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Abstract. We consider the maximum k-cut problem that involves partitioning the ver-
tex set of a graph into k subsets such that the sum of the weights of the edges joining
vertices in different subsets is maximized. The associated semidefinite programming
(SDP) relaxation is known to provide strong bounds, but it has a high computational
cost. We use a cutting plane algorithm that relies on the early termination of an interior
point method, and we study the performance of SDP and linear programming (LP) re-
laxations for various values of k and instance types. The LP relaxation is strengthened
using combinatorial facet-defining inequalities and SDP-based constraints. Our compu-
tational results suggest that the LP approach, especially with the addition of SDP-based
constraints, outperforms the SDP relaxations for graphs with positive-weight edges and
k ≥ 7.
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1 Introduction
This work focuses on the graph partitioning problem known as the maximum k-cut
(max-k-cut). We consider an undirected graph G = (V,E) with edge weights wij for
all (i, j) ∈ E. The task is to partition the vertex set V into at most k subsets (called
clusters or colors) such that the sum of the edges with end points in different partitions
is maximized.
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The max-k-cut problem is equivalent to the minimum k-partition problem [14, 43],
and the special case k = 2 that is known as the max-cut problem has attracted consider-
able attention; see, e.g., [4, 15, 26, 37, 40].

Many industrial applications can be formulated as the max-k-cut problem, includ-
ing VLSI layout design [4], statistical physics [27], and wireless communication prob-
lems [12, 36].

The general max-k-cut is known to be NP-complete [38]. Nonetheless, many re-
laxations [6, 39], heuristics [29], approximations [13, 23], and exact methods [2, 11, 31]
have been proposed, some of which we study below.

We carry out a computational study to identify the relevance of an inequality based
on semidefinite programming (SDP) and to determine the strongest formulation for each
type of instance. To the best of our knowledge, no research to date has specifically
studied SDP-based inequalities for the linear relaxation of the max-k-cut.

This paper is organized as follows. Section 1.1 reviews the SDP and linear program-
ming (LP) formulations of the max-k-cut problem. Section 2 presents the SDP-based
inequalities. Section 3 describes in detail the cutting plane algorithm (CPA) used to
solve the relaxations, and Section 4 discusses the test results. Finally, some concluding
remarks are made in Section 5.

1.1 Formulations
This section presents a literature review of the two formulations of the max-k-cut prob-
lem studied in this work.

1.1.1 Semidefinite programming formulation

The vertex formulation of the max-k-cut leads to an SDP relaxation. In the approxima-
tion method of [13] the authors define the SDP variable X = (Xij), i, j ∈ V , where
Xij = −1

k−1
if vertices i and j are in different partitions of the k-cut of G and Xij = 1

otherwise. The SDP formulation of the max-k-cut problem, MkC-SDP, can then be
expressed as:

(MkC-SDP) max
X

(k − 1)

k

i<j∑
i,j∈V

wij(1−Xij) (1)

s.t. Xii = 1 ∀i ∈ V (2)

Xij ≥
−1

k − 1
∀i, j ∈ V, i < j (3)

X � 0 (4)

Note that the constraints Xij ≤ 1 for i, j ∈ V are removed from this relaxation since
they are enforced implicitly by the constraints Xii = 1 and X � 0.
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Because of the strength of the SDP, many researchers have used this formulation to
design approximations [7, 13] and exact methods [2, 14]. In particular, [13] extends
the max-cut approximation of [15] to the max-k-cut. In [2] the bundleBC algorithm is
proposed to solve max-k-cut problems with 60 vertices by combining the SDP branch-
and-cut method of [14] with the principles of the Biq Mac algorithm [40]. In [2]
the authors show that their method achieves a dramatic speedup in comparison to [14],
especially when k = 3.

1.1.2 Linear formulation

Chopra & Rao [6] presented an edge-only 0-1 formulation of max-k-cut. For each e ∈ E,
the variable x takes the value 0 when edge e is cut, and 1 otherwise. Hence, the edge-only
linear relaxation of max-k-cut can be formulated as:

(MkC-LP) max
x

i<j∑
i,j∈V

wij(1− xij) (5)

s.t. xih + xhj − xij ≤ 1 ∀i, j, h ∈ V (6)∑
i,j∈Q,i<j

xij ≥ 1 ∀Q ⊆ V with |Q| = k + 1 (7)

0 ≤ xij ≤ 1 ∀i, j ∈ V (8)

where Constraints (6) and (7) correspond to the triangle and clique inequalities, re-
spectively. These families of inequalities imply that there are at most k partitions in the
integer formulation.

The LP formulation of max-k-cut has been extensively studied; see, e.g., [5, 6, 31].
In [5, 6] the authors give several valid inequalities and facet-defining inequalities for
MkC-LP and for “node-and-edge” formulations, i.e., linear formulations with both node
and edge variables. In [11], via projection of the edge-only formulation, the authors
obtain new families of valid inequalities, along with new separation algorithms for the
node-and-edge formulation. Their results show that these new inequalities are practical
for large sparse graphs.

Two drawbacks of the MkC-LP formulation are mentioned in [12]. First, it cannot
exploit structure of G, such as sparsity. Second, it has O(|E|) variables and O(|V |k+1)
constraints. These disadvantages can be reduced by simplifying the input graph G. In
this work, we exploit sparsity via a k-core reduction, a block decomposition [12, 22,
42], and a chordal extension [19, 43]. The second disadvantage is mitigated by a CPA
(Section 1) that overcomes the huge number of inequalities by activating only important
constraints in the relaxation.

Sparsity can also be exploited by node-and-edge formulations [1, 6, 12]. In [1] the
authors used representative variables to break symmetry. They show that the relevance
of their formulation increases with the number of partitions, but our preliminary tests
show that node-and-edge formulations are expensive and impractical for large graphs.
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1.1.3 SDP versus LP

Several researchers have compared the semidefinite relaxation with the linear relaxation
for partitioning problems. In the branch-and-cut method for the minimum k-partition
problem [14], the authors claim that linear bounds are weak and that this could result in
the enumeration of all the solutions in a branch-and-bound method.

The relation between the LP and SDP polytopes is studied in [10], where the authors
show that the strength of the SDP bounds is related to the fact that “hypermetric inequal-
ities” are implicit in the MkC-SDP. For example, they show that all triangle constraints
are violated by at most

√
2 − 1 and all clique constraints by less than 1/2 in the SDP

relaxation, in comparison with a violation of 1 for the LP relaxation.
Moreover, in [2] the authors claim that high computational times are the price to pay

for the strength of SDP relaxations.
The linear and semidefinite relaxations of the graph partitioning problem where each

cluster must have about the same cardinality (also known as the k-equipartition prob-
lem) are considered in [28]. The mathematical and experimental results indicate that
the linear relaxation is stronger than the SDP relaxation for large values of k when a
bound separation is used (see Section 3.1.2). However, for small values of k, the latter
outperforms the former.

2 SDP-based inequality
Since SDP relaxations are expensive but often yield stronger bounds than linear relax-
ations, we use semi-infinite programming (SIP) to formulate an SDP-based inequality
for the MkC-LP. In this section we briefly review SIP and then introduce the variable
transformation that allows us to map the infinite SDP constraint to LP. Finally, we present
the SDP-based inequality.

2.1 Semi-infinite formulation of SDP
The SIP can be defined as an optimization problem with finitely many variables and
infinitely many constraints. The survey [21] discusses the theory, algorithms, and ap-
plications of semi-infinite programming. In [24] the authors study linear semi-infinite
programming (LSIP) for generic SDPs.

We note that the convex constraint X � 0 (4) is equivalent to

µTXµ = µµT •X ≥ 0 ∀µ ∈ Rn (9)

where n = |V | and Rn can be considered as a compact set, where typically the Eu-
clidean norm of µ is one. Theorem 1.1.8 of [20] proves this equivalent characterization
of positive semidefinite matrices. Moreover, [20] provides more fundamental results
from linear algebra and the properties of the cone of symmetric semidefinite matrices.

The matrix constraint (9) has an infinite number of rows. By replacing (4) by (9)
in MkC-SDP we obtain the LSIP formulation of SDP. In the cut-and-price approach
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proposed in [25] the authors use the LSIP of the dual SDP formulation for the max-
cut problem. Their results suggest that the linear approach is able to solve large-scale
problems.

2.2 Variable transformations
To incorporate Constraint (9) in our linear formulation we need to transform the semidef-
inite variable X ∈

[ −1
k−1

, 1
]

to the related x ∈ [0, 1] linear formulation. Using the identi-

ties xij =
k − 1

k
Xij +

1

k
and Xij =

k

k − 1
xij −

1

k − 1
for all i, j ∈ V we can map valid

inequalities for the LP to the SDP and vice versa.

2.3 SDP-based inequality formulation
By applying the transformation proposed in Section 2.2 to Constraint (9) we derive the
following class of inequalities for MkC-LP:

i<j∑
i,j∈V

µijxij ≥
1

k

i<j∑
i,j∈V

µij −
k − 1

2k

∑
i∈V

µii ∀µ ∈ Rn (10)

In [24] the authors prove that these inequalities ensure that the set of linear solutions is
feasible for the SDP. In Section 3.1.3 we propose an exact separation routine to deal with
the infinite number of constraints.

3 Cutting-plane algorithm
A CPA is an iterative method used to obtain upper bounds on the optimal value of max-
k-cut and to prove optimality. First, the CPA solves the relaxed problem (SDP or LP) to
obtain an upper bound on the integer program, then it searches for violated inequalities
and adds some of them to the relaxation. We first introduce the generic algorithm, then
discuss methods for choosing the inequalities to add/remove, and finally present the
method used to solve the relaxations.

We summarize the CPA in Figure 1. We say that an iteration is completed every
time we enter Step 6, and we complete the CPA when we enter Step 4 for the last time.
Note that other termination criteria can be used, e.g., number of iterations, computational
time, and improvement at each iteration.

3.1 Separation routines
Separation routines are algorithms that search for violations of a given family of valid
inequalities in a relaxed solution. In this section we present separation routines for
some inequalities studied in [8], for Constraint (3) in the SDP formulation, and for Con-
straint (10) proposed in this work.
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1. Initialize. Load the instance and set up the initial relaxation. Initialize the
iterate i.

2. Solve the relaxation to optimality or with duality tolerance (εT ) (Section 3.3).

3. Search for violations. Use the separation routine to find violated inequalities
at the current solution (Section 3.1).

4. Add inequalities. If there are violated inequalities then add at most NbIneq
(see Section 3.1.4) of those that are most violated. Otherwise, if the relaxation
was solved to optimality in Step 2 then STOP because the algorithm cannot
improve the relaxation.

5. Drop inequalities. If any constraint is no longer important, remove it (Sec-
tion 3.2).

6. Modify current iterate. Increment i. Reduce or increase εT , if necessary.
Return to Step 2.

Figure 1: Cutting plane algorithm.

3.1.1 Separation of combinatorial inequalities

Some valid and facet-inducing inequalities have been proposed in [6] for the MkC-LP.
Five of these families of constraints are explored computationally in [8], where heuristic
and exact methods are proposed. In this work, we replicate the best separation routines:
• Triangle: complete enumeration.
• Clique: greedy heuristic.
• General clique: greedy heuristic.
• Wheel: greedy heuristic.
• Bicycle wheel: genetic algorithm.
In [8] the authors concluded that in practice, wheel and triangle are the best inequal-

ities. Hence, we prioritize these two families of inequalities in our ranking algorithm (see
Section 3.1.4).

3.1.2 Separation of bound inequalities

In [20] the author indicates that it is more efficient to start the CPA with only the diagonal
Constraints (2) of the SDP formulation and to separate Xij ≥ −1

k−1
iteratively.

Figure 2 compares the performance of the SDP formulation with and without bound
separation. It shows the percentage gap (see Section 4.1) versus the CPU time (s) for 10
random instances, with a density of 0.8 and dimension |V | = 100.

Figure 2 shows that the first (and only) SDP iteration without bound separation takes,
on average, 350 s. In contrast, the CPA with bound separation achieves the same result
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Figure 2: Separation of Constraint (3) in SDP formulation.

in less than 10 s.
For brevity, we show the profiles for k = 3 only. However, these results can be gen-

eralized to larger k and to sparse graphs. Moreover, our computational tests on instances
with |V | ≥ 300 show that when there is no bound separation the first iteration takes
more than 1 h.

Therefore, we apply bound separation for Constraint (3). We perform a complete
enumeration of all edges e ∈ E, and only the NbIneq (see Section 3.1.4) most violated
inequalities are added for the next CPA iteration.

3.1.3 Separation of SDP-based inequalities

The family of SDP-based inequalities (10) has infinite combinations, which makes it
impractical to add them and to find the ones that are violated. Since the eigenvalues of
a positive semidefinite matrix are non-negative [20], we can execute an exact separation
routine in polynomial time to find the inequalities that are violated in a linear solution.

Let x̂ be an optimal solution of MkC-LP. If the related symmetric matrix X̂ is not
semidefinite (X̂ � 0) then it has at least one negative eigenvalue λ < 0, and the follow-
ing inequalities are violated by x̂:

i<j∑
i,j∈V

vijxij ≥
1

k

i<j∑
i,j∈V

vij −
k − 1

2k

∑
i∈V

vii ∀λ < 0 (11)

where the columns of v are the eigenvectors corresponding to the values λ. The addition
of (11) to MkC-LP will cut off the LP solution and improve the iterate in a cutting plane
scheme.
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We use the term LP-EIG for the linear approach with eigenvalue separation. We
use Eigen [18] to compute the eigenvalues and eigenvectors of X̂ . Eigen is a C++
template library for linear algebra, and it computes all the eigenvalues and eigenvectors
for a self-adjoint matrix (real symmetric matrix) using a symmetric QR algorithm. The
computational cost is approximately O(9n3).

3.1.4 Maximum number of inequalities in CPA

As shown in [8], the inclusion of all the violated inequalities in a CPA iteration can be
computationally impractical. It is better to rank the violated inequalities and append only
those that are most violated. Empirical tests show that the maximum number of inequal-
ities (NbIneq) should be set to NbIneq = 2|V | for linear methods and NbIneq = 400
for the SDP formulations, similarly to [8].

3.2 Dropping inequalities
An inequality is said to be important when at optimality its slack variable (sk) is close
to zero, i.e., the inequality is active. Removing unimportant constraints reduces the size
of the relaxation and thus the computational time.

In [32] the authors observed that tests based on ellipsoids can determine when to drop
a constraint, but the cost of these tests may exceed the computational savings. Therefore,
we simply test whether a slack variable is larger than a fixed value (γ = 0.001), i.e. , we
remove inequalities with sk > 10−3.

Searching for unimportant inequalities at each CPA iteration takes time, and some
constraints can be repeatedly added and removed. Our computational tests show that
the best performance is obtained when the dropping is done at every third CPA iteration
(Itedrop = 3).

3.3 Solving the relaxations
One of the most important decisions in the CPA is the choice of the solution method for
the relaxation. We solve the SDP and LP relaxations of the max-k-cut using the interior
point method (IPM) of MOSEK [3]. Our computational tests indicated that the default
IPM is not efficient so, inspired by the PDCGM solver [17], we considerably modified the
IPM to improve the CPA performance. This section discusses the main changes; some
of them are also applicable to other solvers.

In [16, 30] the authors claim that IPMs are an alternative to the simplex method
for LP problems; they show that IPMs enable the solution of many large real-world
problems. As observed in [32] IPMs can exploit parallelism.

We use the early termination of the IPM. We solve the relaxations approximately
with a relative dual termination tolerance (εT ). As shown in [35], non-extremal solutions
may separate valid inequalities effectively, because the cuts may be deeper and usually
fewer are needed. Inequalities generated by the early termination may provide deeper
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Figure 3: Study of early termination in IPM.

cuts because the iterate is further from the boundary of the polyhedron. Moreover, the
early termination can save computational time by not executing all the IPM iterations.

In [30] the author gives the two principal drawbacks of separating valid inequalities
before the current relaxation is solved to optimality. First, it may not be possible to
find a constraint, so the time spent is wasted. Second, the separation routine may return
inequalities that are violated by the current iterate but not by the optimal solution, so we
may end up solving a relaxation with unimportant constraints.

To reduce the impact of the first disadvantage, we use a dynamic tolerance to decide
when to stop the IPM, so we search for violated inequalities only when the duality gap
is below a tolerance (εT ). We increase εT by 25% if the number of violated constraints
is greater than 2 · NbIneq (see Section 3.1.4) and decrease εT if we have fewer than
NbIneq violated constraints. The best results were obtained when εT was initially set to
0.75.

The second disadvantage is mitigated by occasionally solving the relaxation to opti-
mality. The best results were obtained when we set IteoptLP = 5 for LP (i.e., we solved
every fifth relaxation) and IteoptSDP = 2 for SDP. When plotting the results we show
only those obtained from relaxations solved to optimality.

Figure 3 plots the data profiles (see Section 4.3) of the early-termination and standard
IPM for the SDP and LP-EIG relaxations; the CPU time is limited to 300 s. This figure
gives the average results for 40 random dense (density=0.9) instances with |V | = 100
and k = 3, and the results can be generalized to other graphs. The gap is smaller for SDP
than for LP-EIG because the latter formulations are unable to solve these problems with
a gap below 10%. We conclude that SDP is stronger than LP-EIG for k = 3. However, in
the next sections we show that this is not always the case: LP-EIG can be much stronger
than SDP.

Figure 3 shows that early-termination outperforms the standard IPM, especially for
the linear formulation of max-k-cut. For example, with a gap of 20% the early-termination
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solves all the LP-EIG problems in 10 s, whereas standard IPM solves just 55% of these
problems. Therefore, we use the early-termination method in our computational tests in
the next section.

4 Computational tests
We solve the SDP and LP relaxations of max-k-cut using the IPM of MOSEK [3] on
a Linux PC with two Intel(R) Xeon(R) 3.07 GHz processors. We performed tests for
k ∈ {3, 5, 10, 20} on 228 test problems.

4.1 Terminology
In this section we present the terminology used for our analysis.
• Best feasible solution (LBp): The value of the best known integer solution for

problem p. If the optimal solution is unknown we calculate a feasible solution
using the variable neighborhood search metaheuristic [33].
• Final solution (UBp,m): The value of methodm at the end of the CPA for problem
p. It is also known as the upper bound for method m.
• Performance ratio (gapp,m): The gap of method m is the difference between its

upper bound and the best feasible solution. It is calculated as follows:

gapp,m =
UBp,m − LBp

LBp

. (12)

• Iteration time (itimep,m): The CPU time for one CPA iteration for methodm and
problem p. The time to solve the final iteration of a problem is tLast.
• Set of methods (M): The three methods listed below are relaxations of the max-
k-cut problem, and all of them use CPA to improve their formulation with the
separation of combinatorial inequalities (Section 3.1.1):

– LP : Solves the LP formulation.
– LP-EIG: Solves the LP formulation with the separation of SDP-based in-

equalities (Constraint (10)).
– SDP : Solves the SDP formulation with the separation of bound inequalities

(Section 3.1.2).

4.2 Instances
We consider 228 instances; 68 are from the Biq Mac library [44] and 160 were ran-
domly generated using rudy [41].
• Biq Mac problems:

– be: These are the Billionnet and Elloumi instances. For each density d ∈
{0.3, 0.8} we use ten problems with edge weights chosen from {−50, 50}.
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– bqp: Ten weighted graphs with dimension 100, density 0.1, and edge weights
chosen from {−100, 0, 100}.

– g05: Ten unweighted graphs with edge probability 0.5 and dimension 100.
– ising2: Six one-dimensional Ising chain instances for dimension |V | ∈
{200, 250, 300}.

– ising3: Three one-dimensional Ising chain instances for dimension |V | ∈
{200, 250, 300}.

– pm1d: Ten weighted graphs with edge weights chosen from {−1, 0, 1}, den-
sity 0.99, and dimension 100.

– pm1s: Ten weighted instances with edge weights chosen from {−1, 0, 1},
density 0.1, and dimension 100.

• Random problems:
– nRnd d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from {−100, 100}.

– pRnd d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from {1, 100}. These
problems are also known as the positive-weight instances.

4.3 Comparison methodology
We generate a substantial amount of data for each instance; because of space limitations
we provide only the most important information. This section explains the tools used
to analyze our results: the performance table, the performance profiles [9], and the data
profiles [34]. We define our comparisons in terms of a set P of problems, a setM of
optimization algorithms, and a set of fixed partitions or clusters K.

4.3.1 Performance tables

The performance tables show the improvement of each method after 1 h of CPU time in
our CPA. The results are divided into clusters of equal size, k ∈ {3, 10}. For each value
of k we provide a table with the following information:
• For the Biq Mac instances the first column (name) is the problem name. For the

random instances, the first column (weight) indicates the range of the weights.
• The density (dens.) and dimension (|V |) are presented in Columns 2 and 3.
• The next columns (4–15) present the UB gap at the start of CPA, the UB gap at

the end, the CPU time (s) of the final iteration (tLast), and the number of iterations
(#ite) performed for each method m ∈M over 1 h. Moreover, tLast is defined for
the final iteration for which the IPM is solved to optimality.

The results in the performance tables are averages for each family.
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4.3.2 Performance profiles

The performance profiles are defined in terms of the gap for problem p ∈ P . For method
m ∈ M the performance profile is the proportion of problems for which the gap is at
most α, i.e.,

ρm(α) =
1

|P|
size{p ∈ P : UPp,m ≤ α}. (13)

Thus, for a given α we know the proportion of problems p ∈ P that are solved for
method m ∈M.

4.3.3 Data profiles

As observed by [8], data profiles are useful for selecting the best method when a compu-
tational time limit is imposed. They show the temporal evolution of methods to a specific
gap (gapmax). The data profiles are defined in terms of the iteration time, itimep,m. For
a given time β we define the data profile of method m by

dm(β) =
1

|P|
size{p ∈ P : itimep,m ≤ β and gapp,m ≤ gapmax}. (14)

Thus, for a given gapmax and time β, we know the proportion of problems that can be
solved for method m ∈ S.

4.4 Computational results
This section presents and analyzes our computational results. Section 4.4.1 shows the
performance tables for the Biq Mac instances. Section 4.4.2 presents these tables for
the random instances. To compare the performance of SDP and LP-EIG we present the
data profiles in Section 4.4.3 and the performance profiles in Section 4.4.4.

4.4.1 Performance tables: Biq Mac instances

Table 1 shows the performance of SDP , LP , and LP-EIG for the Biq Mac problems
when k = 3. The SDP outperforms the linear methods in all the tests. For example, for
be and bqp the first iteration of SDP is stronger than the final iterations of the linear
methods. For ising2 and ising3 the SDP bounds are close to a feasible solution, but
their computation is expensive: it takes approximately 1200 s to solve the IPM.

Table 2 shows the performance of SDP , LP , and LP-EIG for k = 10. For k = 10 the
SDP method is more expensive and has worse performance than for k = 3. Moreover,
LP-EIG outperforms SDP in 75% of the problems, with a smaller iteration time in most
cases. The final gap of SDP is larger than the initial bound of the linear methods for
ising2 and ising3.

12



SDP LP LP-EIG
name dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

be
0.3 150 34.30 21.49 36 53 51.94 51.70 27 66 51.94 51.62 550 28
0.8 150 32.95 20.97 50 53 46.94 46.94 0 51 46.94 37.07 143 142

bqp 0.1 100 32.23 11.35 7 49 65.01 13.09 1 806 65.01 11.32 29 388
g05 0.5 100 3.73 2.04 13 33 5.35 5.35 0 97 5.35 3.35 189 258

ising2 0.1
200 30.22 3.30 1129 17 25.25 17.29 143 49 25.25 14.11 150 115
250 32.31 4.18 1334 18 27.78 23.66 196 50 27.78 18.52 220 84
300 31.93 4.10 1250 16 26.33 23.46 134 67 26.33 19.16 348 62

ising3 0.1
200 31.08 2.14 1529 17 14.78 11.03 10 320 14.78 9.85 175 115
250 33.41 3.73 1451 17 18.04 15.52 8 349 18.04 13.08 223 84
300 31.96 2.53 1108 16 16.10 13.91 15 316 16.10 12.08 316 64

pm1d 0.9 100 31.15 16.93 10 32 44.72 44.72 0 58 44.72 28.42 101 265
pm1s 0.1 300 31.18 15.81 4 36 58.14 19.04 2 755 58.14 16.05 25 433

Table 1: Performance comparison for Biq Mac instances and k = 3.

SDP LP LP-EIG
name dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

be
0.3 150 73.83 25.94 241 24 96.68 92.66 12 161 96.68 60.60 633 34
0.8 150 73.77 28.31 268 22 92.06 91.46 126 50 92.06 46.92 111 153

bqp 0.1 100 76.27 13.62 16 36 68.47 14.05 1 782 68.47 13.05 15 544
g05 0.5 100 8.81 4.51 14 14 2.23 2.23 0 32 2.23 2.23 0 254

ising2 0.1
200 73.65 48.86 1029 14 23.73 16.32 123 60 23.73 15.49 156 113
250 75.23 59.93 942 14 25.35 21.17 174 61 25.35 17.75 217 83
300 75.34 66.30 1038 13 24.36 21.45 121 70 24.36 17.51 277 63

ising3 0.1
200 74.78 53.47 1037 14 13.37 8.48 14 268 13.37 10.22 148 113
250 76.76 62.37 971 14 15.84 13.05 13 308 15.84 12.72 224 83
300 76.54 67.63 862 13 15.06 12.29 22 299 15.06 12.31 313 61

pm1d 0.9 100 68.77 20.92 38 54 86.25 79.01 23 87 86.25 35.06 59 285
pm1s 0.1 300 71.89 18.49 9 26 76.53 18.15 1 811 76.53 16.87 19 607

Table 2: Performance comparison for Biq Mac instances and k = 10.
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SDP LP LP-EIG
weight dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

[-100, 100]

0.2

100 30.87 14.45 11 56 54.78 34.84 1 797 54.78 19.08 85 145
200 36.33 24.47 112 47 55.67 55.67 4 35 55.67 44.39 167 101
300 39.63 31.02 340 35 54.62 54.62 10 35 54.62 54.32 198 55
500 45.28 39.36 531 23 58.00 58.00 9 44 58.00 58.00 9 8

0.8

100 30.93 15.59 16 62 48.64 48.59 2 111 48.64 28.63 114 263
200 35.65 25.05 106 58 48.51 48.51 1 36 48.51 41.96 190 100
300 37.44 29.32 256 46 49.15 49.15 6 35 49.15 48.97 85 53
500 42.98 37.67 420 25 53.18 53.18 199 41 53.18 53.18 10 25

[1, 100]

0.2

100 8.85 4.66 8 56 14.07 6.75 1 763 14.07 5.82 65 181
200 7.17 5.12 88 53 10.39 10.39 1 39 10.39 8.89 172 102
300 6.30 4.93 353 33 8.44 8.44 2 37 8.44 8.40 201 58
500 5.45 4.78 515 23 6.84 6.84 10 42 6.84 6.84 10 8

0.8

100 2.60 1.37 17 53 3.90 3.90 0 16 3.90 3.10 59 347
200 2.13 1.51 109 51 2.86 2.86 1 28 2.86 2.63 189 93
300 1.74 1.36 227 44 2.27 2.27 2 31 2.27 2.25 396 56
500 1.61 1.40 495 25 1.99 1.99 10 32 1.99 1.99 10 28

Table 3: Performance comparison for random instances and k = 3.

4.4.2 Performance tables: random instances

Table 3 shows the performance of SDP , LP , and LP-EIG on the random instances when
k = 3. Similarly to the Biq Mac problems, the SDP outperforms the linear methods,
especially for the mixed-weight problems where the initial SDP is better than the final
upper bound of the linear methods. Moreover, for most of the sparse instances, LP does
not improve the initial upper bound. We conclude that for k = 3, the linear formulations
are not competitive with the SDP.

Table 4 presents the results for k = 10. For mixed-weight problems the SDP has
stronger bounds but their computation is expensive. For positive weights, LP-EIG usu-
ally gives the smallest gap and a competitive iteration time.

4.4.3 Data profiles

This section shows data profiles for SDP and LP-EIG for a specified gap. We plot
the results for k ∈ {3, 4, 6, 7, 10, 0.1|V |} for each method. In Sections 4.4.1 and 4.4.2
we saw that LP does not usually improve the initial gap, even after one hour of CPA.
Therefore, we have excluded these results.

In Figure 4, we present the data profiles for instances with positive weights, i.e., all
80 problems of the family pRnd and 10 from g05. Figure 5 displays the results for
instances with mixed weights, i.e., 80 instances from nRnd, 20 from be, and 10 from
bqp, pm1s, and pm1d.
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SDP LP LP-EIG
weight dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

[-100, 100]

0.2

100 70.22 16.14 31 43 100.41 40.00 1 905 100.41 17.46 70 178
200 78.93 31.98 749 14 104.32 104.32 1 39 104.32 56.00 161 104
300 83.19 55.63 846 14 102.85 102.85 2 41 102.85 70.41 255 57
500 88.09 74.77 860 13 104.56 104.56 9 45 104.56 95.97 479 23

0.8

100 71.24 20.09 56 59 94.43 67.68 17 176 94.43 34.89 62 290
200 76.37 37.61 780 16 93.22 93.22 1 39 93.22 54.52 179 99
300 77.90 52.80 662 16 92.82 92.82 2 43 92.82 63.77 275 59
500 85.68 73.02 783 14 98.92 98.92 9 42 98.92 90.90 539 24

[1, 100]

0.2

100 27.19 0.12 18 11 0.12 0.12 0 18 0.12 0.12 0 17
200 17.64 7.29 905 15 0.48 0.48 1 34 0.48 0.48 1 18
300 14.17 10.06 943 15 1.43 1.43 2 38 1.43 1.43 2 10
500 10.84 9.52 876 13 2.94 2.94 10 62 2.94 2.94 10 6

0.8

100 5.99 2.11 33 17 4.27 3.24 9 662 4.27 1.60 31 437
200 4.30 2.79 170 17 5.05 5.04 4 49 5.05 2.24 121 116
300 3.37 2.66 227 16 3.91 3.91 2 30 3.91 2.56 223 57
500 2.93 2.55 794 14 3.31 3.31 10 35 3.31 3.31 10 23

Table 4: Performance comparison for random instances and k = 10.

Positive weights. Figure 4 presents the data profiles for gap = 3% and positive weights.
LP-EIG outperforms SDP when k ≥ 7, especially for iterations that take less than 10 s.
For example, for k = 10 and itime =10 s LP-EIG solves approximately 80% of the
problems while SDP does not solve any.

For k ∈ {4, 6} LP-EIG can solve more problems in the first five seconds, but for
more expensive iterations SDP can solve more problems. For k = 3 SDP consistently
outperforms LP-EIG.

Mixed weights. Figure 5 presents data profiles for gap = 30% and mixed weights.
For k ≥ 4 LP-EIG has a slight advantage over SDP for iterations that take less than 5 s.
However, neither method is satisfactory: they solve only 40% of the instances in 100 s.
For k = 3, SDP is better than LP-EIG; it solves more than 50% of the instances within
10 s.

4.4.4 Performance profiles

This section shows the performance profiles of SDP and LP-EIG. We again exclude the
LP method.

Positive weights. Figure 6 shows the performance profiles for positive weights and
a time of 10 s (we consider only iterations that take less than 10 s). For k ≤ 6 SDP
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Figure 4: Data profiles for instances with positive weights for various values of partition
size k.
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Figure 5: Data profiles for instances with mixed weights for various values of partition
size k.
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Figure 6: Performance profiles for instances with positive weights for various values of
partition size k.

outperforms LP-EIG, especially for gap ≤ 3.5%. However, for k ≥ 7 this is reversed.
In particular, for k = 10 LP-EIG solves all the instances with a gap below 2.5%, whereas
SDP solves only 10% of the instances.

Mixed weights. Figure 7 shows the performance profiles for a time of 20 s and mixed
weights. Here, the gap goes from 0% (optimality) to 50% rather than 5% (see Figure 6),
because no method could solve the instances with lower gaps, even when we allowed a
higher value for itime. In Figure 7 we observe that for k = 3 SDP outperforms LP-
EIG, but the latter is more efficient for k ∈ {4, . . . , 7}. For k ≥ 10 the two methods
have similar performance.

4.5 Summary of computational tests
The tables of Sections 4.4.1 and 4.4.2 show that for k = 3 the SDP formulation consis-
tently obtains the best results. However, for k = 10 LP-EIG outperforms SDP for some
sparse mixed-weight instances and for positive-weight instances.

The data and performance profiles in Sections 4.4.3 and 4.4.4 indicate that LP-EIG
is more efficient than SDP for positive weights with k ≥ 7 and for mixed weights with
k ∈ {4, . . . , 10}. For k = 3 the SDP consistently outperforms the linear formulations.

Table 5 presents a summary of our computational results, indicating the best method
for each type of problem.
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Figure 7: Performance profiles for instances with mixed weights for various values of
partition size k.

Type of instance Partition size
weight density k ≤ 6 k ≥ 7

mixed
Sparse SDP or LP-EIG SDP or LP-EIG
Dense SDP or LP-EIG SDP or LP-EIG

positive
Sparse SDP LP-EIG
Dense SDP LP-EIG

Table 5: Best method(s) for each type of problem.
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5 Discussion
We have proposed a family of SDP-based constraints (10) to strengthen the LP relax-
ation of the max-k-cut problem. The constraint matrix has an infinite number of rows.
Therefore, we use an exact method based on eigenvalues to separate the linear solutions.

To investigate the strength of the proposed constraint, we use a CPA that relies on
the early termination of an IPM, and we study the performance of the SDP and LP
relaxations for various values of k and problem types. Both relaxations are strengthened
by combinatorial facet-defining inequalities.

To guarantee a fair comparison, we use three benchmarks: performance tables, data
profiles, and performance profiles. Our results are summarized in Table 5.

We conclude that the early termination of the IPM is effective for both the SDP
and LP relaxations in the CPA. Moreover, the SDP-based constraint strengthens the LP
relaxation, especially for dense instances. LP-EIG outperforms SDP for problems with
positive weights and k ≥ 7. Additionally, the new linear formulation is competitive for
sparse instances with mixed weights.
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