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Abstract

We revisit the correspondence of competitive partial equilibrium with a social optimum in markets where
risk-averse agents solve multistage stochastic optimization problems formulated in scenario trees. The agents
trade a commodity that is produced from an uncertain supply of resources which can be stored. The agents
can also trade risk using Arrow-Debreu securities. In this setting we define a risk-trading competitive market
equilibrium and prove a welfare theorem: competitive equilibrium will yield a social optimum (with a suitably
defined social risk measure) when agents have nested coherent risk measures with intersecting polyhedral
risk sets, and there are enough Arrow-Debreu securities to hedge the uncertainty in resource supply. We
also give a proof of the converse result: a social optimum with an appropriately chosen risk measure will
yield a risk-trading competitive market equilibrium when all agents have nested strictly monotone coherent
risk measures with intersecting polyhedral risk sets, and there are enough Arrow-Debreu securities to hedge
the uncertainty in resource supply.

1 Introduction

In many competitive situations, manufacturers of a product that is sold over several periods use storage to
improve their profits. Storage enables the manufacturers to transfer production from periods when prices are
low to periods when it is high. In practice, prices are uncertain and so the optimal storage policy becomes
the solution to a stochastic control problem in which manufacturers seek to maximize expected profits if risk
neutral, or some risk-adjusted profit if they are risk averse.

In this paper we are interested in a setting in which the product to be sold cannot be stored, but the raw
materials that are used in its production can be. An example arises in renewable electricity production in which
intermittent generation (wind or photovoltaic energy) can be stored in a battery for later sale. Similarly hydro-
electric reservoirs can store energy for later conversion to electricity, or farmers can store pasture (or silage, its
harvested form) for later conversion into milk by dairy cows. The process by which the storage is replenished has
a random element (e.g. wind, sunlight, catchment inflows, and beneficial weather, in the respective examples we
cite). Storage of the raw materials enables the producer to maximize their utilization (subject to its production
capacity) when sale prices are high, while possibly holding back production during low-priced periods.

Our current interest focuses on a situation in which prices are determined by an equilibrium of several com-
peting producers, where the total sales of product from the manufacturers equals the demand from consumers
in each period. Demand is defined in terms of price by a known decreasing demand function.

The simplest case occurs when the future is known with certainty and producers have convex costs. Then an
equilibrium time-varying price can be derived from a Lagrangean decomposition of a social planning model that
seeks to maximize the consumer and producer surplus summed over all periods. The Second Welfare Theorem
(see e.g. [3]) in this setting is a straightforward consequence of Lagrangean duality theory, and states that
the optimal social plan can be interpreted as a perfectly competitive equilibrium at the prices that solve the
dual problem. The First Welfare Theorem, stating that any perfectly competitive equilibrium maximizes the
consumer and producer surplus in the social plan is also immediate from this duality.
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When the supply of the raw material is uncertain, but governed by a known stochastic process, the social
planning problem becomes a stochastic optimal control problem, or more generally a multistage stochastic
programming problem. Multistage stochastic optimization models have been well studied (see e.g. [2],[10]). If
all agents act as price takers, and seek to maximize expected operating profits, then the first and second welfare
theorems translate naturally into the stochastic setting. When the stochastic supply process has a finite sample
space, it can be represented as a scenario tree [2], and the Lagrangean theory applied to the deterministic
equivalent social planning problem and its dual.

Multistage stochastic optimization becomes more complicated when agents are risk-averse. Decisions in this
environment affect outcomes at different times and different states of the world, for which consistent preference
relations must be defined. A major contribution to the understanding of this field was the theory of coherent
risk measures [1] and their extension to a dynamic setting [8]. This defines a conditional risk mapping in each
state of the world in terms of current costs added to risk-adjusted uncertain future costs expressed as a certainty
equivalent value. The risk-adjustment is defined in terms of a single-step coherent risk measure. By applying
the duality theory of coherent risk measures (see e.g. [10]), one can express the certainty equivalent value of
future costs in a state of the world as the conditional expectation of future costs with respect to a probability
measure that is chosen to be the worst in a convex set of conditional probability distributions that we call the
risk set.

When the agents are risk averse, the welfare theorems require further assumptions that ensure that the
market for risk is complete. The recent paper [5] (building on the models of [4] and [6]) studies this problem for
multistage electricity markets when some producers operate hydroelectricity reservoirs with uncertain inflows.
Under an assumption that agents can trade risk using Arrow-Debreu securities, [5] show that a risk-averse social
planning solution with an appropriately chosen risk measure can be interpreted as a competitive equilibrium in
which the agents trade risk. This result corresponds to the Second Welfare Theorem. It is easy to see that this
result extends from electricity markets to the more general setting that we study here.

The proof of the result in [5] involves an implicit assumption that all events in the scenario tree occur with
positive risk-adjusted probability. This assumption is made in [5] with a claim of no loss of generality (by
removing zero probability events), but this is problematic when risk-adjusted probabilities are endogeneous.
For example zero risk-adjusted probabilities will occur when risk is measured using Average Value at Risk,
which is not a strictly monotone risk measure as discussed in [9]. The welfare result in [5] is therefore only
guaranteed for strictly monotone risk measures. In our setting this corresponds to every agent’s risk set lying
strictly within the positive orthant. This is not surprising. It is well known (see [9]) that strict monotonicity of
one-step coherent risk measures will guarantee the time consistency of optimal policies that use nested dynamic
versions of these measures, and the time-consistency of agent’s policies appears to be a necessary property if
we are to consider them to be in equilibrium (since each agent is anticipating future optimal actions by its
competitors.)

In this paper we attempt to clarify and resolve this oversight. In doing so we provide a significantly simpler
proof of Theorem 11 in [5] that yields greater insights into the relationship between risk-averse optimization and
equilibrium when one-step risk measures are coherent and strictly monotone. We also establish the converse to
Theorem 11. In other words we demonstrate a form of the First Welfare Theorem: that a perfectly competitive
market equilibrium in which risk-averse agents produce and sell a single product, as well as trading Arrow-
Debreu securities, will maximize a risk-adjusted social welfare function. As in Theorem 11, the result requires
that the agents’ risk sets in each state of the world have non-empty intersection.

The current paper also extends the results in [5] to settings in which agents control storage facilities that
are linked. The motivating example is a cascade of hydroelectric stations operated by different agents. Water
releases from upstream reservoirs affect the actions of downstream agents. Our model shows how a competitive
equilibrium will emerge if we introduce a water price at each point in the river chain. This construction is
well-understood in a deterministic setting; we show it can be introduced in a stochastic dynamic setting with
risk-averse agents.

The establishment of both welfare theorems provides a deeper understanding of markets. Our version of
the Second Welfare Theorem (Theorem 11 in [5] under strict monotonicity) shows that a social planner could
argue that their actions in solving a risk-averse social planning problem replicates what one might expect to
see in a perfectly competitive market with a complete market for trading risk. A number of electricity markets
(e.g. Brazil and Chile) operate on this principle. The corresponding analogue of the First Welfare Theorem
(newly established in this paper) shows that if electricity markets are perfectly competitive and endowed with a
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complete market for trading risk, then one might expect them to arrive in equilibrium at policies that maximize
risk-adjusted consumer and producer surplus. More importantly perhaps, the theorems indicate how social
welfare might be compromised in these markets if risk markets are incomplete or illiquid, even if agents behave
as price takers.

The paper is laid out as follows. In the next section we define one-step coherent polyhedral risk measures,
and give a lemma that enables us to evaluate these using linear programming. Section 3 defines a scenario tree
representation of resource uncertainty, and extends the definition of risk measure to a multistage setting. In
Section 4 we introduce two versions of a system optimization problem. The first is a risk-averse optimization
problem and the second is a related complementarity problem, which imposes a time-consistent constraint on
the solution. They are equivalent when all agents have strictly monotone risk measures. Section 5 defines a
social risk measure and recalls the concept of Arrow-Debreu securities. We then prove that any solution to
the complementarity version of the social planning problem corresponds to a risk-trading equilibrium when all
agent’s risk sets have nonempty intersection and the set of Arrow-Debreu securities spans the set of random
outcomes in each stage. As a corollary it follows that the social planning problem and risk-trading equilibrium
coincide when all agents have strictly monotone risk measures. In the final section we draw some conclusions
and discuss extensions to our results.

2 Coherent risk measures

We consider a setting in which decision makers are risk averse when contemplating a decision that has random
events defined by a sample space M. For simplicity, we assume throughout this paper that M is finite. Each
decision maker faced with a random cost or disbenefit Z(m), m ∈ M, measures its risk using a coherent risk
measure ρ as defined axiomatically by [1]. Thus ρ(Z) is a real number representing the risk-adjusted disbenefit
of Z.

It is well-known that any coherent risk measure ρ(Z) has a dual representation expressing it as

ρ(Z) = sup
µ∈D

Eµ[Z]

where D is a convex subset of probability measures onM (see e.g. [1, 4]). D is called the risk set of the coherent
risk measure. We use the notation [p]M to denote any vector {p(m),m ∈ M}. So any probability measure
µ ∈ D can be written [µ]M, where µ(m) defines the probability of event m. The dual representation using a
risk set plays an important role in the analysis we carry out in this paper. We refer to the case where the risk
set is a singleton as risk neutral.

In the rest of this paper we assume that risk sets are polyhedrons with known extreme points
{

[pk]M, k ∈ K
}

,
where K is a finite index set. Then

sup
µ∈D

Eµ[Z] = sup
µ∈D

∑
m∈M

µ(m)Z(m) = max
k∈K

∑
m∈M

pk(m)Z(m)

since the maximum of a linear function over D is attained at an extreme point. By a standard dualization, this
gives

sup
µ∈D

∑
m∈M

µ(m)Z(m) =

{
min θ
s.t. θ ≥

∑
m∈M

pk(m)Z(m), k ∈ K.

Lemma 1 Suppose D is a polyhedral risk set with extreme points {[pk]M, k ∈ K} and Z(m), m ∈M is given.
Then

θ = sup
µ∈D

∑
m∈M

µ(m)Z(m)

if and only if there is some γ with∑
k∈K

γk = 1

0 ≤ γk ⊥ θ −
∑
m∈M

pk(m)Z(m) ≥ 0, k ∈ K.

Furthermore, µ̄, defined by µ̄(m) =
∑
k∈K) γ

kpk(m), is in D and attains the supremum.
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Proof. For the forward implication, just choose γk = 1 for the term involving extreme point k that achieves
the supremum. For the reverse implication, since θ ≥

∑
m∈M pk(m)Z(m) for each extreme point, it follows that

θ ≥
∑
m∈M µ(m)Z(m) for each µ ∈ D and hence θ ≥ supµ∈D

∑
m∈M µ(m)Z(m). But complementary slackness

shows that
θ =

∑
m∈M

µ̄(m)Z(m),

where µ̄ is defined in the statement of the theorem and is clearly in D so θ ≤ supµ∈D
∑
m∈M µ(m)Z(m) and

thus equality holds.
By definition, a coherent risk measure is monotone. This means that

Za ≥ Zb ⇒ ρ(Za) ≥ ρ(Zb)

A stronger condition is strict monotonicity. This requires that

Za ≥ Zb and Za 6= Zb ⇒ ρ(Za) > ρ(Zb).

If strictly monotone coherent risk measures have polyhedral risk sets then these lie strictly inside the positive
orthant.

Lemma 2 Suppose ρ is a coherent risk measure with a polyhedral risk set D. Then D ⊂ int(R|M|+ ) if and only
if ρ is strictly monotone.

Proof. Suppose D lies in int(R|M|+ ). To show strict monotonicity, we suppose Za ≥ Zb and Za(m̄) > Zb(m̄) for
some m̄ ∈ M. Let ρ(Za) =

∑
m∈M µ∗a(m)Za(m), and ρ(Zb) =

∑
m∈M µ∗b(m)Zb(m). Then strict monotonicity

follows from µ∗b(m̄) > 0 since

ρ(Za) =
∑
m∈M

µ∗a(m)Za(m)

≥
∑
m∈M

µ∗b(m)Za(m)

>
∑
m∈M

µ∗b(m)Zb(m)

= ρ(Zb).

Conversely, suppose D does not lie in int(R|M|+ ), thus containing some point µ̄ with a zero component, say
µ̄(m1) = 0. Choose Z(m) > 0, m = m2,m3, . . . ,m|M|, and Z(m1) < 0, so if µ(m1) > 0 then∑

m∈M
µ(m)Z(m) = µ(m1)Z(m1) +

∑
m 6=m1

µ(m)Z(m)

<
∑
m 6=m1

µ(m)Z(m).

It follows that any µ̄ ∈ arg maxµ∈D
∑
m∈M µ(m)Z(m) must have µ̄(m1) = 0. Let

Z ′(m) =

{
Z(m1)− 1, m = m1

Z(m), otherwise

so Z ′ ≤ Z with Z ′ 6= Z. Any µ̄′ ∈ arg maxµ∈D
∑
m∈M µ(m)Z ′(m) must have µ̄′(m1) = 0, and by the optimality

of µ̄ satisfy ∑
m 6=m1

µ̄′(m)Z(m) =
∑
m 6=m1

µ̄(m)Z(m)

so ρ(Z ′) = ρ(Z) violating the strict monotonicity of ρ.
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Figure 1: A scenario tree with nodes N = {1, 2, . . . , 17}, and T = 4

3 Dynamic risk measures

We incorporate the risk measures discussed in the previous section into a multistage setting in which agents
make production and consumption decisions as well as exchanges of welfare over several time stages. Random
events are now defined by a discrete-time stochastic process. Given a finite set of events in each stage, such a
process can be modeled using a scenario tree with nodes n ∈ N and leaves in L. By convention we number
the root node n = 0. The unique predecessor of node n 6= 0 is denoted by n−. We denote the set of children
of node n ∈ N \ L by n+, and denote its cardinality by |n+|. The set of predecessors of node n on the path
from n to node 0 is denoted P(n) (so P(n) = {n, n−, n−−, . . . , 0}), where we use the natural definitions for
n−− and n++. The depth δ(n) of node n is the number of nodes on the path to node 0, so δ(0) = 1 and we
assume that every leaf node has the same depth, say δL. The depth of a node can be interpreted as a time index
t = 1, 2, . . . , T = δL. A pictorial representation of a scenario tree with four time stages is given in Figure 1.

For a multistage decision problem, we require a dynamic version of risk. The concept of coherent dynamic
risk measures was introduced in [7] and is described for general Markov decision problems in [8]. Formally one
defines a probability space (Ω,F , P ) and a filtration {∅,Ω} = F1 ⊂ F2 . . . ⊂ FT ⊂ F of σ-fields where all data
in node 0 is assumed to be deterministic, and decisions at time t are Ft-measurable random variables (see [8]).
Working with finite probability spaces defined by a scenario tree simplifies this description.

Given a tree defined by N , suppose the random sequence of actions {u(n), n ∈ N} results in a random
sequence of disbenefits {Z(n), n ∈ N}. We seek to measure the risk of this disbenefit sequence when viewed
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by a decision maker at node 0. At node n the decision maker is endowed with a one-step risk set D(n) that
measures the risk of random risk-adjusted costs accounted for in m ∈ n+. Thus elements of D(n) are finite
probability distributions of the form [p]n+

.
The risk-adjusted disbenefit θ(n) of all random future outcomes at node n ∈ N \L can be defined recursively.

We denote the future risk-adjusted disbenefit in each leaf node n ∈ L by θ̄(n). Then θ(n) is defined recursively
to be

θ(n) =

{
θ̄(n), n ∈ L,

sup
µ∈D(n)

∑
m∈n+

µ(m)(Z(m) + θ(m)), n ∈ N \ L. (1)

When viewed in node n, θ(n) can be interpreted to be the fair one-time charge we would be willing to incur
instead of the sequence of random future costs Z(m) incurred in all successor nodes of n. In other words the
measure θ(n) is a certainty equivalent cost or risk-adjusted expected cost of all the future costs in the subtree
rooted at node n. As demonstrated in [8, Theorem 1], any time-consistent dynamic risk measure has this
recursive form.

Since we assume for n ∈ N \L that D(n) is a polyhedron with extreme points {
[
pk
]
, k ∈ K(n)}, the recursive

structure defined by (1) can then be simplified to

sup
µ∈D(n)

∑
m∈n+

µ(m)(Z(m) + θ(m))

=

{
min θ
s.t. θ ≥

∑
m∈n+

pk(m) (Z(m) + θ(m)) , k ∈ K(n). (2)

For some of our results we will need to make the following assumption.

Assumption 1 For every n ∈ N \ L, D(n) ⊂ int(R|n+|
+ ).

Under this assumption, Lemma 2 ensures that one-step risk measures are strictly monotone, so the nested
risk measure with risk sets D(n), n ∈ N \ L gives time-consistent policies. To see this observe that when
Assumption 1 does not hold it is possible for

p̄k ∈ arg max
k∈K(n)

∑
m∈n+

pk(m)(Z(m) + θ(m))

to have pk(m̄) = 0 for some m̄. If so, then evaluating the risk at node 0 will ignore all disbenefits in the subtree
of nodes in N rooted at m̄. Decisions in these nodes will not affect the overall risk-adjusted benefit in node
0 unless they change p̄k. If these decisions are suboptimal given that the decision maker is in the state of the
world defined by m̄ then the policy defined by all the decisions is not time-consistent.

Assumption 1 also avoids some technical difficulties in proving a correspondence between equilibrium and
optimization. In particular if no element of any probability vector is ever zero then the risk-adjusted disbenefit
at node 0 can be computed by weighting the disbenefit at each node n by a strictly positive unconditional
probability, say σ(n), to give

θ(0) =
∑

n∈N\{0}

σ(n)Z(n).

Given σ(0) = 1 and σ(n) > 0,n ∈ N \ {0}, conditional probabilities µ(n), n ∈ N \ {0} can be computed as
σ(n)/σ(n−). We extend this concept to risk sets not satisfying Assumption 1 using the following definitions.

Consider a scenario tree with polyhedral risk sets D(n), n ∈ N \L, each having a finite set of extreme points
{
[
pk
]
n+

, k ∈ K(n)}. Any set of nonnegative numbers of the form {γk(n), k ∈ K(n), n ∈ N \ L} is called a set

of tree multipliers. A set of tree multipliers is conditional if for every n ∈ N \ L,
∑
k∈K(n) γ

k(n) = 1. A set of

tree multipliers {λk(n), k ∈ K(n), n ∈ N \ L} is unconditional if

0 = 1−
∑

k∈K(0)

λk(0), (3)

0 = −
∑

k∈K(n)

λk(n) +
∑

k∈K(n−)

λk(n−)pk(n), n ∈ N \ L, n 6= 0. (4)
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Observe that any set of conditional tree multipliers γ corresponds to a unique set of unconditional tree
multipliers λ defined recursively by setting λ(0) = γ(0), and defining

λ(n) = γ(n)
∑

k∈K(n−)

λk(n−)pk(n), n ∈ N \ {0}. (5)

Since λ(0) ≥ 0, repeated application of (5) implies λ(n) ≥ 0 for every n ∈ N \ {0}, so λk(n) are well-defined
tree multipliers. These are easily verified to be unconditional since for n ∈ N \ L∑

k∈K(n)

λk(n) =
∑

k∈K(n−)

λk(n−)pk(n),

giving (4) and ∑
k∈K(0)

λk(0) =
∑

k∈K(0)

γk(0) = 1,

giving (3). Conversely any unconditional set of tree multipliers corresponds to a unique set of conditional tree
multipliers as long as Assumption 1 holds. To see this define γ(0) = λ(0), and

γ(n) = λ(n)/(
∑

k∈K(n−)

λk(n−)pk(n)) n ∈ N \ {0}. (6)

By Assumption 1 every component of pk(m), m ∈ 0+ is strictly positive, and the vector (λ(0)) is nonnegative
and nonzero by (3), so γk(m) is well defined by (6) for m ∈ 0+. However, (4) implies that the vector (λk(m))
is nonnegative and nonzero, and hence recursively that∑

k∈K(n−)

λk(n−)pk(n) > 0, n ∈ N \ {0}. (7)

Finally (4) and (6) imply
∑
k∈K(n) γ

k(n) = 1, showing that {γk(n), k ∈ K(n), n ∈ N \ L} is conditional.
To ease notation in the rest of the paper, given any unconditional tree multipliers λ we define tree multipliers

σ by

σ(n) =

{
1, n = 0,∑
k∈K(n−)

λk(n−)pk(n), n ∈ N \ {0}. (8)

Observe by (5) that (8) implies

λk(n) = γk(n)σ(n), k ∈ K(n), n ∈ N , (9)

whence multiplying by pk(m) and summing gives∑
k∈K(n)

λk(n)pk(m) = σ(m) = µ(m)σ(n), m ∈ n+, n ∈ N \ L, (10)

where we define
µ(m) =

∑
k∈K(n)

γk(n)pk(m), m ∈ n+, n ∈ N \ L. (11)

Conditional and unconditional multipliers satisfy the following lemma.

Lemma 3 If θ(n), n ∈ N and a conditional set of tree multipliers {γk(n), k ∈ K(n), n ∈ N \ L} satisfies

0 ≤ γk(n) ⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m)) ≥ 0, k ∈ K(n), n ∈ N \ L, (12)

then there exist unconditional multipliers λ satisfying

0 ≤ λk(n) ⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m)) ≥ 0, k ∈ K(n), n ∈ N \ L. (13)

Conversely, if (λ, θ) satisfies (3),(4),(13), and Assumption 1 holds, then σ(n) > 0, n ∈ N and there exists

conditional tree multipliers γk(n) = λk(n)
σ(n) , n ∈ N \ L satisfying (12).
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Proof. Given a conditional set of tree multipliers γ construct unconditional multipliers λ from (5) and λ(0) = 1.
Given these values, σ ≥ 0 is defined by (8), so

0 ≤ σ(n)γk(n) ⊥ θ(n)−
∑
m∈n+

pk(m) (C(m) + θ(m)) ≥ 0

yielding (13) via (9). Conversely, Assumption 1 implies (7), so we have σ(n) > 0. The relationship (12) then
follows from (13) by dividing through by σ(n) > 0.

4 System optimization

We now turn our attention to a system optimization problem that minimizes risk-adjusted disbenefit using a
dynamic risk measure. This is defined by (1) using polyhedral risk sets

D(n) = conv{
{

[pk]n+
, k ∈ K(n)

}
}, n ∈ N \ L.

Given actions ua(n), n ∈ N the system disbenefit in node n is measured by a function
∑
a∈A Ca(ua(n)). Here

for producer a, Ca measures production cost, and for consumer a, Ca measures consumption disbenefit that
increases as ua increases towards 0. We assume that each Ca is convex.

Each producing agent a consumes resources that come from a vector xa of storages that are released at rates
defined by the vector ua yielding total production ga(ua). The storage is replenished with a vector of random
supplies ωa. This gives a stochastic process defined by

xa(n) ≤ xa(n−) +
∑
b∈A

Tabub(n) + ωa(n).

Note that the matrix Tab in the dynamics allows for a network of connections between storage devices controlled
by different agents, and the inequality allows for free disposal (or spilling) at the storage device. The dynamics
could be expressed a little more generally using a diagonal matrix Sa for gains or losses and making S and T
dependent on node as

xa(n) ≤ Sa(n)xa(n−) +
∑
b∈A

Tab(n)ub(n) + ωa(n),

but since this does not change the subsequent analysis in any substantive way, we assume Sa(n) ≡ I and
Tab(n) ≡ Tab in what follows.

The releases ua and storages xa are constrained to lie in respective sets Ua and Xa. For any set S we define
the normal cone at s̄ to be

NS(s̄) = {d : d>(s− s̄) ≤ 0 for all s ∈ S},

and recall that s̄ minimizes a convex function f(s) over convex set S if and only if

0 ∈ ∇sf(s) +NS(s̄).

Given production ua, a ∈ A, and resulting storage xa, a ∈ A, the risk-adjusted system disbenefit at node 0
is
∑
a∈A Ca(ua(0)) + θ(0) where θ(0) is defined recursively by

θ(n) =


−
∑
a∈A

Va(xa(n)), n ∈ L,

max
µ∈D(n)

∑
m∈n+

µ(m)

( ∑
a∈A

Ca(ua(m)) + θ(m)

)
, n ∈ N \ L.

(14)
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The risk-averse system optimization problem is then formulated as follows.

SO(D):

min
u,x,θ

∑
a∈A

Ca(ua(0)) + θ(0)

s.t. θ(n) ≥
∑
m∈n+

pk(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
,

k ∈ K(n), n ∈ N \ L, (15)

xa(n) ≤ xa(n−) +
∑
b∈A

Tabub(n) + ωa(n), a ∈ A, n ∈ N , (16)∑
a∈A

ga(ua(n)) ≥ 0 n ∈ N , (17)

θ(n) = −
∑
a∈A

Va(xa(n)), n ∈ L,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N , a ∈ A.

We proceed to use the Karush-Kuhn-Tucker conditions for SO(D) to derive a complementarity version of
this problem. To make this possible, the following condition will be assumed throughout the paper.

Assumption 2 The nonlinear constraints in SO(D) satisfy a constraint qualification.

The Karush-Kuhn-Tucker conditions for SO(D) are

KKT(D):

0 = 1−
∑

k∈K(0)

λk(0),

0 = −
∑

k∈K(n)

λk(n) +
∑

k∈K(n−)

λk(n−)pk(n), n ∈ N \ L, n 6= 0

0 ≤ λk(n) ⊥ θ(n)−
∑
m∈n+

pk(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
≥ 0, k ∈ K(n), n ∈ N \ L

θ(n) = −
∑
a∈A

Va(xa(n)), n ∈ L

0 ∈ ∇ua(0)

[
Ca(ua(0))− π̃(0)ga(ua(0))−

∑
b∈A

α̃b(0)Tbaua(0)

]
+NUa(ua(0)), a ∈ A

0 ∈ ∇ua(n)

 ∑
k∈K(n−)

λk(n−)pk(n)Ca(ua(n))− π̃(n)ga(ua(n))−
∑
b∈A

α̃b(n)Tbaua(n)


+NUa(ua(n)), a ∈ A, n ∈ N \ {0}

0 ∈ α̃a(n)−
∑
m∈n+

α̃a(m) +NXa
(xa(n)), a ∈ A, n ∈ N \ L

0 ∈ α̃a(n)−
∑

k∈K(n−)

λk(n−)pk(n)∇xa(n)Va(xa(n)) +NXa(xa(n)), a ∈ A, n ∈ L

0 ≤ α̃a(n) ⊥ −xa(n) + xa(n−) +
∑
b∈A

Tabub(n) + ωa(n) ≥ 0, a ∈ A, n ∈ N

0 ≤ π̃(n) ⊥
∑
a∈A

ga(ua(n)) ≥ 0, n ∈ N .

Since SO(D) is a convex optimization problem and the constraint qualification Assumption 2 holds, these
KKT conditions are necessary and sufficient for optimality in SO(D). Using Lemma 3 we now show under
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Assumption 1 that these conditions are equivalent to the following set of conditions.

SE(D):

0 = 1−
∑

k∈K(n)

γk(n), n ∈ N \ L

0 ≤ γk(n) ⊥ θ(n)−
∑
m∈n+

pk(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
≥ 0, k ∈ K(n), n ∈ N \ L

θ(n) = −
∑
a∈A

Va(xa(n)), n ∈ L

0 ∈ ∇ua(n)

[
Ca(ua(n))− π(n)ga(ua(n))−

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a ∈ A, n ∈ N

0 ∈ αa(n)−
∑
m∈n+

∑
k∈K(n)

γk(n)pk(m)αa(m) +NXa(xa(n)), a ∈ A, n ∈ N \ L

0 ∈ αa(n)−∇xa(n)Va(xa(n)) +NXa(xa(n)), a ∈ A, n ∈ L

0 ≤ αa(n) ⊥ −xa(n) + xa(n−) +
∑
b∈A

Tabub(n) + ωa(n) ≥ 0, a ∈ A, n ∈ N

0 ≤ π(n) ⊥
∑
a∈A

ga(ua(n)) ≥ 0, n ∈ N .

Theorem 1 (i) Any solution to SE(D) solves SO(D) and satisfies

θ(n) = max
µ∈D(n)

∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)

=
∑
m∈n+

µ̄(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
,

where µ̄(m) =
∑
k∈K(n) γ

k(n)pk(m).

(ii) Under Assumption 1 any solution to SO(D) satisfies SE(D) for some π, α, γ.

Proof. (i) Suppose (u, θ, x, γ, α, π) is a solution of SE(D). Since γ are conditional multipliers, and θ(n) =
−
∑
a∈A Va(xa(n)), n ∈ L, and (θ, γ) satisfies (12), Lemma 3 provides unconditional multipliers λ (and therefore

σ from (8)) such that (13) holds for C(m) =
∑
a∈A Ca(ua(m)). Using these observations, the problem SE(D)

10



leads to the conditions:

0 = 1−
∑

k∈K(0)

λk(0),

0 = −
∑

k∈K(n)

λk(n) +
∑

k∈K(n−)

λk(n−)pk(n), n ∈ N \ L, n 6= 0

0 ≤ λk(n) ⊥ θ(n)−
∑
m∈n+

pk(m)
∑
a∈A

(Ca(ua(m)) + θ(m)) ≥ 0, k ∈ K(n), n ∈ N \ L

θ(n) = −
∑
a∈A

Va(xa(n)), n ∈ L

0 ∈ ∇ua(n)

[
σ(n)Ca(ua(n))− σ(n)π(n)ga(ua(n))− σ(n)

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a ∈ A, n ∈ N

0 ∈ σ(n)αa(n)−
∑
m∈n+

∑
k∈K(n)

λk(n)pk(m)αa(m) +NXa(xa(n)), a ∈ A, n ∈ N \ L

0 ∈ σ(n)αa(n)− σ(n)∇xa(n)Va(xa(n)) +NXa
(xa(n)), a ∈ A, n ∈ L

0 ≤ σ(n)αa(n) ⊥ −xa(n) + xa(n−) +
∑
b∈A

Tabub(n) + ωa(n) ≥ 0, a ∈ A, n ∈ N

0 ≤ σ(n)π(n) ⊥
∑
a∈A

ga(ua(n)) ≥ 0, n ∈ N .

The relationships involving normal cones follow from multiplication by σ(n) and (9), while the complementarity
conditions follow from Lemma 3 and multiplication by σ(n). If we let α̃a(n) = σ(n)αa(n) and π̃(n) = σ(n)π(n)
then recalling (8) these conditions yield KKT(D), the KKT conditions for SO(D). Since any solution of SE(D)
satisfies (12) in Lemma 3, (9) and Lemma 1 imply that

θ(n) = sup
µ∈D(n)

∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)

is attained by µ̄(m) =
∑
k∈K(n) γ

k(n)pk(m), which gives the last statement of (i).

(ii) For the converse result, suppose that we have a solution (u, x, θ, λ, π̃, α̃) of the KKT conditions of SO(D)
as shown above. Then Assumption 1 and Lemma 3 provide σ(n) > 0 and a conditional set of multipliers
γk(n) = λk(n)/σ(n) satisfying (12) for C(m) =

∑
a∈A Ca(ua(m)). Substituting αa(n) = α̃a(n)/σ(n) and

π(n) = π̃(n)/σ(n) into the KKT conditions of SO(D) and using (12) and (10) leads to

1 =
∑

k∈K(n)

γk(n), n ∈ N \ L

0 ≤ γk(n) ⊥ θ(n)−
∑
m∈n+

pk(m)
∑
a∈A

(Ca(ua(m)) + θ(m)) ≥ 0, k ∈ K(n), n ∈ N \ L

θ(n) = −
∑
a∈A

Va(xa(n)), n ∈ L

0 ∈ ∇ua(n)

[
σ(n)Ca(ua(n))− σ(n)π(n)ga(ua(n))− σ(n)

∑
b∈A

αb(n)Tbaua(n)

]
+NUa(ua(n)), a ∈ A, n ∈ N

0 ∈ σ(n)αa(n)−
∑
m∈n+

σ(n)
∑

k∈K(n)

γk(n)pk(m)αa(m) +NXa
(xa(n)), a ∈ A, n ∈ N \ L

0 ∈ σ(n)αa(n)− σ(n)∇xa(n)Va(xa(n)) +NXa
(xa(n)), a ∈ A, n ∈ L

0 ≤ σ(n)αa(n) ⊥ −xa(n) + xa(n−) +
∑
b∈A

Tabub(n) + ωa(n) ≥ 0, a ∈ A, n ∈ N

0 ≤ σ(n)π(n) ⊥
∑
a∈A

ga(ua(n)) ≥ 0, n ∈ N .
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Dividing through by σ(n) appropriately leads to a solution of SE(D) as required.

5 Risk trading

We now turn our attention to the situation where agents with polyhedral risk sets can trade financial contracts
to reduce their risk. We will show that the system optimal solution to a social planning problem corresponds
to a perfectly competitive equilibrium with risk trading. We use the notation Za(n), n ∈ N to denote the
disbenefit of agent a, and Da(n) to denote the risk set of agent a, which is a polyhedral set with extreme points
{
[
pka
]
n+

, k ∈ Ka(n)}. In order to get some alignment between the objectives of agents and a social planner, we

establish a connection between their risk sets using the following assumption and definitions.

Assumption 3 For n ∈ N \ L ⋂
a∈A
Da(n) 6= ∅.

Definition 1 For n ∈ N \ L the social planning risk set is

Ds(n) =
⋂
a∈A
Da(n), .

The financial instruments that are traded are assumed to take a specific form.

Definition 2 Given any node n ∈ N \L, an Arrow-Debreu security for node m ∈ n+ is a contract that charges
a price µ(m) in node n to receive a payment of 1 in node m ∈ n+.

We shall assume throughout this section that the market for risk is complete. Formally this means that the set
of Arrow-Debreu securities traded at each node n spans the set of possible outcomes in n+.

Assumption 4 At every node n ∈ N \ L, there is an Arrow-Debreu security for each child node m ∈ n+.

To reduce its risk, suppose that each agent a in node n purchases Wa(m) Arrow-Debreu securities for node
m ∈ n+. Each agent a’s optimization problem with risk trading is then formulated as

AOa(π, α, µ,Da):

min
ua,xa,Wa,θa

Za(0;u, x,W ) + θa(0)

s.t. θa(n) ≥
∑
m∈n+

pka(m)(Za(m;u, x,W )−Wa(m) + θa(m)),

k ∈ Ka(n), n ∈ N \ L,
θa(n) = −Va(xa(n)), n ∈ L,
ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N ,

where we use the shorthand notation

Za(n;u, x,W ) = Ca(ua(n))− π(n)ga(ua(n)) + αa(n) (xa(n)− xa(n−)− ωa(n))

−
∑
b∈A

αb(n)Tbaua(n) +
∑
m∈n+

µ(m)Wa(m), n ∈ N . (18)

Essentially the agent minimizes immediate cost plus the (insurance) cost of the security along with future costs,
in the understanding that the security will pay back in the next period according to the situation realized.

As we outlined above for the system optimization problem, AOa(π, α, µ,Da) is equivalent to its KKT con-
ditions, which are derived by applying nonnegative Lagrange multipliers λk(n) to the inequality constraints.
Since θ is unconstrained, λ satisfies (3) and (4), so they are unconditional tree multipliers. This enables us to
substitute σ(n) for

∑
k∈Ka(n−)

λk(n−)pka(n) in the following.
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KKTa:

0 = 1−
∑

k∈Ka(0)

λk(0), (19a)

0 = −
∑

k∈Ka(n)

λk(n) + σ(n), n ∈ N \ L, n 6= 0 (19b)

0 ≤ λk(n) ⊥ θa(n)−
∑
m∈n+

pka(m) (Za(m;u, x,W )−Wa(m) + θa(m)) ≥ 0,

k ∈ Ka(n), n ∈ N \ L (19c)

θa(n) = −Va(xa(n)), n ∈ L. (19d)

0 ∈ ∇ua(0)Za(0;u, x,W ) +NUa(ua(0)), (19e)

0 ∈ σ(n)∇ua(n)Za(n;u, x,W ) +NUa(ua(n)), n ∈ N \ {0} (19f)

0 ∈ σ(n)αa(n)−
∑
m∈n+

σ(m)αa(m) +NXa(xa(n)), n ∈ N \ L (19g)

0 ∈ σ(n)αa(n)− σ(n)∇xa(n)Va(xa(n)) +NXa
(xa(n)), n ∈ L (19h)

0 = µ(m)−
∑

k∈Ka(0)

λk(0)pka(m), m ∈ 0+ (19i)

0 = σ(q−)µ(q)− σ(q), q ∈ n++ ∩N , n ∈ N . (19j)

with Za(n;u, x,W ) defined by (18).
We also define a complementarity form of AOa(π, α, µ,Da)

AEa(π, α, µ,Da):

0 = 1−
∑

k∈Ka(n)

γk(n), n ∈ N \ L (20a)

0 ≤ γk(n) ⊥ θa(n)−
∑
m∈n+

pka(m)
(
Za(m;u, x,W )−Wa(m) + θa(m)

)
≥ 0,

k ∈ Ka(n), n ∈ N \ L (20b)

θa(n) = −Va(xa(n)), n ∈ L (20c)

0 ∈ ∇ua(n)Za(n;u, x,W ) +NUa(ua(n)), n ∈ N (20d)

0 ∈ αa(n)−
∑
m∈n+

µ(m)αa(m) +NXa(xa(n)), n ∈ N \ L (20e)

0 ∈ αa(n)−∇xa(n)Va(xa(n)) +NXa
(xa(n)), n ∈ L (20f)

0 = µ(m)−
∑

k∈Ka(n)

γk(n)pka(m), m ∈ n+, n ∈ N \ L (20g)

where Za(n;u, x,W ) is defined by (18).

Theorem 2 (i) Any solution to AEa(π, α, µ,Da) provides a solution to the optimization problem AOa(π, α, µ,Da),
and satisfies

θa(n) = max
µ∈Da(n)

∑
m∈n+

µ(m) (Za(m;u, x,W )−Wa(m) + θa(m))

=
∑
m∈n+

µ̄(m) (Za(m;u, x,W )−Wa(m) + θa(m)) ,

where µ̄(m) =
∑
k∈Ka(n)

γk(n)pka(m).
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(ii) If Assumption 1 holds, then any solution of AOa(π, α, µ,Da) provides a solution to AEa(π, α, µ,Da) for
some γ.

Proof. (i) First suppose that (ua, xa,Wa, θa, γ) is a solution of AEa(π, α, µ,Da). It follows from Lemma 3 that
there exists λ which satisfies (13) with C(m) = Za(m;u, x,W ) −Wa(m) and θa(m) replacing θ(m). Given λ
we can define σ using (8).

Putting these relationships together and substituting into the AEa(π, α, µ,Da) conditions (observing that
σ(n) ≥ 0) gives

0 = 1−
∑

k∈Ka(0)

λk(0),

0 = −
∑

k∈Ka(n)

λk(n) +
∑

k∈Ka(n−)

λk(n−)pka(n), n ∈ N \ L, n 6= 0

0 ≤ λk(n) ⊥ θa(n)−
∑
m∈n+

pka(m)
(
Za(m;u, x,W )−Wa(m) + θa(m)

)
≥ 0, k ∈ Ka(n), n ∈ N \ L

θa(n) = −Va(xa(n)), n ∈ L
0 ∈ σ(n)∇ua(n)Za(n;u, x,W ) +NUa(ua(n)), n ∈ N

0 ∈ σ(n)αa(n)−
∑
m∈n+

σ(m)αa(m) +NXa(xa(n)), n ∈ N \ L

0 ∈ σ(n)αa(n)− σ(n)∇xa(n)Va(xa(n)) +NXa
(xa(n)), n ∈ L

0 = σ(n)µ(m)−
∑

k∈Ka(n)

λk(n)pka(m), m ∈ n+, n ∈ N \ L

with Za(n, u, x,W ) defined by (18).
Clearly we recover (19a)–(19h). It simply remains to show that λ satisfies (19i) and (19j). Since λk(0) =

γk(0), (19i) is immediate from (20g). Since σ(n) =
∑
k∈Ka(n−)

λk(n−)pka(n), (20g) is equivalent to σ(n)µ(m) =

σ(m) for m ∈ n+, n ∈ N \ L, which gives (19j) if we identify q with m.
(ii) For the converse, suppose that we have a solution of (19), then Lemma 3 coupled with Assumption 1 provides
σ(n) > 0 and conditional multipliers γk(n) = λk(n)/σ(n) that satisfy (12) for C(m) = Za(m;u, x,W )−Wa(m)
and θ(n) = θa(n). Thus (20a), (20b) and (20c) are satisfied in the definition of the AEa(π, α, µ,Da) problem.
Now (20g) follows by dividing (19j) by σ(q−) and using (8) and (9). Noting (10) and then dividing (19g) and
(19h) by σ(n) then gives (20e) and (20f) respectively. The relationship (20d) follows from the definition of σ
and (19e) and (19f).

Definition 3 A multistage risk-trading equilibrium RTE(DA) is a stochastic process of prices {π(n), n ∈
N}, {αa(n), a ∈ A, n ∈ N}, {µ(n), n ∈ N \ {0}}, and a corresponding collection of actions, {ua(n), n ∈
N}, {Wa(n), n ∈ N\{0}} with the property that for some γ, (ua, xa,Wa, θa, γ) solves the problem AEa(π, α, µ,Da)
and

0 ≤ π(n) ⊥
∑
a∈A

ga(ua(n)) ≥ 0, n ∈ N , (21)

0 ≤ αa(n) ⊥ − xa(n) + xa(n−) +
∑
b∈A

Tabub(n) + ωa(n) ≥ 0,

a ∈ A, n ∈ N , (22)

0 ≤ µ(n) ⊥ −
∑
a∈A

Wa(n) ≥ 0, n ∈ N \ {0}. (23)

Theorem 3 Consider a set of agents a ∈ A, each endowed with polyhedral node-dependent risk sets Da(n), n ∈
N \ L satisfying Assumption 3. Suppose {π̄(n), n ∈ N}, {ᾱa(n), a ∈ A, n ∈ N}, and {µ̄(n), n ∈ N \ {0}} form
a multistage risk-trading equilibrium RTE(DA) in which agent a solves AEa(π̄, ᾱ, µ̄,Da) with a policy defined by
(ūa(·), x̄a(·), θ̄a(·)) together with a policy of trading Arrow-Debreu securities defined by {W̄a(n), n ∈ N \ {0}}.
Then
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(i) µ̄ ∈ Da for all a ∈ A, and hence µ̄ ∈ Ds,

(ii)

θ̄(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Ca(ūa(m)) + θ̄(m)

)
, n ∈ N \ L. (24)

(iii) there exist multipliers γ such that (ū, x̄, θ̄, γ, π̄, ᾱ) is a solution to SE(D0) with D0 = {µ̄},

(iv) there exist multipliers γ such that (ū, x̄, θ̄, γ, π̄, ᾱ) is a solution to SE(Ds)

where θ̄(n) =
∑
a∈A θ̄a(n) and µ̄(n) =

∑
k∈Ks(n)

γk(n)pka(m).

Proof. (i) If we have a solution of AEa(π̄, ᾱ, µ̄,Da) for each a ∈ A, it follows from (20g) that [µ̄]n+
∈ Da(n)

for each n and thus µ̄ ∈ Da for all a, and hence µ̄ ∈ Ds by Definition 1.
(ii) For each a ∈ A it follows from Theorem 2 that for n ∈ N \ L,

θ̄a(n) =
∑
m∈n+

µ̄(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
. (25)

Summing over a ∈ A and invoking (23) gives

θ̄(n) =
∑
a∈A

θ̄a(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Z̄a(m; ū, x̄, W̄ ) + θ̄(m)

)
.

Recalling the definition of Z̄a(m; ū, x̄, W̄ ) from (18), summing over a ∈ A, and invoking (21), (22) and (23)
gives (24).
(iii) Suppose D0 = {µ̄}. It follows that K0(n) = {1} for n ∈ N \ L where p10(m) = µ̄(m), for m ∈ n+. Define
γ1(n) = 1, n ∈ N \ L. It then follows that the first, second and fifth conditions of SE(D0) simplify to

γ1(n) = 1, n ∈ N \ L,

θ(n) =
∑
m∈n+

µ̄(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
, n ∈ N \ L,

0 ∈ αa(n)−
∑
m∈n+

µ̄(m)αa(m) +NXa
(xa(n)), n ∈ N \ L.

Combining these with the other conditions in (20) shows that (ū, x̄, θ̄, γ, π, α) solves SE(D0).
(iv) Suppose (ūa, x̄a, θ̄a, γa) solves AEa(π̄, ᾱ, µ̄,Da). Let Z̄a(n; ū, x̄, W̄ ) be defined using (18) so that it follows
from (21), (22) and (23) that∑

a∈A

∑
m∈n+

µ̄(m)
(
Ca(ūa(m)) + θ̄a(m)

)
=
∑
a∈A

∑
m∈n+

µ̄(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
which by (24)

=
∑
a∈A

θ̄a(n)

which by (20a) and (20b) and Lemma 1

=
∑
a∈A

sup
µ∈Da(n)

∑
m∈n+

µ(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
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which by Assumption 3 and Definition 1,

≥
∑
a∈A

sup
µ∈Ds(n)

∑
m∈n+

µ(m)
(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
and interchanging supremum and summation

≥ sup
µ∈Ds(n)

∑
m∈n+

µ(m)
∑
a∈A

(
Z̄a(m; ū, x̄, W̄ )− W̄a(m) + θ̄a(m)

)
since feasibility implies −µ(m)

∑
a∈A W̄a(m) ≥ 0

≥ sup
µ∈Ds(n)

∑
m∈n+

µ(m)
∑
a∈A

(
Z̄a(m; ū, x̄, W̄ ) + θ̄a(m)

)
by (21), (22) and (23)

= sup
µ∈Ds(n)

∑
m∈n+

µ(m)
∑
a∈A

(
Ca(ūa(m)) + θ̄a(m)

)
by (i)

≥
∑
m∈n+

µ̄(m)
∑
a∈A

(
Ca(ūa(m)) + θ̄a(m)

)
.

Hence equality holds throughout and thus [µ̄]n+
solves

sup
µ∈Ds(n)

∑
m∈n+

µ(m)

(∑
a∈A

Ca(ūa(m)) + θ̄(m)

)
.

Lemma 1 then shows that these conditions are equivalent to the first two conditions of SE(Ds), which combined
with the other conditions in AEa(π̄, ᾱ, µ̄,Da) gives the remaining conditions of SE(Ds).

We now proceed to prove the converse of Theorem 3. We will require a preliminary lemma that uses the
following formulations. For each n ∈ N \ L, suppose Zsa(m), θs(m) and θsa(m) are given for each m ∈ n+ and
satisfy θs(m) =

∑
a∈A θ

s
a(m). Consider the problems:

R(n,Ds): max
µ∈Ds(n)

∑
m∈n+

µ(m)

(∑
a∈A

Zsa(m) + θs(m)

)

T(n,DA):

min
[[Wa]n+

]a∈A,θa(n)

∑
a∈A

θa(n)

s.t. θa(n) ≥
∑
m∈n+

pka(m) (Zsa(m)−Wa(m) + θsa(m)) , k ∈ Ka(n), a ∈ A

−
∑
a∈A

Wa(m) ≥ 0, m ∈ n+
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TD(n,DA):

max
µ,φ

∑
m∈n+

∑
a∈A

 ∑
k∈Ka(n)

pka(m)φka(n)

 (Zsa(m) + θsa(m))

∑
k∈Ka(n)

φka(n) = 1, a ∈ A,

µ(m) =
∑

k∈Ka(n)

pka(m)φka(n), m ∈ n+, a ∈ A

µ(m) ≥ 0, m ∈ n+, φka(n) ≥ 0, k ∈ Ka(n), a ∈ A

and

TOC(n,DA):

0 = 1−
∑

k∈Ka(n)

φka(n), a ∈ A

0 = µ(m)−
∑

k∈Ka(n)

φka(n)pka(m), m ∈ n+, a ∈ A

0 ≤ φka(n) ⊥ θa(n)−
∑
m∈n+

pka(m) (Zsa(m)−Wa(m) + θsa(m)) , k ∈ Ka(n), a ∈ A

0 ≤ µ(m) ⊥ −
∑
a∈A

Wa(m) ≥ 0, m ∈ n+

The formulation R evaluates the one stage risk of the random disbenefit
∑
a∈A Za using the coherent risk

measure with risk set Ds(n) =
⋂
a∈ADa(n). The problem T on the other hand accumulates the risk measure

of each agent a in a setting where they can exchange welfare W (constrained so that it cannot be created
out of nothing). If the model has a variable Wa(m) defined for each outcome m ∈ n+, then the following
analysis demonstrates that an exchange exists in node n that will yield the risk-adjusted value of the total
social disbenefit faced by all agents if evaluated with risk set Ds(n).

Lemma 4 Let n ∈ N and suppose DA satisfies Assumption 3. The problems T, TD, TOC and R all have
optimal solutions with the same optimal value. Any solution to one of these problems yields a solution to all of
the others.

Proof. Observe that T and TD are dual linear programs, and TOC gives the optimality conditions for T. The
constraints of TD entail that µ(m),m ∈ n+ is a finite probability distribution that is constrained to lie in each
Da(n). Definition 1 means that TD is equivalent to R. So any optimal solution of one of these four formulations
yields solutions to all the others. Observe that the feasible region of TD is compact and and nonempty by
Assumption 3, so T, TD, TOC and R all have optimal solutions with the same optimal value.

Theorem 4 Consider a set of agents a ∈ A, each endowed with a polyhedral node-dependent risk set Da(n),
n ∈ N \ L satisfying Assumption 3. Now let (u, x, θs, γ, π, α) be a solution to SE(Ds) with risk sets Ds(n) =⋂
a∈ADa(n). Let µ be defined by

µ(m) =
∑

k∈K(n)

γk(n)pk(m), m ∈ n+, n ∈ N \ L.

The prices {π(n), n ∈ N}, {αa(n), a ∈ A, n ∈ N}, {µ(n), n ∈ N \ {0}} and actions {ua(n) | n ∈ N},
{Wa(n) | n ∈ N \ {0}} form a multistage risk-trading equilibrium RTE(DA).
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Proof. Suppose (u, x, θs, γ, π, α) is a solution of SE(Ds). It follows from Theorem 1 that defining µ(m) =∑
k∈Ks(n)

γk(n)pks(m) ∈ Ds for each m ∈ n+ we have

θs(n) =
∑
m∈n+

µ(m)

(∑
a∈A

(
Ca(ua(m))− π(m)ga(ua(m))

+ αa(m)
(
xa(m)− xa(m−)−

∑
b∈A

Tabub(m)− ωa(m)
))

+ θs(m)

)

=
∑
m∈n+

µ(m)

(∑
a∈A

(
Ca(ua(m))− π(m)ga(ua(m))

+ αa(m) (xa(m)− xa(m−)− ωa(m))−
∑
b∈A

αb(m)Tbaua(m)
)

+ θs(m)

)
.

Consider the leaf nodes m ∈ L. At these nodes θs(m) = −
∑
a∈A Va(xa(m)) so defining θsa(m) = −Va(xa(m))

for each a ∈ A we have
∑
a∈A θ

s
a(m) = θs(m). Letting

Zsa(m) = Ca(ua(m))− π(m)ga(ua(m))

+ αa(m) (xa(m)− xa(m−)− ωa(m))−
∑
b∈A

αb(m)Tbaua(m)

for the given solution values of SE(Ds), Lemma 4 shows that [µ]n+ and values [φka(n)]a∈A,k∈Ka(n), [[Wa]n+ ]a∈A, θa(n)
solves TOC(n,DA) for each node n = m−, and that the solution value of R(n,Ds) (namely θs(n)) is equal to∑
a∈A θa(n).
We now recursively apply this argument. For each node n in the penultimate stage, we let θsa(n) = θa(n),

the above computed solution value, so that
∑
a∈A θ

s
a(n) = θs(n). Further, we define

Zsa(n) = Ca(ua(n))− π(n)ga(ua(n)) + αa(n) (xa(n)− xa(n−)− ωa(n))

−
∑
b∈A

αb(n)Tbaua(n) +
∑
m∈n+

µ(m)Wa(m)

for the given solution values of SE(Ds) and the previous step computed solution values for Wa(m). For each
node q = n−, Lemma 4 constructs solution values [µ]q+ , [φka(q)]a∈A,k∈Ka(q), [θa(q), [Wa]q+ ]a∈A for TOC(q,DA)
such that θs(q) =

∑
a∈A θa(q). This argument can then be repeated until we reach the root node of N .

This process generates µ and values of (u, x, α, π) that satisfy (20c), (20d), (20e) and (20f) for every a ∈ A
since they are solutions to SE(Ds). Furthermore, for each a ∈ A, extracting γka(n) = φka(n) and Za(n;u, x,W ) =
Zsa(n) from the solutions of TOC(n,DA), it follows from the definition of TOC(n,DA) that (20a), (20b) and
(20g) are also satisfied with γ(n) = γa(n). Thus we have constructed solutions for each problem AEa(π, α, µ,Da).

Since for each n ∈ N \ L, TOC(n,DA) includes the condition that

0 ≤ µ(m) ⊥ −
∑
a∈A

Wa(m) ≥ 0, m ∈ n+

it follows that (23) holds. The final conditions (21) and (22) follow as they are part of the original solution of
SE(Ds).

We can derive a version of the welfare theorems in which each agent solves a multistage optimization problem
AOa(π, α, µ,Da).

Definition 4 A multistage risk-trading optimization equilibrium (RTOE(DA)) is a version of RTE(DA) in
which each agent solves AOa(π, α, µ,Da) rather than AEa(π, α, µ,Da).

The equivalence of RTOE with the risk-averse social planning problem is expressed by the following corollaries,
the proofs of which are immediate from Theorem 3 and Theorem 4 and the fact that Assumption 1 gives the
equivalence of AEa(π, α, µ,Da)and AOa(π, α, µ,Da), and SE(Ds)and SO(Ds).
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Corollary 5 Suppose Assumption 1 holds. Consider a set of agents a ∈ A, each endowed with a polyhedral
node-dependent risk set Da(n), n ∈ N \ L satisfying Assumption 3. Suppose {π̄(n), n ∈ N}, {ᾱa(n), a ∈ A, n ∈
N}, and {µ̄(n), n ∈ N \ {0}} form a multistage risk-trading optimization equilibrium RTOE(DA) in which
agent a solves AOa(π, α, µ,Da) with a policy defined by (ūa(·), x̄a(·), θ̄a(·)) together with a policy of trading
Arrow-Debreu securities defined by {W̄a(n), n ∈ N \ {0}}. Then (ū, x̄, θ̄, π̄, ᾱ) is a solution to SO(Ds) where
Ds(n) =

⋂
a∈ADa(n) and θ̄(n) =

∑
a∈A θ̄a(n).

Corollary 6 Suppose Assumption 1 holds. Consider a set of agents a ∈ A, each endowed with a polyhedral node-
dependent risk set Da(n), n ∈ N \L satisfying Assumption 3. Now let (u, θs) be a solution to SO(Ds) with risk
sets Ds(n) =

⋂
a∈ADa(n). Suppose this gives rise to Lagrange multipliers {π(n), n ∈ N}, {αa(n), a ∈ A, n ∈ N}

for constraints (17) and (16) respectively. Then for some γ

1. (u, θs, γ) satisfies SE(Ds),

2. If µ(m) =
∑

k∈K(n)
γk(n)pk(m), m ∈ n+, n ∈ N \ L then the prices {π(n), n ∈ N}, {αa(n), a ∈

A, n ∈ N} and actions {ua(n) | n ∈ N}, {Wa(n) | n ∈ N \ {0}} form a multistage risk-trading equilib-
rium RTOE(DA).

6 Conclusions

This paper has established versions of the first and second welfare theorems in a setting where agents can trade
risk. The proofs of these results can be seen to be relatively straightforward consequences of Lagrangean duality.
There are two features of these results that are worthy of some discussion.

Our optimization versions of the welfare theorems (Corollaries 5 and 6) rely on Assumption 1. This is
equivalent to the assertion that the one-step risk measure is strictly monotone, thus guaranteeing a nested risk
measure that yields a time-consistent optimal solution. Competitive equilibrium specifies an optimal action
for each agent in every state of the world, even if this is discounted in equilibrium to have zero risk-adjusted
disbenefit. It is therefore necessary for a social plan to specify a set of actions for the agents in such states.
This can be done either by constraining it to be time consistent using the formulation SE(Ds) in the absence
of Assumption 1, or by imposing strict monotonicity on each agent’s one-step risk measure.

Observe that the welfare results rely also on Assumption 3. The risk sets of the agents must intersect to
enable trade to be bounded. In a non-polyhedral setting we would require the stronger condition that the
intersection of the relative interiors of the risk sets is nonempty (see e.g. [6]). If one agent believes that the
risk-adjusted price of a given Arrow-Debreu contract strictly exceeds that of a prospective purchaser, then an
infinite trade will result.
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