Split cuts from sparse disjunctions

Ricardo Fukasawa Laurent Poirrier Shenghao Yang*

Department of Combinatorics and Optimization
University of Waterloo, Canada

July 31, 2018

Abstract

Split cuts are arguably the most effective class of cutting planes within a branch-
and-cut framework for solving general Mixed-Integer Programs (MIP). Sparsity, on the
other hand, is a common characteristic of MIP problems, and it is an important part of
why the simplex method works so well inside branch-and-cut. In this work, we evaluate
the strength of split cuts that exploit sparsity. In particular, we show that restricting
ourselves to sparse disjunctions—and furthermore, ones that have small disjunctive
coefficients—still leads to a significant portion of the total gap closed with arbitrary
split cuts. We also show how to exploit sparsity structure that is implicit in the MIP
formulation to produce splits that are sparse yet still effective. Our results indicate
that one possibility to produce good split cuts is to try and exploit such structure.

1 Introduction

Cutting planes are fundamental in solving mixed-integer linear programs (MIPs). Over
the last 25 years, commercial solvers have accomplished remarkable progress, achieving a
machine-independent speed-up of the solution process by more than a factor of 450,000 [9].
General-purpose cutting plane techniques, such as Gomory Mixed Integer (GMI) cuts and
Mixed Integer Rounding (MIR) cuts, are arguably the most important contributors to this
progress (see, for example, [11]).

To study the impact that a particular family of cuts may have, both theoretically and
computationally, a common approach is to consider the closure of those cuts. Given a
family of cuts, its closure is defined as the intersection of all cuts belonging to the same
family that are obtainable from the original MIP formulation. On the theoretical side, topics
range from determining the polyhedrality of closures [15] to analyzing their strength [7].

*{rfukasawa, lpoirrier,s286yang}@uwaterloo.ca

On the computational front, several authors proposed strategies to empirically evaluate
the strength of different closures by computing the amount of integrality gap they close:
we thus have computational evaluations of the Chvatal closure [20], the split closure [6],
the projected Chvatal-Gomory closure [13], the MIR closure [17] and the lift-and-project
closure [12].

We focus on the results on the split closure (or equivalently the MIR closure), which consider
the class of all split cuts [15], since these are the cuts that are most useful in practice
to solve MIPs [11]. Besides efforts on efficient generation of strong split cuts (see for
instance [2,16,22,23]), the split closure was shown to be a very tight approximation to the
convex hull of all feasible solutions in the corresponding MIP [6,23]. On average it closes
more than 75% of the integrality gap on MIPLIB 3.0 [10] instances. The purpose of this
work is to determine what will be the effect on this integrality gap if we restrict ourselves
to a subset of split cuts defined by its sparsity properties. In the following discussion we
motivate such choice of restriction.

Sparsity is a natural condition that helps in the linear algebra routines of the simplex
method [26], thus it is a desirable property of cutting planes for MIPs. Indeed, in al-
most every cut generation procedure described in the articles we mentioned above, specific
heuristics are implemented to impose sparsity in the cuts, e.g., introducing a penalty term
in the objective of a cut generating problem to make the resulting cut sparser [20], apply-
ing a coefficient reduction algorithm to reduce the number of nonzeros the split cut [16],
and discarding all dense cuts to ensure that only sparse cuts are added [22]. The effect of
sparsity has also recently been noted in a computational study by Walter [27] where it is
shown that equivalent, but denser versions of the same cuts negatively affect performance
of MIP solvers. Due to all this interest, there has also been some recent work to analyze
theoretically the strength of sparse cutting planes [18,19].

One additional motivation to study the effect of sparsity is the recent result of Bergner et
al. [8] where they show that several benchmark instances have an almost block-diagonal
structure called arrowhead, that is, a structure with several blocks that are linked only
by few linking variables and constraints. This shows that not only are these benchmark
instances sparse (on average, MIPLIB 2010 [25] instances only have 1.62% density), but in
many cases such sparsity has an identifiable structure that can be exploited.

The main contributions of this work can be stated as follows:

e We implement an approximate separation routine based on the work on Balas and
Saxena [6] that separates only split cuts whose split disjunctions are sparse and whose
split coefficients are small

o We show, empirically, that in spite of those restrictions, the gap closed by this subclass
of split cuts is still quite significant (on average 91% of the split closure gap).

e Finally, we consider split cuts computed only from individual blocks of the arrowhead
structure of the instances. We show that they also largely preserve the strength of
general split cuts, in terms of gap closed.

These results help shed some light into what are important classes of split cuts that we can
focus our attention on studying.

In the rest of this paper, we present in more details such results. Section 2 lays out the basic
approach of Balas and Saxena [6] for the separation of split cuts, and briefly introduces the
automatic decomposition of Bergner et al. [8]. In Section 3, we detail the implementation
of our split cut separator. In particular, we describe exactly what measures we took to
obtain cuts that are numerically stable and effective, while being verifiably valid. Section 4
presents the results of our computational experiments.

2 Background

In this section, we formally present the background necessary to explain our experiments.
We start by introducing how to optimize over an approximation of the split closure and
then discuss the developments related to the arrowhead decomposition.

2.1 Optimizing over the split closure

Consider a general MIP:
min{c'z: Az = b, 2 € Z}, x R} (MIP)
where A € Q™*™ has full row rank, ¢ € Q™ and b € Q™. The linear programming relaxation

of (MIP) is
min{c'z : z € P} (LP)

where P = {x € R} : Az = b}. For any (7, 7m) € Z" x Z such that 7; =0for j > p+1, a
split disjunction is defined as

7rTx§7r0 vV TFT.’L'ZF()—‘y-l.
An inequality o'z > § valid for P(™™) where
plmmo) — conv({reP:r'z<m}U{z€P:n'a>m+1})

is called a split cut [15].

The problem of finding a violated split is N'P-hard in general [14]. Following Farkas’ lemma,
a most-violated split cut aTz > 3 for P(™70) can be found by solving the Cut Generating
Linear Program
min o'z — 8
st.a=ATy+s—yor

a=A"z+t+ zm

B="b"y—yomo (CGLP(m, mo))

B=b"z+z(m +1)

normalization condition

y,z € R™, s,t € RY, yo,20 € Ry.

A derivation of (CGLP (7, mp)) and in-depth discussion of the normalization condition were
presented in [21]. The following remark on the nonnegativity of the multipliers y and z is
useful in simplifying our CGLP.

Remark 1. Suppose (CGLP(m,m)) has an optimal solution under some choice of normal-
ization, and let (&, 3,9, 2, 8,1, 90, 20) be an optimal solution. Then
yr = max{0,y;, —z;}, i=12,...,m
zi =max{0,z; —y;}, i=1,2,....,m
o =a+AT(y" —9)
B =B+ (y" =)
s =5, t =1, yli=190, z5:=2%
is also an optimal solution (assuming that it, too, satisfies the normalization condition,).

Therefore, we may assume w.l.o.g. in (CGLP (7, 7)) that all multipliers are nonnegative
since, as we will see below, our normalization allows it. In all subsequent discussions we
assume y, z € R’

The split closure C is defined as

C = ﬂ plmmo).
(m,m0)EL™ XL
mj=0,j=2p+1

Balas and Saxena [6] implemented an iterative procedure that alternates between a Master
Problem and a Separation Problem to find

min{c'z: z € C}.

At each iteration, the Master Problem is a linear program of the form
min{c'z:z € P, olz > B, te T} (MP)

where {alz > B¢ : t € T} is the set of all split cuts generated by the Separation Problem
so far. If Z is an optimal solution to (MP), the Separation Problem then finds a valid cut
violated by &, or proves that £ € C. The Separation Problem is a mixed-integer nonlinear
program obtained from (CGLP (7, mp)) with normalization yo+ 2o = 1, and allowing (7, 7o)
to vary over Z" x Z. Formally, the separation problem is stated as:

min o' & — f8
st.a=A"y+s—yor
a=A"z+t+ zn

N N
B_b) YoTo (SP)
B=b"z+ z(m+1)

I=yo+ 20

Y,z € RT? s,t € RZ—’ Yo, 20 € R+
(m,m) € Z" xZ, m; =0, j > p+1.
In [6], (SP) is shown to be equivalent to a parametric mixed-integer linear program with

scalar parameter 6,

min MILP(6)
0<0<i

where MILP(0) is given by

min s'i —0(7' & — m)
st. Alw+s—t—7=0
b'w—mp=1-10 (MILP(6))
weR™, s,teRY
(m,mo) € Z" X Z, m; =0, j > p+1.

Therefore, the optimum to (SP) can be approximated from above by solving a finite se-
quence of problems MILP(6) with varying values for 6.

2.2 Automatic detection of double-bordered block-diagonal structure

The idea of exploiting block-diagonal structure in sparse matrices has been widely discussed
in the contexts of numerical linear algebra and mathematical programming. One motivation

is that the diagonal blocks usually give rise to small independent subproblems well suited for
parallel processing. Applications include solving systems of linear equations arising from a
discretization of a continuous domain, LU and QR factorizations, and decomposition-based
solution methods for structured (mixed-integer) linear programs. In general, the constraint
matrix A of (MIP) does not admit a block-diagonal form, but it can be put into a k-way
double-bordered block-diagonal form

. =
D? F?

: (DB-k)
DF Fk
A A2 - AR G

for some k > 1. This is sometimes informally called the arrowhead form. The constraints
associated with rows in A are called linking constraints, and the variables associated with
columns in F* are called linking variables.

Given a sparse matrix, Aykanat et al. [3] considered the problem of obtaining a DB-k form
by permuting its rows and columns. They reduce the matrix permutation problem to
that of graph and hypergraph partitioning. However, even when the number k of blocks is
fixed, computational experiments show that the resulting DB-k forms demonstrate significant
variability and are very sensitive to input parameters. To cope with this, Bergner et al. [8]
proposed to use a proxy measure to automatically detect the “best” DB-k form, for the
purpose of applying Dantzig-Wolfe reformulations to general MIPs. Figure 1 shows a few
examples of MIPLIB instances, with black dots representing nonzero coefficients of the
constraint matrix. The bottom row shows a rearrangement of the columns/rows of the
matrix evidencing the DB-k structure.

seymour

| 233 S S S i oot r

10teams-DB-3 arkiOO01-DB-5 gesa2-DB-4 seymour-DB-2

Figure 1: Original problem structure versus its DB-k forms

3 Implementation

In this section we outline the computational details of our implementation. We follow the
idea of Balas and Saxena [6] to approximate the optimal value of (SP) by solving a sequence
of parametric MILPs. Features prefixed by an asterisk (*) were already present in [6].

*Parameter grid. We denote by © the set of values of 6 for which MILP(6) will be solved.
A uniform parameter grid © of points between 0 and 0.5 is created. The initial size of ©
is ¢, and we increase the number of grid points whenever necessary following the criteria in
Algorithm 2.

*Stabilizing objective. To avoid unnecessarily weak cut coefficients (see [6] for a short
discussion), we replace Z in the objective of MILP(6) with

i‘j = max{ﬁtj,d}, Vj,

for 0 a small positive constant.

*Cut strengthening. Once a feasible solution (w,3,t,7, 7o) to MILP(#) with a nega-
tive objective value is found, we feed (7, 7p) to the corresponding Cut Generating Linear
Program (CGLP(7,7o)) with normalization

elytelzte's+e t+y+2==r

for a fixed positive constant . This normalization is shown in [21] to produce stronger cuts
than the normalization yo + 2o = 1 used in deriving MILP(0).

*Cut lifting. We work in the subspace of the variables that are not at one of their bounds
in the incumbent solution, and lift the resulting cuts to the full space following the approach
described in [5].

*Set covering. In an effort to impose some orthogonality in the set of split disjunctions,
every time a split (7, 7p) is found, we solve the set covering problem

P p
Iﬁ)irll} g min{z; — |&;], [%;] — &} 2; E I, 2027 > L,VT €S (StCvIP(z,S))
ze p ; :

’ j=1 j=1

where S is the set of splits already discovered, and [jyq = 1if k& # 0, Ijp2q) = 0if k& = 0. Let
Z be an optimal solution to (StCvIP(&,S)), then we impose m; = 0 for all j € {j : 2; # 0}
when solving the next MILP(#).

Fractionality constraint. Split disjunctions (7, my) where 7' is too close to either

or mg + 1 usually give rise to weak split cuts. To avoid that, we impose the bounds
c<ni-m<l-o (Conl)
for a small o > 0.

Sparsity constraint. To impose the condition that 7 is sparse with at most M nonzero
entries, we introduce binary variables € {0,1}? and constraints

P
—Urj<mj <Urj, Vj=1,...,p, and ergM, (Con2)
j=1

where U is an artificial upper bound on the magnitude of the components of 7.

Structure constraint. Given a DB-k form of the constraint matrix A, to compute split
disjunctions whose support lie entirely in a block D?, we simply impose that:
Wj:Sj:thO, V] §ZCZ

. . (Con3)
w; =0, VigR'

where C* and R’ are column and row index set of D, respectively.

Validity check. For every split cut o'z > 3 generated from CGLP with splits (7, mp), we
provide another certificate for the validity of the cut. Let
Byr=min{a"z:7 'z <m} and B, :=minf{a'z:7"z>m+1}.
zeP zeP
Then it should always hold that 8 < min{3;, 3.}. If the inequality fails to hold, then the

cut is invalid and we discard it. This may be the case due to numerical issues within the
LP or MIP solver.

Cleaning up cut coeflicients. To prevent cut coefficients from being too large or too
small, once a split cut is returned by CGLP(m,), we scale the cut so that the greatest
absolute value of cut coefficients equals 10%. Furthermore, after scaling we set all cut
coefficients whose absolute value is less than 1075 to zero. In general, setting a nonzero cut
coefficient to zero may strengthen the cut and make it invalid, but since our tolerance is
small, the effect is small as well. Nonetheless, the validity of the cut is always subsequently
certified by the independent checker. Note that this scaling process also serves as an implicit
dynamism control, i.e., the ratio between the greatest and the smallest absolute value of
cut coefficients is no greater than 10,

The cut generation procedure is summarized in Algorithm 1.

Algorithm 1: Cut Generation(z, ©,, 1)

Input: Incumbent solution &, parameter grid ©, upper cutoff limit v < 0, time
limit 7, minimum cut violation € > 0, required properties of split
disjunctions (Conl)-(Con3). Polyhedron P = {x € R} : Az = b}
describing the constraint set of (LP).

Output: A set K of split cuts violated by Z.

1 K+ 0,8+ 0.
2 for 6 € © do
3 Solve StCvIP(z,S) and impose partial orthogonality if needed. Add
fractionality, sparsity, and structure constraints (Conl)-(Con3) to MILP(#) as
indicated.
4 Solve MILP(0) with time limit 7.
5 if Found a feasible solution (mw,my) to MILP(0) with objective value < . then
6 Perform cut strengthening to get cut o'z > 3.
7 Perform cut lifting on cut o'z > .
8 Perform cut cleaning on cut o'z > .
9 if a'4 — 8 < —e then
10 B+ min{a'z: 7'z <m}, By & min{a'z 7> 7o+ 1}
xeP zeP
B* < min{ gy, By}
11 if 5 < * then
12 LIC%ICU{QTQUZB},S%SU{W}.

13 return K.

Time limit on the MIP solver. Mixed-integer linear programs are much harder to
solve than linear programs in general. As a result, even finding a feasible solution to
MILP(0) can be extremely time-consuming. We observed that this is frequently the case,
in particular, when separating a point that is close to the closure we aim to optimize over.
Therefore, a deterministic time limit of 800 ticks (roughly 1 second) is set for each MILP(6)

we process. We use CPLEX’s deterministic time (ticks) so that the results are reproducible
and comparable across different machines.

Dynamics. At each iteration, if no cut is generated because we could not find a feasible
solution to MILP (), we increase the time limit to 48,000 ticks (roughly 60 seconds) and the
upper cutoff limit of the objective value. If there is no improvement in the optimal objective
value of the Master Problem for a while (see Algorithm 2), we increase the number of grid
points and add more cuts per iteration. Furthermore, in order to control the number of cuts
presented in the Master Problem, we delete all cuts that are nonbinding in the incumbent
solution every five iterations.

Global time limit. The whole process is terminated if the entire computation time exceeds
a global time limit.

Details of the iterative procedure are described in Algorithm 2

Algorithm 2: Overall cut generation loop

1 Initialization.
Choose initial parameter grid size ¢, upper objective value cutoff limits
Y1 < v2 < 0, deterministic time limits 7 = 800 ticks, 7o = 48,000 ticks. Set
iteration counter Iter = 0. Denote k the number of blocks in a given DB-k from,;
if no decomposition is available, set k = 1.

2 TimelLimit < 71, Cutoff < ;.

3 Iter < Iter + 1. Solve (MP) and obtain optimal solution #. Denote n the
number of consecutive iterations where no improvement in the optimal objective
value is made. Delete nonbinding cuts if necessary.

4 if n =100 then return z.

5 Update parameter grid size in the current iteration.
if 0 <n <39 then s + 2l017);. else s + 16t.

6 Set parameter grid © uniformly with |©] + s.

7 Separation.
for j =1,...,k do Generate a set K9 of cuts following
CutGen(Z, ©, Cutoff, TimeLimit) for block j.

8 if U§:1 KY) = (then Add cuts to (MP), go to 2.

9 else if TimeLimit= 7y, Cutoff= ~; then TimelLimit + 7o, go to 7.

10 else if TimeLimit= 79, Cutoff= v then Cutoff < 5, go to 7.
11 else if Timelimit= 79, Cutoff= v, then return z.

4 Computational experiments

In this section we first discuss the practical setup for our experiments, then present our
computational results. We implemented our code in C, with IBM ILOG CPLEX 12.7.1
as black-box MIP and LP solver. The computations were conducted on an assortment
of machines with x86_64 architecture CPUs. In order to ensure reproducibility, all ma-
chines used the same single-threaded binary code, and all time limits made use of CPLEX’s
deterministic time feature, aside from the global time limit.

4.1 Choice of model parameter values

The values of various model parameters used in the computation are summarized in Table 1.
An asterisk (*) indicates that the parameter does not apply to all experiments. We also
present below a brief motivation for our choices.

measure parameter value
maximum number of nonzero components in 7 (*) M 10
bounds on ||, 1 < j < p (*) U 1 or 100
initial number of grid points (without DB-k form) t 80
initial number of grid points (with DB-k form) t 20
normalization constant K 10*
minimum nonzero objective coefficient 1) 1072
upper cutoff limits of objective value Y1, Y2 —1073,-107°
minimum cut violation € 1076
fractionality bound o 0.025

Table 1: Model parameter values used in computation

In their experimental analysis, Balas and Saxena [6] noted that the split disjunctions they
computed generally featured two interesting characteristics. Although not being intention-
ally restricted,

(i) most split disjunctions had a support of size between 10 and 20, irrespective of the
size of the problem; and

(ii) most split disjunctions did not have very large coefficients, with the average coefficient
size per iteration typically being less than 5.

We chose the sparsity parameter of M = 10 to reflect the lower end of that spectrum.
When attempting to limit the size of the split coefficients, we chose bounds U = 1 (i.e.,
—1 <7 <1, forall 1 <j<p)since these would be the simplest splits obtainable. When

only sparsity constraints were enforced, we set U = 100 (i.e., =100 < 7; < 100, for all
1 < j <p) to allow for splits with somewhat larger coefficients.

At each iteration, the initial parameter grid size depends on whether a DB-k form of the
constraint matrix is supplied or not. If no DB-k form is given, we set ¢ = 80, and 80 MILP(0)
are processed; if a decomposition is given, then we set ¢t = 20 for each of the k blocks, and
therefore 20k MILP(0) are processed in total.

For the fractionality bound o on the set of split disjunctions, a natural value could be,
for example, the integrality tolerance 107%. Although more split cuts may be obtained by
using such a loose bound, we impose a rather strict 0.025 bound instead. In practice, this
led to more gap closed per iteration on average and more gap closed overall within our
time limits. Adding a fractionality bound also helped preventing MILP(#) from yielding
unviolated split disjunctions due to numerical errors.

4.2 Computational results

4.2.1 First experiment: How does our implementation compare with the best
available results?

To check whether our implementation was reasonable, we first tested it on the MIPLIB
3.0 [10] instances, in a configuration where it approximates a straightforward split cut sep-
arator, i.e., without any sparsity or structure constraints on the split disjunctions. Artificial
lower and upper bounds +100 are applied on the disjunction coefficients (U = 100), which
allows for a reasonably large subset of all disjunctions to be considered. The entire compu-
tation time for each instance is limited to 24 hours, including the time taken to check cut
validity'. At termination, we measure the final percentage of integrality gap closed, which
is then compared with the best of the bounds given in [6] and [17]. For each instance, we
look at that percentage of gap closure divided by the best of the analogous results in [6]
and [17]. We do this comparison on the 57 instances where the best known gaps are strictly
positive. Table 2 shows the number of instances that fall within various categories based on
this ratio. In particular, on 8 instances, we closed more gap than the best available result,
and on 25 instances we closed at least 90% relative gap.

On the other hand, we closed less than 1% relative gap on 27 instances. As shown in
Figure 2 where each dot represents an individual instance, those are generally the instances
that have the most integer variables. While there are many plausible explanations for our
poor performance in this large set of instances, an important one is that the parameters in
our code were not fine-tuned for this experiment, but rather for the experiments considering

!Note that neither [6] nor [17] have any cut validity procedure and also that [6] has no time limit on
their experiments

relative gap closed | # instances
> 100% 8
> 99% 21
> 90% 25
> 50% 28
< 1% 27

Table 2: Gap closed as a percentage of the best known gap closure (from [6] and [17])

125% .

.
100% ° LX) .—.' o oo .

° ® e
4 .

3 .

2 .

o 75%

Q.

(o] .

(o))

2 so%

% .

T 250

0% et ed o ® oo LX)
10 100 1000 10000 le+05

Number of integer variables

Figure 2: Gap closed as a percentage of the best known gap closure (from [6] and [17]), vs.
number of integer variables

sparsity. When changing the values of parameters such as the number |©] of grid points and
the fractionality bound o, we were able to close significantly more gap on these 27 instances.
However, the purpose of this experiment was just to determine if our implementation was
reasonable compared to other ones, which seems to be the case, as further evidenced by the
experiments on subsequent sections.

4.2.2 Second experiment: How does sparsity help?

In this section, we evaluate the relative strength of split cuts (i) whose split disjunctions are
sparse and (ii) whose split coefficients are also small. We ran our implementation again on
the MIPLIB 3.0 instances, first with the additional sparsity constraint obtained by setting
M = 10. Then, we additionally considered +1 bounds on the disjunction coeflicients
(that is, setting U = 1). As was the case earlier, a time limit of 24 hours was set for all
computations. Table 3 shows the details of our results. The first column of the table shows

the best gap given in [6] and [17], followed by results obtained with arbitrary disjunctions,
sparse disjunctions, and sparse disjunctions with +1 bound, respectively.

The last column in each setting shows the percentage of the total computation time that
was spent checking cut validity. Observe that on a few large instances, the time spent on
checking took most of the computation time. For example, in computing the gap closed
by sparse disjunctions with +1 bounds on the instance air04, of the 24 hours spent, only
8% contributed to the actual computation. The remaining 92% was all dedicated to the
verification of cut validity. We should thus expect that the bound obtainable on these large
instances should be greater than the result shown in Table 3, had we chosen a longer time
limit. Nonetheless, by restricting ourselves to split disjunctions with at most 10 nonzero
coefficients, we still obtained significantly better results in terms of relative gap closed on
instances that have a large number of integer variables, as opposed to the poor performance
we observed with arbitrary disjunctions.

Besides allowing for more gap closed in less time, another related interesting effect to
observe is the sparsity of the cuts produced. Observing that sparse disjunctions do not
necessarily lead to sparse cuts, Figure 3 compares the densities of cuts (i.e., proportion of
cut coefficients that are nonzero) obtained from different sets of split disjunctions. For each
of the 60 MIPLIB 3.0 instances, we computed the average cut density by considering all
the cuts that were used to obtain the results in Table 3. This resulted in 60 average cut
densities for each set of split disjunctions. We then plot the distribution of these average
cut densities in Figure 3. The horizontal lines in the figures represent the range of densities
(with outliers omitted), the rectangles represent the 25-75 percentile interval and the solid
vertical line represents the median. We consider as “outliers” cuts that are extremely dense,
as determined by the following. Let r be the difference in density between the 25th and 75th
percentile. Any cut with density of more than 1.5r above the 75 percentile is considered an
outlier. Observe that sparse disjunctions did indeed lead to sparser split cuts in general:
While the median density was 0.332 with arbitrary disjunctions, it dropped to 0.116 with
sparse ones, and 0.103 with sparse £+1 disjunctions.

To better evaluate the strength of the split cuts in the most restricted experiment (disjunc-
tions with at most 10 nonzero +1 coeflicients), we extended the time limit to a week and
recomputed the gap closed on MIPLIB 3.0. The resulting average integrality gap is 68.4%,
accounting for 91% of the 75.2% average for the best in [6] and [17]. Figure 4 shows a
breakdown of the 57 instances whose best gap is strictly positive, according to the relative
gap closed in this case. Surprisingly, we lost almost nothing (at most 2%) on more than
half of MIPLIB 3.0 instances. Furthermore, we closed at least 90% relative gap on more
than two thirds of the instances.

Our conclusion from this experiment is twofold. First, split cuts based on sparse disjunctions
with small coefficients are almost as strong as general split cuts. Secondly, they tend to be
sparser.

Bost M= to0, U =100 M =10, U =100 M=10, U=1
gap | Instance Gap # cuts Time % time Gap # cuts Time % time Gap # cuts Time % time
[6], [17] closed binding (s) checking | closed binding (s) checking | closed binding (s) checking
100.00 | 10teams 0.00 6697 86400 28.97 | 73.21 2339 86400 37.42 | 70.05 682 86400 23.28
100.00 | air03 0.37 334 86400 97.91 | 100.00 160 147 87.68 | 100.00 318 127 85.90
91.23 | air04 0.00 2025 86400 98.09 | 32.90 298 86400 85.78 | 71.89 497 86400 91.94
61.98 | air05 0.04 382 86400 97.73 | 35.88 364 86400 78.08 | 62.06 363 86400 63.69
83.95 | arkiOO1 0.00 2300 86400 94.09 | 65.95 272 86400 0.29 | 4047 236 86400 0.50
99.60 | bell3a 99.64 97 86011 0.03 | 74.64 112 4217 0.04 | 74.99 138 368 0.29
92.95 | bellb 93.26 379 81961 0.00 | 92.78 144 70243 0.00 | 92.57 166 1582 0.03
46.52 | blend2 30.07 166 6898 2.67 | 38.83 79 12991 0.03 | 42.64 93 1568 0.17
65.17 | cap6000 65.16 554 86400 0.62 | 63.92 30 3044 0.77 | 58.37 36 1438 0.82
0.22 | dano3mip 0.00 980 86400 74.50 0.00 493 86400 84.23 0.19 384 86400 64.80
8.20 | danoint 7.88 466 86400 17.92 7.25 249 86400 2.87 8.15 354 86400 3.09
100.00 | decmulti 99.96 287 86400 0.72 | 99.99 254 84971 0.02 | 99.85 299 13670 0.06
100.00 | egout 100.00 229 485 0.49 | 100.00 236 795 0.11 | 100.00 176 131 0.22
19.08 | fast0507 0.00 754 86400 98.55 0.00 331 86400 97.84 0.42 265 86400 54.98
99.68 | fiber 0.02 460 12533 33.98 | 29.49 220 86400 0.04 | 64.74 294 86400 0.04
99.75 | fixnet6 99.84 537 86400 0.08 | 99.72 573 86400 0.03 | 99.85 330 86400 0.02
100.00 | flugpl 100.00 125 659 0.03 | 100.00 125 629 0.03 | 100.00 108 3 3.33
100.00 | gen 89.28 500 40720 11.35 | 98.09 422 13816 0.69 | 100.00 484 393 5.95
99.70 | gesa2 0.01 358 524 12.21 | 85.93 219 86400 0.03 | 99.69 226 86400 0.02
99.97 | gesa2_o 0.03 502 859 7.69 | T72.05 275 86400 0.07 | 93.00 228 86400 0.02
95.81 | gesa3 0.94 516 27194 10.58 | 87.32 460 10802 0.91 | 9598 343 86400 0.02
95.20 | gesa3_o 1.04 378 56047 10.73 | 94.77 275 86400 0.13 | 95.99 223 86400 0.02
98.38 | gt2 37.05 2723 86400 1.29 | 93.34 273 86400 0.00 | 92.01 107 21716 0.00
58.48 | harp2 0.02 175 270 17.51 | 22.79 169 9040 0.08 | 42.73 173 86400 0.02
100.00 | khb05250 100.00 379 275 2.25 | 100.00 318 1607 0.46 | 100.00 368 305 1.54
95.20 | 11521av 0.08 476 10562 86.43 | 31.04 197 86400 4.01 | 41.89 188 86400 1.54
93.75 | 1seu 87.45 150 86400 0.01 | 69.08 65 86400 0.00 | 74.15 74 86400 0.00
14.02 | mas74 15.31 161 86400 0.72 | 10.36 47 86400 0.00 | 11.64 48 86400 0.00
26.52 | mas76 24.60 129 86400 0.31 | 12.08 51 86400 0.00 | 13.99 60 86400 0.00
51.70 | misc03 40.44 252 86400 11.87 | 49.67 124 86400 0.03 | 51.44 211 67654 0.01
100.00 | misc06 100.00 268 287 5.12 | 100.00 275 321 4.36 | 100.00 132 44 13.18
20.11 | miscO7 0.02 1845 86400 20.02 | 15.79 204 86400 0.30 | 14.39 206 86400 0.07
100.00 | mitre 0.00 4444 86400 6.08 7.25 1504 86400 0.56 0.27 1547 86400 0.37
36.16 | mkc 0.00 5901 86400 12.85 | 28.85 477 86400 1.37 | 53.98 574 86400 1.68
99.98 | mod008 91.74 460 86400 1.10 | 51.70 124 86400 0.00 | 52.41 132 18113 0.00
100.00 | mod010 0.05 2738 86400 49.87 | TL.15 209 86400 3.44 | 100.00 403 9843 4.75
72.44 | mod011 71.79 741 86400 2.70 | 67.96 958 86400 1.27 | 72,65 899 86400 1.20
92.18 | modglob 95.21 376 1592 0.49 | 96.44 288 25457 0.03 | 94.43 220 86400 0.00
100.00 | nw04 0.01 350 86400 99.67 | 41.29 439 86400 99.19 | 78.46 343 86400 17.89
87.42 | p0033 87.42 135 37162 0.00 | 82.26 39 86400 0.00 | 83.13 140 65633 0.00
74.93 | p0201 0.07 513 36 36.66 | 66.95 136 86400 0.10 | 70.83 151 86400 0.04
99.99 | p0282 99.51 117 86400 0.19 | 98.69 131 86400 0.00 | 98.32 119 86400 0.00
99.42 | p0548 0.00 6407 47069 1.17 | 92.90 337 86400 0.01 | 95.14 343 86400 0.00
99.90 | p2756 0.00 5771 86400 1.78 | 83.88 258 86400 0.06 | 88.31 419 86400 0.05
0.00 | pki 0.00 6328 86400 0.26 0.00 341 86400 0.00 0.00 356 86400 0.00
97.03 | pp08a 97.01 136 86400 0.04 | 97.03 184 86400 0.00 | 97.05 168 86400 0.00
95.81 | pp08aCUTS | 95.78 160 86400 0.18 | 95.68 152 86400 0.00 | 95.81 155 86400 0.00
77.51 | qiu 78.05 330 86400 3.00 | 78.04 345 86400 2.61 | 78.02 307 86400 0.82
100.00 | gnet1 0.03 570 784 70.89 | 70.90 246 86400 0.18 | 100.00 299 11525 0.23
100.00 | gnet1_o 0.04 436 275 33.92 | 95.29 261 86400 0.01 | 100.00 247 73048 0.01
23.40 | rentacar 28.62 319 27635 9.92 | 32.62 256 69737 7.7 9.46 198 10352 22.90
100.00 | rgn 100.00 474 69983 0.18 | T74.11 142 86400 0.00 | 74.64 194 86400 0.00
70.70 | rout 0.00 3860 86400 5.07 | 43.45 223 86400 0.29 | 60.81 246 86400 0.23
89.74 | setich 0.16 514 86400 2.32 | 89.76 421 51807 0.00 | 89.75 230 58286 0.00
61.52 | seymour 0.00 3428 86400 41.11 0.03 350 86400 22.90 | 16.49 179 86400 12.36
0.00 | stein27 0.00 255 15471 0.00 0.00 213 11433 0.00 0.00 182 6474 0.01
0.00 | stein45 0.00 4499 86400 0.41 0.00 2595 86400 0.34 0.00 3850 86400 0.32
33.93 | swath 0.00 5782 86400 68.18 | 10.19 264 86400 8.55 | 31.78 249 86400 2.13
100.00 | vpm1 100.00 262 65472 0.04 | 95.69 161 86400 0.00 | 100.00 435 790 0.24
81.05 | vpm2 81.37 220 86400 0.04 | 81.17 188 86400 0.00 | 81.38 206 86400 0.00
75.17 | average 36.99 1352 60246 21.54 | 60.17 348 68104 10.58 | 65.60 343 60771 8.01

Table 3: Gap closed for the (i) full split closure, (ii) sparse split cuts only, and (ii) sparse
+1 split cuts only.

Arbitrary
disjunctions

Sparse
disjunctions

Sparse
disjunctions
with {-1,1}
coefficients

0.0 0.2 0.4 0.6 0.8 1.0
Density of cuts

Figure 3: Distribution of cut densities with different experimental settings.

OII III

ofo 03 %0 0 ofo
< o ot %"/“A ECH

relative gap closed

= = N
o [$)] o

number of instances

[&)]

Qc/o 600/

Figure 4: Distribution of gap closed with time limit of one week.

4.2.3 Third experiment: How does structured sparsity help?

Problem-specific DB-k forms provide a natural way to exploit sparsity. The potential advan-
tages of generating split disjunctions whose support lies entirely within individual blocks
are to produce split cuts that are both sparse and mutually orthogonal—two vital charac-
teristics that make a cut effective. Moreover, working with small blocks in a DB-k decom-
position may potentially reduce the computational time required to find a violated cut. On
the other hand, restricting ourselves to such a narrow class of cuts can result in a much
weaker cut family. The experiments in this section were designed to try and quantify these
tradeoffs.

We use GCG 2.1.1 [24] as a black-box tool to generate the required DB-k forms on MI-

PLIB 3.0 instances, and then implement our model with the additional structure con-
straint (Con3) on the disjunctions, as described in Section 3. Furthermore, for comparison
purposes,

e we have kept the sparsity parameter M = 10 and coefficient bound U = 1 on split
disjunctions;

e for each instance with a given decomposition, we adhered to that decomposition in
all iterations, i.e., we didn’t change the structural requirement on disjunctions from
one iteration to another;

e we ignored all linking constraints and linking variables by setting the corresponding
multipliers to zero;

e the time limit was set to one week.

Table 4 shows the final gap closed by restricting split disjunctions with the structures given
by DB-k forms for k = 2,3,4,5 (GAPE). The first four columns of Table 4 are the result from
previous section, with the same one week time limit, obtained by using disjunctions with
M =10 and U = 1 but no structure constraint (GAPnodb). The last column represents
the highest gap closed between all DB-k forms. We removed from the table three instances
where the gap closed without DB-k was zero (pkl,stein27,steind5) and eight instances
where no DB-k form was found for any k € {2,3,4,5} (air03, cap6000, mas74, mas76,
mod008, nw04, p0033, rentacar).

Note that the set of split cuts we used to obtain the results on Table 4 is extremely re-
strictive: (i) the corresponding disjunctions have at most 10 nonzero coefficients which are
either 1 or -1, and (ii) the cuts are obtained by aggregating only rows and columns that
belong to a single block in a DB-k form. Despite being so selective, these cuts close a signif-
icant amount of gap in most cases. In fact, of the 49 instances left, the average gap closed
without DB-k is 75% and the best gap closed among all DB-k is 58%.

While the above averages already indicate that the disadvantage of using DB-k forms does
not seem to be too big in terms of gap closed, it seems that using DB-k decompositions
may not always pay off. To try and discard bad decompositions, we filtered the results in
Table 4. The results are summarized in Figure 5. For a given DB-k decomposition and a
value of p, we first removed from the DB-k results the ones obtained from a decomposition
where either the percentage of linking constraints or variables were above p percent. Then,
for each remaining instance, we computed the relative gap closed (RGAP) as:

GAPE

- AP
GAPnodb (RGAP)

The following statistics are shown in Figure 5 for the instances remaining after filter-
ing:

"A[uo y-gq 1oy sand ds [

osreds 103 pue ‘ernsop j1ds [y oYy 10y pesopo dery F o[qr],

€189 | 86'C 8'GC €LT GCLy | 6LC P8¢ ¢E ¢89y | eT'e 94'TE @t €109 | €1°C 80°LE ¥9C 8€TS | 06'¢ 8868 TLE GEaL ofetoae
¢reL | 280 100 €LT L€°99 | 6970 200 @8 LLVS 01°0 £Vl ceeL | €00 ¥9°0 0¢T ¢reL | 000 16€°7€ 16T 9€°18 cuda
818L | 00T 000 06 crey | 890 100 68 oave 000 901 aave | 870 S0°0 0Lz 8T'8L | 120 all] 667 00°00T Tuda
9881 | 00°0€ 100 L8 8¢ | 09°€C 100 78 8’11 700 76 8991 | €69 60°0 18 98'8T | L¥0 00°89T 9.T 6T°€E Yaens
0209 | 8T'7¢ 00891 026 €L°8¢ | 09T 00"89T 808 0z°09 00"89T 69€ 697¢ | L0'TC 00°89T 867 €97y | 99'LT 00"89T 676 96°L% anoufes
€L°68 | 6L°0 80°0 LT¥ €L°68 | 99°0 170 907 €L68 0€°0 ¥8¢ €L'68 | 90 0€°0 61€ €L°68 | 100 64'8 947 GL68 yotaes
7969 | 1T°0 ¥1I9¢ L0V 7969 | 210 86°LT 16€ 7E0r 126 L9V ey | 010 96 08¢ 6717 | L00 00891 692 789 anox
0689 | VN VN VN VN 9¢°¢ 00°0 9¢T 8E"8E 100 70T 86'Ly | 000 0L°8T €9 0€'89 | 0070 0Z'8L 48T C9TL udx
96°0¢ | 000 000 9 960 | N®N 00°0 9 96°0¢ 00°0 L 96'0¢ | N®N 000 L 96'0¢ | €0°0 18'8 992 00°00T 0~739ub
@we 100 8770 L2 16°1 000 ¢re 0g 8¢°C 881 €C LLT 000 8L°1 149 e ¢1'o oy L0€ 007001 130ub
60°8L | 000 1o 0 000 9¢°0 09°LE 97 60°8L L6°0 0 000 1o 00°89T €6€ 608L | LT'0 00°89T TLl& 60°8L ntb
9€°€6 | 60°C 00 981 PI68 | 97’1 €00 69T 9€°€6 ¥0°0 8LT G876 | 9¢°0 10 06T ¢6'c6 | 0070 ¥eor G61 18°66 | s1noegodd
79'66 | 06°T 100 961 02°%6 | S0'T 100 16T 14746 100 L61T 9T'%6 | 90°0 10 €8T 29°%6 | 000 LTy 981 ¥0°L6 egodd
8698 | 700 9L (41 06°¢8 | 1070 cE'Ce 689 w678 L1692 809 €L'98 | 100 arle 9vp 8698 | 100 0€°69T L1¢ GT68 9g.2d
2006 | 000 GT'ZET ot 088 | 0070 0089T <6C 2006 00°89T 162 2968 | 000 8L°L9T 8LT 7768 | 000 00°89T 9€€ L2796 87g0d
88°€8 | 1L°0 000 G€ L8°€8 | 000 00°0 0T T 100 49 88'€8 | 2E'0 €00 19 9¢'€ 00°0 £€C°€CT 611 <v'86 zgzod
8€VS | NBN 000 0 000 NEN 000 0 00°0 611 ¢l 000¢ | 000 60°TL 98 8€VS | 100 00891 €11 09 1L 1020d
L2726 | 69°0 €00 1et TC°€8 | €670 80°0 171 6968 all] L2t 1618 | 70°0 [aa vl L1826 | 000 161 12 V76 qot18pou
LLT6 | 00T 00°89T PIIT GT°L8 | L0T 00°89T 62ET T7'88 6€°26T Teet LLT6 | €670 00°89T OTTT €988 | €970 00°89T 6TTT 96778 T10POW
00°0 VN VN VN VN VN VN VN VN VN VN VN 000 6€'T 0 000 68'C ¢eTT 6C€ 00°00T OTQpOU
0T°€L | 9T°0 00891 10% 0T°€L | 9T°0 00891 029 7669 00891 ¢I¥ G089 | €0 00891 8L¥ Y189 | €0'1 00891 0611 09°99 oxqu
0L08 | 9T'T 00°89T LTSy €9°8L | 9T'T 00'89T 8FCL 1708 00°89T 9092 FL6L | 190 00°89T TLEE P87 | LT0 00°89T 9681 766 aI3Tw
o VN VN VN VN NEN 00°0 0 00°0 00°0 0 000 L9°0 ¥€0 P11 o 00 CELVT €TE c0°¢T L0osTU
L8726 | 68'8 000 8¢ L8°L6 | 00°0T 00°0 0g rIL 00°0 62 g9z | L9TT 000 i 8T'16 | SEFT €00 781 00°00T 90osTW
00°0 NeN 000 0 000 NEN 00°0 0 00°0 000 0 000 NEN 000 9 000 100 8T°GT 11T ¥ie €0o8TU
88°2¢ | 000 000 g ey 000 00°0 9 8G°8€E 000 i L86T | 160 00°0 €L 882G | 000 0g°Ls LL jtag nasT
L9°0 VN VN VN VN VN VN VN VN VN VN VN ¥0°0 et 1c 280 8¢'0 00'89T 0LT 89°¢Y ARTZSTT
ELLL | GTTT 000 8€ €LLL | 96T 100 8€ ELLL 000 8€ €LLL | 8T'T 000 8¢ LLL | QLT €10 89¢ 00°00T | 082S09ux
000 NEN 000 0 000 000 000 0 00°0 000 0 000 000 000 0 000 00 orLe LLT 897V gdxey
00°0 00°0 000 0 00°0 00°0 00°0 0 00°0 00°0 0 000 000 00°0 0 00°0 00°0 T7°¢T @81 10726 z18
9656 | 90°0 LE'T ove LL6¢ | 200 GE'C 791 ¥gor | 000 66'TL T6T G6'96 | T0°0 9€'9¢ 08T 98'¢6 | 100 19'89 G6T <096 o~gese8
¥6°96 | 10°0 LTer Lt ¥6'66 | 10°0 06°€S 69¢ ¥6°96 | 10°0 ve'Le Ve 9866 | 100 L1861 L¥T 7666 | 100 90y ¢Ec €096 gesod
L9'8¢ | T0°0 0811 PET 798¢ | 100 70°¢ €81 G9°8¢ | 000 97°0c 0T 99°8¢ | 000 09T 80T 98¢ | 100 00°89T 9€T Lv'L6 0gesed
L9766 | TOO <6 vl L6T L1966 | T0'0 LTCT V6 0966 | 60°0 8T 69T 9466 | €0°0 0991 TLT L1966 | T0°0 €9°T6 80T 86°66 gesas
02°00T | 8€'8 700 89¥ 0Z°00T | CT'€T €00 prés 02°00T | S0'¢ 80°0 86 02°00T | 2L'C ¢1'o 8¢ 02°00T | L6'¢ 80°0 V87 02°00T ue3
91°06 | 000 000 ¥ €8¢ | 0070 00°0 4 0L 000 000 €1 €099 | 000 000 o1 9106 | €€°€¢ 00°0 €01 00°00T 1d8n13
7968 | 90°€ 00 (484 678 | €970 [y P16 98 | 617 100 64¢ €728 | 900 €T 00€ F79°¢8 | 000 LT799T 69€ L8°66 91oUXTY
TL¢L | 10°0 £6'6 49 68°¢T | 0070 09°¢¢ 86 eeve | 000 FS6ET 88T TLeL | 1070 00°89T 6T 9L°29 | 100 00"89T 62C 89°9L I9QT3
000 VN VN VN VN VN VN VN VN VN VN VN VN 000 100 0 000 61°€S 00891 €1€ 9LV L0§03s®e3
€976 | 2cT 000 L8 creE6 | €6€ 00°0 171 GL68 | 007 000 901 0226 | L90 100 PIT €976 | €C0 L0°0 9LT 00°00T anoge
98°€6 | T0°0 ¥e'e ST1 LYY | P00 16'C 67T 90°9L | T0°0 0901 €97 88°€L | T0°0 9¢°€l ¥0T 98°€6 | 60°0 €8¢ 662 G866 T3Tnuwop
£€6°0 0€'8¢ €00 19 0L°0 06’7 <10 09 o 68'¢ 1€°0 LS 6.0 ¥9°0 18°C €9 £€6'0 10°T 00"89T 86€ 06 Jutouep
€€°0 €661 00891 L0€ 160 06°8¢ 00891 0G€& €€°0 08'8¢ 00891 0.2 20 L1°62 00891 11T fealll 8991 00°89T 6£< 62°0 drugouep
6L°6T | 000 000 48 6L°6T | 0070 00°0 LT L6T | 00°¢ 000 a1 6L6T | ST'T 00°0 91 6L°6T | CT0 87°0 €6 ¥9°er cpuelq
¥6°'16 | SC'T 000 89 €898 | 8€0 100 LL L2978 | L6°0 10°0 6L ¥6'16 | LT°0 €00 SL 0L°T6 | 90°0 67°0 991 L9°26 STTeq
¥LOL | 00°¢ 000 99 99°0L | 00°0T 000 09 yLOL | 00°¢ 000 09 cL0L | 00¢ 000 GL VLOL | LEO ¥1°0 8€1 667L BETTRQ
0L°ge | 09°0 L0% 961 1€CE | 90 L 6ST 0€°2e | 800 69°€9 cge 99¢E | ¥1°0 0€°0T LST 0Lge | 110 00891 12€ 9507 T00THIR
00°0 VN VN VN VN VN VN VN VN VN VN VN VN 000 290 0 00°0 6E'8T 00°89T 18T 9€°€9 g0IT®
roe | VN VN VN VN VN VN VN VN VN VN VN VN 9V'aT ey ¥ET aroe | eTLE 0089T 199 0,26 voIte
00°00T | 08T 00891 ¢6cl 00°00T | €8T 00891 @81 00°00T | 99°¢ 00891 90LT 00001 | 28°€ 00891 9L9T 00°00T | 8C'FT 00891 6LTT G€°96 swes1QT]
(y-ga) | Sunpowp () Surpurq pasop | Sunpotp (1) Surpurq pesop | Sunpop (1) Supuiq pasop | Sunporp (1) Surpurq pesop | Sunpop (1) Surpurq posop

de8 owny o, owt S0 # den owny owr, smo # den owr awt, s # den) owry o, oun], smo # den awr %, awr], s # den Qoueysuy
3sog g-aa 7-aa ¢-aa z-aa 3§-6a MO

T30 T 40 T 60 80 100”7 T30 40 T 60 80 1060”
(c) k=4 (d) k=5
RGAP
100% ~—
50%F -

(e) best

Figure 5: Distribution of relative gap closed for DB-k forms for several values of p

Average (bold line)
10-th percentile (dashed line)
Median (solid line)

25-75th percentile (shaded region)

Note that, while in principle (RGAP) should be always at most 100%, due to time limits,
it is possible that the result from (GAPnodb) is not as high as it should be, resulting
in (RGAP) above 100%. The results in Figure 5 show that eliminating DB-k forms with
a high number of linking variables or constraints is indeed a good indicator to filter out

results where split cuts from DB-k form do not close too much gap.

The above results show that the gap loss is not too big when restricting ourselves to split
cuts from DB-k form. We now try to understand how structured sparsity helps to produce
more effective cuts. Table 5 shows the average support size in the first 100 disjunctions (of
a given type) obtained by our implementation, and the corresponding average cut density,
for instances 10teams, mkc, and seymour. We picked 10teams as an extreme example
where, without utilizing a DB-2 structure, highly sparse disjunctions (8.9 nonzero entries,
which accounts for only 5% of the 1800 integer variables) have produced almost completely
dense cuts. Instance mkc and seymour were picked because they represent reasonably large
instances that are also in MIPLIB 2003. We observe that, as expected, exploiting the DB-2
structure yields sparser cuts. Furthermore, the last row of Table 5 shows that disjunctions
with arbitrarily many nonzero entries that are much denser still lead to sparse cuts when
exploiting problem structure.

In Figure 6 we compare the distributions of average cut densities on the 40 MIPLIB 3.0
instances whose DB-2 forms have at most 50% linking variables or constraints. We picked
DB-2 as a candidate for comparison because this is the simplest DB-k decompostion, having
just 2 blocks. Other decompositions that contain more blocks all demonstrate a similar
pattern. The 50% threshold was applied so that instances whose DB-k forms have a high
number of linking variables or constraints are excluded from comparison. As discussed
earlier, split cuts based on these decompositions are unlikely to close much gap, regardless
of how sparse they are. The cut densities in category “Sparse disjunctions with {-1,1}
coefficients” are computed based on the cuts obtained in the previous section, and the cut
densities under “Structured sparse disjunctions” are computed based on the results with
DB-2 forms. As seen in Figure 6, block structures lead to the sparsest cuts: Even comparing
with the disjunctions (M = 10,U = 1) that previously led to the sparsest cuts, it further
decreased the median of cut densities from 0.051 to 0.037, and the 75 percentile from 0.103
to 0.052.

Finally, we illustrate one more potential advantage of using split cuts based on DB-k forms.
Figure 7 shows the evolution of the average gap closed in terms of runtime of our cut
procedure and in terms of number of cuts added in our cut procedure. It can be seen that
the split cuts obtained by using DB-k forms converge faster to a gap closer to the final gap
both in terms of time (Figure 7a) and in terms of number of cuts (Figure 7c). The gain
in terms of time is even more pronounced if we focus on large instances, that is, instances
with at least 1000 variables, among which at least 50 are integer (Figure 7b). The grey
lines labelled “DB-k*” in Figure 7 represent the average gap closed had we chosen for each
instance the DB-k form that closes the most gap after adding up to 500 cuts. While it
is hard to completely attribute these gains to a few factors only, we note that the most
apparent difference between these cuts and those generated earlier is their higher degree of
both sparsity and orthogonality.

Instance | Disjunction type Average support size Average cut density
of disjunctions (#) (%)

10teams | M =10, U =1 8.9 95.6

10teams | M =10, U =1, with DB-2 8.3 63.9

mkc M=10,U=1 9.8 13.0

mkc M =10, U =1, with DB-2 9.6 3.6

seymour | M =10, U =1 9.4 9.1

seymour | M =10, U = 1, with DB-2 8.6 4.4

seymour | M = 400, U =1, with DB-2 206.7 9.0

Gap closed

Sparse
disjunctions
with {-1,1}
coefficients

Structured
sparse
disjunctions
with {-1,1}
coefficients

Table 5: Disjunction and cut density for three example instances.

0.00 0.05 0.10 0.15

Density of cuts

0.20

Figure 6: Distribution of cut densities for DB-2

0 50

150 200

Time (s)

(a) Average gap closed over time

30

N
8

Gap closed

[) 50 100 150 200
Time (s)

(b) Average gap closed over
time for large instances

Gap closed

0 500 1000 1500
Number of cuts

2000

----- DB-2
,,,,,,, DB-3
+= DB-4
——-DB5
DBk

(c) Average gap closed per cuts

added

Figure 7: Evolution of average gap closed

4.2.4 Results on MIPLIB 2003 instances

Our final set of experiments was to run our code on larger instances than were previously
available in the literature. For this purpose, we ran our code on MIPLIB 2003 [1] instances.
However, since these instances are typically larger than the ones available in MIPLIB 3.0,
we were able to run our code only using the parameters M = 10 and U = 1 and imposing a
time limit of two weeks. Table 6 shows the results for those instances that are in MIPLIB
2003 but not in MIPLIB 3.0. Since there are no previous split closure numbers for those
instances, we compare against the lift-and-project results of Bonami [12]. Compared to lift-
and-project, significantly more gap can still be closed with the split closure approximation
that does not exploit DB-k structure. Also, note that, even though the average results for DB-
k based cuts are not as good, there are some instances where these results are significantly
better than any of the other approaches, closing as much as 100% of the gap.

5 Conclusion

The main motivation for this work was to search for subsets of split cuts with promising
computational properties. Our approach was to develop a tool that can empirically answer
the following question: How much can we restrict the set of split cuts that we separate over,
while retaining enough of the strength of the first split closure? While our tool is rather
general (it can be seen as a continuation to Balas and Saxena’s separation algorithm [6]),
the specific restrictions that we explore aim at two desirable characteristics: First, we
want sparse cuts, because they are beneficial to the linear algebra that underlies MIP
solution methods. Secondly, we want cuts that are computed from different parts of the
constraint matrix, and involve varied subsets of the variables. The latter point corresponds
to generating cuts that are (approximately) mutually orthogonal, to as high a degree as
possible, and it has been observed [6,23] to be favorable in getting tighter relaxations with
fewer cuts.

Our experiments show that explicitly enforcing sparsity of the split disjunctions, and bound-
ing the magnitude of their coefficients, yields one such promising family of split cuts. We
observe that the resulting cuts themselves are sparse too, which was expected but not a pri-
ori obvious. More surprisingly, even in an extreme setting where we only allow 10 nonzero
disjunction coefficients with values 1, we obtain cuts that are 91% as effective as all split
cuts together (in terms of gap closed, and compared to the best known results for the split
closure [6,17]). Note, for context, that were we to only allow one nonzero coefficient, we
would obtain the lift-and-project closure of Balas, Ceria and Cornuéjols [4].

Next, in the same spirit of restricting the split disjunctions available to us, we exploit
problem structure to impose static constraints on how cuts are generated. Specifically, we

'se0TR)SUT £00ZATTJTIN W posop dey) :9 d[qer,

L67E | €8T PO'91IT 6EF 9L°6C | €761 V8611 OFF TC0g | €7LT 0L°8€T 08¢ 89°0€ | 0T'LT €0°9€T _ 96€ 8€'1E | G€°91 €1°99¢ 119 £98p afewae | gy oy 06'1€
0968 | €270 qLo @69 078 | 6270 7970 619 1098 | 900 aLe 669 09%8 | S0°0 66°¢ 9.9 0968 | T0°0 G6°0¢ 089 G0°88 0E-CT23 | 2179 [ang]
6€°9S | 100 [0Lz or'1e | 100 v09z LT 6’1 | 100 veee LT ¥Zov | 200 86T L6T 6€'¢S | T0°0 Fr'EsT 0€F L9778 ¢qeawWes | 8T°0F 8602
1L7G | 20 200 €81 L1768 | 100 94T 841 S0¥E | 100 STV 14T 9407 | 000 FEET 69T 1L7¢ | 100 L€c 99T 0198 TaRIWTY | GPEF 6692
9Ly | 8¢'T 00°9€€ 192 6'¢c | OV'T 00°9€¢ 8TE TrTY | CTT 00'9e€ G9€ VTP | 6T 00°9¢¢ 0TF LY | FE0 00'9¢€ €69 F0°¢9 Te.6ds | 166G 902
VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN 160 c0' 16T 109 06°L€ 000ETTOT | 06°CE 1691
VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN VN (4} 692c €0T 000 1g-0sn1da-p2 | 000 000

891 £0°5T 00°9€€ S8TIT 621 Lyee 00°9¢€ €L21 611 €762 00°9¢€ O€TT T 09°62 00°9¢€ <cotr 891 867C 00'9¢€ TL1T wie prozaoxd | €801 62701
000 000 000 0 000 000 000 0 000 000 000 0 000 000 100 0 000 o 00'9¢€ L8€ 68°F L1z1ado | 297 61°0

8019 | 800 00°9€€ 8.8 1967 | 0T°0 0079€¢€ L06 28'Te | 900 00'9¢e €78 Gz'0g | 60°0 00°9€e LS0T 80°T9 | 0T°0 00'9¢€ SL0T 8€°¢9 *dT-pURISU | 60"LL 88'0¢
199 96°¢¢ 00°9¢¢ T¥L LLG 19°8¢ 00°9¢¢ 829 67 @QTE 00'9¢¢ TL9 199 T0Le 00°9¢¢ €7% 8T | L80F 00'9¢¢ 798 167G T8 | 1L'TT €Lee
€L°T6 | 97°08 00°9€€ 128 ST'16 | 98°T8 00°9€€ 6EL 66'TL | 66°98 00'9¢€ €87 ELT6 | TLF8 00°9¢€ 00F TTEY | TLLL 00'9¢€¢ T19 26°6L Zgpazzu | 00°00T €LL8
L1799 | 80°68 00°9¢¢ 209 L1799 | 09798 00°9¢¢ L8% 9999 | 1878 00'9¢¢ 9¢F ELLG | TTE8 00°9¢¢ 79€ oy | 0T8L 00°9¢€ GE€9 TIazzu | 00001 Ly'9¢
000 L'LE V6T 0 00°0 or'1e 08'T 0 00°0 00'% ¥eT 0 000 000 87’1 0 000 00°0 2070 00°0 dr-ggosu | ¢9'FF

6L | 9L°99 qeee €eg T6LT | TFT9 19708 8LV 69'Le | 101G 9Tey 8Lt 07T | €204 qgge 00g 89T | 8979 00'9¢€ 89°69 guniusuow | p'Ty

& | Ve 00°9€¢ OF¢ £€87€ | 98°9L 00°9¢€ L8P 90°LE | 9T'CL 00'9¢€ LT€ 1682 | €97¢ 00°9g¢ 89% TTIV | 296¢ 00'9¢€ 9L°0% Tuniuswom | CT°GH

00°00T | 62°0 ¥O¥E 96LT 00°00T | ¥2°0 0629 L61 00°00T | €T°0 00°9¢€ €191 Lg'88 1 9070 00°9¢€ €181 ¥8°96 | €070 00'9¢€ 0828 TgeuuRl | YN

000 120 120 18 000 00°T 00 L9 000 @1 STo 78 000 €0 920 0L 000 o prad 000 pSSeI8 | €10

VN VN VN VN VN VN VN N VN VN VN VN VN VN VN VN VN G6L 00°9¢€ 0070 dr-esuerae | 121

000 000 0070 0 000 000 faqy 0 000 000 900 0 000 000 160 0 000 €00 00'9¢¢ ¢€€ 942 Q07HOTI® | LY'GE

£€re 000 0070 0 000 000 00 0 000 000 <00 0 000 000 190 6T Ve 0070 00'9¢€ <¥e 6069 BOENOTI® | LT'EV

G996 | 610 S8T'6T 889 6988 | 80°0 18°68 689 G806 | €0°0 0¢'LVT 679 G9°06_| €0°0 8066 089 Ge9T6 | €070 00°9¢¢ 86€ FEE6 TSTOT® | 9L8L

(y-ga) | Surparp (1) Supuq pesop | Sunperp (1) Surpuiq pesop | Sunpep (1) Sutpurq pesop | Sunpeyp (1) Suipuiq pasop | Surpetp (1) Surpurq pasop lz1]

ded omny 3 eump s # den oumy 9, duiy, SIMD den oumy o, Py, SIMI den aury oury, so # den aumy 95 eury, SIND deny aoueysuy | ded

1s0g ¢-ad fi: £-4a 2 Y-80 MoyIN d3T 0S| a3

start by computing block decompositions of our problems. Then, we force our split cut
generator to use, for each cut, only constraints and variables from a single block. In a
second series of experiments, we test this approach with arrowhead decompositions [8,24]
of the constraint matrices, while keeping the same limitations on the disjunctions as before.
In this even more restricted setting, we observe a significant degradation of the average gap
closure. However, we demonstrate that it is easy to determine a priori which instances will
benefit from block decompositions, and which will not. With a very simple rule based on
the number the linking constraints and variables, we are able to isolate the instances that
are most suited for this technique. By using decompositions only when appropriate, we get
a subset of instances on which, due to time limits, we close even more gap than without
decomposition. Moreover, as a general rule, we observe that this setting lets us cut much
more gap per cut on average. We attribute this desirable feature to the orthogonality of
the cuts generated.

Overall, our results suggest that there exist small subsets of split cuts that exhibit advan-
tageous properties, and that are yet to be exploited.

References

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Operations
Research Letters, 34(4):361-372, 2006.

[2] Kent Andersen and Robert Weismantel. Zero-coefficient cuts. In Friedrich Eisenbrand
and F. Bruce Shepherd, editors, Integer Programming and Combinatorial Optimization,
pages 57-70, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[3] C. Aykanat, A. Pinar, and U. Catalyiirek. Permuting sparse rectangular matrices into
block-diagonal form. SIAM Journal on Scientific Computing, 25(6):1860-1879, 2004.

[4] Egon Balas, Sebastian Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Mathematical Programming, 58(1-3):295-324, 1993.

[5] Egon Balas, Sebastian Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-
and-project in a branch-and-cut framework. Management Science, 42(9):1229-1246,
1996.

[6] Egon Balas and Anureet Saxena. Optimizing over the split closure. Mathematical
Programming, 113(2):219-240, 2008.

[7] Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and Francois Margot. On the
relative strength of split, triangle and quadrilateral cuts. Mathematical Programming,
126(2):281-314, 2011.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E. Liibbecke,
Enrico Malaguti, and Emiliano Traversi. Automatic Dantzig-Wolfe reformulation of
mixed integer programs. Mathematical Programming, 149(1):391-424, 2015.

Robert E. Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, pages 107-121, 2012.

Robert E. Bixby, Sebastidn Ceria, Cassandra M. McZeal, and Martin W. P Savels-
bergh. An updated mixed integer programming library: MIPLIB 3.0. Optima, (58):12—
15, June 1998.

Robert E. Bixby and Edward Rothberg. Progress in computational mixed integer pro-
gramming - a look back from the other side of the tipping point. Annals of Operations
Research, 149(02):37-41, 2007.

Pierre Bonami. On optimizing over lift-and-project closures. Mathematical Program-
ming Computation, 4(2):151-179, 2012.

Pierre Bonami, Gérard Cornuéjols, Sanjeeb Dash, Matteo Fischetti, and Andrea Lodi.
Projected Chvatal-Gomory cuts for mixed integer linear programs. Mathematical Pro-
gramming, 113(2):241-257, 2008.

Alberto Caprara and Adam N. Letchford. On the separation of split cuts and related
inequalities. Mathematical Programming, 94(2):279-294, Jan 2003.

William J. Cook, Ravi Kannan, and Alexander Schrijver. Chvétal closures for mixed
integer programs. Mathematical Programming, 47:155-174, 1990.

Geérard Cornuéjols and Giacomo Nannicini. Practical strategies for generating rank-1
split cuts in mixed-integer linear programming. Mathematical Programming Compu-
tation, 3(4):281-318, 2011.

Sanjeeb Dash, Oktay Giinliikk, and Andrea Lodi. MIR closures of polyhedral sets.
Mathematical Programming, 121(1):33-60, 2010.

Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with
sparse inequalities. Mathematical Programming, 154(1):329-352, 2015.

Santanu S. Dey, Marco Molinaro, and Qianyi Wang. Analysis of sparse cutting planes
for sparse MILPs with applications to stochastic MILPs. Mathematics of Operations
Research, 43(1):304-332, 2018.

Matteo Fischetti and Andrea Lodi. Optimizing over the first Chvatal closure. Mathe-
matical Programming, 110(1):3-20, 2007.

Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. On the separation of disjunc-
tive cuts. Mathematical Programming, 128(1):205-230, 2011.

[22]

23]

[24]

[25]

[26]

[27]

Matteo Fischetti and Domenico Salvagnin. A relax-and-cut framework for Gomory
mixed-integer cuts. Mathematical Programming Computation, 3(2):79-102, 2011.

Matteo Fischetti and Domenico Salvagnin. Approximating the split closure. INFORMS
Journal on Computing, 25(4):808-819, 2013.

Gerald Gamrath and Marco E. Liibbecke. Experiments with a generic dantzig-wolfe
decomposition for integer programs. In Paola Festa, editor, Experimental Algorithms,
pages 239252, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Stefty,
and Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103—
163, 2011.

Uwe . Suhl and Leena M. Suhl. Computing sparse LU factorizations for large-scale
linear programming bases. ORSA Journal on Computing, 2(4):325-335, 1990.

Matthias Walter. Sparsity of lift-and-project cutting planes. In Stefan Helber, Michael
Breitner, Daniel Résch, Cornelia Schén, Johann-Matthias Graf von der Schulenburg,
Philipp Sibbertsen, Marc Steinbach, Stefan Weber, and Anja Wolter, editors, Op-
erations Research Proceedings 2012, pages 9-14, Cham, 2014. Springer International
Publishing.

