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Abstract

We consider a general class of infinite horizon dynamic programmes where state and control sets are convex and compact subsets
of Euclidean spaces and (convex) costs are discounted geometrically. The aim of this work is to provide a convergence result for
these problems under as few restrictions as possible. Under certain assumptions on the cost functions, infinite horizon cost-to-go
functions can be bounded by a pair of convex, Lipschitz-continuous bounding functions; we seek to refine these bounding functions
until an ε convergence criteria is met. We prove a convergence result for a simplified version of our problem, and then apply this
result for the stochastic version problem where uncertainty is governed by a discrete Markov process. Further, our algorithm is
deterministic and requires no Monte-carlo simulation to estimate an upper bound on the cost of a given policy.
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1. Introduction

Dynamic programming was first developed by Bellman [2]
and is a popular methodology in mathematical programming.
The method seeks to compute cost-to-go functions which en-
code the cost of future optimal decisions; once the cost-to-go
functions have been computed, the optimal policy for a given
state is then easily computed as the minimiser of the current
stage’s cost plus the cost-to-go. In this paper, we focus on a
particular class of dynamic programmes; where the state and
control spaces are compact and convex subsets of Rn and Rm

respectively and the modeller seeks to minimise a discounted
infinite sum of convex costs. Often infinite horizon models of
this type are referred to as Markov decision processes (MDPs).
These formulations are useful for modelling problems which
have a natural steady state nature: for instance inventory prob-
lems or machine maintenance problems, where a control is based
on the state of the system regardless of its age or history.

The classical literature of dynamic programming concerns
problems where state and action spaces are finite. When state
and actions spaces are convex, many of the classical approaches
fail as the exact computation of value-functions is impossible in
general. As a first attempt, discretisation of the state and action
spaces may seem attractive, but in general this approach suffers
from the curse of dimensionality.

Benders decomposition from Benders [3] has been a respite
against the aforementioned curse; by taking advantage of the
convexity of subproblems, global lower bounds can be formed
over the (uncountably infinite) domain of the cost-to-go func-
tion. This idea was extended to multistage problems in Birge
[4]. Rather than performing the hopeless task of computing
cost-to-go functions exactly everywhere, piecewise linear lower
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bounds can be iteratively constructed as an estimate of the cost-
to-go function. Under certain assumptions, these lower bound
estimates become arbitrarily close to the true function at areas
of interest. Since then, many researchers have contributed to
the field: methods such as SDDP in [9], DOASA from [10] and
CUPPS in [5], all fall under this general category.

The method we introduce lives in the domain of dual dy-
namic programming methods; at each iteration of our algo-
rithm, we compute a state and control trajectory using the solu-
tion to a stage problem which contains our best lower approx-
imation of the cost-to-go function. These bounding functions
are then updated using zeroth and first-order information from
the proceeding optimisation problem, often referred to as cuts.
This method is well studied in the finite-horizon case where a
boundary condition is enforced on the value function at the fi-
nal stage. In the absence of this terminal boundary condition, a
new approach must be taken in order to achieve convergence.

The general idea of the new approach is to allow the length
of the forward and backward pass grow larger as the algorithm
progresses. Throughout this work we refer to this as ‘looking
ahead’. The work of Nannicini et al. [8] is of particular inter-
est; they develop an algorithm which looks ahead further one
stage each time. Our work uses a similar approach but differs
in several key ways: we study a general non-linear (but convex)
version of the problem, where cost functions and constraint sets
need not be linear. Further, we prove that under a certain as-
sumption, the look-ahead process need not be monotonically
increasing nor even require that its limit tend to infinity. Finally,
similar to Baucke et al. [1], in the stochastic case, we prove that
our algorithm converges deterministically. This makes any re-
quirement to estimate an upper bound on the best policy using
Monte-carlo simulation redundant. These key differences form
the main contributions of this work.

The paper is laid out as follows: in Section 2 we introduce
the bounding functions which are used in our algorithms; their
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properties are the key ingredient for convergence. In Section
3 we study a special case of our problem and state and prove
the main theorem in this work. In Section 4, we extend our
method to the stochastic case where we study problems where
the uncertainty is governed by a discrete Markov process. In
Section 5 we provide a discussion and make our conclusions.

2. Bounding functions

As the main feature of our algorithm is the refinement of
bounding functions we shall dedicate this opening section to-
ward their exposition. Much of this section will also introduce
our notation and elementary objects. Consider a proper lower
semi-continuous convex function C : U 7→ R̄, where U ⊂ Rn

and R̄ denotes the extended real numbers. We are interested
in forming bounding functions C̄ and

¯
C, which use zero-order

and first-order information from a finite and non-empty set of
sample points S ⊂ U.

Definition 1. For a finite, non-empty set of sample points S , let

¯
CS (u) = max

us∈S
C(us) + 〈ds, u − us〉.

where ds is a subgradient of C(u) at us.

The linear programming formulation of the above (known as
epigraph form) can be written as

¯
CS (u) = min

µ∈R
µ

s.t. µ ≥ C(us) + 〈ds, u − us〉, ∀us ∈ S .

This lower bound function is a key part of many decomposition
algorithms and dates back to Kelley [7].

Definition 2. For a finite, non-empty set of sample points S ,
let

C̄S (u) = max
µ∈R,λ∈Rn

µ + 〈λ, u〉

s.t. µ + 〈λ, us〉 ≤ C(us), ∀us ∈ S ,

||λ||∗ ≤ α.

This upper bound function was first introduced in Baucke et al.
[1]; notice the similar structure to the epigraph formulation. In-
deed, if the || · ||∞-norm is considered, the upper bound function
is a linear programme.

Proposition 1. The bounding functions C̄ and
¯
C have the fol-

lowing properties:

1. bounding functions are valid;

2. bounding functions are equal at each sample point;

3. additional sample points do not worsen bounds;

4. if C is Lipschitz-continuous then the bounding functions
are also Lipschitz-continuous.

These properties are proved across several Lemmas in Baucke
et al. [1]; they are required if our ensuing algorithm is to be con-
vergent.

3. Single vertex case

The main result of this work is a convergence theorem; for
clarity, we present the proof on a simplified version of the prob-
lem – the result is then leveraged for the general Markovian
case.

3.1. Problem formulation

Consider the following optimisation problem with δ ∈ [0, 1):

V(x0) = min
ul

∞∑
l=0

δlC(xl, ul)

s.t. xl+1 = f (xl, ul), ∀l ∈ N,
xl ∈ X, ∀l ∈ N,
ul ∈ U(xl), ∀l ∈ N.

(1)

We call xl the state of the system (prior to any control), while ul

is called a control. Our objective is to minimise the discounted
infinite sum of costs, for a given initial state x0. We require the
functions and multifunctions that make up the above optimisa-
tion problem to take a specific form – these conditions ensure
that the optimisation problem is convex, feasible, and that sub-
gradients are bounded. For the following analysis, we will use

Ũ(x) = {u ∈ U(x) | f (x, u) ∈ X},

and Aff(X) to denote the affine hull of X.

Condition 1. We assume that the optimisation problem (1) has
the following properties:

1. X is a non-empty compact and convex subset of Rn;

2. the multifunctionU : Rn ⇒ Rm is convex and non-empty
compact valued;

3. the cost function C(x, u) is a convex lower semicontinu-
ous proper function of x and u;

4. f is affine in x and u;

5. there exists γ > 0, defining X′ := X + B(γ), where

B(γ) = {y ∈ Aff(X) | ||y|| ≤ γ}

such that

(a) C(x, u) < ∞, ∀x ∈ X′, ∀u ∈ U(x);

(b) f (x,U(x))) ∩ X is non-empty, ∀x ∈ X′.

These conditions are the same as those considered in Gi-
rardeau et al. [6]. Under these conditions, we will layout sev-
eral properties of the cost-to-go functions induced by (1). Not-
ing the self-similar nature of the formulation above, we define
the following cost-to-go function V(x) : Aff(X) 7→ R̄ as

V(x) =

 min
u∈Ũ(x)

C(x, u) + δV( f (x, u)), x ∈ X,

+∞, otherwise.
(2)
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We can pictorially represent the problem in (2) as that in Figure
1. Here the vertex represents the cost function and the arc rep-
resents the transition to the new state. Diagrams like in Figure
1 are a useful method for describing more complicated Markov
stochastic processes.

Figure 1: A graph representation of our motivating problem

3.2. Properties of value functions
Our eventual algorithm relies on several properties of the

cost-to-go function V(x) in order to converge; here we will
introduce these properties. Consider the extended cost-to-go
function Ṽ(x) : Aff(X) 7→ R̄ defined as

Ṽ(x) = inf
u∈Ũ(x)

C(x, u) + δṼ( f (x, u)). (3)

Lemma 1.
V(x) = Ṽ(x), ∀x ∈ X.

Proof. Because x ∈ X,

V(x) = min
u∈Ũ(x)

C(x, u) + δV( f (x, u)).

Because C(x, u) is lower semicontinuous and Ũ(x) is non-empty
and compact-valued, the (infinitely many) minimums above are
attained and therefore are equal to the infimums in (3).

Lemma 2. The function Ṽ(x) is convex.

Proof. The function Ṽ(x) is convex as it is the infimum over u
of a sum (albeit infinite) of convex functions of x and u.

Lemma 3. The function Ṽ(x) is bounded on X′.

Proof. From Condition 1.5(a), C(x, u) < ∞, ∀x ∈ X′, u ∈
U(x). So M̄C := supu∈U(x),x∈X′ C(x, u) < ∞. From Condi-
tion (1.3), C(x, u) is a proper function of x and u so

¯
MC :=

infu∈U(x),x∈X′ C(x, u) > −∞. The extended cost-to-go function
Ṽ(x) cannot exceed the geometric sum of the supremum of the
cost function, nor fall below the geometric sum of the infimum
of the cost function. So

−∞ <
1

1 − δ ¯
MC ≤ Ṽ(x) ≤

1
1 − δ

M̄C < ∞, ∀x ∈ X′, (4)

concluding the proof.

Theorem 1. The function V(x), as defined above, is convex and
Lipschitz-continuous on X.

Proof. From Lemma 3, Ṽ(x) is bounded on X′. So Ṽ(x) is Lip-
schitz on X, as from Lemma 2, Ṽ(x) is convex, and bounded
on X′, and X is a compact subset of the relative interior of its
domain. From Lemma 1, we have Ṽ(x) = V(x), ∀x ∈ X, so
V(x) is convex and Lipschitz on X.

Because V(x) is convex, we can use the bounding functions
introduced earlier to bound our value function V(x). Further-
more, because V(x) is Lipschitz-continuous, we can be sure that
our bounding functions are Lipschitz-continuous also.

3.3. Algorithm

Consider a forward pass in a standard DDP algorithm as in
Pereira and Pinto [9]; a forward pass is made until a terminal
value function is reached, and then a backward pass of value
function updates is performed. As there is no ‘end point’ in
an infinite horizon problem, this approach would never be able
to complete an iteration. An important element in our algo-
rithm which addresses this pitfall is the ‘look-ahead’ function
L : N 7→ N. For the kth iteration, the algorithm generates a
state and control trajectory of length L(k), and updates the value
function at these points. This allows each iteration to contain a
finite amount of computation. We present the following algo-
rithm which solves problems in the form of (1).

Algorithm 1 (The singleton infinite horizon algorithm).

Initialisation. Define V̄0(x) =
M̄C
1−δ and

¯
V0(x) = ¯

MC

1−δ . For all k,
set xk,0 as x0. Finally, set k = 1.

Iteration k.

Step 1. Set l = 0.

Step 2. Solve

θ̄k,l = min
xl+1,ul

C(xk,l, ul) + δV̄k−1(xl+1)

s.t. xl+1 = f x(xk,l, ul)

xl+1 ∈ X

ul ∈ U(xk,l).

(5)

Step 3. Solve

¯
θk,l = min

xl+1,ul
C(xk,l, ul) + δ

¯
Vk−1(xl+1)

s.t. xl+1 = f x(xk,l, ul)

xl+1 ∈ X

ul ∈ U(xk,l),

(6)

storing the minimisers as (xk,l+1, uk,l). Compute a sub-gradient
βk,l with respect to xk,l.

Step 4. If l = L(k), move to Step 5. Otherwise move to Step
2 with l = l + 1.

Step 5. Update the upper bound as

V̄k(x) = max
µ∈R,λ∈Rn

µ + 〈λ, x〉

s.t. µ + 〈λ, xk′,l〉 ≤ θ̄k′,l, ∀l ≤ L(k′), ∀k′ ≤ k,

||λ||∗ ≤ α.
(7)

Step 6. Update the lower bound as

¯
Vk(x) = min

µ∈R
µ

s.t. µ ≥
¯
θk′,l + 〈βk′,l, x − xk′,l〉, ∀l ≤ L(k′), ∀k′ ≤ k.

(8)

Step 7. Move on to iteration k + 1. ./
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We note that by using the most up-to-date information about our
value functions at any given point in the algorithm, we could
compute dominant cuts which would improve the speed of con-
vergence. We have refrained from outlining such a procedure
here, as it is not necessary for the convergence of our algorithm.
In some sense, our convergence result is more general as we are
using weakest set of cuts possible.

Theorem 2. Consider the sequence of functions V̄k,
¯
Vk, state

trajectories xk,l, associated controls uk,l and function L : N×N.
If lim supk∈N→∞ L(k) = ∞, then

lim
k→∞

(
V̄k(xk,l) −

¯
Vk(xk,l)

)
= 0, ∀l ∈ N. (9)

For a notational convenience we denote the iteration counter
k as k0 and let

¯
V̄ = V̄ −

¯
V . We will first prove the following

technical lemmas which will be useful for the proof of Theorem
2.

Lemma 4. Consider the sequence of functions V̄k0 ,
¯
Vk0 and

state trajectories xk0,l and associated controls uk0,l. We have

¯
V̄k0 (xk0,l) ≤ δ

¯
V̄k0−1(xk0,l+1), ∀k0, ∀l ≤ L(k0).

Proof. From (6) and (8) in Algorithm 1, we obtain the follow-
ing inequality:

¯
Vk0 (xk0,l) ≥

¯
θk0,l = C(xk0,l, uk0,l) + δ

¯
Vk0−1(xk0,l+1).

Similarly for the upper bound, from (5) and (7) we obtain

V̄k0 (xk0,l) ≤ θ̄k0,l ≤ C(xk0,l, uk0,l) + δV̄k0−1(xk0,l+1).

By taking the difference of these inequalities, we obtain our
desired result.

Lemma 5. Consider a ‘look-ahead’ function L : N 7→ N with
lim supk∈N→∞ L(k) = ∞. The set

N∗L := {k∗ ∈ N | L(k∗) > L(k), ∀k < k∗ ∈ N}

is countably infinite.

Proof. Because of the limit property of L, for any k∗ ∈ N∗L
there will always exist an k◦ ∈ N for which L(k◦) > L(k∗). So
k◦ ∈ N∗L, and so N∗L must be infinite. Because N∗L ⊆ N, the set
N∗L must be countably infinite.

Lemma 6. Consider a ‘look-ahead’ function L : N 7→ N with
lim supn∈N→∞ L(n) = ∞ and the corresponding set N∗L defined
above. For any N ∈ N there exists a k̃(N) ∈ N∗L such that

min{L(k0), L(k1) − 1, . . . , L(ks) − (s − 1)} > N,

∀k0 > k1 > . . . > ks > k̃(N) ∈ N∗L.

Proof. Notice that by construction, L(k) is strictly monotoni-
cally increasing ∀k ∈ N∗L. So min{L(k0), L(k1) − 1, . . . , L(ks) −
(s − 1)} = L(ks) − (s − 1),∀k0 > k1 > . . . ks ∈ N∗L. From
its strict monotonicity, we have limks∈N∗L→∞ L(ks) = ∞. So
limks∈N∗L→∞ L(ks)−(s−1) = ∞ . So there must exist a k̃(N) ∈ N∗L
for which this lemma’s hypothesis holds.

We proceed with the proof of Theorem 2. The proof utilises
a fact that agrees with a certain intuition; our bounding func-
tions should eventually converge as long as we look far enough
into the future often enough. If lim supk∈N→∞ L(k) = ∞, then
we have our desired ‘look-ahead’ property.

Proof of Theorem 2. Suppose for the sake of contradiction that
this theorem’s hypothesis is false, i.e. there exists an ε > 0 for
which

ε ≤
¯
V̄k0 (xk0,l), ∀k0 ∈ N, ∀l ∈ N.

From Lemma 4 and the monotonicity of V̄k(x) with respect to k
for all x ∈ X from Proposition 1.3, we have

ε ≤
¯
V̄k0 (xk0,l) ≤ δ

¯
V̄k1 (xk0,l+1), ∀k0 > k1 ∈ N, ∀l ≤ L(k0).

(10)
Here the universal quantification ∀k0 > k1 ∈ N should be un-
derstood as: for all k1 ∈ N and for all k0 ∈ N such that k0 > k1.
From the Lipschitz-continuity of both V̄k(x) and

¯
Vk(x), we have

¯
V̄k1 (xk0,l+1) ≤

¯
V̄k1 (xk1,l+1) + 2α||xk1,l+1 − xk0,l+1||,

∀k0, k1 ∈ N, ∀l ≤ min {L(k0), L(k1)}.

We note here that because L(k) need not be monotonically in-
creasing ∀k ∈ N, xk0,l+1 and xk1,l+1 may not be both defined at a
given iteration of our algorithm. However we can be sure that
xk0,l+1 and xk1,l+1 both exist for those l ≤ min {L(k0), L(k1)}. By
combining the two previous inequalities, we obtain

ε ≤ δ
[
¯
V̄k1 (xk1,l+1) + 2α||xk1,l+1 − xk0,l+1||

]
,

∀k0 > k1 ∈ N, ∀l ≤ min {L(k0), L(k1)}. (11)

We can form a similar inequality by the same process as above
– from Lemma 4, we have

¯
V̄k1 (xk1,l+1) ≤ δ

¯
V̄k2 (xk1,l+2), ∀k1 > k2 ∈ N, ∀l ≤ L(k1) − 1,

and from the Lipschitz-continuity property of the bounding func-
tions, we have

¯
V̄k2 (xk1,l+2) ≤

¯
V̄k2 (xk2,l+2) + 2α||xk2,l+2 − xk1,l+2||,

∀k1, k2 ∈ N, ∀l ≤ min {L(k1) − 1, L(k2) − 1}.

By merging the two inequalities above, we obtain

¯
V̄k1 (xk1,l+1) ≤ δ

[
¯
V̄k2 (xk2,l+2) + 2α||xk2,l+2 − xk1,l+2||

]
,

∀k1 > k2 ∈ N, ∀l ≤ min {L(k1) − 1, L(k2) − 1}. (12)

By substituting (12) into (11), we have

ε ≤ δ
[
δ
[
¯
V̄k2 (xk2,l+2)+2α||xk2,l+2−xk1,l+2||

]
+2α||xk1,l+1−xk0,l+1||

]
,

∀k0 > k1 > k2 ∈ N, ∀l ≤ min {L(k0), L(k1) − 1, L(k2) − 1}.

Note the rather subtle restrictions on l,k0, k1, and k2 for which
this inequality applies. By performing this expansion s times,
we obtain

ε ≤ δs

¯
V̄ks (xks,l+s) + 2α

∑
s′=1,...,s

δs′ ||xks′ ,l+s′ − xks′−1,l+s′ ||,

∀k0 > k1 > . . . > ks ∈ N,
∀l ≤ min {L(k0), L(k1) − 1, L(k2) − 2, . . . , L(ks) − (s − 1)}.

4



Because δ ∈ [0, 1) and
¯
V̄ks (xks,l+s) is bounded, there must

exist an s̃(l) ∈ N for which δs̃(l)

¯
V̄ks̃(l) (xks̃(l),l+s̃(l)) ≤ ε

2 . So by
subtracting this term from above and dividing through by 2α,
we obtain

ε

4α
≤

∑
s′=1,...,s̃(l)

δs′ ||xks′ ,l+s′ − xks̄−1,l+s′ ||,

∀k0 > k1 > . . . > ks̃(l) ∈ N, ∀l ≤ min {L(k0), . . . , L(ks̃(l))−(s̃(l)−1)}.

By Lemma 6, we have for any l ∈ N there must exist a k̃(l) ∈ N∗L
for which l ≤ min {L(k0), L(k1)−1, . . . , L(ks̃(l))−(s̃(l)−1)}, ∀k0 >
k1 > . . . > ks > k̃(l) ∈ N∗L. Furthermore, the set N∗L is a subset
of N. So

ε

4α
≤

∑
s′=1,...,s̃(l)

δs′ ||xks′ ,l+s′ − xks′−1,l+s′ ||,

∀k0 > k1 > . . . > ks̃(l) > k̃(l) ∈ N∗L, ∀l ∈ N.

By Lemma 5, the set N∗L is countably infinite so the above is
a contradiction of the compactness of X as at least one of the
sequences in {xk,l+1, . . . , xk,l+s̃(l)},∀k > k̃(l) ∈ N∗L contains a non-
convergent subsequence. So there exists no ε > 0 for which

ε ≤
¯
V̄k0 (xk0,l), ∀k0, ∀l ∈ N,

concluding the proof.

4. Markovian case

In this section, we present the algorithm on the general prob-
lem class. On some generic, countably infinite filtered prob-
ability space (Ω,F , {Fl}l∈N,P), we can describe a stochastic
infinite horizon optimisation problem for an initial state x0

n0
as

VEx
n0

(x0
n0

) = min
uω(l)

EP

[ ∞∑
l=0

δlCω(l)(xω(l), uω(l))
]

s.t. xω(l+1) = fω(l+1)(xω(l), uω(l)), ∀l ∈ N, ω ∈ Ω,

xω(l+1) ∈ Xω(l+1), ∀l ∈ N, ω ∈ Ω,

uω(l) ∈ Uω(l)(xω(l)), ∀l ∈ N, ω ∈ Ω.
(13)

The set Ω is the set of all paths of a countably infinite scenario
tree (which encodes the non-anticipativity), and ω(l) is the lth

vertex along path ω. This implies that n0 = ω(0),∀ω ∈ Ω is the
root vertex. Here the modeller seeks to minimise the expecta-
tion over all paths possible of the infinite discounted accumu-
lated costs through that particular path. In the Markov case,
rather than associating our probability space with an infinite
scenario tree, we can ‘compress’ the tree and describe the prob-
lem’s uncertainty with a connected di-graph with every vertex
having an in-degree and out-degree of at least one. Denote the
vertices on the graph N with N vertices as {n0, . . . , nN}, with
the set of child vertices of vertex n as R(n). Figure 2 depicts an
example of such a graph. Rather than stating the Markov prob-
lem in extensive form i.e. (13), it is quite natural to express the
problem formulation directly through its dynamic programming

n0

n1n2

Figure 2: A graph representation of our general problem

equations. The infinite horizon dynamic programming equation
for an arbitrary vertex n is given by

Vn(xn) = min
xm,un

Cn(xn, un) + δ
∑

m∈R(n)

pn,mVm(xm)

s.t. xm = fn,m(xn, un), ∀m ∈ R(n),
xm ∈ Xm, ∀m ∈ R(n),
un ∈ Un(xn).

(14)

where pn,m is the conditional probability of reaching vertex m
from vertex n. Although we do not show it here, we have that
the extensive formulation and dynamic programming formula-
tion coincide i.e. VEx

n0
(x0

n0
) = Vn0 (x0

n0
). Once again, we restrict

the cost functions and state and control sets to take the form of
those considered in the single vertex case. It is also worth men-
tioning here that a stochastic process of independent and iden-
tically distributed random variables can be considered a special
case of a Markov process.

4.1. Algorithm

The algorithm presented here is similar to Algorithm 1, ex-
cept we make use of the problem-child criterion outlined in
Baucke et al. [1]; this is the key ingredient to achieving deter-
ministic convergence. As we ‘look ahead’ during an iteration
of our algorithm, we record the child vertex with the largest
bound difference for the new state. We label this vertex φk,l

n , the
problem-child of vertex n. Similar to the analysis in Lemma
3, it possible to show that the value functions are convex and
Lipschitz-continuous and we can compute initial bounds on the
cost-to-go functions (M̄n, ¯

Mn) at each vertex. Our algorithm for
computing Vn0 (x0

n0
) is outlined below.

Algorithm 2 (The Markov infinite horizon algorithm).

Initialisation. Define V̄0
n (x) = M̄n and

¯
V0

n (x) =
¯
Mn. For all k,

set xk,0
n0 as x0

n0
. Finally, set k = 1.

Iteration k.

Step 1. Set l = 0 and n = n0.

Step 2. Solve

θ̄k,l
n = min

xl+1
m ,ul

n

Cn(xk,l
n , u

l
n) + δ

∑
m∈R(n)

pn,mV̄k−1
m (xl+1

m )

s.t. xl+1
m = fn,m(xk,l, ul), ∀m ∈ R(n),

xl+1
m ∈ Xm, ∀m ∈ R(n),

ul
n ∈ Un(xk,l

n ).
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Step 3. Solve

¯
θk,l

n = min
xl+1

m ,ul
n

Cn(xk,l
n , u

l
n) + δ

∑
m∈R(n)

pn,m ¯
Vk−1

m (xl+1
m )

s.t. xl+1
m = fn,m(xk,l

n , u
l
n), ∀m ∈ R(n),

xl+1
m ∈ Xm, ∀m ∈ R(n),

ul
n ∈ Un(xk,l

n ),

storing the control minimiser as uk,l
n . Compute a sub-gradient

βk,l
n with respect to xk,l

n .
Step 4. Update Φ

k,l
n as

Φk,l
n = arg max

m∈R(n)
pn,m

(
V̄k−1

m ( fn,m(xk,l
n , u

k,l
n ))−

¯
Vk−1

m ( fn,m(xk,l
n , u

k,l
n ))

)
.

(15)
Further, set xk,l

Φ
k,l
n

= fn,m(xk,l
n , u

k,l
n ).

Step 5. If l = L(k), move to Step 6. Otherwise move to Step
2 with l = l + 1 and n = Φ

k,l
n .

Step 6. For all n ∈ N , update the upper bound function as

V̄k
n(x) = max

µ∈R,λ∈Rn
µ + 〈λ, x〉

s.t. µ + 〈λ, xk′,l
n 〉 ≤ θ̄

k′,l
n , ∀l ≤ L(k′), ∀k′ ≤ k,

||λ||∗ ≤ α.

Step 6. For all n ∈ N , update the lower bound functions as

¯
Vk

n(x) = min
µ∈R

µ

s.t. µ ≥
¯
θk′,l

n + 〈βk′,l
n , x − xk′,l

n 〉, ∀l ≤ L(k′), ∀k′ ≤ k.

Step 7. If a particular object has not recieved an update in
this iteration, give that object the null update i.e. xk,l

n = xk−1,l
n .

Move on to iteration k + 1. ./

Theorem 3. Consider the sequence of functions V̄k
n , ¯

Vk
n , state

trajectories xk,l
n , associated controls uk,l

n , problem-children Φ
k,l
n ,

and function L : N 7→ N. If lim supk∈N→∞ L(k) = ∞, then

lim
k→∞

(
V̄k

n(xk,l
n ) −

¯
Vk

n(xk,l
n )

)
= 0, ∀l ∈ N, ∀n ∈ N .

Proof. By the arguments of Lemma 4, from our algorithm we
can construct the following inequalities:

¯
Vk0

n (xk0,l
n ) ≥ Cn(xk0,l

n , uk0,l
n ) + δ

∑
m∈R(n)

pn,m ¯
Vk0−1

m ( fn,m(xk0,l
n , uk0,l

n )),

∀k0, ∀l ≤ L(k0), ∀n ∈ N ,

and

V̄k0
n (xk0,l

n ) ≤ Cn(xk0,l
n , uk0,l

n ) + δ
∑

m∈R(n)

pn,mV̄k0−1
m ( fn,m(xk0,l

n , uk0,l
n )),

∀k0, ∀l ≤ L(k0), ∀n ∈ N .

So

¯
V̄k0

n (xk0,l) ≤ δ
∑

m∈R(n)

pn,m ¯
V̄k0−1

m ( fn,m(xk0,l
n , uk0,l

n )),

∀k0,∀l ≤ L(k0), ∀n ∈ N .

By the problem-child criterion (15), we have

¯
V̄k0

n (xk0,l) ≤ |R(n)|δpn,φk0 ,l
n ¯

V̄k0−1

φ
k0 ,l
n

(xk0,l+1

φ
k0 ,l
n

),

∀k0, ∀l ≤ L(k0), ∀n ∈ N .

By the arguments in Theorem 2, and the finiteness of R(n) ar-
gument employed in Lemma 4.2 in Baucke et al. [1], we have
that such an equality gives this theorem’s result.

Note here that our algorithm doesn’t require the use of ran-
dom sampling; the problem-child criterion requires the algo-
rithm to look ahead to the vertex which contains the largest
bound gap.

5. Discussion and conclusion

A closely related problem to the convex problems studied
in this work are the minimax dynamic programmes studied in
[1]. Rather than iteratively refining convex bounding functions,
they develop piecewise bilinear saddle bounding functions and
show how a certain iterative procedure can yield convergence in
the finite horizon case. By adapting their formulation and algo-
rithm into the infinite-horizon setting, we claim that arguments
of Theorem 2 apply in almost the same way.

In summary, we have shown that under a small number of
mild assumptions on the form of (13) and the look-ahead func-
tion L : N 7→ N, the Markov infinite horizon algorithm con-
verges deterministically to the optimal solution Vn0 (x0

n0
).
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