
Split cuts from sparse disjunctions

Ricardo Fukasawa Laurent Poirrier Shenghao Yang∗

Department of Combinatorics and Optimization

University of Waterloo, Canada

July 31, 2018

Abstract

Split cuts are arguably the most e�ective class of cutting planes within a branch-
and-cut framework for solving general Mixed-Integer Programs (MIP). Sparsity, on the
other hand, is a common characteristic of MIP problems, and it is an important part of
why the simplex method works so well inside branch-and-cut. In this work, we evaluate
the strength of split cuts that exploit sparsity. In particular, we show that restricting
ourselves to sparse disjunctions�and furthermore, ones that have small disjunctive
coe�cients�still leads to a signi�cant portion of the total gap closed with arbitrary
split cuts. We also show how to exploit sparsity structure that is implicit in the MIP
formulation to produce splits that are sparse yet still e�ective. Our results indicate
that one possibility to produce good split cuts is to try and exploit such structure.

1 Introduction

Cutting planes are fundamental in solving mixed-integer linear programs (MIPs). Over
the last 25 years, commercial solvers have accomplished remarkable progress, achieving a
machine-independent speed-up of the solution process by more than a factor of 450,000 [9].
General-purpose cutting plane techniques, such as Gomory Mixed Integer (GMI) cuts and
Mixed Integer Rounding (MIR) cuts, are arguably the most important contributors to this
progress (see, for example, [11]).

To study the impact that a particular family of cuts may have, both theoretically and
computationally, a common approach is to consider the closure of those cuts. Given a
family of cuts, its closure is de�ned as the intersection of all cuts belonging to the same
family that are obtainable from the original MIP formulation. On the theoretical side, topics
range from determining the polyhedrality of closures [15] to analyzing their strength [7].

∗{rfukasawa,lpoirrier,s286yang}@uwaterloo.ca

On the computational front, several authors proposed strategies to empirically evaluate
the strength of di�erent closures by computing the amount of integrality gap they close:
we thus have computational evaluations of the Chvátal closure [20], the split closure [6],
the projected Chvátal-Gomory closure [13], the MIR closure [17] and the lift-and-project
closure [12].

We focus on the results on the split closure (or equivalently the MIR closure), which consider
the class of all split cuts [15], since these are the cuts that are most useful in practice
to solve MIPs [11]. Besides e�orts on e�cient generation of strong split cuts (see for
instance [2,16,22,23]), the split closure was shown to be a very tight approximation to the
convex hull of all feasible solutions in the corresponding MIP [6, 23]. On average it closes
more than 75% of the integrality gap on MIPLIB 3.0 [10] instances. The purpose of this
work is to determine what will be the e�ect on this integrality gap if we restrict ourselves
to a subset of split cuts de�ned by its sparsity properties. In the following discussion we
motivate such choice of restriction.

Sparsity is a natural condition that helps in the linear algebra routines of the simplex
method [26], thus it is a desirable property of cutting planes for MIPs. Indeed, in al-
most every cut generation procedure described in the articles we mentioned above, speci�c
heuristics are implemented to impose sparsity in the cuts, e.g., introducing a penalty term
in the objective of a cut generating problem to make the resulting cut sparser [20], apply-
ing a coe�cient reduction algorithm to reduce the number of nonzeros the split cut [16],
and discarding all dense cuts to ensure that only sparse cuts are added [22]. The e�ect of
sparsity has also recently been noted in a computational study by Walter [27] where it is
shown that equivalent, but denser versions of the same cuts negatively a�ect performance
of MIP solvers. Due to all this interest, there has also been some recent work to analyze
theoretically the strength of sparse cutting planes [18,19].

One additional motivation to study the e�ect of sparsity is the recent result of Bergner et
al. [8] where they show that several benchmark instances have an almost block-diagonal
structure called arrowhead, that is, a structure with several blocks that are linked only
by few linking variables and constraints. This shows that not only are these benchmark
instances sparse (on average, MIPLIB 2010 [25] instances only have 1.62% density), but in
many cases such sparsity has an identi�able structure that can be exploited.

The main contributions of this work can be stated as follows:

• We implement an approximate separation routine based on the work on Balas and
Saxena [6] that separates only split cuts whose split disjunctions are sparse and whose
split coe�cients are small

• We show, empirically, that in spite of those restrictions, the gap closed by this subclass
of split cuts is still quite signi�cant (on average 91% of the split closure gap).

• Finally, we consider split cuts computed only from individual blocks of the arrowhead
structure of the instances. We show that they also largely preserve the strength of
general split cuts, in terms of gap closed.

These results help shed some light into what are important classes of split cuts that we can
focus our attention on studying.

In the rest of this paper, we present in more details such results. Section 2 lays out the basic
approach of Balas and Saxena [6] for the separation of split cuts, and brie�y introduces the
automatic decomposition of Bergner et al. [8]. In Section 3, we detail the implementation
of our split cut separator. In particular, we describe exactly what measures we took to
obtain cuts that are numerically stable and e�ective, while being veri�ably valid. Section 4
presents the results of our computational experiments.

2 Background

In this section, we formally present the background necessary to explain our experiments.
We start by introducing how to optimize over an approximation of the split closure and
then discuss the developments related to the arrowhead decomposition.

2.1 Optimizing over the split closure

Consider a general MIP:

min{c>x : Ax = b, x ∈ Zp+ × Rn−p+ } (MIP)

where A ∈ Qm×n has full row rank, c ∈ Qn and b ∈ Qm. The linear programming relaxation
of (MIP) is

min{c>x : x ∈ P} (LP)

where P = {x ∈ Rn+ : Ax = b}. For any (π, π0) ∈ Zn × Z such that πj = 0 for j ≥ p+ 1, a
split disjunction is de�ned as

π>x ≤ π0 ∨ π>x ≥ π0 + 1.

An inequality α>x ≥ β valid for P (π,π0) where

P (π,π0) = conv
(
{x ∈ P : π>x ≤ π0} ∪ {x ∈ P : π>x ≥ π0 + 1}

)
is called a split cut [15].

The problem of �nding a violated split isNP-hard in general [14]. Following Farkas' lemma,
a most-violated split cut αTx ≥ β for P (π,π0) can be found by solving the Cut Generating
Linear Program

min α>x− β
s.t. α = A>y + s− y0π

α = A>z + t+ z0π

β = b>y − y0π0
β = b>z + z0(π0 + 1)

normalization condition

y, z ∈ Rm, s, t ∈ Rn+, y0, z0 ∈ R+.

(CGLP(π, π0))

A derivation of (CGLP(π, π0)) and in-depth discussion of the normalization condition were
presented in [21]. The following remark on the nonnegativity of the multipliers y and z is
useful in simplifying our CGLP.

Remark 1. Suppose (CGLP(π, π0)) has an optimal solution under some choice of normal-

ization, and let (α̂, β̂, ŷ, ẑ, ŝ, t̂, ŷ0, ẑ0) be an optimal solution. Then

y∗i := max{0, yi − zi}, i = 1, 2, . . . ,m

z∗i := max{0, zi − yi}, i = 1, 2, . . . ,m

α∗ := α̂+A>(y∗ − ŷ)

β∗ := β̂ + b>(y∗ − ŷ)

s∗ := ŝ, t∗ := t̂, y∗0 := ŷ0, z∗0 := ẑ0

is also an optimal solution (assuming that it, too, satis�es the normalization condition).

Therefore, we may assume w.l.o.g. in (CGLP(π, π0)) that all multipliers are nonnegative
since, as we will see below, our normalization allows it. In all subsequent discussions we
assume y, z ∈ Rm+ .

The split closure C is de�ned as

C =
⋂

(π,π0)∈Zn×Z
πj=0, j≥p+1

P (π,π0).

Balas and Saxena [6] implemented an iterative procedure that alternates between a Master
Problem and a Separation Problem to �nd

min{c>x : x ∈ C}.

At each iteration, the Master Problem is a linear program of the form

min{c>x : x ∈ P, αtx ≥ βt, t ∈ T} (MP)

where {αtx ≥ βt : t ∈ T} is the set of all split cuts generated by the Separation Problem
so far. If x̂ is an optimal solution to (MP), the Separation Problem then �nds a valid cut
violated by x̂, or proves that x̂ ∈ C. The Separation Problem is a mixed-integer nonlinear
program obtained from (CGLP(π, π0)) with normalization y0 +z0 = 1, and allowing (π, π0)
to vary over Zn × Z. Formally, the separation problem is stated as:

min α>x̂− β
s.t. α = A>y + s− y0π

α = A>z + t+ z0π

β = b>y − y0π0
β = b>z + z0(π0 + 1)

1 = y0 + z0

y, z ∈ Rm+ , s, t ∈ Rn+, y0, z0 ∈ R+

(π, π0) ∈ Zn × Z, πj = 0, j ≥ p+ 1.

(SP)

In [6], (SP) is shown to be equivalent to a parametric mixed-integer linear program with
scalar parameter θ,

min
0≤θ≤ 1

2

MILP(θ)

where MILP(θ) is given by

min s>x̂− θ(π>x̂− π0)
s.t. A>w + s− t− π = 0

b>w − π0 = 1− θ
w ∈ Rm, s, t ∈ Rn+
(π, π0) ∈ Zn × Z, πj = 0, j ≥ p+ 1.

(MILP(θ))

Therefore, the optimum to (SP) can be approximated from above by solving a �nite se-
quence of problems MILP(θ) with varying values for θ.

2.2 Automatic detection of double-bordered block-diagonal structure

The idea of exploiting block-diagonal structure in sparse matrices has been widely discussed
in the contexts of numerical linear algebra and mathematical programming. One motivation

is that the diagonal blocks usually give rise to small independent subproblems well suited for
parallel processing. Applications include solving systems of linear equations arising from a
discretization of a continuous domain, LU and QR factorizations, and decomposition-based
solution methods for structured (mixed-integer) linear programs. In general, the constraint
matrix A of (MIP) does not admit a block-diagonal form, but it can be put into a k-way
double-bordered block-diagonal form

D1 F 1

D2 F 2

. . .
...

Dk F k

A1 A2 · · · Ak G

 (DB-k)

for some k ≥ 1. This is sometimes informally called the arrowhead form. The constraints
associated with rows in Ai are called linking constraints, and the variables associated with
columns in F i are called linking variables.

Given a sparse matrix, Aykanat et al. [3] considered the problem of obtaining a DB-k form
by permuting its rows and columns. They reduce the matrix permutation problem to
that of graph and hypergraph partitioning. However, even when the number k of blocks is
�xed, computational experiments show that the resulting DB-k forms demonstrate signi�cant
variability and are very sensitive to input parameters. To cope with this, Bergner et al. [8]
proposed to use a proxy measure to automatically detect the �best� DB-k form, for the
purpose of applying Dantzig-Wolfe reformulations to general MIPs. Figure 1 shows a few
examples of MIPLIB instances, with black dots representing nonzero coe�cients of the
constraint matrix. The bottom row shows a rearrangement of the columns/rows of the
matrix evidencing the DB-k structure.

10teams arki001 gesa2 seymour

10teams-DB-3 arki001-DB-5 gesa2-DB-4 seymour-DB-2

Figure 1: Original problem structure versus its DB-k forms

3 Implementation

In this section we outline the computational details of our implementation. We follow the
idea of Balas and Saxena [6] to approximate the optimal value of (SP) by solving a sequence
of parametric MILPs. Features pre�xed by an asterisk (*) were already present in [6].

*Parameter grid. We denote by Θ the set of values of θ for which MILP(θ) will be solved.
A uniform parameter grid Θ of points between 0 and 0.5 is created. The initial size of Θ
is t, and we increase the number of grid points whenever necessary following the criteria in
Algorithm 2.

*Stabilizing objective. To avoid unnecessarily weak cut coe�cients (see [6] for a short
discussion), we replace x̂ in the objective of MILP(θ) with

x̃j := max{x̂j , δ}, ∀ j,

for δ a small positive constant.

*Cut strengthening. Once a feasible solution (w̄, s̄, t̄, π̄, π̄0) to MILP(θ̄) with a nega-
tive objective value is found, we feed (π̄, π̄0) to the corresponding Cut Generating Linear

Program (CGLP(π̄, π̄0)) with normalization

e>y + e>z + e>s+ e>t+ y0 + z0 = κ

for a �xed positive constant κ. This normalization is shown in [21] to produce stronger cuts
than the normalization y0 + z0 = 1 used in deriving MILP(θ).

*Cut lifting. We work in the subspace of the variables that are not at one of their bounds
in the incumbent solution, and lift the resulting cuts to the full space following the approach
described in [5].

*Set covering. In an e�ort to impose some orthogonality in the set of split disjunctions,
every time a split (π̄, π̄0) is found, we solve the set covering problem

min
z∈{0,1}p

p∑
j=1

min{x̂j − bx̂jc, dx̂je − x̂j} zj :

p∑
j=1

I[πj 6=0]zj ≥ 1, ∀π ∈ S

 (StCvIP(x̂,S))

where S is the set of splits already discovered, and I[k 6=0] = 1 if k 6= 0, I[k 6=0] = 0 if k = 0. Let
ẑ be an optimal solution to (StCvIP(x̂,S)), then we impose πj = 0 for all j ∈ {j : ẑj 6= 0}
when solving the next MILP(θ).

Fractionality constraint. Split disjunctions (π, π0) where π>x̂ is too close to either π0
or π0 + 1 usually give rise to weak split cuts. To avoid that, we impose the bounds

σ ≤ π>x̂− π0 ≤ 1− σ (Con1)

for a small σ > 0.

Sparsity constraint. To impose the condition that π is sparse with at most M nonzero
entries, we introduce binary variables r ∈ {0, 1}p and constraints

−Urj ≤ πj ≤ Urj , ∀ j = 1, . . . , p, and
p∑
j=1

rj ≤M, (Con2)

where U is an arti�cial upper bound on the magnitude of the components of π.

Structure constraint. Given a DB-k form of the constraint matrix A, to compute split
disjunctions whose support lie entirely in a block Di, we simply impose that:

πj = sj = tj = 0, ∀ j 6∈ Ci

wj = 0, ∀ j 6∈ Ri
(Con3)

where Ci and Ri are column and row index set of Di, respectively.

Validity check. For every split cut α>x ≥ β generated from CGLP with splits (π, π0), we
provide another certi�cate for the validity of the cut. Let

β̂l := min
x∈P
{α>x : π>x ≤ π0} and β̂u := min

x∈P
{α>x : π>x ≥ π0 + 1}.

Then it should always hold that β ≤ min{β̂l, β̂u}. If the inequality fails to hold, then the
cut is invalid and we discard it. This may be the case due to numerical issues within the
LP or MIP solver.

Cleaning up cut coe�cients. To prevent cut coe�cients from being too large or too
small, once a split cut is returned by CGLP(π, π0), we scale the cut so that the greatest
absolute value of cut coe�cients equals 104. Furthermore, after scaling we set all cut
coe�cients whose absolute value is less than 10−6 to zero. In general, setting a nonzero cut
coe�cient to zero may strengthen the cut and make it invalid, but since our tolerance is
small, the e�ect is small as well. Nonetheless, the validity of the cut is always subsequently
certi�ed by the independent checker. Note that this scaling process also serves as an implicit
dynamism control, i.e., the ratio between the greatest and the smallest absolute value of
cut coe�cients is no greater than 1010.

The cut generation procedure is summarized in Algorithm 1.

Algorithm 1: Cut Generation(x̂,Θ, γ, τ)

Input: Incumbent solution x̂, parameter grid Θ, upper cuto� limit γ < 0, time
limit τ , minimum cut violation ε > 0, required properties of split
disjunctions (Con1)-(Con3). Polyhedron P = {x ∈ Rn+ : Ax = b}
describing the constraint set of (LP).

Output: A set K of split cuts violated by x̂.
1 K ← ∅, S ← ∅.
2 for θ ∈ Θ do

3 Solve StCvIP(x̂,S) and impose partial orthogonality if needed. Add
fractionality, sparsity, and structure constraints (Con1)-(Con3) to MILP(θ) as
indicated.

4 Solve MILP(θ) with time limit τ .
5 if Found a feasible solution (π, π0) to MILP(θ) with objective value ≤ γ. then
6 Perform cut strengthening to get cut α>x ≥ β.
7 Perform cut lifting on cut α>x ≥ β.
8 Perform cut cleaning on cut α>x ≥ β.
9 if α>x̂− β ≤ −ε then
10 βl ← min

x∈P
{α>x : π>x ≤ π0}, βu ← min

x∈P
{α>x : π>x ≥ π0 + 1}.

β∗ ← min{βl, βu}.
11 if β ≤ β∗ then
12 K ← K ∪ {α>x ≥ β}, S ← S ∪ {π}.

13 return K.

Time limit on the MIP solver. Mixed-integer linear programs are much harder to
solve than linear programs in general. As a result, even �nding a feasible solution to
MILP(θ) can be extremely time-consuming. We observed that this is frequently the case,
in particular, when separating a point that is close to the closure we aim to optimize over.
Therefore, a deterministic time limit of 800 ticks (roughly 1 second) is set for each MILP(θ)

we process. We use CPLEX's deterministic time (ticks) so that the results are reproducible
and comparable across di�erent machines.

Dynamics. At each iteration, if no cut is generated because we could not �nd a feasible
solution to MILP(θ), we increase the time limit to 48,000 ticks (roughly 60 seconds) and the
upper cuto� limit of the objective value. If there is no improvement in the optimal objective
value of the Master Problem for a while (see Algorithm 2), we increase the number of grid
points and add more cuts per iteration. Furthermore, in order to control the number of cuts
presented in the Master Problem, we delete all cuts that are nonbinding in the incumbent
solution every �ve iterations.

Global time limit. The whole process is terminated if the entire computation time exceeds
a global time limit.

Details of the iterative procedure are described in Algorithm 2

Algorithm 2: Overall cut generation loop

1 Initialization.
Choose initial parameter grid size t, upper objective value cuto� limits
γ1 < γ2 < 0, deterministic time limits τ1 = 800 ticks, τ2 = 48,000 ticks. Set
iteration counter Iter = 0. Denote k the number of blocks in a given DB-k from;
if no decomposition is available, set k = 1.

2 TimeLimit← τ1, Cutoff← γ1.
3 Iter ← Iter + 1. Solve (MP) and obtain optimal solution x̂. Denote n the

number of consecutive iterations where no improvement in the optimal objective
value is made. Delete nonbinding cuts if necessary.

4 if n = 100 then return x̂.
5 Update parameter grid size in the current iteration.

if 0 ≤ n ≤ 39 then s← 2b0.1nct. else s← 16t.
6 Set parameter grid Θ uniformly with |Θ| ← s.
7 Separation.

for j = 1, . . . , k do Generate a set K(j) of cuts following
CutGen(x̂,Θ, Cutoff, TimeLimit) for block j.

8 if
⋃k
j=1K(j) 6= ∅ then Add cuts to (MP), go to 2.

9 else if TimeLimit= τ1, Cutoff= γ1 then TimeLimit← τ2, go to 7.
10 else if TimeLimit= τ2, Cutoff= γ1 then Cutoff← γ2, go to 7.
11 else if TimeLimit= τ2, Cutoff= γ2 then return x̂.

4 Computational experiments

In this section we �rst discuss the practical setup for our experiments, then present our
computational results. We implemented our code in C, with IBM ILOG CPLEX 12.7.1
as black-box MIP and LP solver. The computations were conducted on an assortment
of machines with x86_64 architecture CPUs. In order to ensure reproducibility, all ma-
chines used the same single-threaded binary code, and all time limits made use of CPLEX's
deterministic time feature, aside from the global time limit.

4.1 Choice of model parameter values

The values of various model parameters used in the computation are summarized in Table 1.
An asterisk (*) indicates that the parameter does not apply to all experiments. We also
present below a brief motivation for our choices.

measure parameter value

maximum number of nonzero components in π (*) M 10

bounds on |πj |, 1 ≤ j ≤ p (*) U 1 or 100

initial number of grid points (without DB-k form) t 80

initial number of grid points (with DB-k form) t 20

normalization constant κ 104

minimum nonzero objective coe�cient δ 10−4

upper cuto� limits of objective value γ1, γ2 −10−3,−10−5

minimum cut violation ε 10−6

fractionality bound σ 0.025

Table 1: Model parameter values used in computation

In their experimental analysis, Balas and Saxena [6] noted that the split disjunctions they
computed generally featured two interesting characteristics. Although not being intention-
ally restricted,

(i) most split disjunctions had a support of size between 10 and 20, irrespective of the
size of the problem; and

(ii) most split disjunctions did not have very large coe�cients, with the average coe�cient
size per iteration typically being less than 5.

We chose the sparsity parameter of M = 10 to re�ect the lower end of that spectrum.
When attempting to limit the size of the split coe�cients, we chose bounds U = 1 (i.e.,
−1 ≤ πj ≤ 1, for all 1 ≤ j ≤ p) since these would be the simplest splits obtainable. When

only sparsity constraints were enforced, we set U = 100 (i.e., −100 ≤ πj ≤ 100, for all
1 ≤ j ≤ p) to allow for splits with somewhat larger coe�cients.

At each iteration, the initial parameter grid size depends on whether a DB-k form of the
constraint matrix is supplied or not. If no DB-k form is given, we set t = 80, and 80 MILP(θ)
are processed; if a decomposition is given, then we set t = 20 for each of the k blocks, and
therefore 20k MILP(θ) are processed in total.

For the fractionality bound σ on the set of split disjunctions, a natural value could be,
for example, the integrality tolerance 10−6. Although more split cuts may be obtained by
using such a loose bound, we impose a rather strict 0.025 bound instead. In practice, this
led to more gap closed per iteration on average and more gap closed overall within our
time limits. Adding a fractionality bound also helped preventing MILP(θ) from yielding
unviolated split disjunctions due to numerical errors.

4.2 Computational results

4.2.1 First experiment: How does our implementation compare with the best

available results?

To check whether our implementation was reasonable, we �rst tested it on the MIPLIB
3.0 [10] instances, in a con�guration where it approximates a straightforward split cut sep-
arator, i.e., without any sparsity or structure constraints on the split disjunctions. Arti�cial
lower and upper bounds ±100 are applied on the disjunction coe�cients (U = 100), which
allows for a reasonably large subset of all disjunctions to be considered. The entire compu-
tation time for each instance is limited to 24 hours, including the time taken to check cut
validity1. At termination, we measure the �nal percentage of integrality gap closed, which
is then compared with the best of the bounds given in [6] and [17]. For each instance, we
look at that percentage of gap closure divided by the best of the analogous results in [6]
and [17]. We do this comparison on the 57 instances where the best known gaps are strictly
positive. Table 2 shows the number of instances that fall within various categories based on
this ratio. In particular, on 8 instances, we closed more gap than the best available result,
and on 25 instances we closed at least 90% relative gap.

On the other hand, we closed less than 1% relative gap on 27 instances. As shown in
Figure 2 where each dot represents an individual instance, those are generally the instances
that have the most integer variables. While there are many plausible explanations for our
poor performance in this large set of instances, an important one is that the parameters in
our code were not �ne-tuned for this experiment, but rather for the experiments considering

1Note that neither [6] nor [17] have any cut validity procedure and also that [6] has no time limit on
their experiments

relative gap closed # instances
> 100% 8
≥ 99% 21
≥ 90% 25
≥ 50% 28
< 1% 27

Table 2: Gap closed as a percentage of the best known gap closure (from [6] and [17])

0%

25%

50%

75%

100%

125%

10 100 1000 10000 1e+05

Number of integer variables

R
el

at
iv

e
ga

p
cl

os
ed

Figure 2: Gap closed as a percentage of the best known gap closure (from [6] and [17]), vs.
number of integer variables

sparsity. When changing the values of parameters such as the number |Θ| of grid points and
the fractionality bound σ, we were able to close signi�cantly more gap on these 27 instances.
However, the purpose of this experiment was just to determine if our implementation was
reasonable compared to other ones, which seems to be the case, as further evidenced by the
experiments on subsequent sections.

4.2.2 Second experiment: How does sparsity help?

In this section, we evaluate the relative strength of split cuts (i) whose split disjunctions are
sparse and (ii) whose split coe�cients are also small. We ran our implementation again on
the MIPLIB 3.0 instances, �rst with the additional sparsity constraint obtained by setting
M = 10. Then, we additionally considered ±1 bounds on the disjunction coe�cients
(that is, setting U = 1). As was the case earlier, a time limit of 24 hours was set for all
computations. Table 3 shows the details of our results. The �rst column of the table shows

the best gap given in [6] and [17], followed by results obtained with arbitrary disjunctions,
sparse disjunctions, and sparse disjunctions with ±1 bound, respectively.

The last column in each setting shows the percentage of the total computation time that
was spent checking cut validity. Observe that on a few large instances, the time spent on
checking took most of the computation time. For example, in computing the gap closed
by sparse disjunctions with ±1 bounds on the instance air04, of the 24 hours spent, only
8% contributed to the actual computation. The remaining 92% was all dedicated to the
veri�cation of cut validity. We should thus expect that the bound obtainable on these large
instances should be greater than the result shown in Table 3, had we chosen a longer time
limit. Nonetheless, by restricting ourselves to split disjunctions with at most 10 nonzero
coe�cients, we still obtained signi�cantly better results in terms of relative gap closed on
instances that have a large number of integer variables, as opposed to the poor performance
we observed with arbitrary disjunctions.

Besides allowing for more gap closed in less time, another related interesting e�ect to
observe is the sparsity of the cuts produced. Observing that sparse disjunctions do not
necessarily lead to sparse cuts, Figure 3 compares the densities of cuts (i.e., proportion of
cut coe�cients that are nonzero) obtained from di�erent sets of split disjunctions. For each
of the 60 MIPLIB 3.0 instances, we computed the average cut density by considering all
the cuts that were used to obtain the results in Table 3. This resulted in 60 average cut
densities for each set of split disjunctions. We then plot the distribution of these average
cut densities in Figure 3. The horizontal lines in the �gures represent the range of densities
(with outliers omitted), the rectangles represent the 25-75 percentile interval and the solid
vertical line represents the median. We consider as �outliers� cuts that are extremely dense,
as determined by the following. Let r be the di�erence in density between the 25th and 75th
percentile. Any cut with density of more than 1.5r above the 75 percentile is considered an
outlier. Observe that sparse disjunctions did indeed lead to sparser split cuts in general:
While the median density was 0.332 with arbitrary disjunctions, it dropped to 0.116 with
sparse ones, and 0.103 with sparse ±1 disjunctions.

To better evaluate the strength of the split cuts in the most restricted experiment (disjunc-
tions with at most 10 nonzero ±1 coe�cients), we extended the time limit to a week and
recomputed the gap closed on MIPLIB 3.0. The resulting average integrality gap is 68.4%,
accounting for 91% of the 75.2% average for the best in [6] and [17]. Figure 4 shows a
breakdown of the 57 instances whose best gap is strictly positive, according to the relative
gap closed in this case. Surprisingly, we lost almost nothing (at most 2%) on more than
half of MIPLIB 3.0 instances. Furthermore, we closed at least 90% relative gap on more
than two thirds of the instances.

Our conclusion from this experiment is twofold. First, split cuts based on sparse disjunctions
with small coe�cients are almost as strong as general split cuts. Secondly, they tend to be
sparser.

Best M = +∞, U = 100 M = 10, U = 100 M = 10, U = 1
gap Instance Gap # cuts Time % time Gap # cuts Time % time Gap # cuts Time % time

[6], [17] closed binding (s) checking closed binding (s) checking closed binding (s) checking
100.00 10teams 0.00 6697 86400 28.97 73.21 2339 86400 37.42 70.05 682 86400 23.28
100.00 air03 0.37 334 86400 97.91 100.00 160 147 87.68 100.00 318 127 85.90
91.23 air04 0.00 2025 86400 98.09 32.90 298 86400 85.78 71.89 497 86400 91.94
61.98 air05 0.04 382 86400 97.73 35.88 364 86400 78.08 62.06 363 86400 63.69
83.95 arki001 0.00 2300 86400 94.09 65.95 272 86400 0.29 40.47 236 86400 0.50
99.60 bell3a 99.64 97 86011 0.03 74.64 112 4217 0.04 74.99 138 368 0.29
92.95 bell5 93.26 379 81961 0.00 92.78 144 70243 0.00 92.57 166 1582 0.03
46.52 blend2 30.07 166 6898 2.67 38.83 79 12991 0.03 42.64 93 1568 0.17
65.17 cap6000 65.16 554 86400 0.62 63.92 30 3044 0.77 58.37 36 1438 0.82
0.22 dano3mip 0.00 980 86400 74.50 0.00 493 86400 84.23 0.19 384 86400 64.80
8.20 danoint 7.88 466 86400 17.92 7.25 249 86400 2.87 8.15 354 86400 3.09

100.00 dcmulti 99.96 287 86400 0.72 99.99 254 84971 0.02 99.85 299 13670 0.06
100.00 egout 100.00 229 485 0.49 100.00 236 795 0.11 100.00 176 131 0.22
19.08 fast0507 0.00 754 86400 98.55 0.00 331 86400 97.84 0.42 265 86400 54.98
99.68 fiber 0.02 460 12533 33.98 29.49 220 86400 0.04 64.74 294 86400 0.04
99.75 fixnet6 99.84 537 86400 0.08 99.72 573 86400 0.03 99.85 330 86400 0.02
100.00 flugpl 100.00 125 659 0.03 100.00 125 629 0.03 100.00 108 3 3.33
100.00 gen 89.28 500 40720 11.35 98.09 422 13816 0.69 100.00 484 393 5.95
99.70 gesa2 0.01 358 524 12.21 85.93 219 86400 0.03 99.69 226 86400 0.02
99.97 gesa2_o 0.03 502 859 7.69 72.05 275 86400 0.07 93.00 228 86400 0.02
95.81 gesa3 0.94 516 27194 10.58 87.32 460 10802 0.91 95.98 343 86400 0.02
95.20 gesa3_o 1.04 378 56047 10.73 94.77 275 86400 0.13 95.99 223 86400 0.02
98.38 gt2 37.05 2723 86400 1.29 93.34 273 86400 0.00 92.01 107 21716 0.00
58.48 harp2 0.02 175 270 17.51 22.79 169 9040 0.08 42.73 173 86400 0.02
100.00 khb05250 100.00 379 275 2.25 100.00 318 1607 0.46 100.00 368 305 1.54
95.20 l152lav 0.08 476 10562 86.43 31.04 197 86400 4.01 41.89 188 86400 1.54
93.75 lseu 87.45 150 86400 0.01 69.08 65 86400 0.00 74.15 74 86400 0.00
14.02 mas74 15.31 161 86400 0.72 10.36 47 86400 0.00 11.64 48 86400 0.00
26.52 mas76 24.60 129 86400 0.31 12.08 51 86400 0.00 13.99 60 86400 0.00
51.70 misc03 40.44 252 86400 11.87 49.67 124 86400 0.03 51.44 211 67654 0.01
100.00 misc06 100.00 268 287 5.12 100.00 275 321 4.36 100.00 132 44 13.18
20.11 misc07 0.02 1845 86400 20.02 15.79 204 86400 0.30 14.39 206 86400 0.07
100.00 mitre 0.00 4444 86400 6.08 7.25 1504 86400 0.56 0.27 1547 86400 0.37
36.16 mkc 0.00 5901 86400 12.85 28.85 477 86400 1.37 53.98 574 86400 1.68
99.98 mod008 91.74 460 86400 1.10 51.70 124 86400 0.00 52.41 132 18113 0.00
100.00 mod010 0.05 2738 86400 49.87 71.15 209 86400 3.44 100.00 403 9843 4.75
72.44 mod011 71.79 741 86400 2.70 67.96 958 86400 1.27 72.65 899 86400 1.20
92.18 modglob 95.21 376 1592 0.49 96.44 288 25457 0.03 94.43 220 86400 0.00
100.00 nw04 0.01 350 86400 99.67 41.29 439 86400 99.19 78.46 343 86400 17.89
87.42 p0033 87.42 135 37162 0.00 82.26 39 86400 0.00 83.13 140 65633 0.00
74.93 p0201 0.07 513 36 36.66 66.95 136 86400 0.10 70.83 151 86400 0.04
99.99 p0282 99.51 117 86400 0.19 98.69 131 86400 0.00 98.32 119 86400 0.00
99.42 p0548 0.00 6407 47069 1.17 92.90 337 86400 0.01 95.14 343 86400 0.00
99.90 p2756 0.00 5771 86400 1.78 83.88 258 86400 0.06 88.31 419 86400 0.05
0.00 pk1 0.00 6328 86400 0.26 0.00 341 86400 0.00 0.00 356 86400 0.00
97.03 pp08a 97.01 136 86400 0.04 97.03 184 86400 0.00 97.05 168 86400 0.00
95.81 pp08aCUTS 95.78 160 86400 0.18 95.68 152 86400 0.00 95.81 155 86400 0.00
77.51 qiu 78.05 330 86400 3.00 78.04 345 86400 2.61 78.02 307 86400 0.82
100.00 qnet1 0.03 570 784 70.89 70.90 246 86400 0.18 100.00 299 11525 0.23
100.00 qnet1_o 0.04 436 275 33.92 95.29 261 86400 0.01 100.00 247 73048 0.01
23.40 rentacar 28.62 319 27635 9.92 32.62 256 69737 7.77 9.46 198 10352 22.90
100.00 rgn 100.00 474 69983 0.18 74.11 142 86400 0.00 74.64 194 86400 0.00
70.70 rout 0.00 3860 86400 5.07 43.45 223 86400 0.29 60.81 246 86400 0.23
89.74 set1ch 0.16 514 86400 2.32 89.76 421 51807 0.00 89.75 230 58286 0.00
61.52 seymour 0.00 3428 86400 41.11 0.03 350 86400 22.90 16.49 179 86400 12.36
0.00 stein27 0.00 255 15471 0.00 0.00 213 11433 0.00 0.00 182 6474 0.01
0.00 stein45 0.00 4499 86400 0.41 0.00 2595 86400 0.34 0.00 3850 86400 0.32
33.93 swath 0.00 5782 86400 68.18 10.19 264 86400 8.55 31.78 249 86400 2.13
100.00 vpm1 100.00 262 65472 0.04 95.69 161 86400 0.00 100.00 435 790 0.24
81.05 vpm2 81.37 220 86400 0.04 81.17 188 86400 0.00 81.38 206 86400 0.00
75.17 average 36.99 1352 60246 21.54 60.17 348 68104 10.58 65.60 343 60771 8.01

Table 3: Gap closed for the (i) full split closure, (ii) sparse split cuts only, and (ii) sparse
±1 split cuts only.

Sparse
disjunctions
with {−1,1}
coefficients

Sparse
disjunctions

Arbitrary
disjunctions

0.0 0.2 0.4 0.6 0.8 1.0
Density of cuts

Figure 3: Distribution of cut densities with di�erent experimental settings.

5

8

3

10

22

9

0

5

10

15

20

0%−50%
50%−80%

80%−90%

90%−98%

98%−100%
>100%

relative gap closed

nu
m

be
r

of
 in

st
an

ce
s

Figure 4: Distribution of gap closed with time limit of one week.

4.2.3 Third experiment: How does structured sparsity help?

Problem-speci�c DB-k forms provide a natural way to exploit sparsity. The potential advan-
tages of generating split disjunctions whose support lies entirely within individual blocks
are to produce split cuts that are both sparse and mutually orthogonal�two vital charac-
teristics that make a cut e�ective. Moreover, working with small blocks in a DB-k decom-
position may potentially reduce the computational time required to �nd a violated cut. On
the other hand, restricting ourselves to such a narrow class of cuts can result in a much
weaker cut family. The experiments in this section were designed to try and quantify these
tradeo�s.

We use GCG 2.1.1 [24] as a black-box tool to generate the required DB-k forms on MI-

PLIB 3.0 instances, and then implement our model with the additional structure con-
straint (Con3) on the disjunctions, as described in Section 3. Furthermore, for comparison
purposes,

• we have kept the sparsity parameter M = 10 and coe�cient bound U = 1 on split
disjunctions;

• for each instance with a given decomposition, we adhered to that decomposition in
all iterations, i.e., we didn't change the structural requirement on disjunctions from
one iteration to another;

• we ignored all linking constraints and linking variables by setting the corresponding
multipliers to zero;

• the time limit was set to one week.

Table 4 shows the �nal gap closed by restricting split disjunctions with the structures given
by DB-k forms for k = 2, 3, 4, 5 (GAPk). The �rst four columns of Table 4 are the result from
previous section, with the same one week time limit, obtained by using disjunctions with
M = 10 and U = 1 but no structure constraint (GAPnodb). The last column represents
the highest gap closed between all DB-k forms. We removed from the table three instances
where the gap closed without DB-k was zero (pk1,stein27,stein45) and eight instances
where no DB-k form was found for any k ∈ {2, 3, 4, 5} (air03, cap6000, mas74, mas76,
mod008, nw04, p0033, rentacar).

Note that the set of split cuts we used to obtain the results on Table 4 is extremely re-
strictive: (i) the corresponding disjunctions have at most 10 nonzero coe�cients which are
either 1 or -1, and (ii) the cuts are obtained by aggregating only rows and columns that
belong to a single block in a DB-k form. Despite being so selective, these cuts close a signif-
icant amount of gap in most cases. In fact, of the 49 instances left, the average gap closed
without DB-k is 75% and the best gap closed among all DB-k is 58%.

While the above averages already indicate that the disadvantage of using DB-k forms does
not seem to be too big in terms of gap closed, it seems that using DB-k decompositions
may not always pay o�. To try and discard bad decompositions, we �ltered the results in
Table 4. The results are summarized in Figure 5. For a given DB-k decomposition and a
value of ρ, we �rst removed from the DB-k results the ones obtained from a decomposition
where either the percentage of linking constraints or variables were above ρ percent. Then,
for each remaining instance, we computed the relative gap closed (RGAP) as:

GAPk
GAPnodb

(RGAP)

The following statistics are shown in Figure 5 for the instances remaining after �lter-
ing:

W
it
ho
ut

D
B
-k

D
B
-2

D
B
-3

D
B
-4

D
B
-5

B
es
t

In
st
an
ce

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

ga
p

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

(D
B
-k
)

1
0
t
e
a
m
s

95
.3
5

11
79

16
8.
00

14
.2
8

10
0.
00

15
76

16
8.
00

3.
82

10
0.
00

17
06

16
8.
00

5.
56

10
0.
00

12
82

16
8.
00

1.
83

10
0.
00

12
92

16
8.
00

1.
80

10
0.
00

a
i
r
0
4

92
.7
0

65
1

16
8.
00

37
.2
2

30
.4
2

13
4

43
.1
2

15
.4
6

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

30
.4
2

a
i
r
0
5

63
.3
6

18
7

16
8.
00

18
.3
9

0.
00

0
0.
62

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

a
r
k
i
0
0
1

40
.5
6

32
1

16
8.
00

0.
11

32
.7
0

15
7

10
.3
0

0.
14

32
.6
6

33
2

53
.6
9

0.
08

32
.3
0

15
9

1.
44

0.
41

32
.3
1

19
6

4.
07

0.
50

32
.7
0

b
e
l
l
3
a

74
.9
9

13
8

0.
14

0.
37

70
.7
4

75
0.
00

5.
00

70
.7
2

60
0.
00

5.
00

70
.7
4

60
0.
00

10
.0
0

70
.6
6

56
0.
00

5.
00

70
.7
4

b
e
l
l
5

92
.5
7

16
6

0.
49

0.
06

91
.7
0

75
0.
03

0.
17

91
.9
4

79
0.
01

0.
97

84
.6
7

77
0.
01

0.
38

86
.8
3

58
0.
00

1.
25

91
.9
4

b
l
e
n
d
2

42
.6
4

93
0.
48

0.
15

19
.7
9

16
0.
00

1.
25

19
.7
9

15
0.
00

5.
00

19
.7
9

17
0.
00

0.
00

19
.7
9

12
0.
00

0.
00

19
.7
9

d
a
n
o
3
m
i
p

0.
29

53
9

16
8.
00

16
.6
8

0.
22

21
1

16
8.
00

29
.1
7

0.
27

27
0

16
8.
00

28
.8
0

0.
33

32
0

16
8.
00

28
.9
0

0.
31

30
7

16
8.
00

19
.9
3

0.
33

d
a
n
o
i
n
t

9.
02

39
8

16
8.
00

1.
01

0.
93

63
2.
81

0.
64

0.
79

57
0.
31

3.
89

0.
45

60
0.
15

4.
90

0.
70

61
0.
03

28
.3
0

0.
93

d
c
m
u
l
t
i

99
.8
5

29
9

3.
33

0.
09

93
.8
6

20
4

13
.5
6

0.
01

73
.8
8

16
3

10
.5
0

0.
01

76
.0
6

14
9

2.
91

0.
04

64
.7
4

11
8

3.
34

0.
01

93
.8
6

e
g
o
u
t

10
0.
00

17
6

0.
07

0.
25

94
.5
3

11
4

0.
01

0.
67

92
.2
0

10
6

0.
00

4.
00

89
.7
5

14
1

0.
00

3.
33

93
.1
2

87
0.
00

2.
22

94
.5
3

f
a
s
t
0
5
0
7

4.
76

31
3

16
8.
00

53
.1
9

0.
00

0
0.
01

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

f
i
b
e
r

76
.6
8

22
9

16
8.
00

0.
01

62
.7
6

17
9

16
8.
00

0.
01

72
.7
1

18
8

13
9.
54

0.
00

24
.2
2

98
55
.6
0

0.
00

15
.8
9

52
9.
93

0.
01

72
.7
1

f
i
x
n
e
t
6

99
.8
7

35
9

16
5.
27

0.
00

85
.6
4

30
0

1.
43

0.
06

82
.4
3

35
9

0.
01

4.
19

84
.6
5

31
4

0.
12

0.
63

84
.1
9

41
2

0.
02

3.
06

85
.6
4

f
l
u
g
p
l

10
0.
00

10
3

0.
00

3.
33

90
.1
6

15
0.
00

0.
00

65
.0
3

13
0.
00

0.
00

7.
05

4
0.
00

0.
00

45
.8
3

4
0.
00

0.
00

90
.1
6

g
e
n

10
0.
20

48
4

0.
08

5.
97

10
0.
20

28
2

0.
15

2.
72

10
0.
20

29
8

0.
08

5.
05

10
0.
20

32
7

0.
03

13
.1
5

10
0.
20

46
8

0.
04

8.
38

10
0.
20

g
e
s
a
2

99
.9
8

20
8

91
.6
3

0.
01

99
.5
7

17
1

16
.6
0

0.
03

99
.5
6

16
9

1.
87

0.
09

99
.5
0

94
15
.2
7

0.
01

99
.5
7

19
7

14
.9
2

0.
01

99
.5
7

g
e
s
a
2
_
o

97
.4
7

23
6

16
8.
00

0.
01

38
.6
7

10
8

16
.0
1

0.
00

38
.6
6

13
0

20
.4
6

0.
00

38
.6
5

18
3

5.
04

0.
01

38
.6
4

13
4

11
.8
0

0.
01

38
.6
7

g
e
s
a
3

96
.0
3

23
2

44
.0
6

0.
01

95
.9
4

24
7

19
.8
7

0.
01

95
.8
6

23
4

27
.3
4

0.
01

95
.9
4

26
9

53
.9
0

0.
01

95
.9
4

27
7

45
.1
7

0.
01

95
.9
4

g
e
s
a
3
_
o

96
.0
5

19
5

68
.6
7

0.
01

95
.8
6

18
0

26
.3
6

0.
01

95
.9
5

19
4

71
.9
9

0.
00

46
.5
4

16
4

2.
35

0.
02

59
.7
7

24
0

1.
37

0.
06

95
.9
5

g
t
2

92
.0
1

18
2

15
.4
1

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

h
a
r
p
2

44
.6
8

17
7

57
.4
2

0.
02

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

N
aN

0.
00

k
h
b
0
5
2
5
0

10
0.
00

36
8

0.
13

1.
75

77
.7
3

38
0.
00

1.
18

77
.7
3

38
0.
00

1.
25

77
.7
3

38
0.
01

1.
36

77
.7
3

38
0.
00

1.
25

77
.7
3

l
1
5
2
l
a
v

45
.6
8

17
0

16
8.
00

0.
28

0.
57

21
1.
24

0.
04

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
57

l
s
e
u

74
.2
1

77
57
.5
0

0.
00

52
.8
8

73
0.
00

0.
91

19
.8
7

46
0.
00

0.
00

38
.5
8

26
0.
00

0.
00

4.
21

5
0.
00

0.
00

52
.8
8

m
i
s
c
0
3

51
.4
4

21
1

15
.1
8

0.
01

0.
00

6
0.
00

N
aN

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

N
aN

0.
00

0
0.
00

N
aN

0.
00

m
i
s
c
0
6

10
0.
00

18
4

0.
03

14
.3
5

91
.1
8

45
0.
00

11
.6
7

26
.5
5

29
0.
00

6.
00

71
.4
4

50
0.
00

10
.0
0

97
.8
7

58
0.
00

8.
89

97
.8
7

m
i
s
c
0
7

15
.0
2

32
3

14
7.
32

0.
02

0.
45

11
4

0.
34

0.
57

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

N
aN

N
A

N
A

N
A

N
A

0.
45

m
i
t
r
e

9.
34

18
96

16
8.
00

0.
27

48
.4
5

33
72

16
8.
00

0.
61

79
.7
4

26
06

16
8.
00

0.
62

80
.7
0

75
48

16
8.
00

1.
16

78
.6
3

45
27

16
8.
00

1.
16

80
.7
0

m
k
c

66
.6
0

11
90

16
8.
00

1.
03

68
.1
4

47
8

16
8.
00

0.
23

68
.0
5

41
2

16
8.
00

0.
32

69
.9
4

62
0

16
8.
00

0.
16

73
.1
0

40
1

16
8.
00

0.
16

73
.1
0

m
o
d
0
1
0

10
0.
00

32
9

11
.5
5

2.
89

0.
00

0
1.
39

0.
00

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

m
o
d
0
1
1

84
.9
5

11
19

16
8.
00

0.
65

88
.5
3

11
10

16
8.
00

0.
93

92
.7
7

12
21

13
2.
39

1.
08

88
.4
1

13
29

16
8.
00

1.
07

87
.1
5

11
14

16
8.
00

1.
00

92
.7
7

m
o
d
g
l
o
b

94
.4
3

21
5

31
.9
1

0.
00

92
.2
7

14
7

1.
42

0.
04

81
.9
1

12
7

0.
23

0.
11

85
.6
9

14
1

0.
08

0.
33

83
.2
1

12
1

0.
03

0.
59

92
.2
7

p
0
2
0
1

71
.5
0

11
2

16
8.
00

0.
01

54
.3
8

86
71
.0
9

0.
00

50
.0
0

72
21
.1
9

0.
01

0.
00

0
0.
00

N
aN

0.
00

0
0.
00

N
aN

54
.3
8

p
0
2
8
2

98
.4
2

11
9

12
3.
23

0.
00

3.
56

61
0.
03

0.
32

83
.8
8

52
0.
01

0.
50

1.
52

10
0.
00

0.
00

83
.8
7

35
0.
00

0.
71

83
.8
8

p
0
5
4
8

96
.2
7

33
6

16
8.
00

0.
00

89
.4
4

27
8

16
7.
78

0.
00

89
.6
2

29
1

16
8.
00

0.
00

90
.0
2

29
5

16
8.
00

0.
00

88
.5
0

32
2

13
2.
15

0.
00

90
.0
2

p
2
7
5
6

89
.2
5

51
7

15
9.
30

0.
01

86
.9
8

44
6

27
.4
6

0.
01

85
.7
3

50
8

26
.9
7

0.
01

84
.9
2

58
9

22
.3
2

0.
01

85
.9
0

26
2

7.
64

0.
04

86
.9
8

p
p
0
8
a

97
.0
4

18
6

41
.7
2

0.
00

95
.6
2

18
3

0.
14

0.
06

94
.1
6

19
7

0.
01

1.
07

95
.5
1

19
1

0.
01

1.
05

95
.2
0

19
6

0.
01

1.
90

95
.6
2

p
p
0
8
a
C
U
T
S

95
.8
1

19
5

46
.2
4

0.
00

92
.9
2

19
0

0.
17

0.
26

92
.8
5

17
8

0.
04

0.
76

93
.3
6

16
9

0.
03

1.
46

89
.1
4

18
6

0.
02

2.
09

93
.3
6

q
i
u

78
.0
9

37
2

16
8.
00

0.
17

78
.0
9

39
3

16
8.
00

0.
12

0.
00

0
0.
37

0.
00

78
.0
9

43
6

37
.6
0

0.
56

0.
00

0
0.
12

0.
00

78
.0
9

q
n
e
t
1

10
0.
00

30
7

4.
04

0.
15

2.
45

34
1.
78

0.
00

1.
77

23
1.
88

0.
00

2.
28

50
3.
15

0.
00

1.
91

27
0.
28

0.
01

2.
45

q
n
e
t
1
_
o

10
0.
00

26
6

8.
81

0.
03

20
.9
6

7
0.
00

N
aN

20
.9
6

7
0.
00

0.
00

20
.9
6

6
0.
00

N
aN

20
.9
6

6
0.
00

0.
00

20
.9
6

r
g
n

74
.6
5

18
5

78
.2
0

0.
00

68
.3
0

63
18
.7
0

0.
00

47
.9
8

10
4

0.
01

1.
03

38
.3
8

15
6

0.
00

5.
56

N
A

N
A

N
A

N
A

68
.3
0

r
o
u
t

68
.3
2

26
9

16
8.
00

0.
07

41
.4
9

38
0

29
.6
2

0.
10

42
.2
5

46
7

29
.2
1

0.
08

40
.3
4

39
1

17
.9
8

0.
12

69
.6
4

40
7

26
.1
4

0.
11

69
.6
4

s
e
t
1
c
h

89
.7
5

45
6

8.
59

0.
01

89
.7
3

31
9

0.
30

0.
26

89
.7
3

38
4

0.
30

0.
23

89
.7
3

40
6

0.
11

0.
66

89
.7
3

41
7

0.
08

0.
79

89
.7
3

s
e
y
m
o
u
r

57
.9
6

94
9

16
8.
00

17
.6
6

44
.6
3

49
8

16
8.
00

21
.0
7

54
.5
9

36
9

16
8.
00

23
.4
4

60
.2
0

80
8

16
8.
00

24
.6
0

58
.7
3

92
0

16
8.
00

24
.1
8

60
.2
0

s
w
a
t
h

33
.1
9

27
6

16
8.
00

0.
47

18
.8
6

87
0.
09

6.
33

16
.6
8

94
0.
04

7.
03

11
.2
8

84
0.
01

23
.6
0

12
.8
1

87
0.
01

30
.0
0

18
.8
6

v
p
m
1

10
0.
00

49
9

0.
23

0.
21

78
.1
8

27
0

0.
05

0.
48

34
.5
5

10
6

0.
00

2.
50

34
.5
5

89
0.
01

0.
58

42
.1
2

90
0.
00

2.
00

78
.1
8

v
p
m
2

81
.3
6

19
1

31
.3
1

0.
00

75
.1
2

15
0

0.
64

0.
03

72
.2
2

14
3

0.
10

0.
14

54
.7
7

85
0.
02

0.
59

66
.3
7

17
3

0.
01

0.
82

75
.1
2

av
er
ag
e

75
.3
5

37
1

89
.8
8

3.
90

54
.3
8

26
4

37
.0
8

2.
13

50
.1
3

24
2

31
.5
6

2.
22

46
.5
2

35
2

28
.4
5

2.
79

47
.2
5

27
3

25
.8
2

2.
98

58
.1
3

T
ab
le
4:

G
ap

cl
os
ed

fo
r
th
e
fu
ll
sp
lit

cl
os
ur
e,
an
d
fo
r
sp
ar
se
±

1
sp
lit

cu
ts

fo
r
D
B
-k

on
ly
.

50%

100%

20 40 60 80 100

RGAP

ρ

(a) k = 2

50%

100%

20 40 60 80 100

RGAP

ρ

(b) k = 3

50%

100%

20 40 60 80 100

RGAP

ρ

(c) k = 4

50%

100%

20 40 60 80 100

RGAP

ρ

(d) k = 5

50%

100%

20 40 60 80 100

RGAP

ρ

(e) best

Figure 5: Distribution of relative gap closed for DB-k forms for several values of ρ

• Average (bold line)

• 10-th percentile (dashed line)

• Median (solid line)

• 25-75th percentile (shaded region)

Note that, while in principle (RGAP) should be always at most 100%, due to time limits,
it is possible that the result from (GAPnodb) is not as high as it should be, resulting
in (RGAP) above 100%. The results in Figure 5 show that eliminating DB-k forms with
a high number of linking variables or constraints is indeed a good indicator to �lter out

results where split cuts from DB-k form do not close too much gap.

The above results show that the gap loss is not too big when restricting ourselves to split
cuts from DB-k form. We now try to understand how structured sparsity helps to produce
more e�ective cuts. Table 5 shows the average support size in the �rst 100 disjunctions (of
a given type) obtained by our implementation, and the corresponding average cut density,
for instances 10teams, mkc, and seymour. We picked 10teams as an extreme example
where, without utilizing a DB-2 structure, highly sparse disjunctions (8.9 nonzero entries,
which accounts for only 5% of the 1800 integer variables) have produced almost completely
dense cuts. Instance mkc and seymour were picked because they represent reasonably large
instances that are also in MIPLIB 2003. We observe that, as expected, exploiting the DB-2
structure yields sparser cuts. Furthermore, the last row of Table 5 shows that disjunctions
with arbitrarily many nonzero entries that are much denser still lead to sparse cuts when
exploiting problem structure.

In Figure 6 we compare the distributions of average cut densities on the 40 MIPLIB 3.0
instances whose DB-2 forms have at most 50% linking variables or constraints. We picked
DB-2 as a candidate for comparison because this is the simplest DB-k decompostion, having
just 2 blocks. Other decompositions that contain more blocks all demonstrate a similar
pattern. The 50% threshold was applied so that instances whose DB-k forms have a high
number of linking variables or constraints are excluded from comparison. As discussed
earlier, split cuts based on these decompositions are unlikely to close much gap, regardless
of how sparse they are. The cut densities in category �Sparse disjunctions with {-1,1}
coe�cients� are computed based on the cuts obtained in the previous section, and the cut
densities under �Structured sparse disjunctions� are computed based on the results with
DB-2 forms. As seen in Figure 6, block structures lead to the sparsest cuts: Even comparing
with the disjunctions (M = 10, U = 1) that previously led to the sparsest cuts, it further
decreased the median of cut densities from 0.051 to 0.037, and the 75 percentile from 0.103
to 0.052.

Finally, we illustrate one more potential advantage of using split cuts based on DB-k forms.
Figure 7 shows the evolution of the average gap closed in terms of runtime of our cut
procedure and in terms of number of cuts added in our cut procedure. It can be seen that
the split cuts obtained by using DB-k forms converge faster to a gap closer to the �nal gap
both in terms of time (Figure 7a) and in terms of number of cuts (Figure 7c). The gain
in terms of time is even more pronounced if we focus on large instances, that is, instances
with at least 1000 variables, among which at least 50 are integer (Figure 7b). The grey
lines labelled �DB-k*� in Figure 7 represent the average gap closed had we chosen for each
instance the DB-k form that closes the most gap after adding up to 500 cuts. While it
is hard to completely attribute these gains to a few factors only, we note that the most
apparent di�erence between these cuts and those generated earlier is their higher degree of
both sparsity and orthogonality.

Instance Disjunction type Average support size Average cut density
of disjunctions (#) (%)

10teams M = 10, U = 1 8.9 95.6
10teams M = 10, U = 1, with DB-2 8.3 63.9
mkc M = 10, U = 1 9.8 13.0
mkc M = 10, U = 1, with DB-2 9.6 3.6
seymour M = 10, U = 1 9.4 9.1
seymour M = 10, U = 1, with DB-2 8.6 4.4
seymour M = +∞, U = 1, with DB-2 206.7 9.0

Table 5: Disjunction and cut density for three example instances.

Structured
sparse

disjunctions
with {−1,1}
coefficients

Sparse
disjunctions
with {−1,1}
coefficients

0.00 0.05 0.10 0.15 0.20
Density of cuts

Figure 6: Distribution of cut densities for DB-2

10

20

30

40

50

0 50 100 150 200

Time (s)

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(a) Average gap closed over time

0

10

20

30

0 50 100 150 200

Time (s)

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(b) Average gap closed over
time for large instances

0

20

40

60

0 500 1000 1500 2000

Number of cuts

G
ap

 c
lo

se
d

DB−2

DB−3

DB−4

DB−5

DB−k*

sc

(c) Average gap closed per cuts
added

Figure 7: Evolution of average gap closed

4.2.4 Results on MIPLIB 2003 instances

Our �nal set of experiments was to run our code on larger instances than were previously
available in the literature. For this purpose, we ran our code on MIPLIB 2003 [1] instances.
However, since these instances are typically larger than the ones available in MIPLIB 3.0,
we were able to run our code only using the parameters M = 10 and U = 1 and imposing a
time limit of two weeks. Table 6 shows the results for those instances that are in MIPLIB
2003 but not in MIPLIB 3.0. Since there are no previous split closure numbers for those
instances, we compare against the lift-and-project results of Bonami [12]. Compared to lift-
and-project, signi�cantly more gap can still be closed with the split closure approximation
that does not exploit DB-k structure. Also, note that, even though the average results for DB-
k based cuts are not as good, there are some instances where these results are signi�cantly
better than any of the other approaches, closing as much as 100% of the gap.

5 Conclusion

The main motivation for this work was to search for subsets of split cuts with promising
computational properties. Our approach was to develop a tool that can empirically answer
the following question: How much can we restrict the set of split cuts that we separate over,
while retaining enough of the strength of the �rst split closure? While our tool is rather
general (it can be seen as a continuation to Balas and Saxena's separation algorithm [6]),
the speci�c restrictions that we explore aim at two desirable characteristics: First, we
want sparse cuts, because they are bene�cial to the linear algebra that underlies MIP
solution methods. Secondly, we want cuts that are computed from di�erent parts of the
constraint matrix, and involve varied subsets of the variables. The latter point corresponds
to generating cuts that are (approximately) mutually orthogonal, to as high a degree as
possible, and it has been observed [6,23] to be favorable in getting tighter relaxations with
fewer cuts.

Our experiments show that explicitly enforcing sparsity of the split disjunctions, and bound-
ing the magnitude of their coe�cients, yields one such promising family of split cuts. We
observe that the resulting cuts themselves are sparse too, which was expected but not a pri-
ori obvious. More surprisingly, even in an extreme setting where we only allow 10 nonzero
disjunction coe�cients with values ±1, we obtain cuts that are 91% as e�ective as all split
cuts together (in terms of gap closed, and compared to the best known results for the split
closure [6, 17]). Note, for context, that were we to only allow one nonzero coe�cient, we
would obtain the lift-and-project closure of Balas, Ceria and Cornuéjols [4].

Next, in the same spirit of restricting the split disjunctions available to us, we exploit
problem structure to impose static constraints on how cuts are generated. Speci�cally, we

L
&
P

St
r.

L
&
P

W
it
ho
ut

D
B
-k

D
B
-2

D
B
-3

D
B
-4

D
B
-5

B
es
t

ga
p

ga
p

In
st
an
ce

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

G
ap

#
cu
ts

T
im

e
%

ti
m
e

ga
p

[1
2]

[1
2]

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

cl
os
ed

bi
nd

in
g

(h
)

ch
ec
ki
ng

(D
B
-k
)

78
.7
6

78
.7
6

a
1
c
1
s
1

93
.5
4

39
8

33
6.
00

0.
03

92
.5
5

68
0

99
.0
8

0.
03

90
.6
5

64
9

14
7.
50

0.
03

90
.8
5

68
9

39
.8
1

0.
08

88
.6
9

68
8

19
.1
8

0.
19

92
.5
5

42
.4
1

43
.2
7

a
f
l
o
w
3
0
a

65
.0
9

24
5

33
6.
00

0.
00

3.
43

19
0.
67

0.
00

0.
00

0
0.
05

0.
00

0.
00

0
0.
01

0.
00

0.
00

0
0.
00

0.
00

3.
43

34
.2
9

35
.8
7

a
f
l
o
w
4
0
b

52
.5
6

33
5

33
6.
00

0.
03

0.
00

0
0.
97

0.
00

0.
00

0
0.
06

0.
00

0.
00

0
0.
25

0.
00

0.
00

0
0.
00

0.
00

0.
00

1.
09

1.
77

a
t
l
a
n
t
a
-
i
p

0.
00

20
4

33
6.
00

7.
99

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

0.
00

0.
13

g
l
a
s
s
4

0.
00

20
4

2.
27

0.
22

0.
00

70
0.
26

0.
35

0.
00

84
0.
15

1.
35

0.
00

57
0.
07

1.
00

0.
00

87
0.
21

0.
71

0.
00

N
A

N
A

m
a
n
n
a
8
1

82
.8
0

19
44

33
6.
00

0.
03

96
.8
4

18
13

33
6.
00

0.
06

88
.2
7

16
13

33
6.
00

0.
15

10
0.
00

19
74

62
.9
0

0.
24

10
0.
00

17
96

34
.6
4

0.
29

10
0.
00

44
.8
8

45
.1
5

m
o
m
e
n
t
u
m
1

40
.7
6

42
5

33
6.
00

39
.6
2

41
.2
2

56
8

33
6.
00

54
.6
3

28
.9
1

31
7

33
6.
00

75
.1
6

37
.0
6

48
7

33
6.
00

76
.8
5

34
.8
3

54
0

33
6.
00

49
.2
4

41
.2
2

41
.4
7

41
.8
4

m
o
m
e
n
t
u
m
2

65
.6
8

82
4

33
6.
00

64
.6
8

26
.2
8

20
0

25
.5
5

70
.2
3

14
.0
1

27
8

43
.2
6

51
.0
1

27
.5
9

47
8

30
.5
7

64
.4
2

17
.9
2

52
3

22
.5
5

65
.7
6

27
.5
9

42
.2
3

44
.6
5

m
s
c
9
8
-
i
p

0.
00

0
0.
07

0.
00

0.
00

0
1.
28

0.
00

0.
00

0
2.
54

4.
00

0.
00

0
1.
80

21
.1
0

0.
00

0
1.
94

37
.7
3

0.
00

56
.4
7

10
0.
00

m
z
z
v
1
1

63
.3
5

64
8

33
6.
00

78
.1
0

46
.4
2

36
4

33
6.
00

83
.2
2

57
.7
3

42
6

33
6.
00

84
.8
7

56
.5
5

58
7

33
6.
00

86
.5
0

65
.1
7

60
2

33
6.
00

89
.0
8

65
.1
7

87
.7
3

10
0.
00

m
z
z
v
4
2
z

79
.9
2

61
2

33
6.
00

77
.7
1

43
.2
2

40
0

33
6.
00

84
.7
1

91
.7
3

48
3

33
6.
00

86
.9
9

71
.9
9

73
9

33
6.
00

84
.8
6

91
.1
8

82
7

33
6.
00

80
.4
5

91
.7
3

22
.7
3

22
.7
1

n
e
t
1
2

5.
97

86
2

33
6.
00

46
.8
7

2.
87

54
3

33
6.
00

37
.0
2

6.
61

67
2

33
6.
00

31
.8
5

4.
49

62
8

33
6.
00

38
.6
1

5.
77

74
1

33
6.
00

33
.9
6

6.
61

36
.8
8

77
.0
9

n
s
r
a
n
d
-
i
p
x

65
.3
8

10
75

33
6.
00

0.
10

61
.0
8

10
57

33
6.
00

0.
09

50
.2
5

84
3

33
6.
00

0.
06

52
.8
2

90
7

33
6.
00

0.
10

49
.6
1

87
8

33
6.
00

0.
08

61
.0
8

0.
19

26
.3
2

o
p
t
1
2
1
7

4.
89

38
7

33
6.
00

0.
42

0.
00

0
0.
01

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

0
0.
00

0.
00

0.
00

10
.2
9

10
.8
3

p
r
o
t
f
o
l
d

37
.4
1

21
72

33
6.
00

24
.9
8

1.
68

10
55

33
6.
00

29
.5
0

1.
14

11
30

33
6.
00

29
.4
3

1.
19

12
73

33
6.
00

32
.4
7

1.
29

11
18

33
6.
00

25
.0
3

1.
68

0.
00

0.
00

r
d
-
r
p
l
u
s
c
-
2
1

0.
00

20
3

22
.5
9

1.
52

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

16
.3
1

55
.9
0

r
o
l
l
3
0
0
0

37
.9
0

50
4

29
1.
02

0.
57

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

42
.0
6

59
.9
1

s
p
9
7
a
r

65
.0
4

53
3

33
6.
00

0.
54

47
.6
2

41
0

33
6.
00

1.
29

41
.4
7

35
5

33
6.
00

1.
15

41
.1
2

31
8

33
6.
00

1.
40

25
.9
1

26
7

33
6.
00

1.
58

47
.6
2

26
.9
9

42
.4
5

t
i
m
t
a
b
1

86
.1
0

26
5

23
.7
0

0.
01

54
.7
1

16
9

13
.3
4

0.
00

40
.5
6

15
1

4.
18

0.
01

34
.0
8

15
8

2.
56

0.
01

29
.1
7

18
3

0.
07

0.
22

54
.7
1

20
.9
8

40
.1
8

t
i
m
t
a
b
2

84
.6
7

43
0

28
3.
14

0.
01

55
.3
9

29
7

21
.3
8

0.
02

46
.2
4

27
9

23
.2
4

0.
01

31
.9
2

27
5

26
.0
4

0.
01

31
.4
0

27
0

5.
42

0.
01

55
.3
9

64
.1
2

64
.1
2

t
r
1
2
-
3
0

88
.0
5

68
0

30
.9
5

0.
01

85
.6
0

67
6

5.
99

0.
05

84
.6
0

69
9

3.
75

0.
06

85
.0
1

67
9

0.
64

0.
29

84
.0
4

69
2

0.
75

0.
23

85
.6
0

31
.9
0

42
.4
3

av
er
ag
e

48
.5
3

61
7

25
5.
13

16
.3
5

31
.3
8

39
6

13
6.
03

17
.2
0

30
.5
8

38
0

13
8.
70

17
.4
3

30
.2
2

44
0

11
9.
84

19
.4
3

29
.7
6

43
9

11
6.
04

18
.3
1

34
.9
7

T
ab
le
6:

G
ap

cl
os
ed

in
M
IP
L
IB
20
03

in
st
an
ce
s.

start by computing block decompositions of our problems. Then, we force our split cut
generator to use, for each cut, only constraints and variables from a single block. In a
second series of experiments, we test this approach with arrowhead decompositions [8, 24]
of the constraint matrices, while keeping the same limitations on the disjunctions as before.
In this even more restricted setting, we observe a signi�cant degradation of the average gap
closure. However, we demonstrate that it is easy to determine a priori which instances will
bene�t from block decompositions, and which will not. With a very simple rule based on
the number the linking constraints and variables, we are able to isolate the instances that
are most suited for this technique. By using decompositions only when appropriate, we get
a subset of instances on which, due to time limits, we close even more gap than without
decomposition. Moreover, as a general rule, we observe that this setting lets us cut much
more gap per cut on average. We attribute this desirable feature to the orthogonality of
the cuts generated.

Overall, our results suggest that there exist small subsets of split cuts that exhibit advan-
tageous properties, and that are yet to be exploited.

References

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):361�372, 2006.

[2] Kent Andersen and Robert Weismantel. Zero-coe�cient cuts. In Friedrich Eisenbrand
and F. Bruce Shepherd, editors, Integer Programming and Combinatorial Optimization,
pages 57�70, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[3] C. Aykanat, A. Pinar, and Ü. Çatalyürek. Permuting sparse rectangular matrices into
block-diagonal form. SIAM Journal on Scienti�c Computing, 25(6):1860�1879, 2004.

[4] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0�1 programs. Mathematical Programming, 58(1�3):295�324, 1993.

[5] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-
and-project in a branch-and-cut framework. Management Science, 42(9):1229�1246,
1996.

[6] Egon Balas and Anureet Saxena. Optimizing over the split closure. Mathematical

Programming, 113(2):219�240, 2008.

[7] Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. On the
relative strength of split, triangle and quadrilateral cuts. Mathematical Programming,
126(2):281�314, 2011.

[8] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E. Lübbecke,
Enrico Malaguti, and Emiliano Traversi. Automatic Dantzig�Wolfe reformulation of
mixed integer programs. Mathematical Programming, 149(1):391�424, 2015.

[9] Robert E. Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, pages 107�121, 2012.

[10] Robert E. Bixby, Sebastián Ceria, Cassandra M. McZeal, and Martin W. P Savels-
bergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, (58):12�
15, June 1998.

[11] Robert E. Bixby and Edward Rothberg. Progress in computational mixed integer pro-
gramming - a look back from the other side of the tipping point. Annals of Operations
Research, 149(02):37�41, 2007.

[12] Pierre Bonami. On optimizing over lift-and-project closures. Mathematical Program-

ming Computation, 4(2):151�179, 2012.

[13] Pierre Bonami, Gérard Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and Andrea Lodi.
Projected Chvátal�Gomory cuts for mixed integer linear programs. Mathematical Pro-

gramming, 113(2):241�257, 2008.

[14] Alberto Caprara and Adam N. Letchford. On the separation of split cuts and related
inequalities. Mathematical Programming, 94(2):279�294, Jan 2003.

[15] William J. Cook, Ravi Kannan, and Alexander Schrijver. Chvátal closures for mixed
integer programs. Mathematical Programming, 47:155�174, 1990.

[16] Gérard Cornuéjols and Giacomo Nannicini. Practical strategies for generating rank-1
split cuts in mixed-integer linear programming. Mathematical Programming Compu-

tation, 3(4):281�318, 2011.

[17] Sanjeeb Dash, Oktay Günlük, and Andrea Lodi. MIR closures of polyhedral sets.
Mathematical Programming, 121(1):33�60, 2010.

[18] Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with
sparse inequalities. Mathematical Programming, 154(1):329�352, 2015.

[19] Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Analysis of sparse cutting planes
for sparse MILPs with applications to stochastic MILPs. Mathematics of Operations

Research, 43(1):304�332, 2018.

[20] Matteo Fischetti and Andrea Lodi. Optimizing over the �rst Chvátal closure. Mathe-

matical Programming, 110(1):3�20, 2007.

[21] Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. On the separation of disjunc-
tive cuts. Mathematical Programming, 128(1):205�230, 2011.

[22] Matteo Fischetti and Domenico Salvagnin. A relax-and-cut framework for Gomory
mixed-integer cuts. Mathematical Programming Computation, 3(2):79�102, 2011.

[23] Matteo Fischetti and Domenico Salvagnin. Approximating the split closure. INFORMS

Journal on Computing, 25(4):808�819, 2013.

[24] Gerald Gamrath and Marco E. Lübbecke. Experiments with a generic dantzig-wolfe
decomposition for integer programs. In Paola Festa, editor, Experimental Algorithms,
pages 239�252, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[25] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Ste�y,
and Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103�
163, 2011.

[26] Uwe H. Suhl and Leena M. Suhl. Computing sparse LU factorizations for large-scale
linear programming bases. ORSA Journal on Computing, 2(4):325�335, 1990.

[27] Matthias Walter. Sparsity of lift-and-project cutting planes. In Stefan Helber, Michael
Breitner, Daniel Rösch, Cornelia Schön, Johann-Matthias Graf von der Schulenburg,
Philipp Sibbertsen, Marc Steinbach, Stefan Weber, and Anja Wolter, editors, Op-
erations Research Proceedings 2012, pages 9�14, Cham, 2014. Springer International
Publishing.

