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Multi-stage problems with uncertain parameters and integer decisions variables are among the most difficult

applications of robust optimization (RO). The challenge in these problems is to find optimal here-and-now

decisions, taking into account that the wait-and-see decisions have to adapt to the revealed values of the

uncertain parameters. Postek and den Hertog (2016) and Bertsimas and Dunning (2016) propose to solve

these problems by constructing piecewise constant decision rules by adaptively partitioning the uncertainty

set. The partitions of this set are iteratively updated by separating so-called critical scenarios of the uncertain

parameters. Both references present methods for identifying these critical scenarios. However, these methods

are most suitable for problems with continuous decision variables and many uncertain constraints, providing

no mathematically rigorous methodology for partitioning in case of integer decisions. In particular, they are

not able to identify sets of critical scenarios for integer problems with uncertainty in the objective function

only. In this paper, we address this shortcoming by introducing a general critical scenario detection method.

The new method leverages the information embedded in the dual vectors of the LP relaxations at the nodes

of the branch-and-bound tree used to solve the corresponding static problem. Numerical experiments on a

route planning problem show that our general-purpose method outperforms the problem-specific approach

of Postek and den Hertog (2016).
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1. Introduction

Robust optimization (Ben-Tal et al. 2009) is a paradigm for dealing with uncertainty in mathemat-

ical optimization problems where the objective function is minimized under the assumption that

the uncertain parameters attain their worst-case value from an uncertainty set, i.e., a set of likely

values. This methodology has found a wide range of applications, see, e.g., inventory management

(Ben-Tal et al. 2004), facility location (Ordonez and Zhao 2007), network design (Atamtürk and

Zhang 2007), finance (Fabozzi et al. 2010), and many others. For a broad overview of applications

of robust optimization (RO), we refer the reader to Gabrel et al. (2014).

An important class of RO problems are multi-stage problems where here-and-now decisions are

implemented before (some of) the uncertain parameters are revealed, and wait-and-see decisions are
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made when these uncertain parameters are known. The wait-and-see decisions will typically differ

for different realizations of the uncertain parameters and this is why we call them adjustable deci-

sions. In general, such adjustable problems are NP-hard (Ben-Tal et al. 2009), even for problems

with continuous decision variables only, and thus require good suboptimal but tractable solutions.

For this reason, Ben-Tal et al. (2004) propose to formulate the later-stage decisions as affine func-

tions of the uncertain parameters. Their approach has later been extended to other function classes;

see, e.g., Chen and Zhang (2009) and Bertsimas et al. (2011). An alternative solution method that

bypasses the need for decision rules is to use Fourier-Motzkin elimination to remove the later-stage

decisions from the problem formulation (Zhen et al. 2017).

Incorporating adjustable decisions in RO problems becomes more challenging if (some of) the

decisions are restricted to be integer. In this case, it becomes difficult to formulate these decisions

as tractable functions of the uncertain parameters. First attempts to address this difficulty include

Bertsimas and Caramanis (2007) who construct rounding-based decision rules based on sampling

that are feasible with high probability, and Vayanos et al. (2011) who partition the uncertainty set

ex ante into small subsets with different decisions each.

In the current literature, we distinguish three systematic approaches for designing integer decision

rules for mixed-integer adjustable RO problems. The first is to use piecewise linear decision rules

for both continuous and binary decision variables, proposed by Bertsimas and Georghiou (2015).

They formulate the decision rules as differences of two convex functions, and for binary variables

the value 0 is implemented if the decision rule is positive, and the value 1, otherwise. In a related

fashion, the decisions in the approach of Bertsimas and Georghiou (2017) are affine transformations

of multiple indicator functions of half-spaces in the space of uncertain parameters.

The second approach is the K-adaptability (Bertsimas and Caramanis 2010), proposed in the

integer context by Hanasusanto et al. (2015). In this approach, K possible values for the adjustable

decisions are selected here-and-now, and for each outcome of the uncertain parameters the best

out of these K possible values will be selected for the wait-and-see decisions. The corresponding

optimization problem is solved by reformulating it as a static mixed-integer RO problem. This

approach was extended by Subramanyam et al. (2017) who allow discrete uncertain parameters

and develop a branch-and-bound algorithm for the K-adaptable problem.

The third approach is the splitting methodology proposed by Postek and den Hertog (2016) and

Bertsimas and Dunning (2016); the latter use the term ‘partitioning’ instead of ‘splitting’. In this

approach, the uncertainty set is iteratively split into smaller subsets. For each subset, a possibly

different value for the adjustable decisions is selected that will be implemented if the uncertain

parameter turns out to be in that subset. The uncertainty set is split based on critical scenarios of

the uncertain parameters, since the theory for detecting these critical scenarios shows that if they
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are not separated from each other, the objective value of the solution induced by the split uncer-

tainty set cannot improve. This theory, however, only holds for problems with continuous decision

variables, and can only be heuristically applied to some mixed-integer problems. In particular, for

mixed-integer adjustable RO problems with uncertainty in the objective function only, this theory

is unable to detect critical scenarios that need to be split.

We address exactly this shortcoming by detecting critical scenarios in mixed-integer adjustable

RO problems. In fact, we show that these scenarios can be obtained from the optimal dual solutions

of the LP relaxations in a specific set of nodes in the B&B tree (see, e.g., Schrijver (1986)) used

to solve the corresponding static mixed-integer RO problem. This means that these scenarios can

be obtained as by-product when solving the static mixed-integer RO problem.

In this paper, we only present our critical scenario detection method for two-stage mixed-integer

adjustable RO problems for ease of exposition. However, similarly as in Postek and den Hertog

(2016) and Bertsimas and Dunning (2016) it can easily be extended to the multi-stage case by

enforcing the nonanticipativity constraints.

The main contributions of our paper are as follows:

• we detect critical scenarios in mixed-integer adjustable RO problems, extending the theory of

Postek and den Hertog (2016) and Bertsimas and Dunning (2016);

• we derive an optimality criterion for our splitting methodology, proving when the uncertainty

set requires no more partitioning;

• we show using numerical experiments on a route planning problem that our general-purpose

critical scenario detection method outperforms the problem-specific heuristic developed in Postek

and den Hertog (2016).

The remainder of this paper is organized as follows. In Section 2 we review the splitting method-

ology of Postek and den Hertog (2016) and Bertsimas and Dunning (2016). In Section 3 we derive

our critical scenario detection method. In Section 4 we illustrate our method using numerical

experiments on a route planning problem, and we end with conclusions in Section 5.

2. Splitting methodology for mixed-integer adjustable RO problems

We consider the mixed-integer adjustable RO problem:

t̄ := min
t,x,y(z)

t (ARO)

s.t. t− c(z)>x− q(z)>y(z)≥ 0 ∀z ∈Z

ai(z)
>x+wi(z)

>y(z)≥ bi ∀z ∈Z ∀i∈ I

x∈X, y(z)∈ Y ∀z ∈Z,
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where the uncertainty is in both the cost parameters c(z), q(z) and the constraint coefficients

ai(z), wi(z), i∈ I, with z representing the uncertain parameters in the model and Z a polyhedral

uncertainty set defined by Z = {z ∈RL : Pz ≤ p}, and the sets X and Y represent non-negativity

and integer restrictions. In this problem the decisions x ∈ Rd1 have to be determined before the

value of the uncertain parameter z is known, whereas decisions y(z) ∈ Rd2 are made after the

realizations of z are revealed. We assume w.l.o.g. that the first m1 and m2 components of the

decision vectors x and y(z), respectively, are restricted to be integer. Thus, X =Zm1
+ ×Rd1−m1

+ and

Y = Zm2
+ ×Rd2−m2

+ . Moreover, we make the following assumptions with respect to the uncertainty

set Z and the parameters in the model.

Assumption 1. The uncertainty set Z is nonempty and bounded.

Assumption 2. All parameters c(z), q(z), ai(z) and wi(z) are affine in the uncertain parameter

z. That is, c(z) = c+Cz, q(z) = q+Qz, ai(z) = ai +Aiz, and wi(z) =wi +Wiz, where c, ai ∈Rd1

and q,wi ∈Rd2 represent the nominal values and C,Ai ∈Rd1×L and Q,Wi ∈Rd2×L. �

Ben-Tal et al. (2009) show that the adjustable optimization problem is NP-hard, even when all

decision variables are continuous. For this reason, a typical approach to simplify such problems

is to restrict y(z) to a particular class of functions. For example, Ben-Tal et al. (2004) propose

so-called affine decision rules, meaning that y(z) is an affine function of z. The problem with this

approach in our setting is that affine decision rules cannot be applied if some of the second-stage

decisions are integer.

Instead, we follow the approach of Postek and den Hertog (2016) and Bertsimas and Dunning

(2016) and construct piecewise constant decision rules for mixed-integer adjustable RO problems

by splitting the uncertainty set. After r rounds of iterative splitting we obtain a partition Zr of Z

given by Zr = {Zr,s, s∈ Sr} where Zr,s are nonempty subsets of Z with mutually disjoint interiors

and such that ∪s∈SrZr,s =Z. A piecewise constant decision rule can now be obtained by assuming

that for each s ∈ Sr, we will select the second-stage decision yr,s for each z ∈ Zr,s. That is, for all

z ∈Z,

y(z) = yr,s if z ∈Zr,s.

Under this assumption, the mixed-integer adjustable RO problem (ARO) reduces to

t̄r := min
tr,xr,yr,s

tr (ROr)

s.t. tr− c(z)Txr− q(z)Tyr,s ≥ 0 ∀z ∈Zr,s ∀s∈ Sr

ai(z)
>xr +wi(z)

>yr,s ≥ bi ∀z ∈Zr,s ∀i∈ I, ∀s∈ Sr

x∈X, yr,s ∈ Y ∀s∈ Sr.
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where Zr,s = {z : P r,sz ≤ pr,s} for all s ∈ Sr. That is, we assume that the subsets Zr,s are weakly

separated from each other by hyperplanes.

The problem (ROr) is a static mixed-integer RO problem in which all decisions, i.e., xr and yr,s,

s ∈ Sr, have to be determined before the uncertain parameter z is known. Clearly, by iteratively

splitting the uncertainty sets Zr,s, the approximation (ROr) of the mixed-integer adjustable RO

problem (ARO) iteratively improves.

Our contribution is that we determine how to iteratively split the uncertainty sets. This is a

generalization of the results of Postek and den Hertog (2016) for the case in which all decision

variables are continuous. In this case, they detect a finite set Zr,s of critical scenarios for each

uncertainty subset Zr,s, s ∈ Sr, after each splitting round r. They show that if none of these sets

Zr,s of critical scenarios are split in round r+ 1, then t̄r+1 = t̄r, i.e., the worst-case objective value

does not decrease. This provides a theoretical justification for splitting the sets Zr,s of critical

scenarios.

This theoretical result, however, does not hold when some of the decision variables in the model

are restricted to be integer. Therefore, Postek and den Hertog (2016) propose to use the critical

scenarios Zr,s of the LP relaxation of (ROr). However, in general this approach does not work. For

example, if there is only uncertainty in the cost parameters c(z) and q(z), then the LP relaxation

may only find a single critical scenario zr,s per uncertainty subset Zr,s, giving us no indication on

how to splits these sets.

Example 1. In Figure 1 we graphically illustrate why it may be insufficient to use only the critical

scenarios of the LP relaxation of (ROr).

In this example, we assume that there are two adjustable decision variables y1 and y2 both of

which are integer. Moreover, we assume that there is no uncertainty in the cost parameters q(z).

Thus, only the feasible region of this problem depends on the uncertain parameter z. In Figure 1

the feasible regions of the LP relaxation of (ROr), corresponding to two realizations z1 and z2 of

this uncertain parameter, are represented by the two quadrilaterals.

In the left panel, the feasible region of the LP relaxation of (ROr) is depicted as the shaded

intersection of the two quadrilaterals. At the optimal solution (1.25,1.5), only the constraints

corresponding to scenario z2 are active, and thus z2 is the only critical scenario. Notice that without

the constraints corresponding to z1, the same solution would be optimal, and thus the worst-case

objective function of (ARO) will not improve if we are allowed to make different (continuous)

decisions y1 and y2 for the different scenarios z1 and z2.

In the right panel, we consider the integer RO problem (ROr). Its feasible region consists of all

integer points in the intersection of the two quadrilaterals with optimal solution (2,2). Contrary to
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Figure 1 Illustration of the difference between detecting critical scenarios in the continuous (left) and integer

case with B&B (right).

the LP relaxation, it is possible to improve the worst-case objective value of (ARO) by separating

scenarios z1 and z2 and thus making different decisions (y1, y2) for the scenarios – (1,2) and (2,1)

– both with smaller objective function values than (2,2). �

In this paper, we propose a general approach for detecting sets Zr,s of critical scenarios in

adjustable RO problems with integer decision variables. In fact, we show that information about

the critical scenarios is embedded in the dual solutions of the nodes in the B&B tree used to solve

the static mixed-integer problem (ROr), which will be the basis of our scenario detection method.

In Section 3 we discuss the theory behind our approach.

Throughout the remainder of this paper we make the following mild assumption.

Assumption 3. The problem (RO0) is feasible and the feasible region of its LP relaxation is non-

empty and bounded.

3. Critical scenario detection using B&B

In this section we show how to detect critical scenarios Zr,s for the static mixed-integer RO problem

(ROr) after r splitting rounds. Let t
r,n

denote the objective value at each node n∈Nr of the B&B

tree used to solve (ROr). We will show that we can use the optimal dual variables at each node

n∈Nr with t
r,n ≥ tr to construct sets of critical scenarios Zr,s. In fact, we will show that it suffices

to only consider nodes n in a so-called critical cutset Or of the B&B tree. This is a set of nodes

that separates the root node from the leaf nodes in the B&B tree, see Figure 2.

Definition 1. Let Nr denote the nodes of the B&B tree used to solve (ROr). Then, Or ⊂Nr is

called a critical cutset of the B&B tree if

(i) t
r,n ≥ tr for all n∈Or,
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n= 0, t
r,0
< t

r

n= 1, t
r,1

= t
r

n= 2, t
r,2
< t

r

n= 3, t
r,3 ≥ tr

n= 5, t
r,5 ≥ tr n= 6, t

r,6 ≥ tr n= 7, t
r,7 ≥ tr

n= 4, t
r,4 ≥ tr

Figure 2 An example of a critical cutset set Or = {1,3,4} (in gray) of nodes in a B&B tree.

(ii) Or ∩Π(n) 6= ∅ for all n∈Λr,

where Π(n) represents the path from the root node to the leaf node n∈Λr in the B&B tree. �

In Section 3.1 we construct the primal and dual LPs corresponding to each node n ∈ Nr of the

B&B tree, and we show that for each node n strong LP duality holds. In Section 3.2 we use the

optimal dual variables of nodes n∈Or in a critical cutset to construct sets of critical scenarios Zr,s

and we prove that if these sets are not split after round r′, then the worst-case objective value does

not improve and thus t
r′

= t
r

for r′ ≥ r′.

3.1. Strong LP duality at B&B nodes

At each node n ∈ Nr of the B&B tree used to solve (ROr), we solve the LP relaxation of (ROr)

with several additional branching constraints of the form xrk ≤ δrk or yr,sl ≥ δ
r,s
l . The problem that

we solve at the n-th node of the tree equals:

t
r,n

:= min
tr,n,xr,n,yr,n,s

tr,n (ROr,n)

s.t. tr,n− c(z)>xr,n− q(z)>yr,n,s ≥ 0 ∀z ∈Zr,s ∀s∈ Sr

ai(z)
>xr,n +wi(z)

>yr,n,s ≥ bi ∀z ∈Zr,s, ∀i∈ I, ∀s∈ Sr

(dr,nj )>xr,n +
∑
s∈Sr

(er,n,sj )>yr,n,s ≥ δr,nj ∀j ∈Jr,n

xr,n ≥ 0, yr,n,s ≥ 0 ∀s∈ Sr,

where the last constraints represent the branching constraints.

Remark 1. We present the branching constraints in (ROr,n) in such a general form since our

results also hold in the more general framework of disjunctive programming. However, we prefer

to present our results in the context of B&B. �
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Problem (ROr,n) is not a standard LP since it has infinitely many constraints. However, since Z is a

non-empty and bounded polyhedron by Assumption 2, we are able to derive its robust counterpart:

t
r,n

= min
tr,n,xr,n,yr,n,s,κ

r,n,s
i

tr,n (P-RCr,n)

s.t. tr,n− c>xr,n− q>yr,n,s− (pr,s)>κr,n,s0 ≥ 0 ∀s∈ Sr

a>i x
r,n +w>i y

r,n,s− (pr,s)>κr,n,si ≥ bi ∀i∈ I, ∀s∈ Sr

(dr,nj )>xr,n +
∑
s∈Sr

(er,n,sj )>yr,n,s ≥ δr,nj ∀j ∈Jr,n

C>xr,n +Q>yr,n,s− (P r,s)>κr,n,s0 = 0 ∀s∈ Sr

A>i x
r,n +W>

i y
r,n,s + (P r,s)>κr,n,si = 0 ∀i∈ I, ∀s∈ Sr

xr,n ≥ 0, yr,n,s ≥ 0, κr,n,si ≥ 0 ∀i∈ I ∪{0}, ∀s∈ Sr,

where κr,n,si , i∈ I ∪{0} represent additional variables required to move from robust constraints in

(ROr,n), that hold for all z ∈Zr,s to their robust counterparts in (P-RCr,n). This robust counterpart

is an LP since Zr,s is a non-empty polyhedral uncertainty set for every s∈ Sr, and its dual is given

by:

max
λ
r,n,s
i ,u

r,n,s
i µ

r,n
j

∑
s∈Sr

∑
i∈I

λr,n,si bi +
∑
j∈Jr,n

µr,nj δr,nj (D-RCr,n)

s.t.
∑
s∈Sr

λr,n,s0 = 1∑
s∈Sr

(λr,n,s0 c+Cur,n,s0 )−
∑
i∈I

∑
s∈Sr

(λr,n,si ai +Aiu
r,n,s
i )−

∑
j∈Jr,n

µr,nj dr,nj ≥ 0

λr,n,s0 q+Qur,n,s0 −
∑
i∈I

(λr,n,si wi +Wiu
r,n,s
i )−

∑
j∈Jr,n

µr,nj er,n,sj ≥ 0, ∀s∈ Sr

P r,sur,n,si ≤ λr,n,si pr,s, ∀i∈ I ∪{0}, ∀s∈ Sr

λr,n,si ≥ 0, µr,n,sj ≥ 0, ∀i∈ I ∪{0}, ∀j ∈Jr,n, ∀s∈ Sr.

Proposition 1. Under Assumptions 1-3, strong LP duality holds between (P-RCr,n) and

(D-RCr,n) for each node n∈Nr of the B&B tree after splitting round r.

Proof Problems (P-RCr,n) and (D-RCr,n) form a standard primal dual pair. From LP duality

theory (see, e.g., Schrijver (1986)), it follows that strong LP duality holds unless both the primal

and dual problem are infeasible. Thus to prove the claim it suffices to show that either the primal

or dual is feasible.

Consider the static mixed-integer RO problem (ROr) with r= 0. By Assumption 3 this problem is

feasible, and the feasible region of its LP-relaxation is non-empty and bounded. The LP relaxation

can be interpreted as (ROr,n) with r = 0 and n= 0 the root node of the B&B tree used to solve
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(RO0). Hence, under Assumption 3, (P-RC0,0) has a non-empty, bounded feasible region and thus

a finite objective value. By strong LP duality, the objective value of (D-RC0,0) is also finite and its

feasible region thus non-empty.

Using the same arguments as above, (D-RCr,n) is feasible at the root node n= 0 for any splitting

round r, since (ROr) is feasible because the feasible solution for (RO0) can be implemented for

(ROr) after r splitting rounds using the same y-values for all uncertainty subsets s ∈ Sr as in

(RO0). Moreover, the additional branching constraints in (P-RCr,n) for arbitrary n restrict the

primal feasible region, but enlarge the dual feasible region. Hence, (D-RCr,n) is feasible for any r

and n, and thus strong LP duality between (P-RCr,n) and (D-RCr,n) always holds. �

3.2. Critical scenarios

Next, we discuss how to obtain critical scenarios from the dual variables of (D-RCr,n). Recall that

Zr,s = {z : P r,sz ≤ pr,s} and that the optimal dual variables (λ,u,µ) of (D-RCr,n) satisfy P r,sur,n,si ≤
λ
r,n,s

i pr,s for i∈ I ∪{0}. Hence, if λ
r,n,s

i > 0, then

P r,s(ur,n,si /λ
r,n,s

i )≤ pr,s ⇒ (ur,n,si /λ
r,n,s

i )∈Zr,s.

That is, the quotient ur,n,si /λ
r,n,s

i can be interpreted as a scenario from the uncertainty set Zr,s. The

set of all ur,n,si /λ
r,n,s

i for which λ
r,n,s

i > 0, i∈ I ∪{0}, will represent the set of critical scenarios Zr,n,s

in node n corresponding to the uncertainty subset Zr,s. However, we need to take into account

the possibility that problem (P-RCr,n) is infeasible and problem (D-RCr,n) is unbounded, and

thus no optimal dual solution exists. For this reason, we call any solution (λ,u,µ) optimal if its

corresponding objective value in (D-RCr,n) exceeds t
r
.

Definition 2. For every node n ∈ Or in a critical cutset of the nodes of the B&B tree used

for solving the static mixed-integer RO problem (ROr), we call (λ,u,µ) an optimal solution of

(D-RCr,n) if (λ,u,µ) is feasible and its objective value exceeds t
r
.

Definition 3. Let the splitting round r be given and let Or ⊂Nr be a critical cutset of the nodes

of the B&B tree used to solve the static mixed-integer RO problem (ROr). Then, for each n∈Or
and s∈ Sr, the set of critical scenarios Zr,s,n corresponding to uncertainty subset Zr,s in node n is

given by

Zr,s,n = {ur,n,si /zr,n,si : λ
r,n,s

i > 0, i∈ I ∪{0}}.

Moreover, the set of critical scenarios Zr,s corresponding to the uncertainty subset Zr,s, s∈ Sr, is

Zr,s =
⋃
n∈Or

Zr,s,n.
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Now we are ready to prove our main theorem, which can be interpreted as the integer analogue of

Theorem 1 in Postek and den Hertog (2016).

Theorem 1. Consider the static mixed-integer RO problem (ROr) under Assumptions 1-3, and

assume that we solve this problem using B&B. Let Or ⊂Nr denote a critical cutset of the nodes of

the B&B tree used to solve (ROr). Then, for any refinement Zr′ of Zr for which for every s∈ Sr,

there exists s′ ∈ Sr′ such that ⋃
n∈Or

Zr,n,s ⊆Zr′,s′ , (1)

we have t
r′

= t
r
. That is, the objective function value does not improve.

Proof Assume w.l.o.g. that Sr ⊂ Sr′ and that the splitted sets in Zr′ are indexed such that

Zr,n,s ⊆ Zr′,s for all n ∈ Or, s ∈ Sr. Since Zr′ is a refinement of Zr it follows immediately that

t
r′ ≤ tr. It remains to show that also t

r′ ≥ tr holds. We will do so by proving that t
r

is a lower

bound for (ROr′), the robust optimization problem after r′ rounds of splitting, using the B&B tree

of the r-th splitting round. Indeed, for each node n∈Or we can consider (ROr′) with the additional

branching constraints from node n∈Or (and without integrality restrictions):

t
r′,n

:= min
tr

′,n,xr′,n,yr′,n,s
tr

′,n (ROr′,n)

s.t. tr
′,n− c(z)>xr

′,n− q(z)>yr
′,n,s ≥ 0 ∀z ∈Zr′,s ∀s∈ Sr′

ai(z)
>xr

′,n +wi(z)
>yr

′,n,s ≥ bi ∀z ∈Zr′,s ∀i∈ I, ∀s∈ Sr′

(dr,nj )>xr
′,n +

∑
s∈Sr

(er,n,sj )>yr
′,n,s ≥ δr

′,n
j ∀j ∈Jr,n (2)

xr,n ≥ 0, yr,n,s ≥ 0 ∀s∈ Sr′ .

Observe that the summation in (2) runs over s ∈ Sr, which means that branching conditions are

only added to decision variables that were also present in round r. Moreover, since Or is a critical

cutset satisfying (i) and (ii) in Definition 1, it follows that the optimal solution to the problem

(ROr′) is feasible for at least one node n ∈Or, and thus the minimum objective value of (ROr′,n)

over all nodes n∈Or yields a lower bound for t
r′

:

min
n∈Or

t
r′,n ≤ tr

′
.

Next, we will use the dual problems of (ROr,n) and (ROr′,n) and the fact that t
r,n ≥ tr for all n∈Or

to prove that t
r ≤ tr

′,n
for every n∈Or, and thus

t
r ≤ min

n∈Or

t
r′,n ≤ tr

′
. (3)
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After obtaining the robust counterpart (P-RCr,n) of (ROr,n), its dual is given by (D-RCr,n) and by

Proposition 1, strong LP duality holds between the two. Similarly, the dual of (ROr′,n) is equivalent

to:

max
λ
r′,n,s
i ,u

r′,n,s
i ,µ

r′,n
j

∑
s∈Sr′

∑
i∈I

λr
′,n,s
i bi +

∑
j∈Jr,n

µr
′,n
j δr,nj (D-RCr′,n)

s.t.
∑
s∈Sr′

λr
′,n,s

0 = 1

∑
s∈Sr′

(λr
′,n,s

0 c+Cur
′,n,s

0 )−
∑
i∈I

∑
s∈Sr′

(λr
′,n,s
i ai +Aiu

r′,n,s
i )−

∑
j∈Jr,n

µr
′,n
j dr,nj ≥ 0

λr
′,n,s

0 q+Qur
′,n,s

0 −
∑
i∈I

(λr
′,n,s
i wi +Wiu

r′,n,s
i )−

∑
j∈Jr,n

µr
′,n
j er,n,sj ≥ 0, ∀s∈ Sr

λr
′,n,s

0 q+Qur
′,n,s

0 −
∑
i∈I

(λr
′,n,s
i wi +Wiu

r′,n,s
i )≥ 0, ∀s∈ Sr′ \ Sr

P r′,sur
′,n,s
i ≤ λr

′,n,s
i pr

′,s, ∀i∈ I ∪{0}, ∀s∈ Sr′ (4)

λr
′,n,s
i ≥ 0, µr

′,n
j ≥ 0, ∀i∈ I ∪{0}, ∀j ∈Jr,n, ∀s∈ Sr′ .

Observe that it is possible to select ur
′,n,s = 0 and λr

′,s = 0 for all s∈ Sr′ \Sr to obtain the same dual

as in (D-RCr,n) except that P r′,s and pr
′,s in the constraints in (4) refer to the splitted uncertainty

sets in Zr′ , whereas in (D-RCr,n) they refer to the uncertainty sets in Zr. These constraints,

however, can be written in a different form, since the uncertainty sets Zr′,s are bounded and thus

P r′,sz ≤ 0⇒ z = 0. Hence, if λr
′,n,s
i = 0, then ur

′,n,s
i = 0, and if λr

′,n,s
i > 0, then the constraint reduces

to

P r′,s

(
ur

′,n,s
i

λr
′,n,s
i

)
≤ pr

′,s ⇔ ur
′,n,s
i

λr
′,n,s
i

∈Zr
′,s.

Using this alternative form, and since
⋃

n∈Or

Zr,n,s ⊆Zr′,s for all s∈ Sr, it is not hard to verify that

the optimal dual solutions of (D-RCr,n) can be used to construct a feasible solution to (D-RCr′,n)

for every i∈ I ∪{0} and j ∈Jr,n:

λr
′,n,s
i :=

{
λ
r,n,s

i if s∈ Sr and λ
r,n,s

i > 0,
0 otherwise,

ur
′,n,s
i :=

{
ur,n,si if s∈ Sr and λ

r,n,s

i > 0
0 otherwise,

µr
′,n
j := µr,nj .

The objective value of this dual solution is at least t
r

by definition of a critical cutset. Thus, for

all n∈Or, we have by weak LP duality that t
r′,n ≥ tr, and thus by (3) we conclude that t

r ≤ tr
′
. �

Theorem 1 shows how to detect critical scenarios to be split for mixed-integer adjustable RO prob-

lems in general. In Section 4 we will show that this critical scenario detection method outperforms

existing problem-specific heuristic methods. First, however, we remark that Theorem 1 implies a

simple optimality criterion for when to stop splitting the uncertainty set.
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Corollary 1. Let Or ⊂Nr denote a critical cutset of the nodes of the B&B tree used for solving

(ROr), and suppose that ∣∣∣∣∣ ⋃
n∈Or

Zr,n,s

∣∣∣∣∣≤ 1, ∀s∈ Sr.

Then, for any refinement Zr′ of Zr we have t
r′

= t
r
, and thus the objective value of the adjustable

RO problem (ARO) equals t
r
. �

Remark 2. Due to the strong LP duality between problems (P-RCr,n) and (D-RCr,n), the critical

scenarios can be obtained at no cost from the optimal dual multipliers of the LP problem if

(P-RCr,n) is feasible. In a similar way, they can be obtained from the dual infeasibility ray of

problem (P-RCr,n) if (P-RCr,n) is infeasible and (D-RCr,n) is unbounded. In this way, no additional

optimization problems need to be solved to construct the set of critical scenarios.

4. Numerical experiment - route planning

4.1. Problem description

To illustrate the potential benefits of our method we consider the route planning problem from

Hanasusanto et al. (2015) and Postek and den Hertog (2016). This is a problem with uncertainty in

the objective function to which the methodology of Postek and den Hertog (2016) and Bertsimas

and Dunning (2016) cannot be straightforwardly applied.

The problem is a shortest path problem defined on a directed graph G = (V,A) with nodes

V = {1, . . . ,N}, arcs A ⊆ V × V , and uncertain weights wij(z) ∈ R+ for every arc (i, j) ∈ A. We

assume that these arc weights are affine functions of the uncertain parameters z ∈ Z, where Z is

a polyhedral uncertainty set. The goal is to determine the length of the worst-case shortest path

from a start node b∈ V to an end node e∈ V with b 6= e. This shortest path is determined after we

observe the arc weights wij(z), but its its worst-case length is determined before these arc weights

are known. If the arc weights represent travel times, then this problem can be interpreted as a

route planning problem in which we determine the maximum time required to travel from node b

to e.

The corresponding mixed-integer adjustable RO problem is given by:

min
t,y(z)

t (RPP)

s.t. t−
∑

(i,j)∈A

wij(z)yij(z)≥ 0, ∀z ∈Z∑
(j,l)∈A

yjl(z)−
∑

(i,j)∈A

yij(z)≥ I(j = b)− I(j = e), ∀j ∈ V

yij(z)∈ {0,1}, ∀z ∈Z, ∀(i, j)∈A.
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Here, the binary variables yij(z) are equal to 1 if arc (i, j) is part of the shortest path from b to e,

and I(·) denotes the indicator function.

Since this problem has uncertainty in the objective function only, the methodology of Postek

and den Hertog (2016) only generates a single critical scenario, giving no indication on how to split

the uncertainty set. That is why they propose a problem-specific heuristic splitting rules that can

only be applied to this route planning problem. In our numerical experiment we show that our

general B&B-based critical scenario detection method outperforms these splitting rules.

4.2. Experimental design

We generate random graphs with N nodes, where the location of each node is uniformly sampled

from [0,10]2. The nodes between which the Euclidean distance is largest are designated as start

and end node. Moreover, the arc set A is obtained by removing the longest 70% of arcs from a

complete directed graph, as in Hanasusanto et al. (2015) and Postek and den Hertog (2016).

We assume that the arc weights wij(z) are defined as

wij(z) = (1 + zij/2)dij,

where dij represents the Euclidean distance between nodes i and j, and z is contained in the

polyhedral uncertainty set

Z =

{
z ∈ [0,1]|A| :

∑
(i,j)∈A

zij ≤B
}
.

Thus, the arc weight wij(z) may be between 100% and 150% of the distance dij between the nodes.

For the parameter B in the uncertainty set we consider B = 2,3,4.

In our numerical experiment we compare the quality of the uncertainty set splits based on (i)

the problem-specific method of Postek and den Hertog (2016) and (ii) our new B&B-based critical

scenario detection method. For both methods, we split the uncertainty sets Zr,s for those s∈ Sr for

which the first constraint in (ROr) is active. That is, we only focus on those uncertainty subsets

that determine the worst-case objective value after the r-th splitting round. Each such set is split

into two subsets using the bisecant plane between the two critical scenarios that are furthest apart

from each other. A bisecant plane between two points z and z′ is the hyperplane going through

the point (z+ z′)/2 with normal vector z− z′.

The idea behind the heuristic of Postek and den Hertog (2016) is to find an alternative critical

scenario z, so that z and zLP , obtained using the LP-relaxation, can be split. To make sure that

z differs substantially from zLP its optimal path y(z) cannot use more than 100θ% of the arcs in

the optimal path y(zLP ) corresponding to zLP . Here, 0≤ θ ≤ 1 is a parameter that we can select.

For details of this ad-hoc method, see Postek and den Hertog (2016). Our new general critical
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Table 1 Improvements (%) in the worst-case objective function value. In bold result of the approach that

performed best for a given N if its average outperformance was statistically significant at 0.95 confidence level.

N = 10 N = 20 N = 30 N = 40
|Zr|= 2 B&B PdH (2016) θ B&B PdH (2016) θ B&B PdH (2016) θ B&B PdH (2016) θ
Correction 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9
No 1.10 0.24 0.82 0.87 2.84 2.45 2.34 0.98 3.42 3.88 3.13 1.01 2.95 4.22 2.34 0.90
Ex post 2.13 0.76 1.51 1.52 5.44 5.27 4.68 1.79 6.16 6.75 5.09 1.91 5.62 7.50 3.98 1.65

N = 10 N = 20 N = 30 N = 40
|Zr|= 10 B&B PdH (2016) θ B&B PdH (2016) θ B&B PdH (2016) θ B&B PdH (2016) θ
Correction 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9
No 2.36 1.79 2.20 1.79 4.42 4.16 3.85 1.53 5.30 5.49 4.61 1.88 5.00 5.70 4.18 1.39
Ex post 3.22 3.02 3.14 2.34 8.41 7.21 6.36 2.91 9.91 8.50 6.91 3.82 11.27 8.60 7.56 3.34

scenario detection method identifies critical scenarios as explained in Definition 3. In our numerical

experiments we use the critical cutset Or with smallest cardinality.

Remark 3 (Ex post correction). Since our route planning problem (RPP) only has uncer-

tainty in the objective function, it is possible to apply an ex post correction to the worst-case

objective value after each round of splitting. The idea, not recognized in Postek and den Hertog

(2016), is that the routes yr,s corresponding to uncertainty sets Zr,s, s∈ Sr, after r rounds of split-

ting are feasible for any z ∈Z. By selecting the best route among yr,s, s ∈ Sr, for every z ∈Z, the

worst-case objective value becomes

tr := max
z∈Z

min
s∈Sr

∑
(i,j)∈A

wij(z)
>yr,sij .

This objective value tr may be lower than t̄r since yr,s
′

is not necessarily the best solution among

yr,s, s∈ Sr, for all z ∈Zr,s′ . In our numerical experiment we apply this ex-post correction and show

both values tr and t̄r.

4.3. Results

In Table 1 we present results for a representative parameter set N = 10,20,30,40, θ = 0,0.5,0.9

and B = 3. For each value of N , the worst-case objective value improvement of ROr compared

to the objective value of RO0 is given, both for our B&B scenario detection method and the

problem-specific method of Postek and den Hertog (2016) with θ= 0,0.5,0.9. We report the worst-

case objective value improvement after a single splitting round, i.e., when the uncertainty set is

partitioned into two subsets and thus |Zr|= 2, and when |Zr|= 10.

We observed that the results are very similar for B = 2,3,4, both for |Zr|= 2 and |Zr|= 10. The

performance of the problem-specific heuristic, however, depends strongly on the parameter θ, and

is better for θ= 0 than for θ= 0.5 and θ= 0.9. Moreover, the ex post correction of the worst-case

objective value discussed in Remark 3 also has a substantial impact. In all cases it leads to a major

increase in objective value improvement. For example, for N = 40 and B = 3 the improvement of

our B&B scenario detection method is 5.00% without and 11.27% with ex post correction.
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Figure 3 Objective function improvement (%) of the B&B and the problem-specific methods relative to the

number of subsets over the splitting process (with the ex post correction), for N = 30, B = 3.

Comparing the B&B scenario detection method with the problem-specific method of Postek and

den Hertog (2016), using the ex post corrected results, the B&B method outperforms the problem-

specific method. In fact, for all N the worst-case objective value improvement of the B&B method

is statistically significantly better than the problem-specific method for all values of θ. This results

is confirmed in Figure 3 where we show the worst-case objective improvements of both methods as

a function of |Zr|, the number of subsets in which Z is partitioned, for N = 30 and B = 3. Observe

that the largest objective value improvements are from the initial splits of the uncertainty set.

Moreover, the increase in the objective value improvement diminishes with the number of splits.

Remark 4. The running times of the problem-specific heuristic are lower than those of our B&B

scenario detection method. We do not report these running times since we have used a self-

implemented B&B framework to extract optimal dual vectors from nodes in the B&B tree. To our

knowledge, this is not possible using current commercial solvers.

5. Summary

In this paper, we have considered piecewise constant decision rules for mixed-integer adjustable

robust optimization (RO) by adaptively partitioning the uncertainty set, as proposed by Postek

and den Hertog (2016) and Bertsimas and Dunning (2016). In this approach, the uncertainty set is

iteratively partitioned into smaller subsets in such a way that so-called critical scenarios are located

in separate subsets. An open issue in this context has been how to detect these critical scenarios

in problems involving integer decision variables. That is why we have provided a general-purpose

critical scenario detection method for such problems that is based on extracting the information

hidden in the B&B tree used to solve the corresponding static mixed-integer RO problem. In par-

ticular, the critical scenarios are directly derived from the optimal dual vectors in the nodes of the
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B&B tree, at no extra computational cost. Using numerical experiments on a route planning prob-

lem, we have shown that our general-purpose method outperforms the problem-specific heuristic

method of Postek and den Hertog (2016).
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