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Abstract 
 
The global container shipping network is vital to international trade. Current techniques for its vulnerability 
assessment are constrained due to the lack of historical disruption data and computational limitations due to 
typical network sizes. We address these modelling challenges by developing a new framework, composed by 
game-theoretic attacker-defender model and a cost-based container assignment model that can identify sys-
temic vulnerabilities in the network. Our analysis illustrates the differences in vulnerability and port criticality 
rankings with different disruption magnitudes. Model outputs are used to establish performance baselines and 
to assess the effectiveness of component-level interventions seeking to increase network resilience. 

1 Introduction 
 
Ocean shipping is the principal mode of international freight transport, underpinning global trade [1]. Fric-
tionless and stable access to the container shipping services has been shown to be a pivotal contributor to trade 
competitiveness of any national economy. Otherwise referred to as liner shipping services, these can be 
described as scheduled, recurring sequences of port calls, operated by ocean carriers and shipping alliances. 
Collectively, they form the global liner shipping network, with ports represented as nodes, and links being 
defined as the vessel journeys between successive port calls within each service.  
 An important aspect to consider when assessing liner shipping vulnerabilities is the presence and pro-
portion of transhipment operations in the network. Transhipment is of critical importance for trade lanes with 
large cargo volumes (e.g. Asia-to-Europe), where ocean carriers deploy larger vessels on inter-regional legs 
to benefit from economies of scale. In hub-and-spoke systems of this nature, transhipment ports facilitate 
container flows that could not have been served with direct services. As such, liner service networks with a 
high dependence on a small cluster of transhipment hubs are expected to be particularly vulnerable to disrup-
tions. Furthermore, and as illustrated by recent events, any potential disruptions to this network can have 
significant and immediate implications for consumers, industries, markets, and national economies. Potential 
sources of disruption include natural disasters (earthquakes, floods), political conflicts (wars, blockades, pi-
racy), and market events (bankruptcy of ocean carriers, fuel price fluctuations).  

The nature, location, and severity of these disruptions may pose significant threats to the ability of the 
network to accommodate cargo flows. It is therefore crucially important to understand how such disruptions 
would affect public and private stakeholders that are responsible for ensuring its operability and accessibility 
[2]. This can be achieved through the application of quantitative frameworks that identify the critical network 
components [3] and evaluate the effectiveness of preventive interventions [4]. 

The complex structure of the liner shipping industry and the inherent relationships among market par-
ticipants do not readily lend themselves to mathematical analysis and formulation. Previous studies on liner 
shipping vulnerability relied mostly on complex network models, which can be classified as either pure-top-
ological or flow-based models [5], [6]. The majority of pure-topological models (sometimes also referred to 
as zero-degree models [7]) focus on indicators such as degree distributions and the betweenness centrality of 
network components [8] to evaluate network vulnerabilities, without directly considering material flows or 
commercial activity. In contrast, flow-based models (e.g. one- or n-degree models) use costs, operational and 
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physical constraints to describe the overall performance of the networks, and model the redistribution of vessel 
movements or material flows in the aftermath of disruptions [9].   

Although pure-topological models provide a straightforward approach to critical component rankings 
[10]–[12], they mainly adopt binary network representations (e.g. presence of a connection between two 
ports). Such representations cannot be readily used to evaluate the impact of disruptions on network capacity, 
travel times or processing times [3], nor to quantify any costs of cargo rerouting or potential gains from dis-
ruption prevention. Furthermore, they are only applicable to scenarios involving a complete loss of network 
components. However, such approaches do not transfer well to the study of transport networks, where partial 
component disruptions are frequent, if not the norm. Sullivan et al. [13] argue that the main problem of pure-
topological models is the creation of isolated sub-networks that are inaccessible after component removal. 
These limitations can severely restrict studies on liner shipping operations, where partial disruptions (e.g. 
March 2013 labour strike that reduced the capacity of the Hong Kong port-system by 20% [14]) are more 
frequent than complete failures. Furthermore, isolated sub-networks are less likely in liner shipping, as vessels 
and cargoes can be rerouted. 
 In contrast, flow-based models can capture the re-distribution of commodity flows subject to capacity 
limitations inherent to existing network configurations. Where historical disruption data is available, it is pos-
sible to implement probabilistic flow-based approaches to quantify the network vulnerability based on the 
expectations of failure of network components [7]. However, the variety of actors and processes within mod-
ern liner shipping networks, the complexity of their relationships, and industry confidentiality practices make 
it problematic and uneconomic to collect and maintain historical disruption data on network components. 
Therefore, the application of these approaches is mostly compromised by their dependence on sets of data 
which are often confidential or not available in the liner shipping industry [15]. 

Previous studies evaluated the applicability of flow-based models for the vulnerability assessment of 
liner shipping network disruptions and their effects on the ability of the network to meet container transport 
demand. Even though some considered industry practices such as empty container repositioning [16], [17], 
transhipment across shipping alliances, and vessel schedule recovery after disruptions, most of these method-
ologies are limited in terms of the network size that they can evaluate. This limitation prohibits the analysis 
of global large-scale realistic network instances that would be of interest to private operators or public entities.  

Examples of flow-based models include the frequency and cost-based container assignment models by 
Bell et al. [18], [19] which used a transit assignment and task network approach [20] to represent liner shipping 
operations. Both studies assume that sufficient capacity (in links and nodes) exists in the transport network to 
meet transport demands between ports. Such an assumption would not translate well to disrupted liner ship-
ping networks where a significant portion of the overall liner or port handling capacity in the system has been 
compromised.  

In summary, there exist two inherent modelling challenges in the study of liner shipping resilience: (i) 
lack of historical disruption data (ii) lack of quantitative models capable of representing liner shipping opera-
tions at a global scale. The first inhibits the implementation of methodologies that require prior knowledge of 
disruption probabilities to quantify the vulnerability of the network. The second creates the need for models 
capable of capturing key industry practices such as transhipment, empty container repositioning, and the abil-
ity of vessels to skip disrupted ports while at the same time allowing for implementations at realistic large-
scale liner shipping networks.  

The objective of this study is to address these challenges by developing a new systemic vulnerability 
analysis framework that can identify critical components in large-scale liner shipping networks with little or 
no historical disruption data. We build upon the Ouyang et al. [5] definition of vulnerability and the Qiao et 
al. [3] system-level approach to define systemic vulnerability as the performance drop of a transport system 
(e.g. in terms of routing costs or connectivity) given a disruptive event. 

 The proposed framework consists of two components, with the first being a game-theoretic attacker-
defender model (ADM), between a malevolent agent (attacker) and an ocean carrier or alliance (defender). 
The second component is a container assignment model (CAM) that predicts container flows given a specific 
liner service structure, port capacities and market demand. The resulting integrated model (ADCAM) is used 
to evaluate the merits of either player’s strategies, and applied to a large problem instance, with 88 services, 
230 ports, 2,648 origin-destination (OD) demand pairs and 242,214 weekly container movements.  

In addition to flow rerouting, this approach can measure the impact of disruptions in terms of additional 
handling costs and non-delivery penalties. The model also considers port call skipping, a common practice by 
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ocean carriers for dealing with service disruption. Its principal output is a matrix of component attack proba-
bilities, used to identify and rank critical components and calculate financial gains from disruption prevention.  

The premise, assumptions and structure of this framework are presented in section 2, which provides 
the formulations of the constituent mathematical problems. A case study involving disruptions at major Euro-
pean container ports and services is presented in section 3, followed by a discussion on how costs and criti-
cality rankings are affected by disruptions levels and flow diversion strategies. The paper concludes with a 
summary of contributions, limitations, and suggestions for future work. 

 

2 Methodological framework 
 
This section presents the attacker-defender cost-based assignment model (ADCAM) and its integration with 
the non-cooperative game-theoretic framework to identify the most critical components in liner shipping net-
works exposed to disruptions. We also present a linear formulation of the model, that allows for implementa-
tions on large liner shipping networks drawn from practice. The scalability of the methodology is tested using 
numerical case studies developed in later parts of this paper. 

2.1 Cost-based container assignment model (CAM) 
 
Container assignment models seek to determine optimal container flows from origin ports 𝑘 ∈ 𝐾 to destination 
port 𝑠 ∈ 𝑆, across a sequence of attractive liner service leg (a “virtual” link, connecting any pair of ports within 
a service) that can reduce the overall routing costs in the system. The resulting flows will take place upon a 
set of optimal flow paths, that in the first instance are expressed as chains of legs belonging to one or more 
services. Given that vessel arrival and departures at a given port 𝑘 are assumed to be random and uncoordi-
nated (see assumption 2.4), the availability of attractive legs at 𝑘 is proportional to the frequencies of services 
that can connect 𝑘 to 𝑠. Therefore, the dwell times of 𝑠-bound containers at 𝑘 is equal to the inverse sum of 
their service frequencies [18]. In contrast, direct shipments do not incur dwell times. Due to considerations of 
port and service capacity, it is possible and acceptable for the model to establish multiple flows for each OD 
pair, each with a different path.  
 An earlier study [15] proposed the use of penalties for any cargo demands that cannot be satisfied by 
the assignment process. Such penalties are particularly useful for problem instances where network capacities 
(at ports or services) could not satisfy the transport demand in the aftermath of disruptions and are used to 
quantify disruption impacts, and redundancy levels (residual capacity to re-route transport demands).  
 Our study uses higher penalty values for full containers, to prioritise cargo deliveries over empty con-
tainer repositioning (e.g. USD 50,000 per full container as opposed to USD 5,000 for empties). It should be 
noted that the inclusion of empty container repositioning in this study (introduced and discussed later in this 
paper) captures the impact of the excessive accumulations of empty containers not repositioned in the network, 
which can ultimately slow down or halt port operations. 

A potential limitation of the approach presented in [15] relates to the emphasis on individual network 
components, which precluded the study of more complex scenarios that involve disrupted natural corridors 
(such as canals, straits, access channels). This was partially addressed in [2], which introduced further dimen-
sions to the representation of network elements to capture network component dependencies upon such corri-
dors. A vessel routing algorithm was used to automatically include such dependencies, using a set of prede-
fined geographical limits for major maritime corridors in the network (Figure 2.1). The following assumptions 
are used to formulate the mathematical model for container assignment used in this study: 
 
Assumption 2.1: Loaded containers are assumed to have a fixed set of daily rent, uniform loads, han-
dling priorities, and cargo depreciation rates.  
In practice, ocean carriers may utilise varying rental cost structures for shippers, as a result of bespoke com-
mercial contracts and bilateral shipment agreements. Similarly, shippers will incur specific cargo depreciation 
costs depending on shipment values and cargo types. Finally, repositioning costs may be included in freight 
rates in trade lanes with high trade imbalances.  

Given that not all trade routes and shippers are affected by such practices (e.g. due to negotiated vol-
ume-based shipment contracts), the accurate inclusion of such distinctions would have required access to trade 
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transaction data, which are often confidential and generally unavailable for academic research. The values 
used in this study are commensurate to the pricing structures employed in previous studies by Bell et al. [18], 
[19] as shown in Table 3.1. This assumption simplifies data requirements and assumes that all cargo trans-
ported through the network is equally prioritised. Nevertheless, the model formulation is sufficiently flexible 
and readily adaptable by practitioners who are privy to such information. 
 
Assumption 2.2: An exogenous OD demand matrix is used as model input, with weekly demand rates 
being fixed across the period surveyed. 
Demand for container cargo transport can vary on each OD pair and aggregate trade lanes based on factors 
such as seasonality, changes in markets structures (e.g. trade tariffs), or disruptive technologies. As this model 
is intended for use in strategic network design, we deemed this assumption acceptable for this study. Further-
more, a weekly time-window is used for container routing, which we regard as sufficiently small to absorb 
minor demand variations. 
 
Assumption 2.3: Empty containers incur a penalty cost if not transported. 
The inclusion of a penalty cost for empty containers not transported serves two purposes: First, the maximi-
sation of empty containers repositioned in the network when there is available capacity (either in the baseline 
case or after disruptions). If empty container penalties are omitted, the model can provide feasible solutions 
where no empty container is repositioned (even if capacity is available in the aftermath of disruptions) due to 
the cost minimisation approach in the objective function.  

Note that loaded container penalties in our model are always higher than for empty containers (e.g. 
USD 50,000 for loaded and USD 5,000 for empties, as discussed in section 3). Therefore, the routing of full 
containers will be prioritised over repositioning. The second reason is to the need to capture the impact of 
disruptions on repositioning operations. As discussed earlier, such disruptions often lead to the accumulation 
of empty containers in terminal yards. 
 
Assumption 2.4: Container handling costs are fixed over time and proportional to vessel capacities (as 
per example shown in Table 3.1). 
Container handling costs in earlier studies [18], [19] were based on leg types (e.g. connecting origin-to-desti-
nation, origin-to-transhipment). Instead, this study uses a cost structure that varies by the average vessel ca-
pacity deployed on each liner service. This change allows capturing the effects of economies of scale gained 
by the ocean carriers on trade lanes where larger vessels are deployed.  

The use of container handling costs based on vessel capacity also reduces the pre-processing of legs 
parameters in larger network instances as the container handling costs do not vary in accordance to flow as-
signment between port pairs (leg types) but rather on the characteristics of the liner services connecting them. 
Container handling costs for each vessel class (shown in Table 3.1) are computed dividing time charter (TC) 
rates by the vessel’s TEU carrying capacity defined in Brouer et al. [21]. TC rates in the case study network 
are also obtained from LL12 and include operating expenses (OPEX), crew and maintenance costs [21].  
 
Assumption 2.5: Container handling costs based on vessel capacity are assumed not to vary based on 
the utilisation of the vessels.  
We do not regard this assumption to have a fundamentally adverse effect on the quality of our analysis, as 
vessel utilisation would have already been considered as part of liner shipping network design. The above 
argument is supported by the fact that CAM implementations in this study are carried on a network built from 
publicly available liner service data which captures port call sequences from actual ocean carriers that design 
their network considering acceptable vessel utilisation levels. 
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Figure 2.1: Liner shipping services and main maritime logistics corridors (in red)  

source: Achurra-Gonzalez et al. [2] 
 
This study adopts the CAM notation introduced in [18], where + and ++ are used to simplify two reoccurring 
summations: 𝑥௔ା

௙
=  ∑ 𝑥௔௦

௙
௦∈஽  and 𝑤ାା

௙
= ∑ ∑ 𝑤௥௦

௙
௦∈஽௥∈ை .  

Table 2.1 summarises the notation used in this paper, followed by the model formation. 
 



 
 

6 
 

 
Table 2.1: CAM and ADM notation 

       Sets   Subsets           Indices 
𝐴 All legs  𝐴௞

ା Legs entering port k 𝑎 Legs 
𝐾 All ports 𝐴௞

ି Legs leaving port k 𝑘 Ports 
𝐷 Destination ports 𝐴௡ Legs on service n 𝑦 Corridors 
𝑂 Origin ports 𝐿௬ Links on corridor y 𝑙 Links 
𝑌 All corridors 𝐿௡ Links on service n 𝑛 Liner services 
𝐿 All links   𝑟 Origin ports 
𝑁 All liner services   𝑠 Destination ports 
𝐽 Disrupted components   𝑗 Disruption strategies 
𝐼 Defended components   𝑖 Defence strategies 

    𝑓 Loaded containers 
    𝑒 Empty containers 
Parameters 

𝐵௞
௙ Net flow of loaded containers at each port 𝑘 

𝐵௞
௘ Net flow of empty containers at each port 𝑘 

𝐶௔ Sailing time on leg 𝑎, including loading and unloading times at ports (e.g. days) 
𝐶𝐻𝐶௔௡ Container handling cost per loaded container on leg 𝑎 using liner service 𝑛 
𝐶𝑅 Rental cost per unit time per loaded or empty containers 

𝑇𝐷௥௦
௙  

Demand of loaded containers to be transported from origin 𝑟 to destination 𝑠 in the 
defined planning horizon 

𝑇𝐷௥௦
௘  

Demand of empty containers to be transported from origin 𝑟 to destination 𝑠 in the 
defined planning horizon 

𝐷𝑉 Depreciation cost per unit time per loaded container (inventory cost) 
τ௔௟௡ 1 if leg 𝑎 uses link 𝑙 on liner service 𝑛, and 0 otherwise 
τ௔௟௬ 1 if leg 𝑎 uses link 𝑙 on maritime corridor 𝑦, and 0 otherwise 
𝐹௔  Frequency of sailing on leg 𝑎  

𝑃𝑇௞ Throughput capacity of port 𝑘 
𝐿𝑆௡ Throughput capacity of liner service n 
𝑀𝐶௬ Throughput capacity of maritime corridor y 

𝛿௜ Defender flow diversion percentage in strategy 𝑖 (please refer to section 4.2) 
𝛼௝ Attacker disruption percentage in strategy 𝑗 (please refer to section 4.2) 

𝛿መ௜ 
Defender capacity multiplier for network components with flow diversion in strat-
egy 𝑖  

𝛼ො௝  Attacker capacity multiplier for disrupted network components in strategy 𝑗 
𝑃𝐶௙ Penalty cost for loaded containers not transported 
𝑃𝐶௘ Penalty cost for empty containers not transported 
Decision variables 

𝑡௥௦
௙  Serviced demand of loaded containers shipped from origin r to destination s 

𝑡௥௦
௘  Serviced demand of empty containers shipped from origin r to destination s 

𝑥௔௦
௙  Flow of loaded containers on leg a en route to destination s 

𝑥௔௦
௘  Flow of empty containers on leg a en route to destination s 

𝑤௞௦
௙  Expected dwell time at port k for all loaded containers en route to destination s 

𝑤௞௦
௘  Expected dwell time at port k for all empty containers en route to destination s 

𝑝௜ Probability defender diverts flows from component i 
𝑞௝ Probability attacker disrupts component j 
𝑧 Value of the game for the attacker (disruption costs) 
𝑣 Value of the game for the defender (routing costs) 
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Objective: 
 

𝑚𝑖𝑛 𝑈𝑖𝑗 =  ෍ ෍ 𝐶𝐻𝐶௔௡

௔∈஺௡∈ே

൫𝑥௔ା
௙

+ 𝑥௔ା
௘ ൯ +  ൭෍ 𝑥௔ା

௙
𝐶௔

௔∈஺

+ 𝑤ାା
௙

൱ (𝐶𝑅 + 𝐷𝑉)

+ ൭෍ 𝑥௔ା
௘ 𝐶௔

௔∈஺

+ 𝑤ାା
௘ ൱ (𝐶𝑅) + ෍ ෍(𝑇𝐷௥௦

௙
−

௦∈஽௥∈ை

𝑡௥௦
௙

)𝑃𝐶௙

+ ෍ ෍(𝑇𝐷௥௦
௘ −

௦∈஽௥∈ை

𝑡௥௦
௘ )𝑃𝐶௘ 

(2.1) 

Subject to: 

 
෍ 𝑥௔௦

௙

௔∈஺ೖ
శ

− ෍ 𝑥௔௦
௙

௔∈஺ೖ
ష

= 𝐵௞
௙

    ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝐷   (2.2) 

 
෍ 𝑥௔௦

௘

௔∈஺ೖ
శ

− ෍ 𝑥௔௦
௘

௔∈஺ೖ
ష

= 𝐵௞
௘     ∀𝑘 ∈ 𝐾, 𝑠 ∈ 𝐷   (2.3) 

 𝐵௞
௙

=

⎩
⎪
⎨

⎪
⎧− ෍ 𝑡௥௦

௙

௦∈஽

    𝑖𝑓 𝑘 = 𝑟 ∈ 𝑂 

෍ 𝑡௥௦
௙

௥∈ை

    𝑖𝑓 𝑘 = 𝑠 ∈ 𝐷

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4) 

 𝐵௞
௘ =

⎩
⎪
⎨

⎪
⎧− ෍ 𝑡௥௦

௙

௦∈஽

    𝑖𝑓 𝑘 = 𝑟 ∈ 𝑂 

෍ 𝑡௥௦
௙

௥∈ை

    𝑖𝑓 𝑘 = 𝑠 ∈ 𝐷

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.5) 

 𝑥௔௦
௙

≤  𝑤௞௦
௙

𝐹௔     ∀𝑎 ∈ 𝐴௞
ି, 𝑘 ≠ 𝑠 ∈ 𝐾, 𝑠 ∈ 𝐷 (2.6) 

 𝑥௔௦
௘ ≤  𝑤௞௦

௘ 𝐹௔     ∀𝑎 ∈ 𝐴௞
ି, 𝑘 ≠ 𝑠 ∈ 𝐾, 𝑠 ∈ 𝐷 (2.7) 

 
𝐿𝑆௡ ≥  ෍(𝑥௔ା

௙

௔∈஺

+ 𝑥௔ା
௘ )τ௔௟௡     ∀𝑙 ∈ 𝐿௡, 𝑛 ∈ 𝑁 (2.8) 

 
𝛼ො௝௬𝛿መ௜௬𝑀𝐶௬ ≥  ෍(𝑥௔ା

௙

௔∈஺

+ 𝑥௔ା
௘ )τ௔௟௬    ∀∈ 𝐿௬ , 𝑦 ∈ 𝑌, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2.9) 

 
𝛼ො௝௞𝛿መ௜௞𝑃𝑇௞ ≥  ෍ (𝑥௔ା

௙

௔∈஺ೖ
ష

+ 𝑥௔ା
௘ ) + ෍ (𝑥௔ା

௙

௔∈஺ೖ
శ

+ 𝑥௔ା
௘ )    ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2.10) 

 𝑡௥௦
௙

≤ 𝑇𝐷௥௦
௙

    ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷 (2.11) 
 𝑡௥௦

௘ ≤ 𝑇𝐷௥௦
௘      ∀𝑟 ∈ 𝑂, 𝑠 ∈ 𝐷 (2.12) 

 𝑥௔௦
௙

, 𝑥௔௦
௘ ≥ 0    ∀𝑎 ∈ 𝐴, 𝑠 ∈ 𝐷 (2.13) 

 
The objective function (2.1) minimises the sum of network routing costs 𝑈௜௝ when cargo flow is diverted from 
component 𝑖 by the defender and component 𝑗 is disrupted by the attacker. Network routing costs cover 
container handling, inventory, and rental fees generated from the assignment of container flows to legs and 
penalty costs for containers not transported. 

Constraints (2.2) through (2.5) enforce flow conservation. Constraints (2.6) and (2.7) ensure that the 
dwell time of loaded and empty containers is not less than the inverse of the combined liner service frequencies 
for the corresponding route. The capacity constraint for each liner services is defined in (2.8). Constraints for 
maritime corridor capacity (e.g. canals, access channels and straits) are defined in (2.9) where 𝛼ො௝  and 𝛿መ௜ define 
the percentage of available functional capacity in attacker strategy 𝑗 and defender strategy 𝑖 respectively. 
Similarly, port throughput constraints are defined in (2.10). Detailed descriptions of the capacity multipliers 
for each of the players’ strategies are presented in the following section. Constraints (2.11) and (2.12) ensure 
that the total number of full and empty containers does not exceed the demand specified in OD matrices. In 
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cases where network capacity falls below the total demand, the model can decide not to fulfil a portion of the 
demand, subject to penalties. Finally, (2.13) ensures that all flow variables are non-negative.  
 For the calculation of liner service capacities 𝐿𝑆௡ we adopt the approach described in Lam and Yap 
[22], with a weekly or monthly capacity window (instead of the originally considered annual basis). The im-
plementation of the model (provided below) assumes that ocean carriers can determine the number of vessels 
to be deployed on each liner service n dividing the total voyage time (expressed in days) by the desired service 
frequency. This assumption follows from the standard industry practice to aim for weekly frequencies in most 
major routes, facilitated by an appropriately allocated fleet (i.e. 8 vessels for a 56 day rotation).  
 For services that do not operate on a weekly basis, we use effective route capacity 𝐿𝑆௡  formula pro-
vided below (2.14), determined as the multiple of average nominal vessel capacities,  desired model time 
window and the inverse of the liner service port call frequency: 

 

𝐿𝑆௡ =  ቆ
∑ 𝑁𝐶௛௡௛∈ு೙

𝑇𝐻௡ 
ቇ ൬

𝑆𝑀𝐹

𝐹௡
൰    ∀𝑛 ∈ 𝑁 (2.14) 

Where 
 𝑛 ∈ 𝑁 Set of liner services in the network 
 ℎ ∈ 𝐻௡ Set of container vessels deployed in liner service 𝑛 ∈ 𝑁 
 𝐹௡ Port call frequency of liner service 𝑛 ∈ 𝑁 

 𝑁𝐶௛௡ Nominal capacity (TEU) of container vessel ℎ ∈ 𝐻௡ deployed in liner service 𝑛 ∈ 𝑁 

 𝑇𝐻௡ Total number of vessels deployed in liner service 𝑛 ∈ 𝑁 
 𝑆𝑀𝐹 Standardised model service frequency (e.g. weekly, monthly, annual) 
 
𝑆𝑀𝐹 is expressed as the actual number of days for the desired time window in which the liner service capac-
ities will be standardised. Liner service port call frequencies 𝐹௡ can be given in the input network data or 

replaced by ቀ
௏ ೙்

்ு೙
ቁ where 𝑉𝑇௡ represents the total voyage time to complete a full rotation in liner service 𝑛. 

2.2  Attacker-defender model (ADM) 
 
Using the above model, we develop an attacker-defender model that can identify the most critical network 
components. This is formulated as a two-player, zero-sum, mixed-strategy game between a malevolent agent 
(attacker) and a global network operator (defender) where each player tries to optimise its utility. The game 
is played simultaneously, and both players have perfect information on the abilities of their opponent but no 
knowledge of their adopted strategy. It is used to identify a mixed-strategy Nash equilibrium with respective 
network disruption and routing costs for both players [23] as well as attack probabilities which represent the 
likelihood that the attacker will disrupt each network component. The game can be used to capture unexpected 
sources of disruptions with no historical precedent [7], which in this case could include recent events, such as 
Hanjin’s bankruptcy in 2016 and Maersk’s cyber-attack in 2017 [24]. Incidents of this nature can have a much 
more significant impact in the shipping industry than others for which action plans are already established 
(e.g. an earthquake or operational accidents).  

 In our formulation, the attacker represents an abstract entity that encompasses all potential sources of 
random or targeted disruption that may affect a liner shipping network. These include, but are not limited to, 
accidents, labour strikes, equipment failure, natural disasters, political conflicts, and terrorist attacks. The at-
tacker’s objective is to disrupt critical components and maximise disruption costs to the defender. We assume 
that the defender is a global ocean carrier or alliance seeking to meet transport demands in the market at the 
lowest possible routing cost while avoiding links or nodes disrupted by the attacker. Thus, the defender’s 
objective is to identify any critical components that the attacker would be likely to disrupt and divert container 
flows in a way that minimises disruption-related rerouting and penalty costs. The payoff matrix of utilities for 
the two-player game is generated using the assignment model formulated in section 2.1.1, executed for all 
combinations of available strategies. The format of the payoff matrix and combination of potential scenarios 
are presented in Table 2.2.  

 
 
 



 
 

9 
 

 
 

Assumption 2.6: The attacker can disrupt only one network component at any time. 
This assumption relates to the practicality of model deployment. The disruption of multiple components pro-
vides insights on component interdependencies and other aspects of systemic vulnerability. However, the 
number of CAM iterations required to populate a payoff matrix would increase based on the number of po-
tential component combinations and disruption levels to be evaluated. 

We address the evaluation of simultaneous disruptions with a sequential algorithm of network inter-
ventions (explained in section 2.3) that takes a payoff matrix of single disruption scenarios and iterates through 
the most critical components of each ADM solution instance. The result of the algorithm is a criticality ranking 
of network components that can be interpreted as the combination of components that would maximise the 
network vulnerability. This approach minimises the number of iterations required while generating sufficiently 
detailed outputs. 
 
Assumption 2.7: The defender has the option to redirect cargo flows through alternative routes.  
This assumption models the response of a typical ocean carrier to network disruptions where vessels can skip 
disrupted network components or tranship cargo flows through secondary routes with available capacity. 
  
Assumption 2.8: The attacker can only disrupt the same set of components that the defender may choose 
to divert flow from (𝑰 = 𝑱). 
This allows partial application of the approach to specific parts of the network (e.g. Northwest Europe, as in 
section 3). If the attacker could disrupt network components that the defender could not choose to divert flow 
from, the defender would not have been able to minimise the impact of disruptions from the choices of its 
available strategy set.  
 
A scenario is denoted by 𝑈௜௝, where 𝑖 is the component from which the defender diverts cargo and 𝑗 is the 
component disrupted by the attacker. With the assumptions stated above and 𝑚 being the total number of 
elements in the sets 𝐼 = 𝐽, the following two cases are possible for each scenario [23]: 
 
1) Case 𝑖 = 𝑗: The attacker and defender choose the same component to disrupt or defend, and there remain 

𝑚 − 1 components in the network that are not affected by disruption or flow diversion. 
2) Case 𝑖 ≠ 𝑗: The attacker and defender choose different components to disrupt or defend, and there remain 

𝑚 − 2 unaffected components.  

Using the network routing costs 𝑈௜௝ for all possible scenarios, we construct an m-by-n square matrix to serve 
as the payoff matrix for the game, shown in Table 2.2. The diagonal values represent scenarios where the 
defender predicts accurately the component that is to be disrupted by the attacker. 
 

Table 2.2: Payoff matrix format 
  Strategy 𝒋: Attacker disrupts component 𝒋 ∈ 𝑱 
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Network Com-
ponents 

1 2 … 𝑛 

1 𝑈ଵଵ 𝑈ଵଶ … 𝑈ଵ௡ 
2 𝑈ଶଵ 𝑈ଶଶ … 𝑈ଶ௡ 
… … … … … 
𝑚 𝑈௠ଵ 𝑈௠ଶ … 𝑈௠௡ 

 
𝑈௜௝ values of the payoff matrix are populated using iterations of the CAM. The minimum number of required 
CAM iterations to complete the payoff matrix varies depends upon the defender flow diversion percentage 𝛿௜ 
and the attacker capacity disruption percentage 𝛼௝ as defined in following two cases: 

1) Case 𝛼௝ = 𝛿௜: If the attacker disruption percentage 𝛼௝ equals defender flow diversion percentage 𝛿௜, then 
𝑈௜௝ = 𝑈௝௜. Therefore, the minimum number of required CAM iterations increases polynomially according 
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to (𝑚 + 1)𝑚/2, which corresponds to the size the payoff matrix upper or lower triangle. In this study, 
values of the upper triangle payoff matrix are computed first and then assigned to corresponding compo-
nents of the lower triangle.  

2) Case 𝛼௝ ≠ 𝛿௜: If the attacker disruption percentage 𝛼௝  is not equal to the defender flow diversion percent-
age 𝛿௜, then 𝑈௜௝ ≠ 𝑈௝௜. Therefore, the minimum number of required CAM iterations increases exponen-
tially according to 𝑚ଶ corresponding to the total number of elements in the payoff matrix. 

These are used to define the functional capacity scalars 𝛼ො௝ and 𝛿መ௜ for network components in CAM iterations 
required to generate network routing costs for each 𝑈௜௝ scenario in the payoff matrix. For the defender, the 

scalar 𝛿መ௜ = 1 − 𝛿௜ defines the functional capacity for network components with flow diversion in strategy 𝑖. 
Similarly, for the attacker, the scalar 𝛼ො௝ = 1 − 𝛼௝  defines the functional capacity for network components 
affected by disruptions in attacker strategy 𝑗. These relationships are summarised in Table 2.3. 

 
Table 2.3: ADM player’s strategies and network component capacity scalars 

Player Strategy  Action Network capacity scalar 
Attacker 𝐽 Disrupt network component 𝑗 by 𝛼௝  𝛼ො௝ = 1 − 𝛼௝ 
Defender 𝐼 Divert flow from network component 𝑖 by 𝛿௜ 𝛿መ௜ = 1 − 𝛿௜ 

 
Using the above definitions, we develop the following maximin formulation for the attacker-defender model: 
 
Objective: 

 

max
௤ೕ

ቌmin
௣೔

෍ ෍ 𝑝௜

௝∈௃௜∈ூ

𝑈௜௝𝑞௝ቍ (2.15) 

Subject to: 
 ෍ 𝑞௝

௝∈௃

= 1    (2.16) 

 ෍ 𝑝௜

௜∈ூ

= 1   (2.17) 

 𝑞௝, 𝑝௜ ≥ 0    ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (2.18) 

The objective (2.15) is for the attacker to maximise the expected disruption cost while the defender minimises 
the expected disruption cost. The constraints (2.16) through (2.18) ensure valid mixed strategies where each 
player assigns a probability to each component in 𝐼 = 𝐽 such that sum of probabilities equals to one. To solve 
this model, we proceed to transform it into a linear formulation by introducing a variable 𝑧 representing the 
network disruption costs and, therefore, the value of the game for the attacker.  

The resulting objective (2.19) represents the attacker’s intention to maximise 𝑧. Setting 𝑧 on the right-
hand side of the inequality constraints (2.20) ensures that the optimal strategy of the defender is taken into 
account because the payoff for the attacker cannot exceed the smallest expected disruption costs considering 
all possible moves of the defender.  

 
Objective: 

 max 𝑧 (2.19) 

Subject to: 
 ෍ 𝑈௜௝𝑞௝

௝∈௃

≥ 𝑧    ∀𝑖 ∈ 𝐼  (2.20) 

 ෍ 𝑞௝

௝∈௃

= 1 (2.21) 

 𝑞௝ ≥ 0    ∀𝑗 ∈ 𝐽 (2.22) 
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To derive the optimisation problem of the defender, we introduce a variable 𝑣 to represent total routing costs, 
alongside a minimisation objective (2.23): 

 
Objective: 

 𝑚𝑖𝑛 𝑣 (2.23) 

Subject to: 
 ෍ 𝑈௜௝𝑝௜

௜∈ூ

≤ 𝑣    ∀𝑗 ∈ 𝐽  (2.24) 

 ෍ 𝑝௜

௜∈ூ

= 1 (2.25) 

 𝑝௜ ≥ 0    ∀𝑖 ∈ 𝐼 (2.26) 

The model formulation for attacker strategies is the dual of the defender strategy model and vice versa. There-
fore, the optimal solution would satisfy 𝑧 = 𝑣 and the solution would be a Nash equilibrium with mixed strat-
egies. Here, the attacker’s strategy represents the worst case attack probabilities assuming that these are an-
ticipated by the defender [25]. In other words, higher component attack probabilities would have a more ad-
verse effect to the networks. On the other hand, the equilibrium strategy of the defender indicates the safest 
path choice frequency. As expected for maritime supply chain networks, this path choice frequency often 
involves the use of more than one path. 

Bell et al. [7]  point out that a particular disruption cost can be expected irrespective of the routing 
paths selected by the defender. Therefore, the value of the game also represents a measure of the overall 
vulnerability of the transport network. On the other hand, the value of the game for the defender indicates the 
worst-case routing costs. The routing strategy selected by the defender guarantees that regardless of attack 
strategies, the total routing costs will not be higher than the value of the game. 

2.3 Model integration and implementation  
 
The two models are combined to evaluate a series of iterative network interventions to generate a criticality 
ranking of network components. This follows from Sullivan et al. [13], who investigated the use sequential 
approaches to assess the relative importance of disrupted components as part of a solution procedure. This 
approach does not focus on the investigation of specific impacts of a single disruptive action but rather the 
performance of the system against known or unknown sources of disruption.  

The overall workflow of the framework and the interactions between the two models are illustrated in 
Figure 2.2. The CPLEX engine is used to solve problem instances for the CAM model (implemented using 
the OPL modelling language), which are generated by the ADM (implemented using MATLAB and 
OPL/CPLEX).  In our proposed sequential interventions, the network component with highest attack proba-
bility on each iteration 𝑡 is defended against any level of disruption in iteration 𝑡 + 1. The iterations end when 
all network components are defended.  

Model outputs include a series network disruption costs 𝑧∗ ranging from a worst-case disruption sce-
nario (where the most vulnerable component is disrupted) to the best-case scenario (where the attacker is only 
able to disrupt the component with minimum network impact). Also provided are network component rank-
ings with respect to the attack probabilities in the network. Numerical implementations of this algorithm are 
presented in section 3. 
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Figure 2.2: ADCAM implementation framework.   
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3 Numerical Analysis  
 
In this section we describe a numerical case study using the proposed ADCAM framework. Our implementa-
tion aims to assess the systemic vulnerability of liner service networks against disruptions and to identify its 
most critical network components. We analyse a network-based representation of Europe’s major container 
ports (network nodes) in terms of containerised throughput. The network is built using liner service data from 
a large ocean carrier and encompasses 88 distinct liner services, 230 container ports, and 2,648 OD pairs 
representing 242,214 weekly container movements.  

3.1 Model Inputs 
 
As market demand data for container transport services are considered by shipping lines to be commercially 
sensitive and central to their market strategies, we based our analysis to the LINER-LIB-2012 (LL12) dataset 
developed by Brouer et al. [21]. This was initially intended for use as a benchmark dataset for liner shipping 
network design algorithms. However, as it was developed in close co-operation with Maersk and other 
stakeholders in the liner shipping community, it has been deemed to be sufficiently representative for use in a 
broader spectrum of liner shipping studies.  

 A network model of the global container shipping market was created using a snapshot of the service 
schedules that were in effect during May 2014. This included port call rotations, transit times and nominal 
vessel capacities. Sources for this data include the public websites of container shipping lines, online. To 
maximise alignment with demand data, we also based our network dataset on services offered by Maersk. The 
demand for loaded containers between OD pairs used in this chapter was obtained from LL12’s World Small 
instance whereas the number of empty containers to be repositioned corresponds to 20.5% of the loaded con-
tainer demand as estimated by Rodrigue et al. [26]. 

We use the same costs for container rental and cargo depreciation costs as earlier studies on container 
assignment [18], [19]. Given the presence of economies of scale in container shipping, we define container 
handling costs as the ratio of time charter rates against the average TEU capacity of each vessel class. This is 
an improvement upon earlier studies on container assignment, which mostly used a constant value across the 
entire network. Cost rates were also obtained from the LL12 dataset, and incorporate operating expenses, crew 
salaries and maintenance costs. For this study, we assume that these do not depend upon vessel utilisation, 
which would have been considered during service design.  
 

Table 3.1: Case study network parameters  
 

Network particulars 
Depreciation rate for container cargo  80 USD/TEU/day 
Undelivered container penalty (loaded)  50,000 USD/TEU 
Undelivered container penalty (empty)  5,000 USD/TEU 
Rental cost for loaded/empty containers 18 USD/TEU/day 

  
Transport cost per vessel class 

Vessel class 
Capacity 

(TEU) 
Time charter 

(USD/day) 
Handling cost 

(USD/TEU/day) 
Feeder_450 900 4,680 5.20 
Feeder_800 1,600 7,966 4.98 
Panamax_1200 2,400 11,683 4.86 
Panamax_2400 4,800  21,774 4.53 
Post_Panamax 8,400  33,922 4.04 
Super_PostPanamax 15,000  48,750 3.25 

  
As a proof of concept, we concentrated our disruption analysis on the Top 6 European ports in terms 

of throughput as reported in Containerisation International (CI) 2012. These were in Northwest Europe and 
are recognised as major trade gateways for the region, with significant transhipment and feeder traffic. As a 
result, any disruption to these ports will have significant consequences to supply chains, industries and con-
sumers throughout the European continent.  



 
 

14 
 

 A total of 2,648 OD pairs are considered, amounting to 242,214 weekly TEU container movements. 
Table 3.1 provides a summary of the parameters used in the case study network. The penalty rates for any full 
or empty container flow demands that were not satisfied were assumed to be equal to 50,000 and 5,000 
USD/TEU respectively. These were chosen and calibrated to exceed any alternative routing costs across all 
disruption scenarios 𝑈௜௝, therefore ensuring that cargo flows are maximised while routing capacity remains 
available.  
 Port throughput rates (TEU handled per year) were obtained from CI and were used to define the upper 
bound capacity values for ports in the network [27]. As these figures are aggregate and describe all container 
traffic regardless of carrier, we use the approach described in [2] to obtain the downscaled capacity 𝑃𝑇௞ for 
all 230 ports in the case study network. This corresponds to the share of port capacity that would be allocated 
to the subset of overall container traffic considered by our case study and is as follows: 

 
 

𝑃𝑇௞ =  
∑ 𝐿𝑆௡௞௡∈ே

∑ 𝐿𝑆௡ො௞௡ො∈ே෡
𝑅𝑇௞     ∀𝑘 ∈ 𝐾 (3.1) 

Where: 
 𝐾 Set of all ports in the case study network 
 𝑁෡ Set of all liner services in the original dataset 
 𝑁 Subset of services considered by the case study 
 𝐿𝑆௡௞, 𝐿𝑆௡ො௞ Weekly capacity of liner services 𝑛 ∈ 𝑁 and 𝑛ො ∈ 𝑁෡, calling at port 𝑘 ∈ 𝐾   
 𝑃𝑇௞ Adjusted weekly throughput for port 𝑘 ∈ 𝐾  
 𝑅𝑇௞  Reported weekly throughput for port 𝑘 ∈ 𝐾 

 
A transhipment incidence parameter 𝑇𝐼௞ was used to indicate the relative proportion of transhipment traffic 
for any port 𝑘 that can be disrupted. This was determined using (3.2) and is defined as the percentage of 
transhipment flows from the total weekly throughput at port 𝑘 in the baseline scenario (𝐵𝑆𝑇௞) without disrup-
tions and flow diversions. Results for each of the ports surveyed, accompanied by their corresponding UN-
LOCODE, reported throughput (𝑅𝑇௞) and adjusted port capacity (𝑃𝑇௞) provided Table 3.2.    

 

𝑇𝐼௞ =  
𝐵𝑆𝑇௞ − ൫∑ 𝑇𝐷௥௞

௙
௥∈ை + ∑ 𝑇𝐷௞௦

௙
௦∈஽ ൯

𝐵𝑆𝑇௞
    ∀𝑘 ∈ 𝐾 (3.2) 

where: 
 

𝐾 Set of all ports  
𝑂 Set of origin ports  
𝐷 Set of destination ports  

𝐵𝑆𝑇௞ Weekly baseline scenario throughput at port 𝑘 ∈ 𝐾 
𝑅𝑇௞ Reported weekly throughput of port 𝑘 ∈ 𝐾 

𝑇𝐷௥௞
௙  Weekly demand for loaded containers from 𝑟 ∈ 𝑂 to port 𝑘 ∈ 𝐾 

𝑇𝐷௞௦
௙  Weekly demand for loaded containers from port 𝑘 ∈ 𝐾 to destination 𝑠 ∈ 𝐷 

𝑇𝐼௞ Transhipment incidence of port 𝑘 in the case study network 
 

Table 3.2: Container ports in strategy sets 𝑰 and 𝑱 

Port name Country UNLOCODE 𝑹𝑻𝒌 𝑷𝑻𝒌  𝑩𝑺𝑻𝒌 𝑻𝑰𝒌 

Antwerp BE BEANR 162,856 27,686 5,208 68.6% 
Hamburg  DE DEHAM 151,924 12,002 2,522 15.8% 
Zeebrugge BE BEZEE 45,960 6,342 3,214 16.6% 
Bremerhaven DE DEBRV 93,678 54,614 28,936 34.9% 
Rotterdam NL NLRTM 214,342 50,156 26,648 46.8% 
Felixstowe UK GBFXT 65,384 19,812 11,146 43.7% 
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3.2 Model Execution 
 
The model formulations and overall algorithm were implemented using a combination of MATLAB, the IBM 
OPL modelling language, and the CPLEX solver (version 12.6). Three workstations were used in parallel to 
minimise the time for completing the results, with Intel Xeon E5-1650, E5-2637v2, E5-2640v3 CPUs and 64, 
64, 192GB RAM, respectively. As described in section Attacker-defender model , the payoff matrix for 
the attacker is populated with disruption costs from CAM iterations 𝑈௜௝ where the defender diverts cargo flows 
from network component 𝑖 ∈ 𝐼  and the attacker disrupts component 𝑗 ∈ 𝐽. These are defined as the difference 
in baseline total routing costs (without disruptions and flow diversion) and the costs on each 𝑈௜௝ scenario.  

The average solution time for each CAM iteration was 17.4 minutes with a standard deviation of 1.8 
minutes. As described in section Using , the number of iterations required varies by the defender flow diver-
sion percentage 𝛿௜ and the attacker capacity disruption percentage 𝛼௝ (𝛼௝ = 𝛿௜ in Case 1 and 𝛼௝ ≠ 𝛿௜ for Case 
2). Section Partial disruptions describes a sensitivity analysis, carried out to evaluate how changes in disruption 
and flow diversion percentages may alter the vulnerability and component criticalities in the system. The 
disruption and flow diversion values considered range from 0% to 100% at increments of 20%.  
 As shown in Table 3.3, potential combinations of these disruption and flow diversion levels generate 
a total of 30 distinct ADCAM instances each one belonging to case 1 or 2 described above. The baseline 
scenario (container routing without disruptions) is the case where both 𝛼௝  and 𝛿௜ would be equal to 0%.  
 Τhe attacker game value 𝑧∗ (in USD/week) is computed by solving the ADM model, and used as a 
quantitative measure of transport vulnerability of the network [25]. Also provided are the attack probabilities 
for each network component, indicating which ports should be targeted to maximise disruption cost and can, 
therefore, be considered as the most critical components of the network.  
 In the analysis, we consider hypothetical scenarios of iterative network interventions where the most 
critical port at ADM iteration 𝑡 − 1 is defended against disruptions in iteration 𝑡. The sequence at which ports 
are defended in this iterative approach provides a network criticality ranking for the components the attacker 
can disrupt at 𝑡 = 0. The process concludes once all ports have been defended.  

 
Table 3.3: CAM iterations for distinct combinations of 𝜶𝒋 and 𝜹𝒊 

  Attacker disruption percentage 
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      𝜶𝒋 
       
𝜹𝒊     

0% 20% 40% 60% 80% 100% 

0% Baseline 𝑚ଶ 𝑚ଶ 𝑚ଶ 𝑚ଶ 𝑚ଶ 
20% N/A (𝑚 + 1)𝑚/2 𝑚ଶ 𝑚ଶ 𝑚ଶ 𝑚ଶ 
40% N/A 𝑚ଶ (𝑚 + 1)𝑚/2 𝑚ଶ 𝑚ଶ 𝑚ଶ 
60% N/A 𝑚ଶ 𝑚ଶ (𝑚 + 1)𝑚/2 𝑚ଶ 𝑚ଶ 
80% N/A 𝑚ଶ 𝑚ଶ 𝑚ଶ (𝑚 + 1)𝑚/2 𝑚ଶ 
100% N/A 𝑚ଶ 𝑚ଶ 𝑚ଶ 𝑚ଶ (𝑚 + 1)𝑚/2 

 

3.3 Complete disruptions 
 
In the first instance (Case 1) we considered disruptions affecting port operations, with a defender response 
involving the complete diversion of cargo from the ports in question (𝛼௝ = 𝛿௜ = 100%). A summary of results 
and the resulting payoff matrix are provided in Table 4.2, which also provides an outline of intervention strat-
egies at critical network components. Darker red values indicate higher attack probabilities and higher disrup-
tion costs. Figure 3.1 plots the changes in disruptions costs from the network interventions at the most critical 
port identified at 𝑡 − 1 as well as marginal financial gains from such interventions. 

Total disruption costs from the most-vulnerable network state at 𝑡 = 0 (where the most critical port is 
disrupted) to the least-vulnerable network state at 𝑡 = 5 (where the attacker can only disrupt the least critical 
port) range from 771.5 million USD/week to 62.6 million USD/week respectively. 

At 𝑡 = 0, Bremerhaven is identified as the most critical port followed by Rotterdam with attack prob-
abilities 0.91 and 0.09 respectively. The main reason for this result is that Bremerhaven is the port with the 
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largest inbound flows of containers in the OD matrix source from LL12. Furthermore, as shown in Table 6.2, 
the percentage of transhipment in Bremerhaven is less than Rotterdam in the case study network. Therefore, 
when complete disruptions occur at Bremerhaven (where 𝛼௝ = 𝛿௜ = 100%), more containers are unable to be 
transported to their final destination, resulting in higher disruption impacts. Given that most of the attack 
probabilities are concentrated on a single network component (Bremerhaven), the performance of the case 
study network is highly vulnerable to disruptions in this port. 

As part of the network intervention scenarios, at 𝑡 = 1, Bremerhaven is defended against disruptions 
for being the port with highest attack probabilities at 𝑡 = 0. Resulting financial gains from this intervention 
are USD 89 million/week (-11.6% marginal disruption cost 𝑧∗ decrease). An exclusion of Bremerhaven from 
the set of ports that the attacker can disrupt is found to have a significant effect on the attack probabilities of 
other ports. The updated attack probabilities identify Rotterdam as the new most critical port followed by 
Felixstowe with attack probability values of 0.90 and 0.10 respectively. The updated attack probabilities are 
still clearly concentrated at Rotterdam, which represents a singular point of vulnerability for the network as 
modelled.  

 

 
Figure 3.1: Disruption costs and intervention financial gains. 

 
At 𝑡 = 2, Rotterdam is defended against disruptions. This intervention produces a dramatic decrease 

in disruption costs 𝑧∗ (-48.7%) resulting in 376 million USD/week in marginal financial gains from defending 
the port of Bremerhaven and Rotterdam in tandem.  This intervention represents the largest financial gain 
from including a port in the set of the defended components. Updated attack probabilities are 0.77 for Felix-
stowe and 0.23 for Antwerp. Though the attack probabilities are still mostly concentrated on two ports, they 
start to spread more across network components (when compared to previous iterations) making it difficult 
for the attacker to maximise disruption costs from disabling a single port in the network. 

At 𝑡 = 3, Felixstowe is defended against disruptions. This intervention produces the second largest 
financial gain: USD 145.3 million/week (-18.8% marginal 𝑧∗ decrease). Updated attack probabilities are for 
the first time spread amongst 3 ports: 0.57 for Antwerp, 0.31 for Zeebrugge, and 0.12 for Hamburg. Therefore, 
upon removing Bremerhaven, Rotterdam and Felixstowe from the set of the ports the attacker can disrupt, the 
choice of a single port to disrupt to maximise disruption costs is less clear for the attacker. These results 
suggest that the Bremerhaven, Rotterdam, and Felixstowe are the most critical ports in the case study network.  

At 𝑡 = 4, Antwerp is defended against disruptions resulting in financial gains of 52.8 million 
USD/week (-5.9% marginal 𝑧∗ decrease). Updated attack probabilities for the two remaining ports are almost 
equivalent with 0.56 for Zeebrugge and 0.44 for Hamburg. Iterations 𝑡 = 5 and 𝑡 = 6 defend Zeebrugge and 
Hamburg respectively with combined financial gains of 107 million USD/week.   

The sequence at which ports are defended through this iterative approach provides a network criticality 
ranking for the components the attacker can disrupt at 𝑡 = 0. Figure 3.2 presents a geographical representation 
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of the case study ports color-coded based on their network criticality ranking (where lower values indicated 
higher criticality). The size of the ports represents the total network disruption costs 𝑧∗ that the attacker can 
achieve when disrupting each port. 

3.4 Partial disruptions 
 
This section describes the sensitivity analysis that evaluates how changes in disruption (𝛼௝) and flow diversion 
(𝛿௜) influence network vulnerability and criticality ranking of the selected ports. We evaluated disruption and 
flow diversion levels between the range of 0% to 100% at increments of 20%, in 30 distinct network instances 
(described in Table 3.3). Figure 4.3 presents the changes in network disruption costs 𝑧∗ and the changes in 
criticality rankings. 

For disruption levels 𝛼௝ ≤ 20%, Felixstowe is the most critical port in the network with disruption 
costs ranging from 70.5 thousand USD/week (at defender flow diversion 𝛿௜ = 0%) up to 62.74 million 
USD/week (at 𝛿௜ = 100%). At this disruption level, Rotterdam is the second most critical port followed by 
Bremerhaven. Disruptions costs at Rotterdam are very close to those in Felixstowe ranging from 65.3 thousand 
USD/week at 𝛿௜ = 0% up to 62.73 million USD/Week at 𝛿௜ = 100%.  

For Bremerhaven, disruption costs at 𝛼௝ ≤ 20% are lower when the defender does not divert any cargo 
flow (327 USD/week at 𝛿௜ = 0% up to 62.67 million USD/Week at 𝛿௜ = 100%). This suggests that in the 
case study network, Felixstowe and Rotterdam have less spare capacity to withstand disruptions lower than 
20% when compared to Bremerhaven. 

As shown in Figure 3.3, the criticality ranking of remaining ports in the network for 𝛼௝ ≤ 20% is 
Antwerp (4th most critical), Zeebrugge (5th most critical), and Hamburg (6th most critical). Disruptions costs 
range from 0 USD/week when the defender does not divert any cargo flows (𝛿௜ = 0%) but increase to 62.6 
million USD/week when the defender deviates all cargo flows to other terminals (𝛿௜ = 100%).  

For disruption levels 𝛼௝  between 20% and 40%, Felixstowe remains the most critical port in the net-
work with costs between 3.3 million USD/week (at 𝛿௜ = 0%) and 65.9 million USD/week (at 𝛿௜ = 100%). 
For this interval, Bremerhaven becomes the second most critical port surpassing Rotterdam. For these two 
ports, disruptions costs range from 1.5 million USD/week (at 𝛿௜ = 0%) up to 64.5 million USD/week at 𝛿௜ =
100%. The criticality ranking of Antwerp, Zeebrugge remain unchanged at this disruption interval. 

For the remaining ADCAM instances with disruption levels 𝛼௝  greater than 60%, Bremerhaven be-
comes the most critical port of the network with disruption costs up to 771.5 million USD/Week (𝛼௝ =

100%, 𝛿௜ = 100%). Rotterdam remains as the second most critical port in the network with disruption costs 
up to 682.2 million USD/week whereas Felixstowe falls to the third position with disruption costs of up to 
306.1 million USD/week. For disruption levels of 100%, Antwerp, Zeebrugge, and Hamburg stabilise on the 
4th, 5th, and 6th critical rank respectively. 
 

3.5 Discussion 
 
The changes in criticality ranking of ports and overall disruption costs are primarily driven by the available 
spare capacity that each port has to meet its inbound and outbound throughput as well as any transhipment 
cargo flows. Since Felixstowe operates with lower spare capacity, it is more susceptible to lower disruptions 
levels (e.g. 𝛼௝ ≤ 40%) when compared with Rotterdam and Bremerhaven. As such, it is the most critical port 
for lower disruption levels. 

In contrast, Bremerhaven and Rotterdam, which  operate with more spare capacity, are capable of 
withstanding disruption levels below 40% without significantly increasing the overall network disruption 
costs. However, these ports surpass Felixstowe in the criticality ranking for disruptions levels above 60% due 
to the more significant number of containers affected when disruptions occur at Bremerhaven or Rotterdam.  

These results are significantly influenced by the OD matrix input where most container flows are des-
tined to Bremerhaven, Rotterdam, and Felixstowe. Consequently, disruptions in Antwerp, Zeebrugge, and 
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Hamburg have less impact on the overall network vulnerability. The latter ports have lower inbound and out-
bound flows in the case study network (between 2.5 and 5.2 thousand TEU/week). 

In the case study network, ports such as Antwerp have high transhipment incidence in the baseline 
scenario (about 69%) and therefore can be replaced with secondary paths when cargo flows cannot be routed 
through this port. On the contrary, Bremerhaven, Rotterdam, and Felixstowe have the characteristic feature of 
high inbound and outbound flows (between 18 and 50 thousand TEU/week) as well as lower transhipment 
incidence in the case study network (between 35% and 47%). As such, interventions that prevent disruptions 
at the latter ports result in higher financial gains across the ADCAM instances evaluated.  

The sensitivity analysis also demonstrates that the defender strategy of deviating cargo flows does not 
reduce the vulnerability of the case study network. Instead, the iterative interventions that protect network 
components and rank port criticality proved beneficial in reducing the network vulnerability. This study used 
a divert flow strategy for the defender because in the developed two-player game, the defender is assumed to 
be an ocean carrier with no capacity to defend the port infrastructure but with the ability to deviate cargo flows 
to other ports. Therefore, future improvements to the methodology could replace defensive divert flow strat-
egies with a network component defence strategy, which considers further potential gains from the latter ap-
proach. 
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Table 3.2: ADCAM results for 𝜶𝒋 = 𝜹𝒊 = 𝟏𝟎𝟎% 
CAM Payoff matrix disruption costs (USD/week) 

D
ef

en
d

er
: 

S
ce

n
ar

io
s 

i 

  Attacker: Scenarios j 

Network Components DEBRV NLRTM GBFXT BEANR BEZEE DEHAM 

DEBRV 7.14E+08 1.37E+09 9.91E+08 8.41E+08 7.94E+08 7.77E+08 
NLRTM 1.37E+09 6.56E+08 9.34E+08 7.85E+08 7.36E+08 7.19E+08 
GBFXT 9.91E+08 9.34E+08 2.77E+08 4.06E+08 3.57E+08 3.40E+08 
BEANR 8.41E+08 7.85E+08 4.06E+08 1.28E+08 2.08E+08 1.91E+08 
BEZEE 7.94E+08 7.36E+08 3.57E+08 2.08E+08 8.05E+07 1.43E+08 

DEHAM 7.77E+08 7.19E+08 3.40E+08 1.91E+08 1.43E+08 6.27E+07 
Attacker-Defender Model (ADM) 

t 
Intervention 

Strategy 
Disruption costs z* 

(USD/week) 
Marginal financial 
gains (USD/week) 

Attack probabilities 

DEBRV NLRTM GBFXT BEANR BEZEE DEHAM 
0 NONE  7.72E+08 - 0.91 0.09 0.00 0.00 0.00 0.00 
1 DEBRV 6.82E+08 8.94E+07 0.00 0.90 0.10 0.00 0.00 0.00 
2 NLRTM 3.06E+08 3.76E+08 0.00 0.00 0.77 0.23 0.00 0.00 
3 GBFXT 1.61E+08 1.45E+08 0.00 0.00 0.00 0.57 0.31 0.12 
4 BEANR 1.08E+08 5.29E+07 0.00 0.00 0.00 0.00 0.56 0.44 
5 BEZEE 6.27E+07 4.52E+07 0.00 0.00 0.00 0.00 0.00 1.00 
6 DEHAM 0.00E+00 6.27E+07 0.00 0.00 0.00 0.00 0.00 0.00 

DEBRV: Bremerhaven, NLRTM: Rotterdam, GBFXT: Felixstowe, BEANR: Antwerp, BEZEE: Zeebrugge, DEHAM: Hamburg 
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Figure 3.2: Disruption costs and component criticality ranking for 𝜶𝒋 = 𝜹𝒊 = 𝟏𝟎𝟎%
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Figure 3.3: Disruptions costs and criticality rankings for all ADCAM instances 
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4 Conclusions and further research 
 

This study proposes a new framework capable of identifying the most critical network components 
and quantifying the systemic vulnerability of realistic large-scale liner shipping networks with limited or no 
historical disruption data available. The case study on a subset of the European port system indicates a signif-
icant concentration of attack probabilities in specific ports, rendering the system particularly susceptible to 
disruption.  
 The network instances used in the scenarios presented in this study make extensive use of secondary 
data (e.g. same operating speed for all vessels and same penalty costs for all containers), leaving room for 
further refinements in the selection of data sources and calibration inputs. Future improvements to this frame-
work could also include the inclusion of hinterland links, and the use of an n + m player game structure where 
multiple carriers compete in cargo rerouting.  

Another substantial enhancement to the ADM proposed in this study would be the formulation of less 
extreme attackers. As mentioned by Bell et al. [7], a logit model approach can be used to adjust the level of 
aggressiveness of attackers (or user pessimism) that a particular network component will fail in the network 
evaluated.  This approach allows departure from worst-case scenario analysis resulting from the formulation 
of extremely aggressive attackers or pessimistic users (as presented in this study) and provide a vulnerability 
assessment of transport networks exposed to less extreme events which are more common in liner shipping. 

Finally, the interventions proposed by this study assume that it is possible to make centralised decisions 
on network structure when aiming to reduce exposure to disruptions. While this may be possible in some 
instances (e.g. an international financial institution allocating funds to port infrastructure in a given region), 
in most cases, liner shipping stakeholders would be subject to competitive tendencies. We therefore identify 
the relationship between market dynamics and the collective actions that contribute to collective robustness 
against disruption as a fertile ground for future work. 
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