
proven quite effective for a wide range of applications, including inpainting
[32], super-resolution [25], image restoration [1, 11, 35], and medical imaging
[27,34,36]. TV is formally defined as follows.

Definition 5 Let u : R2 → R be a smooth image. Then the total variation
of u is defined by

TV(u) :=

∫
‖∇u‖, (13)

where ∇u denotes the gradient1 of u, so that ‖∇u‖ :=
√

(Dxu)2 + (Dyu)2

where Dx and Dy denote the horizontal and vertical partial derivative opera-
tors.

1 This is not to be confused with the notion of gradient of a function. The meaning of ∇
will always be understood according to what it operates on.
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In the discrete case, the integral in (13) is replaced by a summation over the
extent of the pixels of the digital approximation u, so that

TV(u) =
∑
i,j

√
(Dxui,j)

2
+ (Dyui,j)

2
, (14)

where the discrete differential operators are given by

Dxui,j :=

{
ui+1,j − ui,j , if 1 ≤ i < J,

0, otherwise,
(15)

and

Dyui,j :=

{
ui,j+1 − ui,j , if 1 ≤ j < J,

0, otherwise.
(16)

3.4 TVS with component-wise perturbations

For TVS, we propose a new algorithm inspired by the framework presented in
the previous sections. Our algorithm computes each nonascent vector vk,n for
the target function φ = TV, in Step 7 of Algorithm 1, in a specific manner
applicable to TVS. Our approach proposes reducing TV by smoothing out local
extrema, i.e., reducing their relative magnitude, through a type of averaging.
This is accomplished using a first order approximation of nearby points in an
image u. Recall that for points r, h ∈ R2

u(r) ≈ u(r + h)− 〈∇u(r + h), h〉 (17)

gives a first-order approximation where 〈·, ·〉 denotes the scalar product. Smooth-
ing can be accomplished by using averaged first-order approximations in op-
posite directions from each point, i.e., by the approximation of the average
given by

1

2
[u(r + h) + u(r − h)] ≈ u(r) +

1

2
[〈∇u(r + h), h〉 − 〈∇u(r − h), h〉] . (18)

The corresponding perturbation of the image u, denoted by w, is defined, for
each r ∈ R2, so that

w(r) =
1

2
(〈∇u(r + h), h〉 − 〈∇u(r − h), h〉) . (19)

By construction, this perturbation w(r) yields an image u(r)+w(r) with lower
TV than u(r) for sufficiently small h since, for each r ∈ R2, u(r) + w(r) will
have a value between the values of local extrema of u in proximity of r. In the
actual computations we compute Step 7 of Algorithm 1 in a way that assigns
a zero perturbation if the vector obtained was ascending, see equation (26)
below. In the discrete case, when h is taken to be a unit vector along the x
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axis, the value wi,j of the perturbation w at the pixel location (i, j) is defined
so that

wi,j =
1

2
(Dxui,j −Dxui−1,j) , (20)

and when h is taken to be a unit vector along the y axis

wi,j =
1

2
(Dyui,j −Dyui,j−1) . (21)

Note that, due to the indexing of the discrete differential operators in (15) and
(16), the derivatives Dxui,j and Dyui,j are used above instead of Dxui+1,j and
Dyui,j+1, respectively.

In order to use w to perturb an image u within the SM, we must bound
the magnitude of w. This can be done by bounding the contribution of each
derivative used in the definition of w to compute a perturbation w∗, which is
thereby bounded component-wise. For θ > 0, define the operator b·cθ : R→ R
by

bαcθ := min {θ, |α|} · sgn(α), (22)

where | · | denotes absolute value and sgn denotes the signum function. When
h is a unit vector along the x axis and θ > 0 is given, the value w∗i,j of the
perturbation vector w∗ at the pixel location (i, j) is defined to be

w∗i,j :=
1

2
(bDxui,jcθ − bDxui−1,jcθ) . (23)

Otherwise, when h gives a unit vector along the y axis we let

w∗i,j :=
1

2
(bDxui,jcθ − bDxui,j−1cθ) (24)

This formulation of w∗ enables smoothing an image with control of the mag-
nitude of the perturbation by bounding it component-wise. Each vk,n in Step
7 of Algorithm 1 can use w∗ with θ = η`/

√
L. We formalize this with the

following proposition.

Proposition 1 Let δ > 0 be given. If we define θ := δ/
√
L, then the vector

w∗obtained by (23) and/or (24) is such that ‖w∗‖ ≤ δ.

Proof Let δ > 0 be given. Whether h is a unit vector along either the x or
y axis, the above definitions allow each w∗i,j to equal wi,j while |wi,j | ≤ θ.
Otherwise, the signs of the terms composing w∗i,j will match those of wi,j ,
but with a reduced magnitude so that the relation |w∗i,j | ≤ θ always holds.
Arranging the pixel values lexicographically to write w∗ as an image vector,
it then follows that

‖w∗‖ ≤
√
θ2 + · · ·+ θ2︸ ︷︷ ︸
L terms

= θ ·
√
L. (25)

Thus, by choice of θ, ‖w∗‖ ≤ δ. ut
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The new concept of the perturbation vector for TVS defined above allows us to
use w∗ as a δ-bound nonascending vector for φ at u provided that φ(u+w∗) ≤
φ(u) holds. To ensure this, we compute vk,n in Step 7 of Algorithm 1 by
choosing

vk,n :=

{
w∗, if φ(yk,n + w∗) ≤ φ(yk,n),

0, otherwise.
(26)

In (26), we compute w∗ using either (23) or (24).

4 TVS with Component-Wise Perturbations Applied to Image
Reconstruction

4.1 Image reconstruction problem

The discretized model in the series expansion approach to the image recon-
struction problem of computerized tomography (CT) is described as follows.
Some physical entities (e.g., x-rays) are systematically passed through an ob-
ject to be scanned. Measurements are made of some physical property of these
entities (e.g., attenuation). The goal of image reconstructions is to use measure-
ments to reconstruct an image that represents the object scanned as faithfully
as possible. Discretizing the object into pixels or voxels and the outer x-rays
field into rays, the modeling of CT yields a matrix A called the system matrix
and a corresponding measurement vector y. For a complete description see,
e.g., [23]. Each measurement ym, which is the m-th component of the vector
y, can be approximated by

ym ≈
L∑
`=1

u` · am` , (27)

where am` denotes entry of A in the m-th row and `-th column and each u` rep-
resents the contribution of the `-th pixel basis function b`. One commonly used
approach to solving the system Au = y is to use a feasibility-seeking projection
method, such as an algebraic reconstruction technique (ART) described in the
next subsection.

4.2 Algebraic Reconstruction Techniques

The basic algorithmic operator A that we used to solve the image reconstruc-
tion problem is the algebraic reconstruction technique (ART) (see [23, Chapter
11]). For each row m of the system matrix, denoted by am, we define the op-
erator Tm : RL → RL by

Tm(u) := u+ λ
ym − 〈am, u〉
‖am‖2

am, (28)
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where λ ∈ (0, 2) is a relaxation parameter. The basic algorithmic operator
A : RL → RL is then given by

A(u) := TM · · ·T2T1(u) (29)

where M denotes the number of rows in the system matrix. From previous
works (e.g., [8]), it is known that the basic algorithmic operator A for ART,
defined as above, is strongly perturbation resilient.

4.3 Target function reducing steps

Two methods were compared in this work: the new component-wise perturba-
tion method for TVS (CW-TVS) and a method using negative gradients for
TVS (NG-TVS) based on [8, pp. 737–738]. The target function used in this
example was total variation φ = TV. During each perturbation step of the
first method, an iterate yk,n was perturbed component-wise using (23) and
then (24) using the perturbation size 1

2η` for each. This process was repeated
for each perturbation vector vk,n to reduce the value of the target function.
The second method that we used was the TVS algorithm called “Superiorized
Version of the Basic Algorithm” on pages 737–738 in [8]. That is, we set

vk,n := −η` ·
∇φ

(
yk,n

)
‖∇φ (yk,n)‖

if TV

(
yk,n − η` ·

∇φ
(
yk,n

)
‖∇φ (yk,n)‖

)
≤ TV

(
yk,n

)
,

(30)
and if this statement did not hold, then ` was incremented until the above
statement did hold. The computation of the gradient ∇φ (y) of the target
function φ has up to three fraction terms. In the denominator of each fraction
is a term of the form √

(Dx(y)i,j)
2

+ (Dy(y)i,j)
2

(31)

at pixel location (i, j). To maintain numerical stability when the expression
(31) becomes small, we replace the denominator term (31) with

γtol +

√
(Dx(y)i,j)

2
+ (Dy(y)i,j)

2
, (32)

where γtol := 10−12.

4.4 Computational details

The computations reported here were done with Matlab [26] on a single ma-
chine using a single CPU, a quad core Intel i5-3317U at 1.70 GHz with 4.00 GB
RAM. The AIR tools package [20] was used to generate the simulated data. All
reconstructions were done in the Matlab environment. Differences in reported
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Fig. 1: Original 256× 256 pixel Shepp-Logan phantom with TV = 1461

reconstruction times are, thus, not due to different algorithms implemented in
different environments.

Figure 1 shows the phantom used in our study, which is a 256 × 256
digitized version of the Shepp-Logan phantom whose calculated TV is 1461. We
used this phantom as created by the AIR tools package [20]. It is represented
by an image vector with 65,536 components. The values of the components
in the Shepp-Logan phantom range from 0 to 1. For our displays, we use the
range [0,1]. Any value below 0 is shown as black and any value above 1 is
shown as white and a linear mapping is used in-between. This display window
was used for all images presented here.

Two sets of experiments were conducted. One had 2% Gaussian noise added
to the measurement data and the other was noise-free. Projection data were
collected by approximating line integrals through the digitized phantom in
Figure 1 using a fan beam, which consists of lines diverging from a single source
point.The fan beam was rotated in 15 degree increments about the phantom
(24 positions in total) for the noise-free data and in 9 degree increments for
the noisy data (40 positions in total). Each line integral gives rise to a linear
equation. The phantom itself lies in the intersection of all the solutions of
the linear equations associated with these lines. The total number of linear
equations generated was 12,288 for the noise-free data and 20,480 for the noisy
data, thereby creating an underdetermined problem since there were 2562 =
65, 536 unknowns. The stopping criterion used for each image reconstruction
was when the proximity function

ProxT (u) := ‖Au− y‖ (33)

yielded a value less than or equal to ε = 1 for the noise-free data and ε = 70
for the noisy data. The initial iterate for each reconstruction was the zero
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Table 1: Simulated image reconstruction results. The stopping criterion dif-
fered between the noise-free and noisy data reconstructions and so results
should not be compared between the two cases. Displayed values are averages
of 30 trials and range is one standard deviation.

Method
2% Gaussian Noise Noise-Free

TV Time (s) Iterations TV Time (s) Iterations

CW-TVS 2032± 11 40.0± 0.1 106.9± 0.6 1500± 0 33.1± 0.5 124± 0

NG-TVS 2941± 897 38.3± 10.3 25.0± 7.5 1833± 0 143.5± 1.2 108± 0

vector, for which ProxC(0) = 3, 497 in the noise-free case. The specific choice
made when running the superiorized version of the basic algorithm for our
comparative study were η` = 0.2× 0.995` and Nk = 10 for each k. The initial
size η0 = 0.2 appeared to give the best results for the NG-TVS method when
using a kernel a = 0.995. The choice of relaxation parameter λ when applying
ART was λ = 1.0 for the noise-free data and λ = 0.2 for the noisy data.

4.5 Computational results

The image reconstruction results are shown in Table 1 and samples are visu-
alized in Figure 2. Filtered back projection (FBP) images were also generated
with AIR tools and are provided in Figure 2 for reference to this traditional
method using the noise-free and noisy data. Plots of TVS versus time and
log(‖Axk − b‖) versus time are in shown in Figures 3 and 4, respectively, for
the noise-free data and Figures 5 and 6, respectively, for the noisy data. Our
computational example indicates a speedup with the CW-TVS method over
the NG-TVS method in the noise-free case. As shown in Table 1, for the noise-
free experiment the TV output of the component-wise approach (1500) was
noticeably superior to the negative gradient approach (1833), which required
over 4 times more computation time. As seen in Figure 2a, the component-wise
method yielded a faithful reconstruction with negligible artifacts. The NG-
TVS reconstruction with noise-free data had more blurred features (specifically
around the white phantom border) and several artifacts outside the phantom.
Note also that although the CW-TVS method was notably faster for the noise-
free data, it required more iterations of ART than the NG-TVS method (124
versus 108). In Figure 3, we see the CW-TVS method TV function values ap-
pear to converge to the optimal TV value and at a much quicker rate than the
NG-TVS method.

In the experiment with 2% Gaussian noise added to the measurements, the
component-wise approach still had superior TV output (2032 versus 2941). In
the noisy-data case, the NG-TVS method was faster on average. For the CW-
TVS reconstruction, artifacts may be seen in the corners of the image along
with some blurring of edges, especially for the three small ellipses inside the
phantom. The NG-TVS method displays more notable artifacts outside the
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: A noise-free reconstruction with component-wise TVS method in (a)
and the negative gradient TVS method in (b). A reconstruction with 2% Gaus-
sian noise with component-wise TVS method in (c) and the negative gradient
TVS method in (d). FBP reconstructions are provided for noise-free and noisy
reconstructions in (e) and (f), respectively.
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Fig. 3: Plots of TV from a noise-free data trial used to create the images in
Subfigures 2A and 2B.
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Fig. 4: Plots of proximity from a noise-free data trial used to create the images
in Subfigures 2a and 2b.

phantom, faintly reminiscent of the streaks in the filtered back projection re-
constructions. There are also blurring artifacts in the NG-TVS reconstruction.
Lastly, in Figure 5, we see the TV values increase over time.

Remark 1 The SM parameters such as Nk and the number a with which the
parameters η` were generated, as well as the parameters associated with the
feasibility-seeking ART were chosen as well as we could based on earlier pub-
lished experiences and on some preliminary runs that we did with various
values. The main point to observe in this regard is that they were identical
in the runs with component-wise perturbations and the runs with negative
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Fig. 5: Plots of TV from a noisy data trial used to create the images in Sub-
figures 2c and 2d.
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Fig. 6: Plots of proximity from a noisy data trial used to create the images in
Subfigures 2c and 2d.

subgradients as directions of nonasecent. Therefore, it is reasonable to assume
that, since they were equal, they did not affect the comparative outcomes of
the runs. Future methodological numerical investigations should address the
choice of parameters systematically.

5 Discussion

Relative computational costs. Analysis of the difference in the compu-
tational cost of each TVS method is as follows. The negative gradient ap-
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proach given in 4.3 requires the computation of up to three fractions for every
component of the perturbation vector. In the denominator of each of these
fractions is a square root term along with two multiplications and multiple
additions/subtractions. On the other hand, the component-wise perturbation
method given in 3.4 requires only additions/subtractions, direct comparisons
of floating point numbers with a minimum function, multiplication by the
signum function, and division by 2. Hence we may expect the component-
wise TVS method to be less computationally expensive per iteration. This is
consistent with the results in Table 1.

Differences in output TV values. Inference of the difference in the output
TV values from each method is as follows. With the CW-TVS method, the
value of the perturbation to each pixel is bounded individually. This causes
each component in a perturbation vector to be relatively equally weighted,
thereby enabling a Gaussian distribution of entries. On the other hand, with
NG-TVS the partial derivative is computed with respect to each pixel and then
the vector is scaled as a whole. And, the partial derivative of TV at pixels along
any sharp edge in the image has far greater magnitude than at the majority
of pixels. This is the case with the piecewise-constant Shepp-Logan phantom.
This implies that the distribution of values in the perturbation vector for
NG-TVS in our reconstructions should consist mostly of near-zero values and
a few large nonzero values. Indeed, this is consistent with our observations.
Also, due to these few pixels having large perturbations, it was observed in our
reconstructions that the parameter ` often incremented several times between
steps before perturbations had sufficiently small magnitude to reduce the TV.
After several loops through the superiorization algorithm, this caused the η`
bound to be so small that the perturbations to reduce TV became negligible.
Thus, we assume that the chief advantage of the new TVS method with respect
to TV value output is due to the component-wise bounding of perturbations.

Connection to previous formulations of the SM. Previous works (e.g.,
[24]) made note that convexity of the target function does not need to be
assumed for superiorization. However, when the target function φ is not con-
vex, there may exist a nonascent point η`d for which d is not a nonascending
vector. Additionally, if such a nonascent point is found, we do not need to be
concerned whether there exists δ > 0 such that, for all λ ∈ [0, δ], the quantity
λd gives a nonascent valued point. Hence the notion of a nonascending δ-ball
may be understood to be less restrictive and allow for a wider class of target
function value reducing steps.

6 Conclusions

The superiorization methodology (SM) allows the conversion of a feasibility-
seeking algorithm into a superiorized version of the feasibility-seeking algo-
rithm that, in addition to finding an ε-compatible solution of the constraints,
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steers iterates toward a reduced target function value. The superiorized ver-
sion of the basic algorithm accomplishes this by interlacing target function
nonascent steps into the original algorithm in an automatic fashion. This work
has extended the scope of the SM by introducing the notion of nonascending
δ-balls for the nonascent steps. Using this notion, perturbation steps of the
superiorized version of a basic algorithm can now be chosen from a wider class
of target function value reducing steps, namely, functions that do not have
any partial derivatives or whose partial derivatives cannot be calculated. Fu-
ture investigations may also apply this formulation of the SM to problems
where the target functions may not be convex (e.g., as often occurs in the field
of intensity-modulated radiation therapy (IMRT) treatment planning) and to
functions that are given only by tabular presentations.

We have presented an example that shows that our CW-TVS (component-
wise total variation superiorization) method works well. As a byproduct we
discovered that it finds a better solution than an NG-TVS (negative-gradient
TVS) approach, and in less computation time in the noise-free case. Due to the
limited scope of our numerical work we do not make any general claims. How-
ever, this finding is understandable in view of the simplicity of the component-
wise perturbations with their averaging nature and the fact that the compo-
nents of these perturbations are weighted relatively equally, which allows for a
larger portion of an image to be smoothed with each perturbation than with
the negative gradient approach. While the negative gradient approach directly
attempts to reduce the target function of total variation, it is limited in its
ability to remove artifacts from the image. We demonstrated this experimen-
tally on a large-sized image reconstruction application that was modeled and
set up as a constrained superiorization problem.
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