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Abstract

The Bike-sharing allocation and rebalancing problem is the problem of determining

the initial daily allocation of bikes to stations in a bike-sharing system composed of

one depot and multiple capacitated stations, in which bikes can be rebalanced at a

point in time during the day. Due to the uncertain demand in each station, we propose

a two-stage stochastic programming formulation, where the allocation is made at the

first stage and the recourse decisions related to rebalancing are made at the second

stage. The impact of the stochastic demand on the problem solution is examined,

showing the benefits of the proposed methodology with respect to the deterministic

formulation. A procedure for solving the stochastic program using information from

the deterministic solution is derived showing a significant reduction in solution time

without losing solution quality. The proposed approach is finally benchmarked on the

real bike-sharing system of the city of San Francisco.



Keywords: Bike sharing, Rebalancing, Stochastic programming, Stochastic solution

analysis.

1 Introduction

Bike-sharing systems are becoming more prevalent and popular throughout the world,

doubling their number from 550 in 2012, to more than 3000 in 2021 (PBSC [2021]).

The popularity of these systems can be attributed to an increasing interest in reducing

pollution and traffic, as well as promoting healthy lifestyles, worldwide. Bike-sharing

systems provide a fleet of bikes for use (typically via a rental agreement) by different

individuals throughout the day. These systems typically consist of a depot (or set of

depots), wherein bikes are stored at the beginning of the day, and multiple stations located

throughout the city, from which an individual can withdraw a bike for a (usually short)

journey and then return that bike to a station that may be different from the station from

which it was withdrawn. These stations typically have a fixed number of slots for holding

bikes, although their capacity can be expanded on a temporary basis. Finally, these

stations often have technology that enables them to communicate information regarding

their status (e.g., how many bikes are currently there) to a central manager/planner.

Typically, bike-sharing systems are financed by public and/or private entities and managed

by service providers, who are involved in strategic, tactical, and operational decision-

making. Strategic decisions can include determining the number, location, and capacity

of stations for bike rental and return, whereas tactical decisions can include fleet sizing and

allocation decisions. Daily operational decisions include determining how to periodically

re-distribute bikes to stations.

This paper studies a bike-sharing system composed of one depot (with an initial avail-

ability of bikes) and multiple capacitated stations. The capacity of the stations can be

enlarged by individuals who can accept returning bikes even when the station is at ca-
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pacity (the so-called “valet service”). The service provider has to decide first how to

allocate bikes to stations and then how to re-distribute bikes among stations, to rebalance

the system. Rebalancing is performed at specific time periods during the day, through a

capacitated vehicle that travels a given route. The service provider tries to limit the cases

in which an individual arrives at a station in hopes of renting a bike, but none is available

(a situation we refer to as “starvation”). On the other hand, the service provider tries to

limit the cases in which an individual seeks to return a bike to a station, but the station

is already full (a situation we refer to as “congestion”). Both cases negatively impact the

user’s experience with the bike-sharing service, as they both (potentially) require the user

to travel to another station. At the same time, they are somewhat competing objectives,

as the more bikes allocated to a station, the less the likelihood of a starvation event, but

the greater the likelihood of a congestion event. To understand the magnitude of these

phenomena, Figure 1 shows the percentage of minutes with congestion and starvation on

weekdays and weekends, by station, registered in the time interval between 6 a.m. and

11:59 a.m. for the months of May through August, 2016 for the San Francisco bike-sharing

system. Figures 1a and 1b show that congestion and starvation are more likely during the

week, with some stations seeing a congestion and starvation event 20% and 30% of the

time, respectively.
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(a) Congestion frequency during weekdays

and weekend

(b) Starvation frequency during weekdays

and weekend

Figure 1: Congestion and starvation average frequencies in the San Francisco bike-sharing

system for year 2016, considering the months from May to August and the time interval

between 6:00 a.m. and 11:59 a.m.

Apart from congestion and starvation, the service provider may also seek to limit the

size of the bike fleet in use (to prevent it from damages and deterioration), as well as the

number of bikes that are redistributed through the day.

We formulate a two-stage stochastic optimization model to represent this problem.

The purpose of this model is determining an effective initial allocation of bikes to sta-

tions and approximating the possibility of rebalancing bikes with a static second-stage

problem. We show that explicitly modeling uncertainty in demand leads to improvements

along multiple performance dimensions over using a deterministic model. Specifically, our

stochastic program includes objectives that measure each of the performance dimensions
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mentioned above (congestion, starvation, fleet size, rebalancing frequency). The impact

of the stochastic demand on problem solution is examined, showing the benefits of the

proposed methodology on solution quality when compared to solving the deterministic for-

mulation. Nevertheless, by assessing the upgradeability of solutions from a deterministic

version of this problem (see Maggioni and Wallace [2012]), we derive a heuristic proce-

dure for solving the stochastic program that significantly reduces its solution time without

losing solution quality.

To assess the performance of the initial allocation plan produced by the stochastic

program, we compare it with the one resulting by considering the number of available

bikes at stations in the morning in the real San Francisco bike-sharing system. The two

plans are compared across multiple dimensions (frequency of congestion and starvation,

and total number of bikes allocated and rebalanced between stations) in the context of a

simulation of one week of operation for the San Francisco bike-sharing system. The system

is integrated with a mobile app, which allows the users to know in real time the number

of available slots in all bike stations throughout the city. Numerical results show that

the solution to the stochastic program outperforms the real San Francisco implemented

allocation plan on all dimensions.

We carry out computational experiments to answer the following questions:

1. How to generate realistic demand scenarios?

2. What is the minimum number of scenarios to be considered to describe the stochastic

demand?

3. What is the Value of Stochastic Solution (VSS)?

4. What is the quality of the Expected Value (EV) solution when solving the stochastic

model?

5. How does the actual number of bikes available in the morning in the San Francisco
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bike-sharing system perform compared to the ones obtained by optimally solving

the stochastic and deterministic models?

The paper is organized as follows. In Section 2, we discuss the relevant literature, and

contrast both the problems studied and methodologies with the research proposed in this

paper. In Section 3, we describe the problem, while the model is formulated in Section

4. In Section 5, we present computational results and relevant analyses that allow us

to give an answer to the previous questions. Finally, Section 6 provides conclusions and

suggestions for future works.

2 Literature review

In this section, we review the papers studying station-based bike-sharing systems. Specif-

ically, we review the papers focusing exclusively on the problem of determining the initial

inventory level of bikes at stations in Section 2.1, the papers studying exclusively the

problem of rebalancing in Section 2.2, and, the papers considering both problems jointly

in Section 2.3. Table 1 summarizes the surveyed papers. In the following, we refer to

“initial inventory”as the amount of bikes to be allocated at stations initially and to “tar-

get inventory”as the amount of bikes that should be at stations after rebalancing. For a

review of additional bike-sharing problems (including, for example, problems at the strate-

gic decision level, problems dealing with free-floating bike-sharing systems, and problems

considering bike-sharing incentives and parking reservation schemes), the reader can refer

to the work of Shui and Szeto [2020].

2.1 Initial station inventory level problems

Raviv and Kolka [2013] focus on the problem of determining the optimal initial inven-

tory level at a single bike-sharing station. They minimize a user dissatisfaction measure,

expressed as a function of the bikes and lockers shortage events. The proposed model
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omits interdependencies among stations, both with reference to the demand and arrival

process, and the penalties charged which are the same across all stations. To overcome

these limitations, Datner et al. [2017] study the problem of setting the initial inventory

levels in a bike-sharing system with interactions between stations. These interactions are

captured by a user-behavior model which describes the decisions a user may make in

response to a shortage of bikes or lockers, that are: waiting at a station, roaming to a

nearby station, or abandoning the system. The objective is to minimize the excess time

spent by a user in the system because of a shortage of bikes or lockers. While this work

is the first one considering interactions between stations in setting the initial inventory

levels and, to the best of our knowledge, it is the only one considering a stochastic demand

process, it presents three differences with respect to our work: (1) it does not consider the

capacity of the stations and the presence of a possibly limited bike fleet size (i.e., some

inventory levels could not be implementable), (2) it does not consider the possibility that

rebalancing may take place, and (3) it does not consider that the service providers might

also be interested in minimizing the operational costs related to the allocation of bikes

at stations. Differently from these two papers, in our work, the interdependence among

stations is captured by making penalties for congestion and starvation events dependent

on the distance to the next-closest station.

2.2 Rebalancing problems

Concerning rebalancing, we can divide the papers into two different groups depending on

how often the repositioning of bikes is performed, i.e., static rebalancing and dynamic

rebalancing.
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2.2.1 Static rebalancing

With static rebalancing we refer to rebalancing operations performed at night, when the

system is closed or idle, to prepare the system for the next day. According to Berbeglia

et al. [2007], such a problem is similar to the one-to-one PDP (Pick up and Delivery

Problem) with transshipment, since each rebalancing flow has exactly one pickup station

and one delivery station, and these stations are determined by the order according to

which they are visited.

However, this variant of the PDP does not consider the impact on the customer service

level (e.g., dissatisfaction for congestion and starvation events). The same limitation can

be found in the following papers which also use pre-determined target levels (or ranges)

for the number of bikes that should be at each station after rebalancing. We recall that,

in our work, the initial inventory level of bikes that should be allocated at stations also

acts as target level for the number of bikes to have after rebalancing is performed. Thus,

these are decisions for our problem. Benchimol et al. [2011] formulate a modified version

of the capacitated traveling salesman problem to study the problem of finding a minimal

route that balances all stations, and they use an approximation algorithm to address the

problem. Chemla et al. [2013] propose some relaxations to derive good lower bounds and

a tabu search heuristic to get upper bounds for the static rebalancing problem. Erdoğan

et al. [2014] and Erdoğan et al. [2015] propose exact methods to solve the problems.

Similarly to our work, the first assumes that rebalancing is done via a single vehicle

following a fixed route. Cruz et al. [2017] study a rebalancing problem where only a single

vehicle is available, but multiple visits to the same station are allowed and they propose

an iterated local search heuristic. Dell’Amico et al. [2014] formulate models relying on

different pick-up and delivery problems and solve these formulations via a branch-and-cut

algorithm, while Dell’Amico et al. [2016] extend their work by proposing a destroy and

repair algorithm. Recently, Bruck et al. [2019] propose multiple model versions and exact
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algorithms to perform rebalancing while minimizing the rebalancing costs measured in

terms of distance. They also impose that stations cannot be used as temporary depots

to provisionally collect and store bikes. In all the three latter papers, the objective is

minimizing rebalancing costs with the use of a fleet of capacitated vehicles, instead of

a single one. Besides the presence of multiple vehicles, Alvarez-Valdes et al. [2016] and

Bulhões et al. [2018] also allow multiple visits to stations. Lv et al. [2020] introduces the

presence of multiple depots for rebalancing.

A number of papers also considers the customer satisfaction dimension. Raviv et al.

[2013] propose a deterministic multi-objective mathematical program wherein they mini-

mize an objective that consists of penalties for stockouts, penalties for stations being at

capacity when users wish to return bikes, and the operational costs incurred when re-

balancing. They present an arc-indexed and a time-indexed formulation, with the first

limiting each vehicle to visit each station at most once. Their first formulation is also

studied in Forma et al. [2015], but solved via a matheuristic based on the clustering-first

routing-second paradigm, while Ho and Szeto [2014] propose a modification of the problem

studied in Forma et al. [2015], by not considering the rebalancing costs.

Among stochastic static rebalancing problems, we mention the work of Nair and Miller-

Hooks [2011] and the one of Dell’Amico et al. [2018], who propose multiple stochastic

programming formulations for dealing with uncertain demand by deciding vehicle routes

and rebalanced quantities. Apart from minimizing the rebalancing costs, they also consider

penalties for each unit of deviation with respect to the stations target inventory levels.

2.2.2 Dynamic rebalancing

Even if much of the literature focuses on static rebalancing, some works have focused on its

dynamic version. With dynamic rebalancing, we refer to rebalancing operations executed

during the day when the system is in use and, hence, unexpected bike withdrawals or
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returns may occur while rebalancing is performed.

Examples of works studying dynamic rebalancing and focusing on deterministic de-

mand are those by Contardo et al. [2012], Ghosh et al. [2017], and Brinkmann et al.

[2016].

Among the works dealing with stochastic dynamic rebalancing, Brinkmann et al. [2015]

minimizes the expected number of violations of due dates, i.e., the latest time a station

has to be served by a vehicle to satisfy a request. Brinkmann et al. [2019] propose a

stochastic-dynamic inventory routing problem for rebalancing bikes with one vehicle, and

Brinkmann et al. [2020] extends this work to the multi-vehicle case. Legros [2019] adopts

a Markov decision process approach based on a decomposition at a station level to decide

which station should be prioritized and the amount of bikes to move between stations with

the objective of minimizing users dissatisfaction.

2.3 Stations initial inventory level and rebalancing problems

Finally, the following papers consider the problem of determining the number of bikes at

stations and of rebalancing jointly.

Vogel et al. [2014], Neumann-Saavedra et al. [2015], and Vogel [2016] rely on a ser-

vice network design formulation considering both the problem of determining the station

optimal target levels, and of dynamically rebalancing. Regue and Recker [2014] present

a sequential framework for making target inventory level and rebalancing decisions. The

first step in this framework is to forecast demand at each station, from which a target

inventory level for that station is determined. The second step is to determine a dynamic

rebalancing plan based upon those target inventory levels, which dictates how many bikes

should be transported from one station to another. Then, the third step is to determine

vehicle routes to execute that rebalancing plan. Lu [2016] studies a problem that focuses

on both the initial allocation and rebalancing of bikes, wherein there is uncertainty in how
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bike usage will deviate from what is expected. Their objective function measures bike

supply cost, inventory and redistribution costs, and penalties associated with stock-outs.

Differently from our approach, they propose a robust model of this problem that seeks to

minimize their objective under a maximum demand scenario generated from two different

uncertainty sets. A robust optimization approach is also adopted by Fu et al. [2022], who

maximizes the revenue minus the total rebalancing costs. Schuijbroek et al. [2017] study

the problem of both determining the service level requirements (that is, target inventory

bounds) at each station and determining the rebalancing vehicle routes. They model the

stochastic demand by considering the inventory at each station independently as a non-

stationary queuing system with finite capacity. Uncertain demands are also considered in

Maggioni et al. [2019], who formulate a two-stage and a multi-stage stochastic program to

determine the initial inventory level at stations to minimize the sum of bikes procurement

costs, expected bikes and lockers stockout costs and transshipment costs for performing

static rebalancing of bikes. Finally, Ren et al. [2020] study the static rebalancing problem

in presence of multiple vehicles and stations which can be visited only once. Apart from

minimizing the variable and fixed rebalancing costs, the authors also focus on the fleet

size, i.e., on the number of bikes leaving the depot which are initially loaded by each

vehicle.

Finally, the presence of a valet service, which allows to expand the capacity of stations

by charging an extra penalty, distinguishes our work from the ones in the literature. In

fact, to the best of our knowledge, no work in the literature has considered this feature in

a bike-sharing initial inventory and rebalancing problem.
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Article Problem features
Solution

method

Fleet

size

Initial

inventory

Target

inventory
Rebalancing

Stochastic (S),

Deterministic (D)

Raviv and Kolka [2013] ✓ S exact

Datner et al. [2017] ✓ S heuristic

Benchimol et al. [2011] static D exact

Chemla et al. [2013] static D heuristic

Raviv et al. [2013] static D exact

Erdoğan et al. [2014] static D exact

Ho and Szeto [2014] static D heuristic

Dell’Amico et al. [2014] static D exact

Forma et al. [2015] static D heuristic

Erdoğan et al. [2015] static D exact

Alvarez-Valdes et al. [2016] static D heuristic

Dell’Amico et al. [2016] static D heuristic

Cruz et al. [2017] static D heuristic

Nair and Miller-Hooks [2011] static S exact and heuristic

Dell’Amico et al. [2018] static S exact and heuristic

Bulhões et al. [2018] static D exact and heuristic

Bruck et al. [2019] static D exact

Lv et al. [2020] static D heuristic

Contardo et al. [2012] dynamic D heuristic

Brinkmann et al. [2015] dynamic S heuristic

Brinkmann et al. [2016] dynamic D heuristic

Ghosh et al. [2017] dynamic D heuristic

Brinkmann et al. [2019] dynamic S heuristic

Legros [2019] dynamic D heuristic

Vogel et al. [2014] ✓ dynamic D heuristic

Regue and Recker [2014] ✓ dynamic D heuristic

Neumann-Saavedra et al. [2015] ✓ dynamic D exact

Lu [2016] ✓ static S exact

Vogel [2016] ✓ dynamic D heuristic

Schuijbroek et al. [2017] ✓ static S heuristic

Maggioni et al. [2019] ✓ static S exact

Ren et al. [2020] ✓ static D heuristic

Fu et al. [2022] ✓ dynamic S heuristic

Our paper ✓ ✓ static S exact and heuristic

Table 1: Bike-sharing literature classification based on the problem features and the solu-

tion methodology.
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3 Problem description

We study a bike-sharing system managed by a service provider wherein the decision-

making is centralized. The service provider has to determine the number of bikes to

allocate at the beginning of the day and how they should be rebalanced at a later point

during the day, under uncertain demand. The demand at each station is measured as

the difference between the uncertain number of rented and returned bikes at that station

during the period between when bikes are initially allocated and redistributed. Moreover,

the number of bikes to allocate at each station must exceed a minimum threshold to ensure

that rental requests early in the day can be satisfied (see Appendix B).

We consider a single depot and multiple stations with given capacities and a number

of bikes that are initially allocated. The capacity of each station can be expanded on

a temporary basis using the so-called “valet service”, which involves individual who can

accept returning bikes even when the station is at capacity. We assume that there is a

limited number of bikes at the depot corresponding to its capacity that can be allocated to

stations. We presume rebalancing is executed by a capacitated vehicle that travels along

a known and fixed route (determined a priori by solving a Travelling Salesman Problem

(TSP)) that begins at the depot, visits each station, and then ends at the depot. Notice

that we do not currently model the possibility to move bikes from the depot to a station

during the rebalancing operation. This choice allows us to measure the ideal fleet size as

the total number of bikes initially allocated to stations.

Because the service provider wants to maximize the customer service level, the occur-

rence of both congestion (a user wishes to return a bike to a station but it is full) and

starvation (a user wishes to rent a bike from a station but it is empty) must be avoided.

At the same time, the provider wants to minimize operational costs. For this, the number

of bikes allocated and rebalanced (to prevent bike damage) are minimized. Moreover, the

number of bikes exceeding the station capacity must be small to decrease the likelihood
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of resorting to the valet service. The objective of our problem includes all these aspects.

4 A two-stage stochastic programming formulation

In this section, we propose a two-stage stochastic programming formulation of the problem

presented in Section 3. We refer to Birge and Louveaux [2011] and King and Wallace [2012]

for comprehensive books on Stochastic Programming.

We first define the following notation:

Sets:

I: set of bike-stations I = {1, . . . , I} (with I the depot);

S: set of scenarios S = {1, . . . , S} or finite set of possibile realization of the uncertainty;

Deterministic parameters:

xi, minimum number of bikes that has to be allocated to station i ∈ I \ {I};

II0, initial availability of bikes at the depot and depot capacity;

Qi, capacity of station i ∈ I \ {I};

Ii0, initial availability of bikes at station i ∈ I \ {I};

C, capacity of the vehicle used for rebalancing;

pi, stock-out penalty at station i ∈ I \ {I};

ci, excess penalty at station i ∈ I \ {I};
ci
Qi

, extra penalty at station i ∈ I \ {I};

fi, delivery penalty at station i ∈ I \ {I};

ti,i+1, rebalancing penalty at station i ∈ I \ {I};

Stochastic parameters:

Let (Ξ,A, pr) be a probability space with Ξ the set of outcomes, σ-algebra A, probability

pr and d ∈ Ξ a particular outcome representing the demand of bike stations. We define:
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• dsi , stochastic demand of bikes at station i ∈ I \ {I} in scenario s ∈ S;

• prs, probability of scenario s ∈ S.

Recalling that the demand at each station is measured as the difference between the

number of rented and returned bikes at that station during the period between when bikes

are initially allocated and redistributed, dsi may be either positive (more bikes withdrawn

from station i than returned in scenario s) or negative (more bikes returned to station i

than withdrawn in scenario s). As highlighted in Raviv and Kolka [2013], this choice of

computing demand yields to a “steady-state” demand and ignores the dynamics of the

system. In Appendix B, we describe this limitation in more detail and propose a method

to counteract it.

We now introduce the decision variables. The first-stage variables are defined as fol-

lows:

• xi ∈ Z+: number of bikes to allocate at station i ∈ I \ {I} at the beginning of the

service. The decision must be taken before the realizations of the random demand

dsi .

After the allocation of bikes, at a later point during the day, the stochastic demands

dsi occur on each station i and the service provider determines a rebalancing plan based

on the number of bikes available at each station. Then, the surplus or shortage can be

immediately computed at each bike station.

The second-stage decision variables are defined as follows:

• ysi,i+1 ∈ Z+, number of bikes to relocate from station i ∈ I \ {I} to station i+ 1 in

scenario s ∈ S;

• Isi ∈ Z, balance of bikes at station i ∈ I \ {I} in scenario s ∈ S;

• Is+i ∈ Z+, units of surplus at station i ∈ I \ {I} in scenario s ∈ S;
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• Is−i ∈ Z−, units of stock-out at station i ∈ I \ {I} in scenario s ∈ S;

• Bs
i ∈ Z, extra inventory balance at station i ∈ I \ {I} in scenario s ∈ S;

• Bs+
i ∈ Z+, units of extra inventory at station i ∈ I \ {I} in scenario s ∈ S;

• Es
i ∈ Z, excess inventory balance at station i ∈ I \ {I} in scenario s ∈ S;

• Es+
i ∈ Z+, units of excess inventory at station i ∈ I \ {I} in scenario s ∈ S;

We illustrate the sequence of decisions and events with an example in Figure 2. The

left-most part of Figure 2 represents the first-stage decision, in which bikes are allocated

to stations (see the blue arrows) at the beginning of the day, before knowing the realized

demand. In the central part of the figure, each orange arrow represents one scenario

describing the bike demand at stations. Finally, in the right-most part of Figure 2, each

small figure shows a recourse decision to make for each scenario that may have realized.

Each of these figures represents the number of bikes redistributed by a vehicle following a

fixed route described by the green arrows.

We recall that our problem includes multiple objectives. Specifically, the service

provider seeks to avoid the occurrence of both congestion (a user wishes to return a

bike to a station but it is full) and starvation (a user wishes to rent a bike from a station

but it is empty).

Congestion is measured by the “extra inventory” term Bs+
i , representing the number

of bikes at station i ∈ I \ {I} in scenario s that is above and beyond the initial inventory

plus the allocated bike number. Recalling the possible need for the valet service, with the

“excess inventory” term Es+
i , i ∈ I \ {I}, we measure the number of bikes in excess of

station capacity in scenario s. We refer to the weight associated with “excess inventory”

as the “excess penalty,” ci, ∀i ∈ I \{I} and the weight associated with “extra inventory”

as the “extra penalty,” ci
Qi

, ∀i ∈ I \ {I}.
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Figure 2: Illustration of the two-stage decision-making process

Starvation is measured by Is−i , i ∈ I \{I} representing the realized shortage of bikes at

station i in scenario s. We refer to the weight associated with starvation as the “stock-out

penalty” pi, i ∈ I \ {I}.

The problem can be formulated as the following integer non linear stochastic program,

which we linearize in Appendix A:

Problem B

min
∑
i∈I

fixi +
∑
s∈S

prs[
∑

i∈I\{I}

(ti,i+1y
s
i,i+1 +

ci
Qi

Bs+
i + ciE

s+
i + pi(−Is−i ))] (1)

s.t:

xi ≥ xi i ∈ I \ {I} (2)

Ii0 + xi ≤ Qi i ∈ I \ {I} (3)∑
i∈I\{I}

xi ≤ II0 (4)
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ysi,i+1 ≤ C i ∈ I \ {I}, s ∈ S (5)

IsI = II0 −
∑

i∈I\{I}

xi + ysI−1,I s ∈ S (6)

IsI ≤ II0 s ∈ S (7)

Is1 = Ii0 + x1 − ds1 − ys1,2 s ∈ S (8)

Isi = Ii0 + xi − dsi + ysi−1,i − ysi,i+1 i ∈ I \ {1, I}, s ∈ S (9)

Is+i = max{0, Isi } i ∈ I \ {I}, s ∈ S (10)

Is−i = min{0, Isi } i ∈ I \ {I}, s ∈ S (11)

Es
i = Is+i −Qi i ∈ I \ {I}, s ∈ S (12)

Es+
i = max{0, Es

i } i ∈ I \ {I}, s ∈ S (13)

Bs
i = Is+i − xi − Ii0 − Es+

i i ∈ I \ {I}, s ∈ S (14)

Bs+
i = max{0, Bs

i } i ∈ I \ {I}, s ∈ S (15)

xi ≥ 0 integer i ∈ I \ {I} (16)

ysi,i+1 ≥ 0 integer i ∈ I \ {I}, s ∈ S (17)

Isi free and integer i ∈ I \ {I}, s ∈ S (18)

Is+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (19)

Is−i ≤ 0 integer i ∈ I \ {I}, s ∈ S (20)

Bs
i free and integer i ∈ I \ {I}, s ∈ S (21)

Bs+
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (22)

Es
i free and integer i ∈ I \ {I}, s ∈ S (23)

Es+
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (24)
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The objective function (1) represents the minimization of the expected total cost obtained

through the sum of delivery cost for the allocated bikes, the expected rebalancing cost

between stations, the expected extra and excess costs and expected stock-out cost for

shortage. Constraints (2) impose that the delivered quantity to each station has to be at

least as great as the initial requirement at that station. Constraints (3) guarantee that the

sum between the quantity allocated and initially available at each station does not exceed

the station capacity. Constraint (4) implies that the total number of delivered bikes to

stations is less than the available quantity at the depot. Constraints (5) ensure that the

number of bikes carried by the vehicle during rebalancing never exceeds its capacity in

each scenario s ∈ S. We recall that rebalancing occurs on a fixed route that begins and

ends at the depot, but that rebalancing does not involve bringing bikes from the depot

to the first station on this route. As such, constraints (6) ensure that, for the depot, in

each scenario s ∈ S, the quantity at the end of the period is equal to the initial bike

availability and the quantity received from the last visited station minus the quantities

delivered to stations. Constraints (7) ensure that, in each scenario s ∈ S, at the end of

the rebalancing period, the number of bikes at the depot does not exceed its capacity.

Moreover, the “flow balance” constraints for bikes at the first station on this route is

different from the remaining stations. Specifically, constraints (8) ensure that, for the first

visited station, the quantity at the end of rebalancing is equal to the sum between the

initial available quantity and the quantity received from the depot minus the quantities

used to satisfy the demand and those bikes that are redistributed to subsequent stations

on the route in each scenario s ∈ S. Similarly, constraints (9) determine the inventory

position (which can be negative or positive) at a station other than the first, as a function

of the initial inventory level, the number allocated, the number withdrawn/returned, and

the number redistributed to another station in each scenario s ∈ S. Constraints (10) and

(11) determine the surplus and stock-out quantities, respectively, for each station and for

each scenario s ∈ S. Constraints (12) and (13) calculate the number of bikes at each
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station that are in excess of station capacity, in each scenario s ∈ S and are collected

thanks to valet service. Similarly, constraints (14) and (15) determine, for each scenario

s ∈ S, when there are more bikes positioned at a station after rebalancing than were

initially allocated, and less or equal to station capacity. Finally, Constraints (16) to (24)

define the integrality and non-negativity of first-stage and second-stage variables.

5 Numerical Results

In this section, we present and analyze the results of our computational study with the

aim of answering the questions posed in Section 1.

All computational experiments were run on a computer with 8 GB of RAM and a 2.70

GHz CPU. All software was implemented in Python 3.6.1, with optimization problems

solved to optimality with Gurobi 7.5.1. All Gurobi parameters were set to their default

values.

5.1 Instances and scenario generation

Our computational study is based on the bike-sharing system of the city of San Francisco,

CA. This service started in August 2013, and in August 2016 counted 33 bike stations

(see Figure 3) and a total of 350 bikes. Open ridership data are available at the web-site

www.bayareabikeshare.com/open-data (last accessed in December 2017).
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Image created with Google Earth

Figure 3: San Francisco bike stations in August 2016

The parameters of the considered instance are retrieved as follows:

• Minimum number of bikes that has to be allocated to station xi, i ∈ I \ {I}: see

Appendix B;

• Depot capacity II0 = 350 (value retrieved from our first access to the website);

• Bike-station capacity Qi, i ∈ I \ {I}: see Table 7 in Appendix C;

• Initial availability of bikes Ii0, at station i ∈ I \ {I}: see Table 7 in Appendix C;

• Delivery penalty fi = 1 (Dollar), i ∈ I \ {I};

• Rebalancing penalty ti,i+1 = 2 (Dollars), i ∈ I \ {I};

• Capacity of the vehicle used for transshipment C = 25 (see Forma et al. [2015]);

• Excess and stock-out penalties ci = pi = κ(1 +minj∈I:j ̸=i δij), i ∈ I \ {I}, where δij

is the distance between station i and j calculated as the geodesic distance using the

great-circle distance formula (Banerjee [2005]);
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Notice that, the allocation penalty fi and the rebalancing penalty ti,i+1 are set to the same

values for all stations, i.e., they are not station-dependent. On the contrary, we penalize

congestion and starvation by modeling that when a user cannot return (withdraw) a

bike to (from) the station they desire, they will instead walk to the next-closest station.

Specifically, in the excess and stock-out penalties, considering that the distance to the

closest station is typically below one kilometer, we set κ to a high value (κ = 46) so that,

in most of cases, the model redistributes bikes from a station when there is extra inventory

to one of the following stations.

5.1.1 Scenario generation

In this section, we aim at answering our first question: How to generate realistic demand

scenarios? Scenario generation is an important part of the modelling process, since a bad

scenario tree can lead to a solution of the optimization problem that is not meaningful.

We recall that a typical assumption of stochastic programming is that the distribution

of the random variable is known. However, in most practical applications, the distribu-

tions of the stochastic parameters have to be approximated by discrete distributions with

a limited number of outcomes. The discretization is called a scenario tree. We assume

that the random variable, given by the demand at each station, has a finite number of

possible outcomes at the end of the considered period, assumed to be exogenous to the

problem. Consequently, the probability distribution is not influenced as well by decisions.

Making these assumptions, we can represent the stochastic demand dsi , i ∈ I, s ∈ S, using

a scenario tree which contains a root and a finite set of leaves. In the problem under

consideration, the random vector is high-dimensional, and presents complicated depen-

dencies among stations. These factors make the uncertainty very difficult to represent.

For this reason, we derived an empirical distribution of each station demand as inverse

of the Kaplan-Meier estimate of the cumulative distribution function (also known as the
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empirical cdf) of the real historical ridership data that we collected and that we denote as

dni , i ∈ I \ {I}, n = 1, . . . , N , where N is the total number of collected data. Specifically,

for each day and each station, we computed the number of withdrawn and returned bikes

between 6 am and 11:59 am, and set the demand for that day as the difference between

those two numbers (withdrawn-returned). Since we add penalties in the objective function

for extra and excess inventory and for stockout, we do not bound the demand values to

stations capacities.

From the empirical demand distributions, several scenario trees of increasing size are

then generated according to a Monte Carlo sampling procedure. Pseudo-code (1) presents

the details for scenario generation. Finally, Figures 4a and 4b illustrate for two chosen

stations in San Francisco a comparison of the empirical distribution based on 369 real

observations and Monte Carlo sampling based on 2,000 observations. For the sake of

representation, we display their relative frequencies for the two distributions to be on the

same scale. Results show that the two patterns follow a similar behaviour.

(a) Station 1 (b) Station 2

Figure 4: Empirical distributions and Monte Carlo sampling for two different stations

23



Pseudo-code 1: Scenario generation process

1 Input: dni ∈ Z , i ∈ I \ {I}, n = 1, . . . , N

2 for i ∈ I \ {I} do

3 K := {n′, n′′ = 1, . . . , N : dn
′

i ̸= dn
′′

i }

4 if dn
′

i < dn
′′

i then

5 n′ < n′′

6 end

7 for k ∈ K do

8 cdfi[k] :=

∑
n′,n′′=1,...,N 1

(dn
′

i
=dn

′′
i

)

N

9 inv.cdfi[k] := dki

10 end

11 for s ∈ S do

12 sample a random number (“random”) in [0,1]

13 for k ∈ K do

14 if random <= cdfi[k] and random > cdfi[k − 1] then

15 dsi = inv.cdfi[k]

16 end

17 end

18 return dsi

19 end

20 end

5.1.2 Determining the size of the scenario tree

In this section, we aim at answering our second question: What is the minimum number

of scenarios to be considered to accurately describe the stochastic demand?

We performed both an in-sample and out-of-sample stability analysis of our stochastic
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program, following the procedure described in Kaut and Wallace [2007]. We illustrate

the results of these analyses in Figures 5a and 5b. Regarding the in-sample analysis, we

solved the stochastic program for scenario trees of increasing size. Figure 5a indicates

that the objective function value stabilizes with 1,200 scenarios. However, we have to

remember that in-sample values are not directly comparable. To be able to estimate the

effect of using a larger scenario tree, we have to compare the out-of-sample costs. For this

purpose, we declare a scenario tree with 2,000 scenarios to be the true representation of

the real world, and we use it as a benchmark to evaluate the cost of the optimal solutions

obtained using scenario trees with a smaller size. We see in Figure 5b that convergence

of the out-of-sample analysis is nearly monotonic and decreasing with a percentage gap

under 0.1%. In the following, we base our computational study on a set of 1200 scenario

which we assume to be equi-probable, i.e. we set prs = 1
|S| , ∀s ∈ S.

(a) In-sample stability analysis results (b) Out-of-sample stability analysis results

Figure 5: In sample and out-of-sample analysis

5.2 Stochastic solution analysis

In this section, we analyze the value of the stochastic solution (Section 5.2.2), and the

quality of the expected value solution (Section 5.2.3). To perform both analyses, we use

typical indicators from the literature and a simulation model that we describe in Section
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5.2.1.

5.2.1 Simulation model

To simulate the performance of an initial allocation of bikes to station, we consider his-

torical ridership data of the week of June 20, 2016 to June 26, 2016.

For each day during this week, we input the number of allocated bikes to every station

and simulate the movement of bikes based on rides taken on that day. In doing this,

we record statistics related to: (i) the number of times a user wants to return a bike to

a station, but it is full (“% congestion”), and (ii) the number of times a user wants to

withdraw a bike from a station, but it is empty (“% starvation”). Then, we compute the

final inventory level at each station, Ifinali = Ii0+xi−wi+si, where wi and si stand for the

number of withdrawn and returned bikes, respectively, at station i, defined in the interval

of integer numbers [0, Qi]. From this, we solve the second stage of our stochastic program

to determine the number of rebalanced bikes. Similarly, we calculate the total number

of rebalanced bike miles (“miles · rebalanced qty”), as
∑

i,i+1 δi,i+1ȳi,i+1, where ȳi,i+1

indicates how many bikes should be rebalanced from station i to station i + 1 according

to the rebalancing plan. Because observing how the system performs after rebalancing is

done is interesting, an alternative perspective on these final inventory levels is to calculate

a fill rate-type statistic, wherein we estimate the percentage of future bike withdrawals

that can be satisfied. For this, we use the same demand scenario set computed in Section

5.1.2, and compute the fill rate of station i in scenario s as follows:

FRs
i =


1 if Ifinali − dsi ≥ 0

Ifinal
i
dsi

otherwise

(25)

To get the average expected fill rate, we average this statistic over all stations and scenarios

and, in the following, we refer to it with “expected FR”. Finally, we compute the total

number of “extra inventory qty” that represents the total number of bikes in excess with
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respect to the initial number at stations. We interpret this statistic as the number of bikes

that cannot be redistributed through rebalancing.

5.2.2 Analyzing the value of stochastic solution

In this section, we aim at answering to our third question: What is the Value of the

Stochastic Solution (VSS) (see Birge and Louveaux [2011], Kall andWallace [1994])? To do

so, we solve the stochastic program presented above on the benchmark scenario tree, to get

its optimal objective function value, RP. We then solve the Expected Value Problem (EV),

which is obtained by solving a deterministic version of our stochastic program, in which

the random demand parameters are replaced with their expected values, and rounded

to the nearest integer (bike demands cannot be given by fractional values). We then

evaluate how the deterministic solution performs in the stochastic setting by computing

the Expectation of Expected Value, EEV, obtained by fixing the first-stage expected value

decisions in the stochastic program and we compute the (Relative) Value of Stochastic

Solution

%V SS = (EEV −RP )/RP = 41.15%,

suggesting that significant gains can be realized by solving the stochastic program versus

the expected value approach.

We also assess how well the initial allocation plans from both the EV problem and

the stochastic program perform in the simulation model (see Section 5.2.1), and report

the above-mentioned statistics related to the performance of each plan in Table 2. We see

that while the stochastic program allocates 40% more bikes, it leads to a much smaller

frequency of starvation and higher fill rate. However, despite of the high difference in the

number of allocated bikes in the stochastic and in the deterministic solution, the fill rates

are similar. There are two reasons for this: (i) the fill rate already includes the effect of

rebalancing, so that if the bike redistribution is efficient, potential uncovered withdrawals
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are corrected, and (ii) the higher number of allocated bikes in the stochastic program can

be caused by the need of reducing rebalancing operations. In fact, we observe that the

initial plan prescribed by the stochastic program also requires less rebalancing. However,

as it allocates more bikes, the plan prescribed by the stochastic solution also yields a higher

frequency of congestion, which is limited compared to the higher frequency of starvation

of the deterministic solution.

Table 2: Simulation-based comparison of solutions to stochastic and expected value prob-

lems.

SP EEV

Day
%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

Mon 8.81% 31.30% 19.95 85.86% 149 5.56% 39.57% 50.65 86.28% 151

Tue 9.21% 28.74% 22.17 86.28% 149 6.53% 38.32% 49.70 86.45% 153

Wed 7.27% 31.11% 16.85 87.55% 158 4.44% 40.50% 46.55 88.13% 163

Thu 6.94% 27.88% 15.34 86.43% 141 4.49% 36.01% 42.78 86.17% 145

Fri 6.68% 25.98% 19.89 86.42% 105 3.23% 36.55% 51.59 87.03% 109

Sat 7.62% 21.36% 3.36 88.22% 37 0.00% 23.30% 3.36 85.26% 37

Sun 0.00% 20.83% 2.31 91.32% 19 0.00% 25.00% 2.31 88.04% 19

Average 6.65% 26.74% 14.27 87.44% 108.29 3.46% 34.18% 35.28 86.77% 111

Tot

delivered

bikes

154 110

5.2.3 Analyzing the quality of the Expected Value solution

In this section, we aim at answering our fourth question: What is the quality of the

Expected Value (EV ) solution when solving the stochastic model? To do so, we compute

two more indicators: the Loss of Using the Skeleton Solution (LUSS) and the Loss of

Upgrading the Deterministic Solution (LUDS) defined in Maggioni and Wallace [2012].

We interpret the skeleton solution as the stations to which exactly the minimum num-
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ber of required bikes is allocated. To compute the LUSS, we examine the solution to

the EV problem to determine the subset of stations Ī to which it allocates exactly the

minimum number of bikes xi. We then solve the stochastic program, fixing xi = xi for

stations i ∈ Ī. We refer to the objective function value of the optimal solution to this

problem as the Expected Skeleton Solution Value (ESSV) and found the (Relative) LUSS

measure,

%LUSS = (ESSV −RP )/RP = 7.95%.

The positive LUSS value means that the expected value solution selects the wrong quan-

tities to deliver to the wrong stations and its structure (skeleton) cannot be inherited in a

stochastic environment. Relatively, we illustrate in Figure 6a the stations in I \ Ī in the

solution to the EV problem and in Figure 6b the analogously-determined stations in the

solution to the stochastic program SP. From the figures we conclude that the solution of

the EV model allocates bikes to too few stations compared to the SP one. Specifically,

in the EV solution only three stations receive a higher number of bikes than the initial

requirement, compared to the SP in which these stations are twelve. We also note that

the three stations receiving a higher number of bikes than the initial requirement in the

EV solution show the same behavior in the SP solution.
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(a) First-stage EV skeleton solution (b) First-stage SP skeleton solution

Images created with Google Earth

Figure 6: Distributions of bikes to stations in the EV and SP solutions

With the LUDS, we seek to determine whether the solution to the EV problem is

upgradeable, i.e., that it can be used as a starting point for generating a high-quality

solution to the stochastic program. To do so, we solve the stochastic program, albeit with

additional constraints ensuring that the values of the first-stage variables are at least as

large as their values in the optimal solution to the EV problem. We refer to the objective

function value of the optimal solution to this restricted stochastic program as the Expected

Input Value (EIV) and compute a relative LUDS measure as

%LUDS = (EIV −RP )/RP = 0%.

The result suggests that the EV solution is perfectly upgradeable, indicating that solving

the EV problem can be a good start for solving the stochastic program. Besides, we

obtained that by first solving the EV problem, and then the LUDS-restricted stochastic

program, the total solution time is reduced by 10% of what it is needed to solve the

stochastic program from scratch. This result shows that applying this heuristic procedure
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that uses information from the deterministic solution is valuable.

5.3 A comparison with the implemented system

In this section, we aim at answering our fifth question: How does the actual allocation

plan implemented in San Francisco perform compared to the ones obtained by optimally

solving the stochastic and deterministic models? We finish with a comparison of how the

plan prescribed by the stochastic program performs relative to what we determined was

the initial allocation plan in the actual system. We derived the actual allocation of bikes

to stations from station status data by collecting the number of bikes at each station at

6 a.m., for each day of the considered week. We compare the performance of the RP

initial allocation plan with the simulation model described in Section 5.2.1. We present

statistics regarding each plan in Table 3. We see that the stochastic program allocated

far fewer bikes (45% fewer), which in turn lead to less congestion and rebalancing relative

to the actual San Francisco service. However, not surprisingly, we saw an increase in the

starvation frequency.

Table 3: Comparison of the actual allocation plan with the one obtained from the stochas-

tic program

Actual allocation plan SP allocation plan

Day
total bikes

at 6 a.m.

%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

total bikes

at 6 a.m.

%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

Mon 272 17.24% 25.39% 40.09 90.92% 113 155 8.81% 31.30% 19.95 85.86% 149

Tue 275 14.97% 19.76% 38.19 88.58% 109 155 9.21% 28.74% 22.17 86.28% 149

Wed 281 15.76% 23.38% 24.40 91.49% 118 155 7.47% 31.11% 16.85 87.55% 157

Thu 289 13.88% 22.22% 38.76 90.92% 101 155 6.94% 27.88% 15.34 86.43% 141

Fri 285 10.14% 14.94% 22.73 91.46% 85 155 6.68% 25.98% 19.89 86.42% 104

Sat 293 4.76% 2.91% 3.36 94.03% 31 155 7.62% 21.36% 3.36 88.26% 37

Sun 288 17.39% 14.58% 2.12 92.80% 18 155 0.00% 20.83% 2.31 91.34% 19

Average 283.29 13.45% 17.58% 24.24 91.46% 82.14 155 6.68% 26.74% 14.27 85.45% 108
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In the following, to normalize our comparison, we determine the initial allocation of

bikes to stations by solving a stochastic program that determines how many bikes to

allocate to each station but under the constraint that the total number of allocated bikes

has to be equal to the one of the real system. We present the related statistics in Table

4. We observe that the allocation plans prescribed by the stochastic program outperform

the actual allocation on each day and in each category. These results represent a strong

indicator of the impact that the proposed stochastic approach could have in practice.

Table 4: Comparison of implemented plan and plan from stochastic program, when allo-

cating the same number of bikes.

Actual allocation plan SP with total number of allocated bikes of the actual allocation plan

Day
total bikes

at 6 a.m.

%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

total bikes

at 6 a.m.

%

congestion

%

starvation

miles ·

rebalanced

qty

expected

FR

extra

inventory

qty

Mon 272 17.24% 25.39% 40.09 90.92% 113 272 12.07% 18.70% 28.21 91.92% 127

Tue 275 14.97% 19.76% 38.19 88.58% 109 275 11.90% 18.56% 37.73 92.09% 117

Wed 281 15.76% 23.38% 24.40 91.49% 118 281 9.70% 22.97% 24.40 93.46% 140

Thu 289 13.88% 22.22% 38.76 90.92% 101 289 9.18% 16.98% 24.43 93.64% 114

Fri 285 10.14% 14.94% 22.73 91.46% 85 285 7.83% 13.79% 20.20 93.54% 93

Sat 293 4.76% 2.91% 3.36 94.03% 31 293 7.62% 2.91% 4.16 96.90% 33

Sun 288 17.39% 14.58% 2.12 92.80% 18 288 4.35% 8.33% 2.31 97.80% 19

Average 13.45% 17.58% 24.24 91.46% 82.14 8.95% 14.61% 20.21 94.19% 91.86

To gain more insights on the allocation of the bikes, in Table 5, we report the standard

deviation, the minimum, and the maximum of the number of allocated bikes in the actual

allocation plan and in the solution of our stochastic program. The statistics suggest that

the stochastic program allocates always at least one bike to every station, while, in the

actual allocation plan, at least one station has no bikes allocated. Moreover, the difference

of the number of allocated bikes across stations is more pronounced in the stochastic

solution as shown by the higher standard deviation.
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Table 5: Standard deviation, minimum, and maximum of the number of allocated bikes

in the actual allocation plan and in the solution of our stochastic program.

Actual allocation plan SP with total number of allocated bikes of the actual allocation plan

Day std. dev min max std. dev min max

Mon 5.18 2 19 6.06 1 23

Tue 5.95 1 21 6.06 1 23

Wed 6.30 1 21 6.17 1 23

Thu 5.12 1 21 6.14 1 23

Fri 5.20 0 20 6.15 1 23

Sat 5.79 0 23 6.12 1 23

Sun 5.90 1 22 6.14 1 23

6 Conclusion and future work

In this paper, we studied the problem of determining an initial allocation of bikes to

stations, as well as the opportunity to perform rebalancing at a later point in time, in

the context of a bike-sharing system. One of the challenges in determining this allocation

is that there are multiple dimensions along which the performance of such an allocation

plan can be measured, with some measuring costs incurred while operating the system and

others measuring the quality of the service experienced by users of the system. As a result,

we present a two-stage stochastic program wherein the first-stage variables determine

this initial allocation of bikes, and the second-stage variables determine how bikes are

rebalanced at a point later in the day. Another challenge in this setting is determining

how to measure demand, as, like a rental system, bikes are both withdrawn and returned

from individual stations.

We performed a computational study based upon historical ridership data from the

bike-sharing system of the city of San Francisco. In particular, we used this data to derive
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a simulation model wherein we can estimate the performance of an initial allocation plan

along multiple dimensions. With that study, we first established that by not recognizing

variability in bike station demand, the deterministic problem allocated too few bikes to

too few stations. However, we also established that the time required to produce a high-

quality solution to the stochastic program can be reduced by first solving its deterministic

counterpart. This finding can be valuable for practitioners, especially if this problem

must be solved multiple times in a day. We also compared the performance of the initial

allocation plan prescribed by the stochastic program with what we estimated was the

initial allocation plan for a given week of historical data. We saw that the stochastic

program produced a much better initial allocation of bikes than what we estimated was

done in practice. In addition, our solution suggested to allocate fewer bikes than the

ones in the real system. Consequently, practitioners should carefully evaluate whether to

allocate the total number of available bikes at the depot to reduce rebalancing and risks

of congestion.

Regarding future work, we believe the next logical step in this research is to consider

a multi-stage stochastic optimization model that recognizes that rebalancing can occur

multiple times throughout the day. This variant can be compared with the two-stage

formulation provided in this paper, by means of rolling horizons approaches (see Bertazzi

and Maggioni [2018]). Finally, another extension is to model that multiple vehicles can be

used to support rebalancing and that their routes can change from one day to the next.
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Appendix A Model linearization

In this section, we present the linearization of the model presented in Section 4. First, we

need to modify the objective function (1) as follows:

min
∑
i∈I

fixi +
∑
s∈S

prs[
∑

i∈I\{I}

(ti,i+1y
s
i,i+1 +

ci
Qi

Bs+
i + ciE

s+
i + piI

s−
i )]. (26)

Then, we need to linearize the expressions for determining Is+i and Is−i . We introduce the

binary variable zsi such that:

zsi =

 1 if Isi ≥ 0

0 otherwise

and we substitute constraints (10) and (11) with:

Is+i ≥ Isi i ∈ I \ {I}, s ∈ S (27)

Is+i ≤ Isi +max
s∈S

(dsi )(1− zsi ) i ∈ I \ {I}, s ∈ S (28)

Is+i ≥ 0 integer i ∈ I \ {I}, s ∈ S (29)

Is+i ≤ Mzsi i ∈ I \ {I}, s ∈ S (30)

Is−i ≥ −Isi i ∈ I \ {I}, s ∈ S (31)

Is−i ≤ −Isi +Mzsi i ∈ I \ {I}, s ∈ S (32)

Is−i ≥ 0 integer i ∈ I \ {I}, s ∈ S (33)

Is−i ≤ max
s∈S

(dsi )(1− zsi ) i ∈ I \ {I}, s ∈ S (34)

The same linearization technique is applied for Es+
i , and Bs+

i . In particular, we

introduce the binary variables esi and rsi , such that:

esi =

 1 if Es
i ≥ 0

0 otherwise
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rsi =

 1 if Bs
i ≥ 0

0 otherwise

and we substitute constraints (13) and (15) with the following:

Bs+
i ≥ Bs

i i ∈ I \ {I}, s ∈ S (35)

Bs+
i ≤ Bs

i +M(1− rsi ) i ∈ I \ {I}, s ∈ S (36)

Bs+
i ≤ Mrsi i ∈ I \ {I}, s ∈ S (37)

Bs+
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (38)

Bs−
i ≥ −Bs

i i ∈ I \ {I}, s ∈ S (39)

Bs−
i ≤ −Bs

i +Mrsi i ∈ I \ {I}, s ∈ S (40)

Bs−
i ≤ M(1− rsi ) i ∈ I \ {I}, s ∈ S (41)

Bs−
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (42)

Es+
i ≥ Es

i i ∈ I \ {I}, s ∈ S (43)

Es+
i ≤ Es

i +M(1− esi ) i ∈ I \ {I}, s ∈ S (44)

Es+
i ≤ Mesi i ∈ I \ {I}, s ∈ S (45)

Es+
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (46)

Es−
i ≥ −Es

i i ∈ I \ {I}, s ∈ S (47)

Es−
i ≤ −Es

i +Mesi i ∈ I \ {I}, s ∈ S (48)

Es−
i ≤ M(1− esi ) i ∈ I \ {I}, s ∈ S (49)

Es−
i ≥ 0 integer i ∈ I \ {I}, s ∈ S (50)
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Finally, we introduce the variable definition constraints:

zsi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (51)

rsi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (52)

esi ∈ {0, 1} i ∈ I \ {I}, s ∈ S (53)

Appendix B Determining the initial bike requirement for

each station

As highlighted in Raviv and Kolka [2013], computing demand as the difference between the

number of withdrawn and returned bikes during a time interval yields to a “steady-state”

demand and ignores the dynamics of the system. As an example, consider a station from

which a bike is withdrawn and then, one is returned, and no other bikes are withdrawn or

returned. The resulting station demand would be counted as zero, indicating to the model

that no bikes need to be allocated to that station. With zero bikes allocated, however, the

first withdrawal request cannot be satisfied. We counteract to this limitation by estimating

the number of bikes withdrawn from a station before any are returned and defining this

as the minimum number of bikes that has to be allocated to a station.

To ensure each station has a sufficient number of bikes to satisfy rental requests early

in the day, before any bikes are returned to that station, we determine an initial bike

requirement for each station. We consider five methods for estimating the number of

withdrawn bikes before a return occurs, and test their relative performance with our

simulation. All are based on calculating statistics from historical ridership data over the

time period from 6 am until 11:59 am. These methods are based on one of the following

statistics for each station: (1) Average bike-interarrival time for bikes returned to that

station, (2) The average trip time for bikes returned to that station, (3) The average time
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until the first return to that station, and, (4) The total number of bikes withdrawn from

that station between 6 am and 11:59 am. The methods are as follows:

• Method 1: We estimate the initial requirement as the average number of withdrawn

bikes between 6 a.m. and 6 a.m., plus the average bike inter-arrival time.

• Method 2: We estimate the initial requirement as the average number of withdrawn

bikes between 6 a.m. and 6 a.m., plus thie average trip time.

• Method 3: We estimate the initial requirement as this total number of withdrawn

bikes divided by the average bike inter-arrival time.

• Method 4: We estimate the initial requirement as this total number of withdrawn

bikes divided by the average trip time.

• Method 5: We estimate the initial requirement as the total number of withdrawn

bikes between 6 a.m. and 6 a.m., plus the average time until first return.

To assess each method, we first solve the stochastic program, while requiring that

the number of bikes initially allocated to each station is at least as great as the number

suggested by that method. We then run our simulation, with those initial allocations, and

compute the frequency of congestion (starvation) relative to the number of bikes returned

(withdrawn). We report these relative frequencies in Table 6. There, we see that methods

3 and 5 perform the best with respect to starvation, with 5 performing slightly better

with respect to congestion. We also see that fewer bikes are allocated with method 5.

Thus, we conclude that method 5 is the best method, and used it for the remainder of our

computational study.
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Table 6: Congestion and starvation relative frequencies by method of determining initial

bike requirement

Method 1 Method 2 Method 3 Method 4 Method 5

Day % congestion % starvation % congestion % starvation % congestion % starvation % congestion % starvation % congestion % starvation

Mon 8.43% 33.07% 8.43% 33.07% 9.00% 29.53% 8.43% 32.68% 8.81% 31.30%

Tue 8.64% 30.94% 8.64% 31.14% 9.41% 28.74% 8.64% 30.54% 9.21% 28.74%

Wed 7.07% 32.57% 7.07% 32.57% 7.07% 30.48% 7.07% 32.57% 7.27% 31.11%

Thu 6.94% 30.19% 6.94% 30.19% 7.14% 28.30% 6.94% 30.19% 6.94% 27.88%

Fri 6.68% 28.97% 6.68% 28.97% 6.91% 25.29% 6.68% 28.97% 6.68% 25.98%

Sat 7.62% 32.04% 7.62% 33.01% 7.62% 17.48% 7.62% 30.10% 7.62% 21.36%

Sun 0.00% 29.17% 0.00% 31.25% 0.00% 20.83% 0.00% 31.25% 0.00% 20.83%

Average 6.48% 30.99% 6.48% 31.46% 6.74% 25.81% 6.48% 30.90% 6.65% 26.74%

Initial

requirement
55 36 103 57 89

Total

delivery
147 146 160 148 154

Appendix C Station capacities and initial availabilities
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Station id Station name Qi Ii0

1 Townsend at 7th 15 3

2 San Francisco Caltrain 2 (330 Townsend) 23 5

3 San Francisco Caltrain (Townsend at 4th) 19 8

4 2nd at Townsend 27 2

5 2nd at South Park 15 3

6 2nd at Folsom 19 2

7 Howard at 2nd 19 1

8 Temporary Transbay Terminal (Howard at Beale) 23 8

9 Embarcadero at Bryant 15 4

10 Spear at Folsom 19 2

11 Embarcadero at Folsom 19 2

12 Steuart at Market 23 2

13 Harry Bridges Plaza (Ferry Building) 23 4

14 Davis at Jackson 15 2

15 Embarcadero at Vallejo 15 1

16 Embarcadero at Sansome 15 2

17 Washington at Kearney 15 2

18 Commercial at Montgomery 15 1

19 Clay at Battery 15 1

20 Beale at Market 19 2

21 Mechanics Plaza (Market at Battery) 19 1

22 Market at Sansome 27 2

23 Post at Kearney 19 1

24 Powell at Post (Union Square) 19 5

25 Market at 4th 19 1

26 Yerba Buena Center of the Arts (3rd at Howard) 19 1

27 5th at Howard 15 2

28 Powell Street BART 19 3

29 Civic Center BART (7th at Market) 23 4

30 Golden Gate at Polk 23 3

31 San Francisco City Hall 19 3

32 Market at 10th 27 4

33 South Van Ness at Market 19 2

Table 7: Station capacities and bike initial availability levels.
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