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Abstract

In this paper, we extend a class of globally convergent evolution strategies to handle
general constrained optimization problems. The proposed framework handles relaxable con-
straints using a merit function approach combined with a specific restoration procedure.
The unrelaxable constraints in our framework, when present, are treated either by using the
extreme barrier function or through a projection approach.

The introduced extension guaranties to the regarded class of evolution strategies global
convergence properties for first order stationary constraints. Preliminary numerical experi-
ments are carried out on a set of known test problems as well as on a multidisciplinary design
optimization problem.
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1 Introduction

In this paper, we are interested by the following constrained optimization problem:

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr,
(1)

where the objective function f is assumed to be locally Lipschitz continuous. The feasible region
Ω ⊂ Rn of this problem includes two categories of constraints. The first one, denoted by Ωr

and known as relaxable constraints (or soft constraints), is allowed to be violated during the
optimization process and may need to be satisfied only approximately or asymptotically. Such
set of constraints will be assumed, in the context of this paper, to be of the form:

Ωr = {x ∈ Rn|∀i ∈ {1, . . . , r}, ci(x) ≤ 0} ,

where the functions ci are locally Lipschitz continuous. The second category of constraints,
denoted by Ωnr ⊂ Rn, gathers all unrelaxable constraints (also known as hard constraints), for
such constraints no violation is allowed and they require satisfaction during all the optimization
process. The set of constraints Ωnr can be seen as bounds or linear constraints. Many practi-
cal optimization problems present both relaxable and unrelaxable constraints. For instance, in
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multidisciplinary design optimization problems [33], one has to deal with different coupled disci-
plines (e.g., structure, aerodynamics, propulsion) that represent the aircraft model. In this case,
the appropriate design can be chosen by maximizing the aircraft range under bounds constraints
and subject to many relaxable constraints composed of the involved disciplines.

Evolution strategies (ES’s) [34] are one of the most successful stochastic optimization algo-
rithms, seen as a class of evolutionary algorithms that are naturally parallelizable, appropriate
for continuous optimization, and that lead to promising results on practical optimization prob-
lems [7, 35, 8]. In [15, 16], the authors dealt with a large class of ES’s, where a certain number
λ of points (called offspring) are randomly generated in each iteration, among which µ ≤ λ of
them (called parents) are selected. ES’s have been growing rapidly in popularity and start to
be used for solving challenging optimization problems [21, 6].

In [16], the authors proposed a general globally convergent framework for unrelaxable con-
straints using two different approaches. The first one relies on techniques inspired from direc-
tional direct-search methods [13, 26], where one uses an extreme barrier function to prevent
unfeasible displacements together with the possible use of directions that conform to the local
geometry of the feasible region. The second approach was based on enforcing all the gener-
ated sample points to be feasible, all by using a projection mapping approach. Both proposed
strategies were compared to some of the best available solvers for minimizing a function without
derivatives. The obtained numerical results confirmed the competitiveness of the two approaches
in terms of efficiency as well as robustness. Motivated by the recent availability of massively
parallel computing platforms, the authors in [14] proposed a highly parallel globally convergent
ES (inspired by [16]) adapted to the full-waveform inversion setting. By combining model re-
duction and ES’s in a parallel environment, the authors helped solving realistic instances of the
full-waveform inversion problem.

For ES’s enormous state of the art of constraints handling algorithms have been proposed
[10]. Coello [11] and Kramer [28] outlined a comprehensive survey of the most popular handling
constraints methods currently used with ES’s. To the best of our knowledge, all the proposed
ES’s suffer from the lack of global convergence guarantees when applied to general constrained
optimization problems.

In the framework of deterministic Derivative free optimization (DFO), only few works were
interested to handle both kinds (relaxable and unrelaxable) of constraints separately. For in-
stance, Audet and Dennis [5] outlines a globally convergent direct-search approach based on
a progressive barrier, it combines an extreme barrier approach for unrelaxable constraints and
non-dominance filters [17] to handle relaxable constraints. More recently, the authors in [2] ex-
tended the progressive barrier approach, developed in [5], to cover the setting of a derivative-free
trust-region method. In the frame of directional direct-search methods, Vicente and Gratton [19]
proposed an alternative where one handles relaxable constraints by means of a merit function.
The latter approach ensures global convergence by imposing a sufficient decrease condition on
a merit function combining information from both objective function and constraints violation.
Another two-phases derivative-free approach is proposed in [30] to handle specifically the case
where finding a feasible point is easier than minimizing the objective function.

In this paper, inspired by the merit function approach for direct search methods [19], we
propose to adapt the class of ES algorithms proposed in [16] to handle both relaxable and
unrelaxable constraints. The obtained class of ES algorithms relies essentially on a merit function
(eventually with a restoration procedure) to decide and control the distribution of the offspring
points. The merit function is a standard penalty-based function that has been already proposed
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in the context of ES [11]. The main advantage of the proposed approach is guaranteeing a
form of global convergence. To the best of our knowledge, this paper presents the first globally
convergent framework that handles relaxable and unrelaxable constraints in the context of ES’s.

The proposed convergence theory generalizes the ES framework in [16] by including relax-
able constraints, all in the spirit of the proposed merit function for directional direct search
methods [19]. The contributions of this paper are the following. We propose an adaptation
of the merit function approach algorithm to the ES setting, a detailed convergence theory of
the proposed approach is given. We provide also a practical implementation on some known
global optimization problems as well as some tests on a multidisciplinary design optimization
(MDO) problem. The performance of our proposed solver are compared to the progressive
barrier approach implemented in mesh adaptive direct search (MADS) solver [5].

The paper is organized as follows. Section 2 reminds the class of ES algorithms proposed
in [16] to handle unrelaxable constraints. The proposed merit function approach is then given
in Section 3 with a detailed description of the changes introduced in a class of ES algorithms in
order to handle general constraints. The convergence results of the adapted approach are then
detailed in Section 4. In Section 5, we test the proposed algorithm on well-known constrained
optimization test problems and an MDO problem. Finally, we conclude the paper in Section 6
with some conclusions and prospects of future work.

2 A globally convergent ES for unrelaxable constraints

This paper focuses on a class of ES’s, denoted by (µ/µW , λ)–ES, which evolves a single candidate
solution. In fact, at the k-th iteration, a new population y1

k+1, . . . , y
λ
k+1 (called offspring) is

generated around a weighted mean xk of the previous parents (candidate solution). The symbol
“/µW ” in (µ/µW , λ)–ES specifies that µ parents are “recombined” into a weighted mean. The
parents are selected as the µ best offspring of the previous iteration in terms of the objective
function value. The mutation operator of the new offspring points is done by yik+1 = xk+σES

k dik,

i = 1, . . . , λ, where dik is drawn from a certain distribution Ck and σES
k is a chosen step size.

The weights used to compute the means belong to the simplex set S = {(ω1, . . . , ωµ) ∈ Rµ :∑µ
i=1w

i = 1, wi ≥ 0, i = 1, . . . , µ}. The (µ/µW , λ)–ES adapts the sampling distribution to the
landscape of the objective function. An adaptation mechanism for the step size parameter is
also possible. The latter one increases or decreases depending on the landscape of the objective
function. One relevant instance of such an ES is covariance matrix adaptation ES (CMA-ES)
[22].

In [15, 16], the authors proposed a framework for making a class of ES’s enjoying some
global convergence properties while solving optimization problems possibly with unrelaxable
constraints. In fact, in [15], by imposing a sufficient decreasing condition on the objective func-
tion value, the proposed algorithm was monitoring the step size σk to ensure its convergence
to zero (which leads then to the existence of a stationary point). The imposed sufficient de-
creasing condition applied directly to the weighted mean xtrial

k+1 of the new parents. By sufficient

decreasing condition we mean f(xtrial
k+1) ≤ f(xk)−ρ(σk), where ρ(·) is a forcing function [26], i.e.,

a positive, nondecreasing function satisfying ρ(σ)/σ → 0 when σ → 0. To handle unrelaxable
constraints [16], one starts with a feasible iterate x0 and then prevents stepping outside the
feasible region by means of a barrier approach. In this context, the sufficient decrease condi-
tion is applied not to f but to the extreme barrier function fΩnr associated to f with respect
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to the constraints set Ωnr [4] (also known as the death penalty function in the terminology of
evolutionary algorithms), which is defined by:

fΩnr(x) =

{
f(x) if x ∈ Ωnr,
+∞ otherwise.

(2)

We consider that ties of +∞ are broken arbitrarily in the ordering of the offspring samples. The
obtained globally convergent ES is given by Algorithm 1.

Algorithm 1: A globally convergent ES for unrelaxable constraints (Ω = Ωnr)

Data: choose positive integers λ and µ such that λ ≥ µ. Select an initial x0 ∈ Ωnr and
evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial weights

(ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1

and 0 < dmin < dmax. Select a forcing function ρ(·).
for k = 0, 1, . . . do

Step 1: compute new sample points Yk+1 = {y1
k+1, . . . , y

λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s (which in
turn are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy
dmin ≤ ‖dik‖ ≤ dmax);
Step 2: evaluate fΩnr(y

i
k+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: fΩnr(ỹ

1
k+1) ≤ · · · ≤ fΩnr(ỹ

λ
k+1).

Select the new parents as the best µ offspring sample points {ỹ1
k+1, . . . , ỹ

µ
k+1}, and

compute their weighted mean

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1.

Evaluate fΩnr(x
trial
k+1);

Step 3: if fΩnr(x
trial
k+1) ≤ f(xk)− ρ(σk) then

consider the iteration successful, set xk+1 = xtrial
k+1, and σk+1 ≥ σk (for example

σk+1 = max{σk, σES
k }).;

else
consider the iteration unsuccessful, set xk+1 = xk and σk+1 = β̄kσk, with
β̄k ∈ (β1, β2);

end
Step 4: update the ES step length σES

k+1, the distribution Ck+1, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S;

end

We note that, due to the local geometry of the unrelaxable constraints around the current
point xk, the directions d̃ik used to compute the offspring are not necessarily randomly generated
following a pure ES paradigm. In fact, two approaches were proposed in [16], the first one was
based on the use of the extreme barrier function and also the inclusion of positive generators of
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the tangent cone of the constraints. In this case, whenever the current iterate xk is getting close
to the boundary of the feasible region, the set of directions {d̃ik} will include (in addition to the ES
randomly generated directions dik) positive generators of the tangent cone. The second proposed
approach for generating the set of directions {d̃ik} is based on projecting onto the feasible domain
all the generated sampled points xk+σkd

i
k, and then taking instead ΦΩnr(xk+σkd

i
k) where ΦΩnr is

a given projection operator on the constraints set Ωnr. This procedure is the same as considering

d̃ik =
ΦΩnr (xk+σkd

i
k)−xk

σk
in the framework of Algorithm 1. For typical choices of the projection

ΦΩnr , one can use the `2-projection in the case of bound constraints (as it is trivial to evaluate),
in the case of linear constraints one may use the `1-projection (as it reduces to the solution of
an LP problem). For both approaches, we note that Steps 2 and 3 of Algorithm 1 make use of
the extreme barrier function (2).

Due to the sufficient decrease condition, one can guarantee that a subsequence of step sizes
will converge to zero. From this property and the fact that the step size is significantly reduced
(at least by β2) in unsuccessful iterations, one proves that there exists a subsequence K of
unsuccessful iterates driving the step size to zero [16, Lemma 2.1]. The global convergence is
then achieved by establishing that some type of directional derivatives are nonnegative at limit
points of refining subsequences along certain limit directions (see [16, Theorem 2.1]).

3 A globally convergent ES for general constraints

The challenge of this paper consists in changing Algorithm 1, in a minimal way, to a glob-
ally convergent framework that takes into account both relaxable constraints and unrelaxable
constraints. For this, we define a merit function as follows:

M(x) =

{
f(x) + δ̄g(x) if x ∈ Ωnr,
+∞ otherwise.

(3)

where δ̄ > 0 is a given positive constant and g defines a constraint violation function with respect
to relaxable constraints. The `1-norm is commonly used to define the constraint violation func-
tion, i.e., g(x) =

∑r
i=1 max(ci(x), 0). Other choices for g exist, for instance, using the `2-norm

i.e., g(x) =
∑r

i=1 max(ci(x), 0)2. The merit function will be used to evaluate a trial step and
hence decide whether such step will be accepted or not. The extension of the globally conver-
gent ES (given by Algorithm 1) to a general constrained setting can be seen as a combination
of two approaches, a feasible one where either the extreme barrier or a projection operator will
be used to handle the unrelaxable constraints, and a merit function approach (possibly with a
restoration procedure) to handle relaxable constraints.

The description of the proposed framework is as follows. For a given iteration k, a trial mean
parent xtrial

k+1 is computed as the weighted mean of the µ best points in terms of the merit function
value. The current trial mean parent will be considered as a “Successful point” if one of the
two following situations occur. The first scenario happens when one is sufficiently away from the
feasible region (i.e., g(xk) > Cρ(σk) for some constant C > 1) and xtrial

k+1 sufficiently decreases the

constraint violation function g is observed (i.e., gΩnr(x
trial
k+1) < g(xk)− ρ(σk), where gΩnr denotes

the extreme barrier function associated to g with respect to Ωnr). The second situation occurs
when the merit function is sufficiently decreased (i.e., M(xtrial

k+1) < M(xk)− ρ(σk)).
Before checking whether the trial point is successful or not, the algorithm will try first to

restore the feasibility or at least decrease the constraints violation if needed. The restoration
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process will be activated if the current mean parent xk is far away from the feasible region and
the trial point xtrial

k+1 sufficiently decreases the constraint violation function g but not the merit
function. More specifically, a “Restoration identifier” will be activated if one has

gΩnr(x
trial
k+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk)

and
M(xtrial

k+1) ≥ M(xk).

The restoration algorithm will be left as far as progress on the reduction of the constraint vi-
olation can not be achieved all without any considerable increase in f . The complete description
of the restoration procedure is given in Algorithm 3.

As a result, the main iteration of the proposed merit function approach can be devided
to two steps: restoration and minimization. In the restoration step the aim is to decrease
infeasibility (by minimizing essentially the function gΩnr) while in the minimization step the
objective function f is improved over a relaxed set of constraints by using the merit function
M . The final obtained approach is described is given in Algorithm 2.

For both algorithms (main and restoration), our global convergence analysis will be done
independently of the choice of the distribution Ck, the weights (ω1

k, . . . , ω
µ
k ) ∈ S, and the step

size σES
k . Therefore and similarly to Algorithm 1, the update of the ES parameters is left

unspecified. Note that one also imposes bounds on all directions dik used by the algorithm. This
modification is, however, very mild since the lower bound dmin can be chosen very close to zero
and the upper bound dmax set to a very large number. The construction of the set of directions
{d̃ik} can be done with respect to the local geometry of the unrelaxable constraints as proposed
in [16].

4 Global convergence

The convergence results presented in this section are in the vein of those first established for the
merit function approach for direct search methods [19]. For the convergence analysis, we will
consider a sequence of iterations generated by Algorithm 2 without any stopping criterion. The
analysis is organized depending on the number of times where restoration is entered. To keep
the presentation of the paper simpler, only the case where restoration is entered for finitely times
will be treated in our convergence analysis of this section. For completeness, the analysis of the
two other cases (namely when (a) an infinite run of consecutive steps inside Restoration or (b)
one enters the restoration an infinite number of times) is given in Appendix A. The analysis of
both cases shows that such behaviors would lead to feasibility and optimality results similar to
the case where the restoration is entered finitely times.

When the restoration is entered for finitely times, one can guarantee that a subsequence
of the step sizes {σk} will converge to zero. In fact, due to the sufficient decrease condition
imposed on the merit function along the iterates (or in the constraints violation function if the
iterates are sufficiently away from the feasible region) and the control on the step size (reduced
at least by β2 for unsuccessful iterations), one can ensure the existence of a subsequence K of
unsuccessful iterates driving the step size to zero.
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Algorithm 2: A globally convergent ES for general constraints (Main)

Data: choose positive integers λ and µ such that λ ≥ µ. Select an initial x0 ∈ Ωnr and
evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial weights

(ω1
0, . . . , ω

µ
0 ) ∈ S. Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1

and 0 < dmin < dmax. Select a forcing function ρ(·).
for k = 0, 1, . . . do

Step 1: compute new sample points Yk+1 = {y1
k+1, . . . , y

λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s (which in
turn are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy
dmin ≤ ‖dik‖ ≤ dmax).;
Step 2: evaluate M(yik+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: M(ỹ1

k+1) ≤ · · · ≤M(ỹλk+1).
Select the new parents as the best µ offspring sample points {ỹ1

k+1, . . . , ỹ
µ
k+1}, and

compute their weighted mean

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1;

Step 3: if xtrial
k+1 /∈ Ωnr then

the iteration is declared unsuccessful;
else

if xtrial
k+1 is a “Restoration identifier” then

enter Restoration (with kr = k);
else

if xtrial
k+1 is a “Successful point” then

declare the iteration successful, set xk+1 = xtrial
k+1, and σk+1 ≥ σk (for

example σk+1 = max{σk, σES
k });

else
the iteration is declared unsuccessful;

end

end

end
if the iteration is declared unsuccessful then

set xk+1 = xk and σk+1 = βkσk, with βk ∈ (β1, β2);
end
Step 4: update the ES step length σES

k+1, the distribution Ck+1, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S;

end

Lemma 4.1 Let f be bounded below and assuming that the restoration is not entered after a
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Algorithm 3: A globally convergent ES for general constraints (Restoration)

Data: Start from xkr ∈ Ωnr given from the Main algorithm and consider the same
parameter as in there.

for k = kr, kr + 1, kr + 2, . . . do
Step 1: compute new sample points Yk+1 = {y1

k+1, . . . , y
λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ,

where the directions d̃ik’s are computed from the original ES directions dik’s (which in
turn are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy
dmin ≤ ‖dik‖ ≤ dmax);
Step 2: evaluate gΩnr(y

i
k+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1
k+1, . . . , ỹ

λ
k+1} by increasing order: gΩnr(ỹ

1
k+1) ≤ · · · ≤ gΩnr(ỹ

λ
k+1).

Select the new parents as the best µ offspring sample points {ỹ1
k+1, . . . , ỹ

µ
k+1}, and

compute their weighted mean

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1;

Step 3: if xtrial
k+1 /∈ Ωnr then

the iteration is declared unsuccessful;
else

if g(xtrial
k+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk) then

the iteration is declared successful, set xk+1 = xtrial
k+1, and σk+1 ≥ σk (for

example σk+1 = max{σk, σES
k });

else
the iteration is declared unsuccessful;

end

end
if the iteration is declared unsuccessful then

if M(xtrial
k+1) < M(xk) then

leave Restoration and return to the Main algorithm (starting at a new
(k + 1)-th iteration using xk+1 and σk+1);

else
set xk+1 = xk and σk+1 = βkσk, with βk ∈ (β1, β2);

end

end
Step 4: update the ES step length σES

k+1, the distribution Ck+1, and the weights

(ω1
k+1, . . . , ω

µ
k+1) ∈ S;

end

certain order. Then,
lim inf
k→+∞

σk = 0.
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Proof. Suppose that there exists a k̄ > 0 and σ > 0 such that σk > σ and k ≥ k̄ is a given
iteration of Algorithm 2. If there is an infinite sequence J1 of successful iterations after k̄, this
leads to a contradiction with the fact that g and f are bounded below.

In fact, since ρ is a nondecreasing positive function, one has ρ(σk) ≥ ρ(σ) > 0. Hence, if
g(xk+1) < g(xk)− ρ(σk) and g(xk) > Cρ(σk) for all k ∈ J1, then

g(xk+1) < g(xk)− ρ(σ),

which obviously contradicts the boundness below of g by 0. Thus there must exists an infinite
subsequence J2 ⊆ J1 of iterates for which M(xk+1) < M(xk)− ρ(σk). Hence,

M(xk+1) < M(xk)− ρ(σ) for all k ∈ J2.

Thus M(xk) tends to −∞ which is a contradiction, since both f and g are bounded below.
The proof is thus completed if there is an infinite number of successful iterations. However, if

no more successful iterations occur after a certain order, then this also leads to a contradiction.
The conclusion is that one must have a subsequence of iterations driving σk to zero.

Theorem 4.1 Let f be bounded below and assuming that the restoration is not entered after a
certain order.

There exists a subsequence K of unsuccessful iterates for which limk∈K σk = 0. Moreover,
if the sequence {xk} is bounded, there exists an x∗ and a refining subsequence K ′ such that
limk∈K xk = x∗.

Proof. From Lemma 4.1, there must exist an infinite subsequence K of unsuccessful iterates
for which σk+1 goes to zero. In a such case we have σk = (1/βk)σk+1, βk ∈ (β1, β2), and β1 > 0,
and thus σk → 0, for k ∈ K, too.

The second part of the theorem is proved by extracting a convergent subsequence K ′ ⊂ K
for which xk converges to x∗.

The global convergence will be achieved by establishing that some type of directional deriva-
tives are nonnegative at limit points of refining subsequences along certain limit directions
(known as refining directions). By refining subsequence [4], we mean a subsequence of un-
successful iterates in the Main algorithm (see Algorithm 2) for which the step-size parameter
converges to zero.

When h is Lipschitz continuous near x∗ ∈ Ωnr, one can make use of the Clarke-Jahn gener-
alized derivative along a direction d

h◦(x∗; d) = lim sup
x→ x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t
.

(Such a derivative is essentially the Clarke generalized directional derivative [9], adapted by
Jahn [25] to the presence of constraints). However, for the proper definition of h◦(x∗; d), one
needs to guarantee that x+ td ∈ Ωnr for x ∈ Ωnr arbitrarily close to x∗ which is assured if d is
hypertangent to Ωnr at x∗. In the following, B(x; ε) is the closed ball formed by all points which
dist no more than ε to x.
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Definition 4.1 A vector d ∈ Rn is said to be a hypertangent vector to the set Ωnr ⊆ Rn at the
point x in Ωnr if there exists a scalar ε > 0 such that

y + tw ∈ Ωnr, ∀y ∈ Ωnr ∩B(x; ε), w ∈ B(d; ε), and 0 < t < ε.

The hypertangent cone to Ωnr at x, denoted by TH
Ωnr

(x), is the set of all hypertangent vectors

to Ωnr at x. Then, the Clarke tangent cone to Ωnr at x (denoted by TCL
Ωnr

(x)) can be defined as

the closure of the hypertangent cone TH
Ωnr

(x). The Clarke tangent cone generalizes the notion

of tangent cone in Nonlinear Programming [32], and the original definition d ∈ TCL
Ωnr

(x) is given
below.

Definition 4.2 A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ωnr ⊆ Rn at the
point x in the closure of Ωnr if for every sequence {yk} of elements of Ωnr that converges to x
and for every sequence of positive real numbers {tk} converging to zero, there exists a sequence
of vectors {wk} converging to d such that yk + tkwk ∈ Ωnr.

Given a direction v in the tangent cone, possibly not in the hypertangent one, one can
consider the Clarke-Jahn generalized derivative to Ωnr at x∗ as the limit

h◦(x∗; v) = lim
d∈TH

Ωnr
(x∗),d→v

h◦(x∗; d)

(see [4]). A point x∗ ∈ Ωnr is considered Clarke stationary if h◦(x∗; d) ≥ 0, ∀d ∈ TCL
Ωnr

(x∗).
It remains now to define the notion of refining direction [4], associated with a convergent

refining subsequence K, as a limit point of {ak/‖ak‖} for all k ∈ K sufficiently large such
that xk + σkak ∈ Ωnr, where, in the particular case of taking the weighted mean as the object
of evaluation, one has ak =

∑µ
i=1 ω

i
kd̃
i
k. The following convergence result is concerning the

determination of feasibility.

Theorem 4.2 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order. Let x∗ ∈ Ωnr be the limit point of a convergent
subsequence of unsuccessful iterates {xk}K for which limk∈K σk = 0. Assume that g is Lipschitz
continuous near x∗ with constant νg > 0.

If d ∈ TH
Ωnr

(x∗) is a refining direction associated with {ak/‖ak‖}K , then either g(x∗) = 0 or
g◦(x∗; d) ≥ 0.

Proof. Let d be a limit point of {ak/‖ak‖}K . Then it must exist a subsequence K ′ of K such
that ak/‖ak‖ → d on K ′. On the other hand, we have for all k that

xtrial
k+1 =

µ∑
i=1

ωikỹ
i
k+1 = xk + σk

µ∑
i=1

ωikd
i
k = xk + σkak,

Since the iteration k ∈ K ′ is unsuccessful, g(xtrial
k+1) ≥ g(xk)− ρ(σk) or g(xk) ≤ Cρ(σk), and then

either there exists an infinite number of the first inequality or the second one as follows:

1. For the case where there exists a subsequence K1 ⊆ K ′ such that g(xk) ≤ Cρ(σk), it is
trivial to obtain g(x∗) = 0 using both the continuity of g and the fact that σk tends to
zero in K1.
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2. For the case where there exists a subsequence K2 ⊆ K ′ such that the sequence {ak/‖ak‖}K2

converges to d ∈ TH
Ωnr

(x∗) in K2 and the sequence {‖ak‖σk}k∈K2 goes to zero in K2 (ak is
bounded above for all k, and so σk‖ak‖ tends to zero when σk does). Thus one must have
necessarily for k sufficiently large in K2, xk + σkak ∈ Ωnr such that

g(xk + σkak) ≥ g(xk)− ρ(σk).

From the definition of the Clarke-Jahn generalized derivative along directions d ∈ TH
Ωnr

(x∗),

g◦(x∗; d) = lim sup
x→x∗,t↓0,x+td∈Ωnr

g(x+ td)− g(x)

t

≥ lim sup
k∈K2

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖

≥ lim sup
k∈K2

g(xk + σk‖ak‖(ak/‖ak‖))− g(xk)

σk‖ak‖
− gk,

where,

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖

from the Lipschitz continuity of g near x∗

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖

≤ νg

∥∥∥∥ ak
‖ak‖

− d
∥∥∥∥

tends to zero on K2. Finally,

g◦(x∗; d) ≥ lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
− ρ(σk)

σk‖ak‖
− gk

= lim sup
k∈K2

g(xk + σkak)− g(xk) + ρ(σk)

σk‖ak‖
.

One then obtains g◦(x∗; d) ≥ 0.

Moreover, assuming that the set of the refining directions d ∈ TH
Ωnr

(x∗), associated with
{ak/‖ak‖}K , is dense in the unite sphere. One can show that the limit point x∗ is Clarke
stationary for the flowing optimization problem, known as the constraint violation problem:

min g(x) (4)

s.t. x ∈ Ωnr.

11



Theorem 4.3 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order. Assume that the directions d̃ik’s and the weights
ωik’s are such that (i) σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to
zero.

Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful iterates {xk}K
for which limk∈K σk = 0 and that TCL

Ω (x∗) 6= ∅. Assume that g is Lipschitz continuous near x∗
with constant ν > 0

Then either (a) g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or (b) if the set of refining
directions d ∈ TCL

Ωnr
(x∗) associated with {ak/‖ak‖}K′ (where K ′ is a subsequence of K for which

g(xk + σkak) ≥ g(xk)− ρ(σk)) is dense in TCL
Ωnr

(x∗) ∩ {d ∈ Rn : ‖d‖ = 1}, then g◦(x∗; v) ≥ 0 for

all v ∈ TCL
Ωnr

(x∗) and x∗ is a Clarke stationary point of the constraint violation problem (4).

Proof. See the proof of [19, Theorem 4.2].

We now move to an intermediate optimality result. As in [19], we will not use x∗ ∈ Ωr

explicitly in the proof but only g◦(x∗; d) ≤ 0. The latter inequality describes the cone of first
order linearized directions under feasibility assumption x∗ ∈ Ωr.

Theorem 4.4 Let ak =
∑µ

i=1 ω
i
kd
i
k and assume that f is bounded below. Suppose that the

restoration is not entered after a certain order.
Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful iterates {xk}K

for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.
If d ∈ TH

Ωnr
(x∗) is a refining direction associated with {ak/‖ak‖}K such that g◦(x∗; d) ≤ 0.

Then f◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K ′ ⊆ K such that the sequence {ak/‖ak‖}K′
converges to d ∈ TH

Ωnr
(x∗) in K ′ and the sequence {‖ak‖σk}K′ goes to zero in K ′, Thus one must

have necessarily for k sufficiently large in K ′, xtrial
k+1 = xk + σkak ∈ Ωnr.

Since the iteration k ∈ K ′ is unsuccessful, one has M(xtrial
k+1) ≥ M(xk)− ρ(σk), and thus

f(xk + σkak)− f(xk)

‖ak‖σk
≥ −δ̄ g(xk + σkak)− g(xk)

‖ak‖σk
− ρ(σk)

σk‖ak‖
(5)

On the other hand,

f◦(x∗; d) = lim sup
x→x∗,t↓0,x+td∈Ω

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk‖ak‖d)− f(xk)

σk‖ak‖

≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,

where,

fk =
f(xk + σkak)− f(xk + σk‖ak‖d)

σk‖ak‖
,

12



which then implies from (5)

f◦(x∗; d) ≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk)

σk‖ak‖
− fk,

≥ lim sup
k∈K′

−δ̄ g(xk + σkak)− g(xk)

‖ak‖σk
− ρ(σk)

σk‖ak‖
− fk

≥ lim sup
k∈K′

−δ̄ g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
+ δ̄gk −

ρ(σk)

σk‖ak‖
− fk,

where

gk =
g(xk + σkak)− g(xk + σk‖ak‖d)

σk‖ak‖
.

From the assumption g◦(x∗; d) ≤ 0, one has

lim sup
k∈K′

g(xk + σk‖ak‖d)− g(xk)

σk‖ak‖
≤ lim sup

x→x∗,t↓0,x+td∈Ωnr

g(x+ td)− g(x)

t
≤ 0,

one obtains then

f◦(x∗; d) ≥ lim sup
k∈K′

δ̄gk −
ρ(σk)

σk‖ak‖
− fk. (6)

The Lipschitz continuity of both g and f near x∗ guaranties that the quantities fk and gk
tend to zero in K ′. Thus, the proof is completed since the right-hand-side of (6) tends to zero
in K ′.

Theorem 4.5 Assuming that f is bounded below and that Restoration is not entered after a
certain order.

Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful iterates {xk}k∈K
for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗.

Assume that the set

T (x∗) = TH
Ωnr

(x∗) ∩ {d ∈ Rn : ‖d‖ = 1, g◦(x∗, d) ≤ 0} (7)

has a non-empty interior.
Let the set of refining directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωnr
(x∗)

such that g◦(x∗, v) ≤ 0, and x∗ is a Clarke stationary point of the problem (1).

Proof. See the proof of [19, Theorem 4.4].

5 Numerical experiments

To quantify the efficiency of the proposed merit approach, we compare our solver with the
direct search method MADS where the progressive barrier approach has been implemented [5] to
handle both relaxable and unrelaxable constraints. The progressive barrier approach, proposed
in MADS, enjoys similar convergence properties as for our algorithm, hence, a comparison
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between the two solvers is very meaningful. For MADS solver, we used the implementation
given in the NOMAD package [1, 3, 29], version 3.6.1 (C++ version linked to Matlab via a mex
interface), where we enabled the option DISABLE MODELS, meaning that no modeling is used in
MADS. The models are disabled since our solvers are not using any modeling to speed up the
convergence.

The parameter choices of Algorithm 2 and Algorithm 3 followed those in [16]. The values
of λ and µ and of the initial weights are those of CMA-ES for unconstrained optimization
(see [20]): λ = 4 + floor(3 log(n)), µ = floor(λ/2), where floor(·) rounds to the nearest integer,
and ωi0 = ai/(a1 + · · · + aµ), ai = log(λ/2 + 1/2) − log(i), i = 1, . . . , µ. The choices of the
distribution Ck and of the update of σES

k also followed CMA-ES for unconstrained optimization
(see [20]). The forcing function selected was ρ(σ) = 10−4σ2. To reduce the step length in
unsuccessful iterations we used σk+1 = 0.9σk which corresponds to setting β1 = β2 = 0.9.
In successful iterations we set σk+1 = max{σk, σCMA-ES

k } (with σCMA-ES
k the CMA step size

used in ES). The directions dik, i = 1, . . . , λ, were scaled if necessary to obey the safeguards
dmin ≤ ‖dik‖ ≤ dmax, with dmin = 10−10 and dmax = 1010. For the update of the penalty
parameter we picked δ̄ = max{10, g(x0)} and C = 100. The measure for constraint violation
was using the `1-norm penalty.

The initial step size is estimated using only the bound constraints: If there is a pair of
finite lower and upper bounds for a variable, then σ0 is set to the half of the minimum of such
distances, otherwise σ0 = 1.

In our test results, we consider that all the constraints are relaxable except the bounds. In
this case, the merit function (MF) and the progressive approaches (PB) are respectively enabled,
the related solvers will be called ES-MF and MADS-PB respectively.

5.1 Results on known test problems

Our test set is the one used in [23, 24, 27, 31] and comprises 13 well-known test problems
G1–G13 (see Table 1). These test problems, coded in Matlab, exhibit a diversity of features
and the kind of difficulties that appear in constrained global optimization. In addition to such
problems, we added three other engineering optimization problems [23, 12]: PVD the pressure
vessel design problem, TCS the tension-compression string problem, and WBD the welded beam
design problem. Problems G2, G3, and G8 are maximization problems and were converted to
minimization. Problems G3, G5, G11, and WBD contain equality constraints. When a constraint
is of the form cei (x) = 0, we use the following relaxed inequality constraint instead ci(x) =
|cei (x)| − 10−4 ≤ 0.

The starting point x0 is chosen to be the same for all solvers and set to (LB +UB)/2 when
the bounds LB and UB are given, otherwise it is generated randomly in the search space. Two
different maximal budgets are considered for our experiments; firstly, we use a small one (i.e.,
1000 objective function evaluations) to analyse the performance of the algorithms during the
early stages of the optimization; secondly, a large maximal budget (i.e., 20000 objective function
evaluations) is used to allow the analysis of the asymptotic behavior of the tested solvers. We
note that MADS-PB is a deterministic solver while ES-MF is stochastic, thus different runs
of ES-MF will be used. We describe our finding based upon average results over 10 runs (as
different runs of ES-MF yielded close results).

Tables 2 and 3, report results for both ES-MF and MADS-PB using a maximal budget of
1000 and 20000, respectively. For each problem, we display the optimal objective value found
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Name G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 PVD TCS WBD

n 13 20 20 5 4 2 10 2 7 8 2 3 5 4 3 4
m 9 2 1 6 5 2 8 2 4 6 1 1 3 3 4 6

Table 1: Some of the features of the non-linear constrained optimization problems: the dimen-
sion n and the number of the constraints m (in addition to the bounds).

by the solver f(x∗), the associated constrained violation g(x∗), and the number of objective
function evaluations #f needed to reach x∗. When a solver returns a flag error or encounters
an internal problem, we display ’−’ instead of the values of f(x∗) and g(x∗). At the solution
x∗, one requires at least tolerance of 10−5 on the constraints violation (i.e. g(x∗) < 10−5) to
consider x∗ feasible with respect to relaxable constraints.

Table 2 gives the obtained results for a maximal budget of 1000 function evaluations. For
both starting strategies (feasible or not) and except few problems, the tested solvers were not able
to converge with the regarded budget. ES-MF is shown to have comparable performance with
MADS-PB on the tested problems. In fact, with a feasible starting point, ES-MF is performing
well on the problems G1, G2, G3, G8, G11, G12, and G13. While MADS-PB is being the best
on the problems G4, G5, G6, G7, G9, G10, PVD , TCS and WBD. Using an infeasible starting point,
ES-MF is performing better on the problems G1, G2, G3, G7, G8, G11, G12, TCS, and WBD.

For a large maximal number of function evaluation of 20000 (Table 3), ES-MF and MADS-
PB achieve convergence to a stationary point on more problems. We note that MADS-PB
requires more function evaluations for four problems G2, G3, G10 and G13. When the starting
point is feasible, enlarging the budget allows having exact feasibility at the solution point. In
this case, regarding the value of the objective function, we note that increasing the number of
function evaluation does not affect the results compare to the ones obtained using 1000 function
evaluations. When using an infeasible starting point, the advantage of ES-MF over MADS-PB
is more evident compared to the small budget case. In fact, one can observe that ES-MF is
better than MADS-PB on nine of the sixteen tested problems (i.e. G1, G2, G5, G6, G7, G8, G9,
G11, G12, G13 and WBD). MADS-PB is shown to be better on the following four problems: G3,
G4, G6 and PVD. Both solvers did not succeed to find a feasible solution for the problem G10 , for
the TCS problem MADS returns a flag error while ES-MF converge to an unfeasible solution.

5.2 Application to a multidisciplinary design optimization problem

MDO problems are typical real applications where one has to minimize a given objectif function
subject to a set of relaxable and unrelaxable constraints. In this section, we test our proposed
algorithm in an MDO problem taken from [18, 36] where a simplified wing design (built around
a tube) is regarded. In this test case, one tries to find the best wing design considering interdis-
ciplinary trade-off, which is between aerodynamic (a minimum drag) and structural (a minimum
weight) performances. Typically, the two disciplines are evaluated sequentially by means of a
fixed point iterative method until the coupling is solved with the appropriate accuracy. More
details on the problem are given in [18].

The optimization problem has 7 design variables, see Table 5.2. In addition to the bounds,
the test case has three nonlinear constraints which are treated as relaxable. The bound contraints
xlb and xub are regarded as unrelaxable and will be treated using l2 projection approach. We
run our code using the proposed starting guess x0 = (37.5, 9.0, 0.39, 1.1, 1.0, 3.3, 0.545) as
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Name Best known ES-MF MADS-PB
fopt f(x∗) #f g(x∗) f(x∗) #f g(x∗)

Starting feasible

G1 −15 −12.4895 1000 4.3e− 07 −8.99982 1000 0
G2 −0.803619 −0.271234 1000 0 −0.173894 1000 0
G3 −1 −0.254056 1000 2.7e− 06 −0.0436105 1000 0
G4 −30665.5 −30723.2 1000 0.016 −30498.1 1000 0
G5 5126.5 5999.48 1000 7.6e− 05 5976.11 973 0
G6 −6961.81 −7588.41 1000 0.22 −6961.26 1000 0
G7 24.3062 147.259 320 0 30.0327 1000 0
G8 −0.095825 −0.095825 330 0 −0.095825 453 0
G9 680.63 691.948 1000 0 683.871 1000 0
G10 7049.33 16607.4 1000 0 7843.26 1000 0
G11 0.75 0.749403 1000 2.5e− 07 0.9998 331 0
G12 −1 −1 161 0 −1 309 0
G13 0.0539498 1.45074 1000 5.9e− 07 2.78621 1000 0
PVD 5868.76 3.21995e+ 06 1000 2.2 8115.01 978 0
TCS 0.0126653 0.0135886 817 0 0.0126658 836 0
WBD 1.725 3.13076 559 0 3.01286 1000 0

Starting infeasible

G1 −15 −11.0679 1000 0 −8.93833 1000 0
G2 −0.803619 −0.271234 1000 0 −0.173894 1000 0
G3 −1 −0.000743875 1000 0 −1.40301e− 06 1000 0
G4 −30665.5 −31003.2 1000 0.22 −30643.8 1000 0
G5 5126.5 5603.69 1000 4.4e+ 04 5236.08 1000 0.63
G6 −6961.81 −3351.17 1000 0 −6961.81 1000 0
G7 24.3062 49.1948 1000 0 83.6455 1000 0
G8 −0.095825 −0.095825 204 0 −0.095825 525 0
G9 680.63 691.948 1000 0 683.871 1000 0
G10 7049.33 9626.33 1000 4.8 6013.14 1000 0.031
G11 0.75 0.749403 1000 2.5e− 07 0.9998 331 0
G12 −1 −1 161 0 −1 309 0
G13 0.0539498 1 1000 1 0.998918 1000 0
PVD 5868.76 2284.14 1000 2.2 6344.92 997 0
TCS 0.0126653 0.000149129 617 0.97 − − −
WBD 1.725 3.78146 1000 0 3.89919 1000 0

Table 2: Obtained results using a maximal budget of 1000 (average of 10 runs).

in [36]. The provided starting point is infeasible towards the nonlinear constraints. A large
maximal number of function evaluation of 20000 is used to quantify the asymptotic efficiency
and the robustness of the tested methods.

From the obtained results, one can see that ES-MF converges to an asymptotically feasible
solution x∗ = (43.043, 6.738, 0.28, 3.000, 0.749, 3.942, 0.300) with f(x∗) = −16.61198 and
g(x∗) = 2 × 10−14 using 12781 function evaluations. For MADS-PB, using 3848 function eval-
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Name Best known ES-MF MADS-PB
fopt f(x∗) #f g(x∗) f(x∗) #f g(x∗)

Starting feasible

G1 −15 −12.9999 7645 0 −9.00207 4817 0
G2 −0.803619 −0.27127 2107 0 −0.226599 20000 0
G3 −1 −1.05473 5227 0 −0.652199 20000 0
G4 −30665.5 −31009.8 3664 0.17 −30503.1 3064 0
G5 5126.5 5976.79 244 0 5976.79 1132 0
G6 −6961.81 −6942.57 1261 0 −6961.81 1381 0
G7 24.3062 147.259 320 0 25.5112 5160 0
G8 −0.095825 −0.095825 330 0 −0.095825 453 0
G9 680.63 680.63 5071 0 680.799 3568 0
G10 7049.33 15116.7 5094 0.02 7687.35 5067 0
G11 0.75 0.75 1177 0 0.9998 331 0
G12 −1 −1 161 0 −1 309 0
G13 0.0539498 1 2287 0 2.66335 20000 0
PVD 5868.76 396143 3179 0.0037 7890.36 1385 0
TCS 0.0126653 0.0135886 817 0 0.0126658 836 0
WBD 1.725 3.13076 559 0 3.01285 1292 0

Starting infeasible

G1 −15 −14.9951 3901 0 −8.99999 4222 0
G2 −0.803619 −0.27127 2107 0 −0.226599 20000 0
G3 −1 −0.000743875 1015 0 −0.00413072 20000 0
G4 −30665.5 −30990.3 2746 0.19 −30665.4 2846 0
G5 5126.5 5334.29 2782 0 5240.95 5291 0.008
G6 −6961.81 −6961.81 2500 0 −6961.81 1078 0
G7 24.3062 24.3062 11562 0 27.1991 12426 0
G8 −0.095825 −0.095825 204 0 −0.095825 525 0
G9 680.63 680.63 5071 0 680.799 3568 0
G10 7049.33 9681.53 7195 0.082 6192.82 20000 0.021
G11 0.75 0.75 1177 0 0.9998 331 0
G12 −1 −1 161 0 −1 309 0
G13 0.0539498 0.438745 12367 0 0.996284 20000 0
PVD 5868.76 2.57711e+ 12 5575 1.1e+ 04 6342.85 1515 0
TCS 0.0126653 0.000149129 617 0.97 − − −
WBD 1.725 2.70832 2971 0 3.7413 2801 0

Table 3: Obtained results using a maximal budget of 20000 (average of 10 runs).

uations, converges to the feasible point x∗ = (44.170, 6.746, 0.28, 3.000, 0.721, 4.028, 0.300)
with f(x∗) = −16.60627. We note that while MADS-PB seems to converge to a local minimum
but with a reasonable budget, the obtained solution using ES-MF solver seems to be better
than even the best know optimum but with a very small constraints violation. To confirm the
obtained performance of ES-MF on this MDO problem, we test also 10 random starting points
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Design variable Best known xlb xub Starting guess

Wing span x1 44.19 30.0 45.0 37.5
Root cord x2 6.75 6.0 12.0 9.0
Taper ratio x3 0.28 0.28 0.50 0.39
Angle of attack at root x4 3.0 -1.0 3.0 1.1
Angle of attack at tip and at rest x5 0.72 -1.0 3.0 1.0
Tube external diameter x6 4.03 1.6 5.0 3.3
Tube thickness x7 0.3 0.3 0.79 0.545

Objective function value −16.61011 1020 −8.0157 −10.93552

Constraint violation 0 3× 1040 0 2.01× 107

Table 4: Description of the MDO problem variables. The coordinates and the value of the best
known solution have been rounded.

generated inside the hyper-cube xlb × xub as follows

x0 = αxlb + (1− α)xub,

for 10 values of α uniformly generated in (0, 1).

Problem f at x0 ES-MF MADS-PB
Instance f(x0) f(x∗) g(x∗) #f f(x∗) #f g(x∗)

MDO1 −10.93552 −16.61198 1.859e− 14 13491 −16.48513285 6231 0
MDO2 −0.803619 −16.61198 1.862e− 14 13731 −16.60096482 3894 0
MDO3 −1 −16.61198 1.975e− 14 11811 −16.50912211 3758 0
MDO4 −30665.5 −16.61198 1.256e− 14 11031 −16.38935905 7061 0
MDO5 5126.5 −16.61198 1.944e− 14 12681 −16.41189544 6053 0
MDO6 −6961.81 −16.61198 1.899e− 14 14571 −16.5696096 5138 0
MDO7 24.3062 −16.61198 1.904e− 14 13731 −16.60579898 5357 0
MDO8 −0.095825 −16.61198 2.147e− 14 11371 −16.59635846 3662 0
MDO9 680.63 −16.61198 1.726e− 14 12321 −16.60317325 4979 0
MDO10 7049.33 −16.61198 1.473e− 14 9671 −16.04842191 3296 0

Table 5: Comparison results obtained on the tested MDO problem using 10 different starting
points and with a maximal budget of 20000 (average of 10 runs for each starting point).

The obtained results using MADS-PB and ES-MF are given in Table 5. One can see that
for all the chosen starting points ES-MF converges to the global minimum of the MDO problem
while MADS-PB gets trapped by local minima. We note that in general ES-MF requires more
function evaluations than MADS for all the tested instances.

6 Conclusion

In this paper, we propose a globally convergent class of ES algorithms where a merit function
(with eventually a restoration procedure) is used to decide and control the distribution of the
generated points. The obtained algorithm generalized the work [16] by including relaxable
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constraints in the spirit of what is done in [19]. To the best of our knowledge, the proposed
approach is the first globally convergent framework that handles relaxable and unrelaxable
constraints in the context of ES’s. The proposed convergence analysis was organized depending
on the number of times Restoration is entered.

We provided preliminary numerical tests on well-known global optimization problems as well
as a multidisciplinary design optimization problem. The obtained results showed the potential
of the merit approach compared to the progressive barrier approach (proposed in MADS algo-
rithm). Finally, we acknowledge that, we are concurrently working on performing a study of
extensive numerical experiments to analyse the performance of the proposed algorithm.

A Appendix

A.1 Case where algorithm is never left

Theorem A.1 Assume that f is bounded below and that the restoration is entered and never
left.

(i) Then there exists a refining subsequence.
(ii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and let d ∈
TH

Ωnr
(x∗) a corresponding refining direction. Then either g(x∗) = 0 or g◦(x∗; d) ≥ 0.

(iii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates
{xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗, and let
d ∈ TH

Ωnr
(x∗) a corresponding refining direction such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (7) is non-empty. Let the set of refining
directions be dense in T (x∗). Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωnr
(x∗) such that g◦(x∗, v) ≤ 0,

and x∗ is a Clarke stationary point of the problem (1).

Proof. (i) There must exist a refining subsequence K within this call of the restoration, by
applying the same argument of the case where one has g(xk+1) < g(xk) − ρ(σk) and g(xk) >
Cρ(σk) for an infinite subsequence of successful iterations (see the proof of Theorem 4.1). By
assumption there exists a subsequence K ′ ⊆ K such that the sequence {ak/‖ak‖}k∈K′ converges
to d ∈ TH

Ωnr
(x∗) in K ′ and the sequence {‖ak‖σk}k∈K′ goes to zero in K ′. Thus one must have

necessarily for k sufficiently large in K ′, xtrial
k+1 = xk + σkak ∈ Ωnr.

(ii) Since the iteration k ∈ K ′ is unsuccessful in the Restoration, g(xk + σkak) ≥ g(xk) −
ρ(σk) or g(xk+1) ≤ Cρ(σk), and the proof follows an argument already seen (see the proof of
Theorem 4.2).

(iii) Since at the unsuccessful iteration k ∈ K ′, Restoration is never left, so one has M(xk +
σkak) ≥ M(xk), and the proof follows an argument already seen (see the proof of Theorem 4.4).

(iv) The same proof as [19, Theorem 4.4].

A.2 Case where restoration algorithm is entered and left infinite times

Theorem A.2 Consider Algorithm 2 and assume that f is bounded below. Assume that Restora-
tion is entered and left an infinite number of times.

(i) Then there exists a refining subsequence.
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(ii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates
{xk}K for which limk∈K σk = 0. Assume that g is Lipschitz continuous near x∗, and let d ∈
TH

Ωnr
(x∗) a corresponding refining direction. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus

x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.
(iii) Let x∗ ∈ Ωnr be the limit point of a convergent subsequence of unsuccessful of iterates

{xk}K for which limk∈K σk = 0. Assume that g and f are Lipschitz continuous near x∗, and let
d ∈ TH

Ωnr
(x∗) a corresponding refining direction such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

(iv) Assume that the interior of the set T (x∗) given in (7) is non-empty. Let the set of refining
directions be dense in T (x∗).Then f◦(x∗, v) ≥ 0 for all v ∈ TCL

Ωnr
(x∗) such that g◦(x∗, v) ≤ 0, and

x∗ is a Clarke stationary point.

Proof. (i) Let K1 ⊆ K and K2 ⊆ K be two subsequences where Restoration is entered and left
respectively.

Since the iteration k ∈ K2 is unsuccessful in the Restoration, one knows that the step size
σk is reduced and never increased, one then obtains that σk tends to zero. By assumption there
exists a subsequence K ′ ⊆ K2 such that the sequence {ak/‖ak‖}k∈K′ converges to d ∈ TH

Ωnr
(x∗)

in K2 and the sequence {‖ak‖σk}k∈K′ goes to zero in K ′.
(ii) For all k ∈ K ′, one has g(xk + σkak) ≥ g(xk)− ρ(σk) or g(xk) ≤ Cρ(σk), one concludes

that either g(x∗) = 0 or g◦(x∗; d) ≥ 0.
(iii) For all k ∈ K ′, one has M(xk + σkak) ≥ M(xk), and from this we conclude that

f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.
(iv) The same proof as [19, Theorem 4.4].

References

[1] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr., S. Le Digabel, and C. Tribes. The NOMAD
project. Software available at http://www.gerad.ca/nomad.

[2] C. Audet, A. R. Conn, S. Le Digabel, and M. Peyrega. A progressive barrier derivative-free trust-
region algorithm for constrained optimization. Comput. Optim. Appl., 71(2):307–329, 2018.

[3] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37, Les
cahiers du GERAD, 2009.

[4] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

[5] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear programming.
SIAM J. Optim., 20(1):445–472, 2009.

[6] A. Auger, D. Brockhoff, and N. Hansen. Benchmarking the local metamodel CMA-ES on the noiseless
BBOB’2013 test bed. In Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’13 Companion, pages 1225–1232, New York, NY, USA, 2013.
ACM.

[7] A. Auger, N. Hansen, Z. J. Perez, R. Ros, and M. Schoenauer. Experimental comparisons of deriva-
tive free optimization algorithms. In 8th International Symposium on Experimental Algorithms,
pages 3–15. Springer Verlag, 2009.

[8] Z. Bouzarkouna. Well placement optimization. PhD thesis, University Paris-Sud - Laboratoire de
Recherche en Informatique, 2012.

20



[9] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

[10] C. A. C. Coello. List of references on constraint-handling techniques used with evolutionary algo-
rithms. https://www.cs.cinvestav.mx/~constraint/constbib.pdf.

[11] C. A. C. Coello. Theoretical and numerical constraint-handling techniques used with evolution-
ary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and
Engineering, 91:1245–1287, January 2002.

[12] C. A. Coello Coello and E. M. Montes. Constraint-handling in genetic algorithms through the use
of dominance-based tournament selection. Advanced Engineering Informatics, 16:193–203, 2002.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[14] Y. Diouane, S. Gratton, X. Vasseur, L. N. Vicente, and H. Calandra. A parallel evolution strategy
for an earth imaging problem in geophysics. Optim. Eng., 17:3–26, 2016.

[15] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strategies. Math. Program.,
152:467–490, 2015.

[16] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergent evolution strategies for constrained
optimization. Comput. Optim. Appl., 62:323–346, 2015.

[17] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math. Program.,
91:239–269, 2002.

[18] R. B. Gramacy and S. Le Digabel. The mesh adaptive direct search algorithm with treed gaussian
process surrogates. Pacific J. Optim., 11:719–747, 2015.

[19] S. Gratton and L. N. Vicente. A merit function approach for direct search. SIAM J. Optim.,
24:1980–1998, 2014.

[20] N. Hansen. The CMA Evolution Strategy: A tutorial. Available at https://www.lri.fr/~hansen/
cmatutorial.pdf, 2011.

[21] N. Hansen, A. Auger, R. Ros Raymond, S. Finck, and P. Poš́ık. Comparing results of 31 algorithms
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