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In many optimization problems uncertain parameters appear in a convex way, which is problematic as

common techniques can only handle concave uncertainty. In this paper, we provide a systematic way to

construct conservative approximations to such problems. Specifically, we reformulate the original problem as

an adjustable robust optimization problem in which the nonlinearity of the original problem is captured by

the new uncertainty set. This adjustable robust optimization problem is linear both in the variables and the

uncertain parameters whenever the original uncertainty set is polyhedral, which allows for the application

of a multitude of techniques from adjustable robust optimization. Our approach can be applied to a wealth

of constraints, including constraints that are convex quadratic, sum-of-max (with and without square), log-

sum-exp, norms, and negative entropy.
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1. Introduction

1.1. Problem Formulation

We consider a general convex constraint given by

f (A(x)ζ + b(x))≤ 0 ∀ζ ∈U, (1)
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where f :Rp → [−∞,+∞] is proper, closed and convex, A :Rn →Rp×L and b :Rn →Rp are affine.

For ease of exposure, we initially consider nonempty polyhedral uncertainty sets

U =
{
ζ ∈RL

+

∣∣Dζ = d
}
, (2)

for some D ∈ Rq×L and d ∈ Rq. We also show that we can extend our results to general convex

uncertainty sets, although results are more conservative in that case.

This formulation allows for many important classes of constraints, such as convex quadratic,

sum-of-max (with and without square), log-sum-exp functions, norms and negative entropy. Fur-

thermore, all functions g(x, ζ) that are jointly convex in x and ζ can be written as f (A(x)ζ + b(x)),

by choosing

A(x) =

O
I

 , b(x) =

x
0

 .
Despite its generality, it’s worth noting that we cannot handle all constraints convex in both x

and ζ by choosing to consider the function f(A(x)ζ + b(x)). For instance, functions of the form

b(x)⊤g(ζ), where b is an affine function and g is a convex convex function, cannot be formulated as

f(A(x)ζ+ b(x)). Examples of such functionscan be found in brachytherapy optimization (Gorissen

et al. 2013). Other examples include capital budgeting problems and multinomial logit models

(Alfandari and Garćıa 2018).

1.2. Literature

Robust models with constraints that are convex in the uncertain parameters are, in general,

hard (Chassein and Goerigk 2019) but are common in models. They appear, for example, in inven-

tory management problems, geometric programming and conic optimization. Therefore, several

papers focus on specific type of robust convex constraints.

In Bertsimas and Sim (2006), a method for norm-based uncertainty sets and homogeneous con-

straint functions is proposed. We show in Section 3 that their method is a special case of our

approach. Even more, for polyhedral uncertainty sets we show that our approach is tighter. Our
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approach can also be seen as a generalization of the approach in Zhen et al. (2022). There,

second-order cone and semidefinite programming constraints are reformulated to an adjustable

robust optimzation model. However, that approach does not handle general convex constraints

mentioned above, nor can it be extended to non-polyhedral uncertainty sets. When the function f

is a sum-of-max-of-linear functions, then the method proposed by Ben-Tal et al. (2005) and Goris-

sen and Den Hertog (2013) coincides with our method. There, they propose to use linear decision

rules. It can be shown that our method together with linear decision rules coincides with their

approximation.

Also the seminal papers on robust optimization (El Ghaoui and Lebret (1997), El Ghaoui et al.

(1998), Ben-Tal et al. (2002)) pay attention to specific cases of constraints with convex uncertainty.

These papers consider the special combination of (conic) quadratic constraint functions and ellip-

soidal types of uncertainty sets. For this specific case, their approach is exact. However, the final

problem that needs to be solved with their approach is a semidefinite optimization program. Our

approach is a conservative approximation for these cases, but is computationally far less demanding

as it yields a conic quadratic optimization problem.

1.3. Contributions

This paper presents a general and extended approach to general uncertain convex constraints from

the literature. The major contributions of this paper are:

• We show that an uncertain convex constraint (1) can be written as a set of linear adjustable

robust constraints for polyhedral uncertainty sets.

• Using linear decision rules we obtain a tractable conservative approximation for the adjustable

robust model. Furthermore, we show that this single approach is either equivalent to or tighter

than the approach proposed in Bertsimas and Sim (2006).

• We extend our approach to convex constraints with non-polyhedral uncertainty sets and show

that the resulting nonlinear adjustable robust constraints can be solved with static policies.
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1.4. Paper organization and notation

The paper is organized as follows. Section 2 treats the approach for (1) for polyhedral uncertainty

sets. In Section 3 we extend the results from Section 2 to general convex uncertainty sets and

provides additional theory that compares our approach with the existing literature. The Electronic

Companion contains numerical results on problems with these hard convex constraints: a robust

geometric programming problem and a practical radiotherapy optimization example.

Notation. Throughout this paper we use the following notation.

Let f : Rn → R be a closed convex function with domain dom(f) = {x | f(x)<∞}. The convex

conjugate, which we refer to as conjugate, of f is defined as

f∗(y) = sup
x∈dom(f)

{
y⊤x− f(x)

}
.

The support function of a set U is the conjugate of that set’s indicator function. This indicator

function is defined as:

δ (x |U) =


0 if x∈U

∞ otherwise,

and thus the support function is given by

δ∗ (y |U) = sup
x∈U

y⊤x.

The perspective function of f is defined by

(fλ) (x) =


λf
(
x
λ

)
λ> 0

f∞(x) λ= 0,

where f∞ is the recession function of f , defined by (Rockafellar 1970, Theorem 13.3):

f∞(y) = δ∗ (y | dom(f∗)) . (3)

We remark that the alternative definition of the recession function in (Rockafellar 1970, Corollary

8.5.2), i.e.,

f∞(x) = lim
λ↓0

λf
(x
λ

)
, (4)
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may not be closed. For the ease of exhibition, we write λf
(
x
λ

)
for the perspective function through-

out the rest of the paper, implicitly assuming that for λ = 0, we consider the definition in (3).

A table of recession functions of some well-known functions, as well as composition rules, can be

found in Appendix A.

2. The Robust Counterpart

2.1. Reformulation to ARO

In order to find a conservative approximation to (1), we first transform the problem into an equiv-

alent linear adjustable robust optimization problem.

Theorem 1. Let f :Rp → [−∞,+∞] be a proper, closed and convex function and let A :Rn →Rp×L

and b : Rn → Rp be affine functions. Let U ⊆ RL be a polyhedron as defined in (2). Then, x ∈ Rn

satisfies

f (A(x)ζ + b(x))≤ 0 ∀ζ ∈U,

if and only if it satisfies the following set of adjustable robust optimization constraints:

∀w ∈ dom(f∗) , ∃λ∈Rq :


d⊤λ+w⊤b(x)− f∗(w)≤ 0

D⊤λ≥A(x)⊤w.

(5a)

(5b)

Proof. Because f is a closed convex function we have that

f(z) = f∗∗(z) = sup
w∈domf∗

{
z⊤w− f∗(w)

}
.

Substituting this into (1) yields

∀ζ ∈U : f (A(x)ζ + b(x))≤ 0

⇐⇒ ∀ζ ∈U : sup
w∈domf∗

{
(A(x)ζ + b(x))

⊤
w− f∗(w)

}
≤ 0

⇐⇒ sup
ζ∈U

{
sup

w∈domf∗

{(
A(x)⊤w

)⊤
ζ + b(x)⊤w− f∗(w)

}}
≤ 0

⇐⇒ sup
w∈domf∗

{
sup
ζ∈U

{(
A(x)⊤w

)⊤
ζ
}
+ b(x)⊤w− f∗(w)

}
≤ 0 (6)
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⇐⇒ sup
w∈domf∗

{
inf
λ∈Rq

{
d⊤λ |D⊤λ≥A(x)⊤w

}
+ b(x)⊤w− f∗(w)

}
≤ 0 (7)

⇐⇒ ∀w ∈ domf∗, ∃λ∈Rq :


d⊤λ+ b(x)⊤w− f∗(w)≤ 0

D⊤λ≥A(x)⊤w,

where (6) and (7) are equivalent because of strong LP duality. □

In the field of Robust Optimization the variable λ in (5) is referred to as an adjustable variable,

as its value can be adjusted after the value of the uncertain parameter w is known. We note that

a similar result holds if the nonnegativity constraint in U is omitted. Then the inequality in (5b)

becomes an equality constraint, which can be used to eliminate some adjustable variables λ. Elimi-

nating variables in this way is equivalent to imposing linear decision rules for those variables (Zhen

and den Hertog 2017, Lemma 2). We also remark that Theorem 1 does not rely on A and b being

affine in x.

The robust constraint (1) allows for many related robust optimization constraints. One partic-

ularly interesting setting is where the original constraint contain adjustable variables, that is:

g (x, y(ζ))≤ 0 ∀ζ ∈U, (8)

where g is jointly convex in x and y for adjustable variables y, that is, jointly convex constraints in

adjustable robust optimization problems. Specifically, such constraints can be treated by substitut-

ing a linear decision rule y= s+Sζ, such that g (x, s+Sζ) can be written as f (A(x,S)ζ + b(x, s)).

We do remark that substituting a linear decision rule for y yields a conservative approximation to

(8), and thus our approach yields a conservative approximation to this conservative approximation

of (8).

2.2. Conservative Approximation

Tractable conservative solutions to (5) can be constructed using affine decision rules as the resulting

problem is linear in w. To overcome some of the conservativeness, we can lift the nonlinearity of

f∗(w) to the uncertainty set and using a slightly more involved decision rule. Lifting a set has been

applied in adaptive distributionally robust settings by Bertsimas et al. (2019) in a similar spirit.
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Theorem 2. If there exist u∈Rq, V ∈Rq×p and r ∈Rq for a given x∈Rn such that

d⊤u+(1+ d⊤r)f
(

V ⊤d+b(x)

1+d⊤r

)
≤ 0

1+ d⊤r≥ 0

−D⊤
i u+(−D⊤

i r)f
(

Ai(x)−V ⊤Di

−D⊤
i r

)
≤ 0

−D⊤
i r≥ 0

i= 1, . . . ,L,

(9a)

(9b)

holds, then x also satisfies (1). Here, Di and Ai(x) denote the i-th column of D and A(x), respec-

tively.

The resulting system of inequalities (9) is convex because the perspective function of convex func-

tions are convex, and it includes 2q+ qp+n variables compared to the original n in (1). The proof

of Theorem 2 using these lifted decision rules can be found in Appendix B.

We would like to note that for certain special classes of function f , the set of inequalities in (9)

remains convex even if A and b are not affine in x. For instance, if f is also non-decreasing or

piece-wise affine, then the constraints in (9) are convex as long as A and b are convex in x.

The conservative approximation derived in Theorem 2 is generally tighter than that in Theo-

rem 1. The constraints in (9) are represented by the perspective of the original constraint function f

and its tractability is thus highly reliant on the tractability of this perspective. A disadvantage of

perspective functions is that they can lead to numerical issues in practice (Jung et al. 2013). One

way to overcome this, is to set r = 0 and end up with a problem without perspective functions

and the recession function of f in (9). However, for conically representable f , we know that the

perspective is conically representable as well, and hence these numerical issues can be circumvented

by using this conic reformulation. We refer to Appendix C for the mathematical proof of this

statement.

3. Extension to general convex uncertainty sets

In this section, we consider (1) with a general convex uncertainty set that is given by

U =
{
ζ ∈RL

+

∣∣ hℓ(ζ)≤ 0 ℓ= 1, ..., q
}
, (10)
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where hℓ :Rp → [−∞,+∞] is proper, closed and convex. Restricting the uncertainty set U to the

nonnegative orthant RL
+ can be done without loss of generality because we can always lift the

set U into RL
+ by setting ζ = ζ+ − ζ− in (1), where ζ+, ζ− ∈ RL

+, and incorporate the non-convex

projection of Bertsimas and Sim (2006) if U is norm-based.

In case the set U is conic quadratic representable, we can approximate the set U by a polyhedron

using the work by Ben-Tal and Nemirovski (2001). After having the polyhedral description, all

techniques from the previous section can be applied. We note that the polyhedral approximation is

polynomial in the dimension of the conic quadratic representation of the set, as well as 1
ϵ
, where ϵ is

the accuracy of approximation. Furthermore, a large value of ϵ, and therefore a crude approximation

of the uncertainty set, is often acceptable as the uncertainty set is a modelers’ choice and not a

hard constraint. There is another option, which can also be applied for sets that are not conic

quadratic representable, and is outlined in the theorem below. The proof of Theorem 3 can be

found in Appendix B.

Theorem 3. Let f :Rp → [−∞,+∞] be a proper, closed and convex function and let A :Rn →Rp×L

and b :Rn →Rp be affine functions. Let U ⊆RL
+ be a convex set as defined in (10) and ri(U) ̸= ∅.

Then, x∈Rn satisfies

f (A(x)ζ + b(x))≤ 0 ∀ζ ∈U,

if and only if it satisfies the following set of adjustable robust optimization constraints:

∀(w0,w)∈W, ∃λ∈Rq
+,{uℓ}ℓ ⊂Rp :



q∑
ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ b(x)⊤w+w0 ≤ 0

A(x)⊤w≤
q∑

ℓ=1

uℓ,

(11a)

(11b)

where the uncertainty set W is defined by

W =
{
(w0,w)∈Rp+1

∣∣w0 + f∗(w)≤ 0
}
.

The adjustable variables (λ,{uℓ}ℓ) in (11) may appear in a nonlinear way, and imposing linear

decision rules would again lead to robust constraints with convex uncertainties. In order to obtain
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the tractable conservative approximation of (11), we treat the adjustable variables (λ,{uℓ}ℓ) in (11)

as static instead of the more flexible affine decision rules. The derivation of this conservative

approximation can be found in Appendix B.

Theorem 4. If there exist λ∈Rq
+ and uℓ ∈Rp, ℓ= 1, ..., q, for a given x∈Rn such that

q∑
ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ f(b(x))≤ 0

f∞(Ai(x))≤
q∑

ℓ=1

uiℓ i= 1, . . . ,L,

(12a)

(12b)

holds, then x also satisfies (1) with U ⊆RL as defined in (10).

For a special case when f(·) is positively homogeneous, the set of constraints in (12) is equivalent

to 
∑q

ℓ=1 λℓh
∗
ℓ(uℓ/λℓ)+ f(b(x))≤ 0

f(Ai(x))≤
∑q

ℓ=1 uiℓ i= 1, ...,L

(13)

as f∞ = f in this case. The obtained set of finite convex constraints (13) is in fact the tractable

reformulation of the following robust convex constraint

L∑
i=1

ζif (A(x)i)+ f (b(x))≤ 0 ∀ζ ∈U,

which coincides with the conservative approximation of Bertsimas and Sim (2006) for a robust

convex constraint (1) where f is positively homogeneous. Since our approach does not require f

to be homogeneous in (1), our approach generalizes the approach of Bertsimas and Sim (2006) to

non-homogeneous functions. For (1) with a polyhedral uncertainty set, we propose to impose linear

decision rules to adjustable variables in the adjustable robust linear reformulation (5), and the

obtained approximation (9) is tighter than the one from (12) using static decision rules. Hence, in

this case our approximations via linear decision rules are tighter than the ones from Bertsimas and

Sim (2006). Additionally, our approach allows for a progressive approximation using a finite sample

from W as described in Appendix D, while their method does not. Note that this progressive

approximation works similarly for a general convex uncertainty set. We also remark that in case the
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uncertainty set consists of both linear and nonlinear constraints, the approaches can be combined.

In those situations, linear decision rules are used for the adjustable variables corresponding to the

linear constraints and static rules for the other constraints.
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Appendix A: Recession Functions

The recession function can be defined in multiple ways. In this paper, we mainly use it to concisely

denote the support function of the domain of a function’s conjugate. An advantage of the reces-

sion function besides concise notation is the relative ease of computing a recession function. Let

f1, . . . , fm be convex, proper and lower semicontinuous functions. Then, the following composition

rules for recession functions are valid (Auslender and Teboulle 2006, Proposition 2.6.1, 2.6.2):

1. Let f be defined by f(x) =
∑m

i=1 f
i(x). Then f∞(y) =

∑m

i=1 f
i
∞(y);

2. Let f be defined by f(x) = supi∈{1,...,m} f
i. Then f∞(y) = supi∈{1,...,m} f

i
∞(y).

Moreover, if g : Rm → [−∞,+∞] is a proper convex function, A is a linear map from Rn to Rm

and ψ : (−∞, b) → R for 0 ≤ b ≤ +∞ is convex and nondecreasing with ψ∞(1) > 0 it holds that

(Auslender and Teboulle 2006, Proposition 2.6.3, 2.6.4):

3. Let f be defined by f(x) = g(Ax). Then f∞(y) = g∞(Ay);

4. Let f be defined by

f(x) =

{
ψ(g(x)) if x∈ dom(g)

+∞ otherwise.

Then

f∞(y) =

{
ψ∞(f∞(y)) if y ∈ dom(f∞)

+∞ otherwise.

Using the above composition rules as well as the recession functions of some often encountered

basic functions f , one can directly find the recession function of the function of interest. An overview

of some common recession functions is given in Table 1. It should be noted that the recession

function is always conically representable, as its epigraph is the recession cone of the epigraph of

f and thus is a cone by definition (Rockafellar 1970, p. 66). We additionally remark that for all

f(x) f∞(y)

√
1+x⊤Qx (Q⪰ 0)

√
y⊤Qy

x⊤Qx+ q⊤x+ c (Q⪰ 0)


q⊤y if Qy= 0

+∞ if Qy ̸= 0

log
∑n

i=1 e
xi (n> 1) max{yi | i= 1, . . . , n}∑n

i=1

√
1+x2

i ∥y∥2∑m

i=1maxk∈Ki
{xk}

∑m

i=1maxk∈Ki
{yk}

∥x∥2 ∥y∥2
Table 1 Some examples of functions f with recession functions f∞.
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positively homogeneous functions of order one, or equivalently all functions such that f∗(y) = 0 on

its domain, it holds that f∞(x) = f(x).

Appendix B: Proofs for Conservative Approximations

Proof of Theorem 2. From Theorem 1 we know (1) is equivalent to (5). We lift the nonlinear

term f∗(w) to the uncertainty set, that is, we introduce an auxiliary uncertain parameter w0 such

that (5) is equivalent to

∀
(
w0

w

)
∈W, ∃λ∈Rq :

{
d⊤λ+w⊤b(x)+w0 ≤ 0

D⊤λ≥A(x)⊤w,

(14a)

(14b)

where the new uncertainty set W is defined by

W =

{(
w0

w

)
∈Rp+1

∣∣∣∣w0 + f∗(w)≤ 0

}
.

The support function of this new uncertainty set is essential for deriving a tractable robust coun-

terpart and is equal to:

δ∗
((

z0
z

) ∣∣∣∣W)= sup
(w0 w)⊤∈W

{
z0w0 + z⊤w

}
=

supw∈Rp

{
z⊤w− z0f

∗(w)
}

if z0 > 0
supw∈domf∗

{
z⊤w

}
if z0 = 0

+∞ otherwise

=


z0 supw∈Rp

{
w⊤ z

z0
− f∗(w)

}
if z0 > 0

f∞(z) if z0 = 0
+∞ otherwise

=

{
z0f

(
z
z0

)
if z0 ≥ 0

+∞ otherwise.
(15)

Now, we once again use a linear decision rule for λ of the form

λ= u+V w+ rw0, (16)

where u ∈ Rq, V ∈ Rq×p and r ∈ Rq, and thus we obtain a conservative approximation for (1).

Substituting this decision rule in (14a) yields

d⊤λ+ b(x)⊤w+w0 ≤ 0 ∀
(
w0

w

)
∈W

=⇒ d⊤ (u+V w+ rw0)+ b(x)⊤w+w0 ≤ 0 ∀
(
w0

w

)
∈W

⇐⇒ d⊤u+

(
w0

w

)⊤(
1+ d⊤r

V ⊤d+ b(x)

)
≤ 0 ∀

(
w0

w

)
∈W

⇐⇒ d⊤u+ δ∗
((

1+ d⊤r
V ⊤d+ b(x)

)∣∣∣∣W)≤ 0

⇐⇒

{
d⊤u+(1+ d⊤r)

⊤
f
(

V ⊤d+b(x)

1+d⊤r

)
≤ 0

1+ d⊤r≥ 0,
(17)
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where the last equivalence holds because of the definition of the support of W in (15). Note that

(17) is exactly (9a). Similarly, substituting the linear decision rule for λ in (14b) we find

D⊤
i λ≥Ai(x)

⊤w ∀
(
w0

w

)
∈W, i= 1, . . . ,L

=⇒ −D⊤
i u+

(
w0

w

)⊤( −D⊤
i r

Ai(x)−V ⊤Di

)
≤ 0 ∀

(
w0

w

)
∈W, i= 1, . . . ,L

⇐⇒ −D⊤
i u+ δ∗

((
−D⊤

i r
Ai(x)−V ⊤Di

)∣∣∣∣W)≤ 0 i= 1, . . . ,L

⇐⇒

{
−D⊤

i u+(−D⊤
i r)f

(
Ai(x)−V ⊤Di

−D⊤
i r

)
≤ 0

−D⊤
i r≥ 0

i= 1, . . . ,L,

which is exactly (9b). □

Proof of Theorem 3. Because f is a closed convex function we have that

f(z) = f∗∗(z) = sup
w∈domf∗

{
z⊤w− f∗(w)

}
.

Substituting this into (1) yields

∀ζ ∈U : f (A(x)ζ + b(x))≤ 0

⇐⇒ ∀ζ ∈U : sup
w∈domf∗

{
(A(x)ζ + b(x))

⊤
w− f∗(w)

}
≤ 0

⇐⇒ sup
ζ∈U

{
sup

w∈domf∗

{(
A(x)⊤w

)⊤
ζ + b(x)⊤w− f∗(w)

}}
≤ 0

⇐⇒ sup
(w0,w)∈W

{
sup
ζ∈U

{(
A(x)⊤w

)⊤
ζ
}
+ b(x)⊤w+w0

}
≤ 0 (18)

⇐⇒ sup
(w0,w)∈W

 inf
λ∈Rq+
{uℓ}ℓ

{
q∑

ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ b(x)⊤w+w0 |A(x)⊤w≤

q∑
ℓ=1

uℓ

}≤ 0 (19)

⇐⇒ ∀(w0,w)∈W, ∃λ∈Rq
+,{uℓ}ℓ ⊂Rp :

{∑q

ℓ=1 λℓh
∗
ℓ(uℓ/λℓ)+ b(x)⊤w+w0 ≤ 0
A(x)⊤w≤

∑q

ℓ=1 uℓ,

where (18) and (19) are equivalent because of strong duality for convex optimization problems,

which applies because ri(U) ̸= ∅. □

Proof of Theorem 4. From Theorem 3, we know that (1) is equivalent to (11). To obtain the

conservative solution, we restrict the adjustable variables (λ,{uℓ}ℓ) to static decision rules, which

yields

q∑
ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ b(x)⊤w+w0 ≤ 0 ∀(w0,w)∈W
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=⇒
q∑

ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ sup

(w0,w)∈W

{
b(x)⊤w+w0

}
≤ 0

⇐⇒
q∑

ℓ=1

λℓh
∗
ℓ(uℓ/λℓ)+ f (b(x))≤ 0,

where the last equivalence follows from the definition of the conjugate. For the second constraint

we find

Ai(x)
⊤w≤

q∑
ℓ=1

uiℓ ∀w ∈ domf∗, i= 1, . . . ,L

=⇒ δ∗ (Ai(x) | domf∗)≤
q∑

ℓ=1

uiℓ i= 1, . . . ,L

⇐⇒ f∞ (Ai(x))≤
q∑

ℓ=1

uiℓ i= 1, . . . ,L,

where the last equivalence follows from (3). □

Appendix C: Proof of Conically Representable Perspective

We use the definition of conically representable from Serrano (2015), that is, a function f :Rn →
[−∞,+∞] is proper and conically representable if its epigraph can be written as

Epif = {(x, t) | f(x)≤ t}

= {(x, t) | ∃u∈Rm, S(x,u, t) = 0, T (x,u, t)∈K} ,

where S :Rn ×Rm ×R→Rk1 and T :Rn ×Rm ×R→Rk2 are affine mappings and K is a cone.

Theorem 5. If f is conically representable, so is its perspective (fv).

Proof. Let S,T be the affine mappings that define the conic representation of f and let K be the

corresponding cone. Define Sper :Rn ×Rm ×R×R++ →Rk1 and T per :Rn ×Rm ×R×R++ →Rk2

by

Sper (x,u, t, v) = vS

(
x

v
,
u

v
,
t

v

)
, T per (x,u, t, v) = vT

(
x

v
,
u

v
,
t

v

)
.

Clearly, Sper and T per are affine mappings. Moreover we find

Epi (fv) =
{
(x, v, t)

∣∣∣ vf (x
v

)
≤ t
}

=

{
(x, v, t)

∣∣∣∣ (xv , tv
)
∈Epif

}
=

{
(x, v, t)

∣∣∣∣ ∃u∈Rm, S

(
x

v
,u,

t

v

)
= 0, T

(
x

v
,u,

t

v

)
∈K

}
=

{
(x, v, t)

∣∣∣∣ ∃u∈Rm, S

(
x

v
,
u

v
,
t

v

)
= 0, T

(
x

v
,
u

v
,
t

v

)
∈K

}
= {(x, v, t) | ∃u∈Rm, Sper (x,u, t, v) = 0, T per (x,u, t, v)∈K} ,

which concludes the proof. □
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Appendix D: Progressive Approximation

As all sets of constraints described in Section 2.2 are conservative approximations to our original

constraint (1), they can yield suboptimal solutions. In particular, we propose linear decision rules

to solve (5), which is equivalent to (1), of which we know they generally do not guarantee to solve

adjustable robust optimization problems to optimality (Ben-Tal et al. 2004). Moreover, as our

adjustable formulation (5) exhibits left-hand side uncertainty, that is, the uncertain parameter w

directly interacts with decision variables x, little is known with regard to the approximative power

of linear decision rules.

In this section, therefore, we focus on finding a good progressive approximation to (1) such that

we can gauge the quality of the conservative approximations we propose. A simple method detailed

by Zhen et al. (2022) to obtain such approximation is to only require (1) to hold for a finite subset

of scenarios from the uncertainty set U . The approximation is then given by

f
(
A(x)ζ(k) + b(x)

)
≤ 0 k= 1, . . . ,K, (20)

where
{
ζ(1), . . . , ζ(K)

}
⊆U . We note that these constraints are exactly as computationally tractable

as the original constraint without uncertainty, given that K is not too large. In fact, because we

assume a polyhedral set U and f is convex, (20) is equivalent to (1) if
{
ζ(1), . . . , ζ(K)

}
contains all

extreme points of U . Generally, U has prohibitively many extreme points though, and we must

resort to some other way of finding scenarios ζ(1), . . . , ζ(K).

We can apply the same reasoning as above to (5) to find an approximation:

For k= 1, . . . ,K, ∃λ(k) ∈Rq :

{
w

(k)
0 + b(x)⊤w(k) + d⊤λ(k) ≤ 0

D⊤λ(k) ≥A(x)⊤w(k),

where

{(
w

(1)
0

w(1)

)
, . . . ,

(
w

(K)
0

w(K)

)}
⊂W and λ(k) ∈Rq is a non-adjustable variable. Recall that

W =

{(
w0

w

)
:w0 + f∗(w)≤ 0

}
,

which generally has infinitely many extreme points.

An approach to find a small and efficient set of scenarios for two-stage fixed-recourse robust

constraints is suggested by Hadjiyiannis et al. (2011). For any feasible solution x̂ and linear decision

rule λ̂= û+ V̂ w+ r̂w0, we find scenarios that are worst-case for the constraints in (5). We then

hope that these scenarios are also worst-case for the actual optimal solution x∗, λ∗ of (5). For our

problem, this means that we obtain scenarios(
w̄0

w̄

)
= argmaxw0

w

∈W

{
d⊤
(
û+ V̂ w+ r̂w0

)
+ b(x̂)⊤w+w0

}
,
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as well as the worst-case scenarios from (5b). An extension proposed by Zhen et al. (2022) is to

use these L+1 scenarios to also obtain scenarios ζ(1), . . . , ζ(L+1) by solving

ζ̄(k) = argmax
ζ∈U

{
(A(x̂)ζ + b(x̂))

⊤
w̄(k)

}
.
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Additional Proofs

Appendix EC.1: Numerical Results

EC.1.1. Geometric Programming

For our first numerical experiment we test our approach on several randomly generated geometric

programming instances, identically structured to the instances used by Hsiung et al. (2008). In

particular, this means we treat geometric programming problems with a linear objective, and a

number of two-term log-sum-exp inequality constraints with uncertainty:

min
x

c⊤x

s.t. log

(
e
(
−1+B

(1)
i ζ

)⊤
x
+ e

(
−1+B

(2)
i ζ

)⊤
x

)
≤ 0 ∀ζ ∈U, i= 1, . . . ,m, (EC.1)

where c = 1 ∈ Rn is the all ones vector, and B
(1)
i , B

(2)
i ∈ Rn×L are randomly generated sparse

matrices with sparsity density 0.1 whose nonzero elements are uniformly distributed on the interval

[0,1]. The uncertainty set U is assumed to be a box, that is,

U =
{
ζ ∈RL

∣∣ ∥ζ∥∞ ≤ 1
}
. (EC.2)

Note that since U is symmetric around 0, we can restrict B
(1)
i , B

(2)
i to be nonnegative.

We first consider a set of 20 small examples with n=m= 100 and L= 5. Since L, the number

of uncertain parameters, is small, (EC.1) can be solved exactly by enumerating the 2L vertices of

U . For larger L, however, we need to resort to comparing our solutions’ objective value to a lower

bound. To this end, we use a lower bound based on the work of Hadjiyiannis et al. (2011) and Zhen

et al. (2022) that uses the optimal solution to a conservative approximation to find potentially

critical scenarios in the uncertainty set. The lower bound is then constructed by solving a model

that only safeguards for this finite set of critical scenarios. For more details we refer the reader to

Appendix D.

Table EC.1 lists the approximation error with respect to the exact solution and computation

time of the solutions to the conservative approximations resulting from Theorem 2. Moreover, to
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Approximation Error Computation Time (s)

Lower bound -0.00% 3.3

Theorem 2 0.02% 1.3

Table EC.1 Approximation error with respect to the exact solution and computation time for 20 randomly

generated instances of type (EC.1) with n=m= 100 and L= 5.

evaluate the quality of the obtained lower bound, we have included the approximation error with

respect to the exact solution and computation time of the proposed lower bound as well. We define

the approximation error (in percentage) with respect to a solution x∗ equally to (Hsiung et al.

2008):

100

(
ec

⊤x̂

ec⊤x∗
− 1

)
,

where x̂ is the solution to our approximation. In other words, we compare the objective value of

different solutions to the robust geometric programming problem in posynomial form. We note

that the -0.00 we report for the lower bound means we are unable to differentiate the objective

value from the optimal objective value within a reasonable numerical precision. We remark that

the lower bound does not necessarily yield a feasible solution to the original problem, but it serves

us well in evaluating the approximations in higher dimensions, where we are unable to obtain the

exact objective value.

Clearly, for instances of this size the lower bound is particularly good. Moreover, it is an order of

magnitude closer to the exact robust objective value compared to the solutions we find using our

conservative approximation. Therefore, we expect that using the lower bound instead of the exact

robust solution for larger instances has hardly any effect on the approximation error we report.

To analyze how our approach scales with more uncertain parameters, Figure EC.1 shows the

average approximation error with respect to the lower bound and computation time of solutions

using Theorem 2 for several values of L over 20 random instances. The affine decision rule used in

Theorem 2 performs very well, having an approximation error below 0.5% for all sizes except L= 18.

The resulting model of Theorem 2 is highly tractable as in our experiments, the computation
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time increases linearly with respect to the number of uncertain parameters L. We remark that no

results for L= 19 or L= 20 are included, as a large proportion of the randomly generated instances

of this size were infeasible. Note that not only the approximations we propose are infeasible, but

the robust instances itself are as well. This can be verified through noting that the optimization

problem used to obtain the lower bound is infeasible when enough scenarios are included. We note

that Hsiung et al. (2008) report approximation errors between 30% and 0.1% dependent on the

quality of approximation used, for L= 5 and n=m= 500.

Besides box uncertainty, we also consider a budget uncertainty set given by

U =
{
ζ ∈RL

∣∣ ∥ζ∥∞ ≤ 1, ∥ζ∥1 ≤ Γ ·L
}
. (EC.3)

In this uncertainty set, the parameter Γ∈ [0,1] controls the level of uncertainty. It can be interpreted

as the maximum fraction of uncertain parameters that is allowed to deviate maximally at the

same time. Figure EC.2 depicts the numerical results for a budget uncertainty set with Γ= 1
2
. We

first note that for this budget uncertainty set, all instances with L= 19 and L= 20 are feasible.

The approximation error follows a very similar trend to the one observed for box uncertainty in
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Figure EC.1 Average results of solving conservative approximations from Theorem 2 applied to (EC.1) over

twenty randomly generated instances for a box uncertainty set (EC.2). The approximation error

is reported with respect to the lower bound obtained from the approach proposed by Hadjiyiannis

et al. (2011).
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Figure EC.1 for smaller L, but there is a clear difference for larger L, where the approximation error

for the budget uncertainty set is smaller. This causes us to suspect that the (extreme) increase in

approximation error that was observed for the box uncertainty is related to the problems getting

close to infeasibility for L≥ 17. The computation time follows a slightly more erratic pattern for

the budget uncertainty set, and is slightly higher than for the box uncertainty set, but is largely

comparable in magnitude. For all these uncertain geometric programming problems we find a

solution very close to the optimal solution using this approximation.

The solutions to the geometric programming problems have been obtained using Julia with the

JuMP interface (Dunning et al. 2017) and the Mosek solver for exponential cones (MOSEK ApS

2019). The experiments were conducted on a desktop with 8 GB RAM and a 3.4 GHz Intel Core

i7 processor.

EC.1.2. Radiotherapy Optimization

Our second numerical experiment concerns a specific problem from radiotherapy optimization:

inverse treatment planning of beam-on times for 3D small animal radiotherapy (Balvert et al.

2015). The core problem in treatment planning is ensuring a sufficient dose γ of radiation to the
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Figure EC.2 Average results of solving approximations to (EC.1) over twenty randomly generated instances for

a budget uncertainty set (EC.3) with Γ = 1
2
. The approximation error is reported with respect to

the lower bound obtained from the approach proposed by Hadjiyiannis et al. (2011).
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planning target volume (PTV) while minimizing the dose to the tissue around that target volume,

also known as the organs at risk (OAR). To this end, we are interested in minimizing a weighted

combination of the dose ‘shortage’ in the PTV and the dose delivered to the OAR. The decision

variables in this problem are the locations and beam-on times for all beams used. In this specific

application, we assume the beam locations are given and we attempt to find optimal beam-on

times t.

It is customary in radiotherapy optimization to discretize each tissue structure into voxels. Sets

of these voxels are denoted by IPTV and Is for all s∈OAR, respectively. The dose delivered to a

tissue structure is then computed as the average dose delivered to its voxels. Given these voxels,

one can compute the dose rates from all beams to all voxels, referred to as the matrix Γ. The i-th

row of this matrix, Γi, then corresponds to the dose rate of all beams to voxel i. We specifically

consider the following mathematical optimization problem:

min
t,τ

τ

s.t. wPTV

1

|IPTV |
∑

i∈IPTV

max
{
γ−Γ⊤

i t,0
}2

+(1−wPTV )
∑

s∈OAR

ws

1

|Is|
∑
i∈Is

Γ⊤
i t≤ τ

t≥ 0,

(EC.4a)

(EC.4b)

(EC.4c)

which is a slight adaptation of the problem described by Balvert et al. (2015). Here, wPTV and ws

for all s ∈ OAR represent predefined weights. In particular, we choose to use a squared penalty

function for undelivered dose to the PTV, similar to Fredriksson (2013, Eq. 1). Irregardless of

whether the regular or squared penalty function is used, little research has been done on robust or

uncertain versions of (EC.4). An important reason for this is the general convex nature of constraint

(EC.4b), along with the fact that a natural type of uncertainty in this problem is implementation

error (Van Dye et al. 2013, Van der Merwe et al. 2017), which always leads to constraints that are

convex in the uncertain parameters.
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Maximum Implementation Error 1.00% 5.00% 10.00%

Approximation Error 1.13% 5.57% 10.91%

Table EC.2 Approximation error of Theorem 2 with respect to the lower bound for Case 3 discussed by Balvert

et al. (2015) for different sizes of the uncertainty set.

In this numerical example, we therefore focus on implementation error. In particular, we consider

multiplicative implementation error, that is, we replace t by t◦(1+ ϵ), where ◦ denotes the element-

wise multiplication of two vectors, and ϵ is the uncertain vector that models the implementation

error. We note that, at least in this context, additive implementation error of the form t+∆t would

make little sense, as this would presume that there would also potentially be some implementation

error if one chooses not to use a certain beam (tb = 0).

We construct the conservative solutions derived in this paper for Case 3 discussed by Balvert

et al. (2015). In this case, there are 6 different beam angles, that is, t∈R6, and the PTV consists

of 112,738 voxels, while the four organs at risk consist of 207,974, 2,261,739, 177,165 and 212,864

voxels. We consider box uncertainty for ϵ, with three different maximum values: 0.01, 0.05 and 0.1.

Note that there is a need for conservative solutions, as we cannot obtain exact robust solutions by

enumeration due to the size of the problem. We are, however, able to obtain lower bounds using

the technique described in Appendix D and report the approximation error with respect to that

lower bound in Table EC.2. Furthermore, we find that the nominal solution performs 4.4% worse

in the worst-case than the robust solution we find, which in turn performs 4.9% worse than the

nominal solution when no uncertainty is present. It should be noted that the conservative solution

was found in a matter of seconds, much like the nominal model that disregards uncertainty.

All results in this section have been obtained using Julia with the JuMP interface (Dunning

et al. 2017) and the Gurobi solver. The experiments were conducted on a desktop with 8 GB RAM

and a 3.4 GHz Intel Core i7 processor.


