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1 Introduction

Central to the efficiency of global optimization algo-
rithms is their ability to construct sharp and cheaply
computable convex relaxations. Factorable program-
ming techniques are used widely in global optimiza-
tion of mixed-integer nonlinear optimization prob-
lems (MINLPs) for bounding general nonconvex func-
tions [9]. These techniques iteratively decompose a
factorable function, through the introduction of vari-
ables and constraints for intermediate nonlinear ex-
pressions, until each intermediate expression can be
convexified effectively.

Multilinear sets and polytopes. Factorable re-
formulations of many types of MINLPs, such as
mixed-integer polynomial optimization problems,
contain a collection of multilinear equations of the
form ze =

∏

v∈e zv, e ∈ E, where E denotes a set of
subsets of cardinality at least two of a ground set V .
Let us define the set of points satisfying all multilin-
ear equations present in a factorable reformulation of
a MINLP as S̃ = {z : ze =

∏

v∈e zv ∀e ∈ E, zv ∈
[0, 1] ∀v ∈ V1, zv ∈ {0, 1} ∀v ∈ V2}, where V1, V2

forms a partition of V . It is well-known that the con-
vex hull of S̃ is a polytope and the projection of its
vertices onto the space of the variables zv, v ∈ V ,
is given by {0, 1}V . Hence, the facial structure of
the convex hull of S̃ can be equivalently studied by
considering the following binary set:

{

z ∈ {0, 1}V +E : ze =
∏

v∈e

zv ∀e ∈ E
}

. (1)
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In particular, this set represents the feasible region of
a linearized unconstrained 0−1 polynomial optimiza-
tion problem. There is a one-to-one correspondence
between sets of form (1) and hypergraphsG = (V,E).
Henceforth we refer to (1) as the multilinear set of
the hypergraph G and denote it by SG, and refer to
its convex hull as the multilinear polytope of G and
denote it by MPG. (See, e.g. [5])

If all multilinear equations defining SG are bi-
linears, the multilinear polytope coincides with the
Boolean quadric polytope defined by Padberg [10] in
the context of 0−1 quadratic optimization, in which
case our hypergraph representation simplifies to the
graph representation of Padberg. Indeed, a signifi-
cant amount of research has been devoted to study-
ing the facial structure of the Boolean quadric poly-
tope and these theoretical developments have had
a significant impact on the performance of branch-
and-cut based algorithms for mixed-integer quadratic
optimization problems. However, similar polyhedral
studies for higher degree multilinear polytopes are
quite scarce. Our ultimate goal is to bridge this
gap by performing a systematic study of the fa-
cial structure of the multilinear polytope, and thus
paving a way for devising novel optimization algo-
rithms for nonconvex problems containing multilin-
ear sub-expressions.

Decomposability. In this article, we provide an
overview of some of our recent results [4, 6] on the fa-
cial structure of higher degree multilinear polytopes
with a special focus on their “decomposability” prop-
erties. Namely, we demonstrate that for multilinear
polytopes decomposability plays a key role from both
theoretical and algorithmic viewpoints.

Let us start by introducing some hypergraph termi-
nology that we need to formally define the notion of
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decomposability for the multilinear polytope. Given
a hypergraph G = (V,E), and a subset V ′ of V ,
the section hypergraph of G induced by V ′ is the
hypergraph G′ = (V ′, E′), where E′ = {e ∈ E :
e ⊆ V ′}. Given hypergraphs G1 = (V1, E1) and
G2 = (V2, E2), we denote by G1 ∩G2 the hypergraph
(V1 ∩ V2, E1 ∩ E2), and we denote by G1 ∪ G2, the
hypergraph (V1 ∪ V2, E1 ∪ E2).

Now, consider a hypergraph G, and let Gj , j ∈
J , be distinct section hypergraphs of G such that
∪j∈JGj = G. Clearly, the system of all inequali-
ties defining MPGj

for all j ∈ J provides a relax-
ation of MPG as the convexification operation does
not, in general, distribute over intersection. It is
highly desirable to identify conditions under which
these two sets coincide, as in such cases characteriz-
ing MPG simplifies to characterizing each MPGj

sepa-
rately. More formally, we say that the polytope MPG

is decomposable into polytopes MPGj
, for j ∈ J , if the

following relation holds

MPG =
⋂

j∈J

MPGj
, (2)

where MPGj
is the set of all points in the space of

MPG whose projection in the space defined by Gj is
MPGj

.

Organization. In Section 2 we provide a summary
of our results in [4] regarding necessary and sufficient
conditions for decomposability of multilinear poly-
topes based on the structure of their intersection hy-
pergraphs. Subsequently, in Section 3 we present a
polynomial-time algorithm to optimally decompose a
multilinear polytope into a collection of nondecom-
posable multilinear polytopes. A detailed analysis of
this algorithm can be found in [4]. In Section 4 we
give a brief overview of our results in [6], wherein we
study the complexity of the multilinear polytope in
conjunction with the acyclicity degree of its hyper-
graph and show that for certain acyclic hypergraphs,
the multilinear polytope is decomposable into a col-
lection of simpler multilinear polytopes whose explicit
description can be obtained directly.

2 Decomposability based on the

intersection hypergraph

Suppose that G1 and G2 are section hypergraphs of
G such that G1 ∪ G2 = G. The following theorem
provides a sufficient condition for decomposability of

MPG into MPG1
and MPG2

, based on the structure
of the intersection hypergraph G1 ∩ G2. In the fol-
lowing, we say that a hypergraph Ḡ is complete if all
subsets of V (Ḡ) of cardinality at least two are present
in E(Ḡ).

Theorem 1. Let G be a hypergraph, and let G1,G2 be
section hypergraphs of G such that G1 ∪G2 = G and
G1 ∩G2 is a complete hypergraph. Then the polytope
MPG is decomposable into MPG1

and MPG2
.

Figure 1 illustrates some hypergraphs G for which
MPG is decomposable into MPG1

and MPG2
. To

draw a hypergraphG, throughout this article, we rep-
resent the nodes in V (G) by points, and the edges in
E(G) by closed curves enclosing the corresponding
set of points.
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We now provide the proof sketch for Theorem 1.
Given a vector z in the space defined by G, we de-
note by z∩ the vector that contains the components
of z corresponding to nodes and edges that are in
G1 ∩ G1. Moreover, we denote by z1 (resp. z2) the
vector that contains the components of z correspond-
ing to nodes and edges that are in G1 and not in G2

(resp. in G2 and not in G1). The key step in prov-
ing Theorem 1 is to show that a vector (ẑ1, ẑ∩, ẑ2)
belongs to MPG if (ẑ1, ẑ∩) can be written as a con-
vex combination of vectors in SG1

and (ẑ∩, ẑ2) can be
written as a convex combination of vectors in SG2

.
Clearly, given any two vectors (z1, z∩) ∈ SG1

and
(z′∩, z2) ∈ SG2

with z∩ = z′∩, we can combine them
to obtain a vector (z1, z∩, z2) ∈ SG. Since by as-
sumption the hypergraph G1 ∩ G2 is complete, the
polytope MPG1∩G2

is a simplex, implying that any
vector (ẑ1, ẑ∩, ẑ2) in MPG can be written as a convex
combination of the obtained vectors (z1, z∩, z2) in SG.
In partciular, Theorem 1 unifies the existing decom-
posability results for the Boolean quadric polytope
QPG [10]:

Corollary 1. Consider a graph G = G1 ∪ G2,
where G1 and G2 are induced subgraphs of G with
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V (G1) ∩ V (G2) = {u}, for some u ∈ V (G), or
V (G1) ∩ V (G2) = {u, v}, for some {u, v} ∈ E(G).
Then QPG is decomposable into QPG1

and QPG2
.

The next theorem demonstrates the tightness of
Theorem 1. We define the rank of a hypergraph G as
the maximum cardinality of an edge in E(G).

Theorem 2. Let Ḡ be a rank-r hypergraph that is
not complete. Then for any integer r′ ≥ max{r, 2},
there exists a rank-r′ hypergraph G = G1 ∪G2, where
G1 and G2 are section hypergraphs of G with Ḡ =
G1 ∩ G2, such that MPG is not decomposable into
MPG1

and MPG2
.

Figure 2 illustrates some hypergraphs G for which
MPG is not decomposable into MPG1

and MPG2
.
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The proof of Theorem 2 is constructive. Namely,
we search for a section hypergraph H̄ of Ḡ with q
nodes such that E(H̄) consists all edges of cardinal-
ity between 2 and q − 1. Then we construct two
hypergraphs H1 and H2 with V (H1) = V (H̄) ∪ {u},
E(H1) = E(H̄) ∪ {{u, v} : v ∈ V (H̄)} and V (H2) =
V (H̄) ∪ {w}, E(H2) = E(H̄) ∪ {{w, v} : v ∈ V (H̄)}.
Subsequently, by letting H = H1 ∪H2, we provide a
facet-defining inequality for MPH with nonzero coef-
ficients corresponding to some edges in E(H1)\E(H̄)
and in E(H2) \E(H̄). This implies that MPH is not
decomposable into MPH1

and MPH2
. Next, we con-

struct the hypergraph G = H1 ∪H2 ∪ Ḡ and define
G1 and G2 as the section hypergraphs of G induced
by V (H1) ∪ V (Ḡ) and V (H2) ∪ V (Ḡ), respectively.
We then show that since MPH is not decomposable
into MPH1

and MPH2
, the polytope MPG is not de-

composable into MPG1
and MPG2

either. It is simple
to see that the rank of the hypergraph G constructed
above is equal to max{r, 2}. For any integer r′ greater
than max{r, 2}, by adding a certain edge of cardinal-
ity r′ to either G1 or G2, we can complete the proof.

In [10], Padberg poses a question regarding the de-
composability of the Boolean quadric polytope when
the intersection graph is a clique of cardinality greater
than two. The proof of Theorem 2 implies that the
answer to this question is negative for a clique with
three or more nodes.

We conclude this section by remarking that in [4]
we also present sufficient conditions for decompos-
ability of multilinear polytopes with sparse intersec-
tion hypergraphs.

3 An optimal algorithm for de-

composing the multilinear poly-

tope

It is well-understood that branch-and-cut based
MINLP solvers would highly benefit from our decom-
position results as such techniques lead to significant
reductions in CPU time during cut generation [1]. In
this section, we present a simple and efficient algo-
rithm for optimally decomposing a multilinear poly-
tope into simpler and non-decomposable multilinear
polytopes. Our proposed algorithm can be easily in-
corporated in MINLP solvers as a preprocessing step
for cut generation. We start by presenting a sufficient
condition for decomposability of MPG into MPGj

, for
j ∈ J , which can be obtained by a recursive applica-
tion of Theorem 1.

Theorem 3. Let G be a hypergraph, and let Gj , j ∈
J , be section hypergraphs of G such that ∪j∈JGj =
G. Suppose that for all j, j′ ∈ J with j 6= j′, the
intersection Gj∩Gj′ is the same complete hypergraph
Ḡ. Then MPG is decomposable into MPGj

, for j ∈ J .

Now consider a hypergraph G and let p ⊂ V (G).
Denote by Ḡ the section hypergraph of G induced by
p. We say that p decomposes G if

(a) the hypergraph Ḡ is complete,
(b) there exist at least two section hypergraphs Gj ,

j ∈ J , of G, with V (Gj) \ V (Gj′) 6= ∅ for all
j, j′ ∈ J with j 6= j′, that together with Ḡ satisfy
the hypothesis of Theorem 3.

If p does not decompose any Gj , j ∈ J , as defined
in (b), then we refer to the family Gj , j ∈ J , as
a p-decomposition of G. It can be shown that there
exists a unique p-decomposition of G. The next result
indicates that a p-decomposition test can be carried
out efficiently.

Proposition 1. Given a connected rank-r hyper-
graph G = (V,E) and p ⊂ V , we can test if p de-
composes G, and, if so, obtain the p-decomposition
of G in O(r|E|) time.
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Full Decompositions. In general, a multilinear
polytope MPG is decomposable into simpler poly-
topes via a series of p-decompositions of G until none
of the newly generated multilinear polytopes are de-
composable. In the following, whenever a polytope
MPG is decomposable into polytopes MPGk

, k ∈ K,
we refer to the family Gk, k ∈ K, as a decomposi-
tion of G. Given a hypergraph G, we define its full-
decomposition as a decomposition of G given by a
family Gk, k ∈ K, with the following properties:

(i) There exists no Gk, for some k ∈ K, and p ⊂
V (Gk) such that p decomposes Gk.

(ii) No hypergraph Gs, for some s ∈ K, is a section
hypergraph of another hypergraph Gt, for some
t ∈ K with t 6= s.

If Gs is a section hypergraph of Gt for some s, t ∈ K
with s 6= t, then MPGs corresponds to a face of
MPGt . Thus, removing Gs from a decomposition of G
amounts to removing redundant inequalities from the
description of MPG, which is computationally bene-
ficial. It can be shown that the following algorithm
gives a full-decomposition of G.

Gen dec : General full-decomposition algorithm

Input: A hypergraph G
Output: A full-decomposition of G
Initialize the family L = {G};
while L does not satisfy property (i) of
full-decomposition do

select a hypergraph G̃ ∈ L and p ⊂ V (G̃);

if p decomposes G̃ then
let Gj , j ∈ J , be the p-decomposition of
G̃;

let J̃ be the subset of J such that each
Gj , j ∈ J̃ , is not a section hypergraph of
any hypergraph in L different from G̃;

in L, replace G̃ with Gj , j ∈ J̃ ;

return L;

Decomposition orders. In Gen dec, we have not
specified which G̃ ∈ L and p ⊂ V (G̃) to choose at
each iteration. We refer to different choices of G̃ and
p throughout the execution of Gen dec, as decomposi-
tion orders. We denote a specific decomposition order
by the sequence of choices that defines it, where each
choice consists of a pair (G̃, p), for some hypergraph
G̃ ∈ L and a set of nodes p ⊂ V (G̃) that is tested

for p-decomposition of G̃. The next proposition indi-
cates that a full-decomposition of G does not depend
on the specific decomposition order used.

Proposition 2. The full-decomposition of a hyper-
graph obtained by Gen dec is independent of the de-
composition order.

Henceforth, we will speak of the full-decomposition
of G. However, as we detail next, different decompo-
sition orders result in different computational costs
for Gen dec. First, from the definition of Gen dec

it follows that the length of the decomposition order
used is a reasonable measure for the overall cost of
this algorithm and it can be shown that for a hyper-
graph G, every decomposition order contains at least
|V (G)| + |E(G)| pairs. Second, to ensure that prop-
erty (ii) in the definition of the full-decomposition is
satisfied, every time the p-decomposition of G̃ is gen-
erated, each new hypergraph Gj is compared with
the existing ones and is added to L only if it is not a
section hypergraph of another hypergraph in L. Let
us refer to the section hypergraphs not added to L
as redundant hypergraphs. It can be shown that dif-
ferent decomposition orders in Gen dec may result in
distinct redundant hypergraphs. As the redundancy
check is computationally expensive, it is beneficial to
obtain a decomposition order that results in a mini-
mum number of redundant hypergraphs.

The optimal decomposition algorithm. Next,
we define a special sequence of choices Ō in the ex-
ecution of Gen dec with highly desirable algorithmic
properties. At a given iteration of Gen dec, we say
that p ∈ V (G̃)∪E(G̃) is tested in G̃, if the pair (G̃, p)
has been already considered in an earlier iteration of
Gen dec. Moreover, we refer to the hypergraph G̃
in Gen dec as the parent of each Gj . The ancestors
of Gj are the parent of Gj , and the ancestors of the
parent of Gj . At a given iteration, any hypergraph in
the current family L can be chosen as G̃. Let the list
{qk, k ∈ K} contain all nodes and edges of G̃ ordered
by increasing cardinality. We define p to be the first
element qk in the above list that is not tested in G̃ or
in any ancestor of G̃. The sequence Ō ends when no
such pair (G̃, p) can be found.

Proposition 3. The sequence Ō is a decomposi-
tion order. Moreover, it creates no redundant hyper-
graphs. Consider a hypergraph G with n nodes and m
edges. Let the decomposition order Ō for G be given
by (G1, p1), (G2, p2), . . . , (Gt, pt). Then t = n+m.

4



In [4], we present an optimal full-decomposition al-
gorithm, referred to as Opt dec, which is obtained by
an efficient incorporation of the decomposition order
Ō in Gen dec. We refer to this algorithm as optimal
due to two reasons. First, Opt dec applies the mini-
mum number of p-decomposition tests needed to ob-
tain the full-decomposition of any hypergraph. Sec-
ond, no redundant hypergraph is generated in the
course of Opt dec, and hence the costly redundancy
test (as described in Gen dec) is not required. The
following proposition gives the worst-case running
time of Opt dec.

Proposition 4. Consider a connected rank-r hyper-
graph G with n nodes and m edges. Then, the run-
ning time of Opt dec is O(rm(n+m)).

In [4], we provide an example that demonstrates
the significance of our optimal decomposition algo-
rithm; namely we define a hypergraph G and a
decomposition order Õ, such that when incorpo-
rated in Gen dec, in comparison to Ō, the decom-
position order Õ requires n(m − 1)/2 additional p-
decomposition tests to obtain a full-decomposition of
G. In addition, a total number of n(n − 2)/4 − 1
redundant hypergraphs are generated in the course
of Gen dec.

4 The multilinear polytope of

acyclic hypergraphs

In this section, we demonstrate the key role of de-
composition in obtaining explicit descriptions for the
multilinear polytope of certain acyclic hypergraphs.
Moreover, these convex hull characterizations enable
us to optimize a linear function over MPG in polyno-
mial time. We start by providing a sufficient condi-
tion for decomposability of multilinear polytopes that
will be used for the subsequent developments.

Theorem 4. Let G be a hypergraph, and let G1, G2

be section hypergraphs of G such that G1 ∪ G2 = G.
Denote by p̄ := V (G1) ∩ V (G2). Suppose that p̄ ∈
V (G)∪E(G), and that for every edge e of G contain-
ing nodes in V (G1)\V (G2) either e ⊃ p̄, or e∩ p̄ = ∅.
Then MPG is decomposable into MPG1

and MPG2
.

Figure 3 illustrates a hypergraph G for which by
Theorem 4 the polytope MPG is decomposable into
MPG1

and MPG2
.

As in Theorem 1, to prove Theorem 4, we need
to show that a vector (ẑ1, ẑ∩, ẑ2) belongs to MPG if
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(ẑ1, ẑ∩) can be written as a convex combination of
vectors in SG1

and (ẑ∩, ẑ2) can be written as a convex
combination of vectors in SG2

. Moreover, as before,
it is sufficient to consider vectors in SG obtained by
combining one vector (z1, z∩) in SG1

with one vector
(z′∩, z2) in SG2

. However, since in Theorem 4 the in-
tersection hypergraph is not complete, it is no longer
sufficient to only combine vectors with z∩ = z′∩. In
this case, we need to consider all vectors (z1, z

′
∩, z2)

obtained by combining a vector (z1, z∩) ∈ SG1
and

a vector (z′∩, z2) ∈ SG2
with zē = z′ē. The pres-

ence of (z1, z
′
∩, z2) in SG follows from the assump-

tion that every edge that is only in G1 either con-
tains ē or is disjoint from it. Moreover, the existence
of the edge ē implies that we can write the vector
(ẑ1, ẑ∩, ẑ2) as a convex combination of the obtained
vectors (z1, z

′
∩, z2) in SG.

Acyclic hypergraphs. Padberg [10] shows that
for an acyclic graph, the Boolean quadric polytope
admits a simple and compact description. This result
can be obtained by showing that the Boolean quadric
polytope of an acyclic graph is decomposable into a
collection of Boolean quadric polytopes whose graphs
consists of a single edge. To obtain similar character-
izations for higher degree multilinear polytopes, it is
then natural to look into the notion of acyclicity for
hypergraphs. Interestingly, unlike graphs for which
there is a single natural notion of acyclicity, for hy-
pergraphs several different degrees of acyclicity have
been defined [8]. In the following, we present two
types of hypergraph acyclicity which will be used for
the subsequent developments.

The most restrictive class of acyclic hypergraphs is
the class of Berge-acyclic hypergraphs. A Berge-cycle
in G is a sequence v1, e1, v2, e2, . . . , vt, et, v1 with t ≥
2, such that (i) v1, v2, . . . , vt are distinct nodes of G,
(ii) e1, e2, . . . , et are distinct edges of G, (iii) vi, vi+1 ∈
ei for i = 1, . . . , t− 1, and vt, v1 ∈ et. A hypergraph
is Berge-acyclic if it contains no Berge-cycles. The
next class of acyclic hypergraphs in increasing order
of generality, is the class of γ-acyclic hypergraphs. A
γ-cycle in G is a Berge-cycle such that t ≥ 3, and
for each i ∈ {2, . . . , t}, the node vi belongs to ei−1,
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ei and no other ej . A hypergraph is γ-acyclic if it
contains no γ-cycles.

Acyclicity and decomposability. The link be-
tween hypergraph acyclicity and decomposability is
given by the concept of leaf of a hypergraph. Con-
sider a hypergraph G = (V,E). An edge of G is
maximal if it is not contained in any other edge of G.
We say that an edge e′ is a leaf of G if it is a maxi-
mal edge and e′∩ (∪e∈E\E′e) ⊂ ẽ for some ẽ ∈ E \E′,
where E′ is the set of edges contained in e′. It can
be shown that every γ-acyclic hypergraph contains a
leaf. The existence of a leaf, together with the special
structure of Berge-acyclic and γ-acyclic hypergraphs
enables us to employ our decomposition results and
derive an explicit description of MPG by induction
on the number of maximal edges of G.

Berge-acyclic hypergraphs. The standard lin-
earization MPLP

G is a widely-used relaxation of SG

and is obtained by replacing each multilinear equa-
tion ze =

∏

v∈e zv by its convex hull over the unit
hypercube (see, e.g., [3]):

zv ≤ 1 ∀v ∈ V,
ze ≥ 0
ze ≥

∑

v∈e zv − |e|+ 1 ∀e ∈ E,
ze ≤ zv ∀e ∈ E, ∀v ∈ e.

We now show that for a Berge-acyclic hypergraph,
we have MPG = MPLP

G .
Any two edges of a Berge-acyclic hypergraph in-

tersect in at most one node. It then follows that the
hypergraph considered in the base case of the induc-
tion consists of a single edge. Hence, the correspond-
ing multilinear polytope coincides with the standard
linearization.

In the inductive step, we construct MPG in two
steps:

1. Decompose the polytope MPG into MPG1
and

MPG2
, where G1 is the section hypergraph of

G induced by the leaf e′ and G2 is the section
hypergraph of G induced by ∪e∈E\E′e.

2. Obtain MPG by juxtaposing the description of
MPG1

and of MPG2
given by the induction hy-

pothesis.

For a Berge-acyclic hypergraph, the intersection of
the leaf e′ with the hypergraph G2, i.e., the set p̄
defined in Theorem 4, consists of at most one node.
Hence, all assumptions of Theorem 4 are trivially sat-
isfied and we can utilize this result to perform the

decomposition described in Step 1. Hence, if G is a
Berge-acyclic hypergraph, we have MPG = MPLP

G . In
fact, we have proved that the converse holds as well.
More precisely, we have shown the following:

Theorem 5. MPG = MPLP

G if and only if G is a
Berge-acyclic hypergraph.

It follows directly from Theorem 5 that for a Berge-
acyclic hypergraph G, we can optimize a linear func-
tion over MPG via linear optimization in polynomial
time.
In [10], Padberg shows that the standard lineariza-

tion coincides with the Boolean quadric polytope if
and only if G is an acyclic graph. Therefore Theo-
rem 5 generalizes Padberg’s result to higher degree
multilinear polytopes.

γ-acyclic hypergraphs. To characterize the mul-
tilinear polytope of γ-acyclic hypergraphs, we intro-
duce a class of valid inequalities for MPG which we
will refer to as flower inequalities. Let e0 be an edge
of G and let ek, k ∈ K, be a collection of edges such
that |e0 ∩ ek| ≥ 2 for every k ∈ K, and ei ∩ ej = ∅ for
all i, j ∈ K with i 6= j. Then a flower inequality for
MPG is given by:

∑

v∈e0\∪k∈Kek

zv+
∑

k∈K

zek−ze0 ≤ |e0\∪k∈Kek|+|K|−1.

We define the flower relaxation MPF
G as the relax-

ation of the multilinear set obtained by adding all
flower inequalities to its standard linearization MPLP

G .
We now show that for a γ-acyclic hypergraph, we
have MPG = MPF

G.
To establish the base case of the induction, we

make use of the fact that a γ-acyclic hypergraph with
one maximal edge is a laminar hypergraph. The
multilinear polytope of a laminar hypergraph can
be characterized using a fundamental result due to
Conforti and Cornuéjols regarding the connection be-
tween integral polyhedra and balanced matrices [2].
This characterization in turn implies that for a lam-
inar hypergraph the multilinear polytope coincides
with its flower relaxation.
In the inductive step, Theorem 5 cannot be directly

applied to MPG as was the case for Berge-acyclic hy-
pergraphs. However, we can utilize this result after
the addition of one extra edge to G. In more detail,
we construct MPG in four steps:

1. Define the hypergraph G+ obtained from G by
adding the edge p̄ := e′ ∩ (∪e∈E\E′e).
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2. Decompose the polytope MPG+ into MPG1
and

MPG2
, where G1 is the section hypergraph of G+

induced by e′ and G2 is the section hypergraph
of G+ induced by ∪e∈E\E′e.

3. Obtain MPG+ by juxtaposing the description of
MPG1

given by the base case, and of MPG2
given

by the induction hypothesis.
4. Obtain MPG by projecting out the variable p̄

from the description of MPG+ .

The section hypergraph induced by an edge of a
γ-acyclic hypergraph is laminar. This in particular
implies that for every edge e of G containing nodes
in V (G1) \ V (G2) either e ⊃ p̄, or e ∩ p̄ = ∅. Hence,
we can employ Theorem 4 to perform the decom-
position described in Step 2. Finally, by projecting
out the variable zp̄ from the description of MPG+

using Fourier-Motzkin elimination, we conclude that
MPG = MPF

G.

In fact, we have shown that the converse holds as
well. More precisely, we have shown the following:

Theorem 6. MPG = MPF
G if and only if G is a γ-

acyclic hypergraph.

For γ-acyclic hypergraphs, the number of facets
of MPF

G may not be bounded by a polynomial in
|V (G)|, |E(G)|. However, flower inequalities can be
separated in strongly polynomial time, and this al-
lows us to optimize a linear function over MPG in
polynomial time.

We conclude this article by remarking that in [7]
we extend the above decomposition based technique
to characterize the multilinear polytope for a more
general class of acyclic hypergraphs.
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