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Abstract

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the

cost-optimal delivery of a single product to geographically dispersed customers through a fleet

of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the cus-

tomer demands are deterministic, we model the demands as a random vector whose distribution

is only known to belong to an ambiguity set. We then require the delivery schedule to be feasi-

ble with a probability of at least 1 − ε, where ε characterizes the risk tolerance of the decision

maker. We show that the emerging distributionally robust CVRP can be solved with standard

branch-and-cut algorithms whenever the ambiguity set satisfies a subadditivity condition. We

then argue that this subadditivity condition holds for a large class of moment ambiguity sets.

We derive cut generation schemes for ambiguity sets that specify the support as well as (bounds

on) the first and second moments of the customer demands. Our numerical results indicate that

the distributionally robust CVRP has favorable scaling properties and can often be solved in

runtimes comparable to those of the deterministic CVRP.

Keywords: vehicle routing, distributionally robust optimization, chance constraints.

1 Introduction

A fundamental problem in logistics concerns the cost-optimal delivery of a product from a depot to a

set of geographically dispersed customers through a number of capacity-constrained vehicles. This
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problem, which is known as the capacitated vehicle routing problem (CVRP), has been studied

since the 1950s (Dantzig and Ramser, 1959), and it has found wide-spread application in waste

collection, dial-a-ride services, courier delivery and the routing of snow plow trucks, school buses

as well as maintenance engineers. For a review of the vast literature on the CVRP, we refer the

reader to Cordeau et al. (2006), Golden et al. (2008), Laporte (2009) and Toth and Vigo (2014).

The classical CVRP assumes that the customer demands are known precisely. This assumption

is frequently violated in pickup problems such as residential waste collection, where the amount of

waste to be collected is only known when the vehicle has arrived at an individual household. Perhaps

surprisingly, customer demands are also often uncertain in delivery problems. Internet retailers,

online groceries and delivery companies tend to use simplified models to estimate the vehicle space

consumed by each customer order (which can itself consist of multiple heterogeneous products).

The cumulative space consumed by all customer orders assigned to a vehicle thus becomes an

uncertain quantity which depends on the shapes of the involved products, the employed stacking

configuration, operational loading constraints as well as the packing skills of the staff involved.

The CVRP with uncertain customer demands is typically solved as a two-stage stochastic

program or as a chance constrained program (Gendreau et al., 1996; Cordeau et al., 2006; Toth

and Vigo, 2014). In the two-stage version, a tentative delivery schedule is selected here-and-now,

that is, before the uncertain customer demands are known, and the routes can be modified through

a recourse decision once the customer demands have been observed (e.g., penalty payments for

unsatisfied demands, Stewart and Golden 1983, detours to the depot, Dror and Trudeau 1986

and Bertsimas and Simchi-Levi 1996, or preventative restocking, Yang et al. 2000). The chance

constrained CVRP, which we focus on in this paper, does not allow for any modification of the

selected vehicles routes. Instead, it requires the vehicle routes to be feasible with a high, pre-

specified probability. While being more restrictive than the two-stage model, the chance constrained

CVRP can lead to simpler optimization problems, and it may be favored due to its planning stability.

Although the chance constrained CVRP reduces to a deterministic CVRP in special cases, e.g,

when the demands are independent and identically distributed (Golden and Yee, 1979; Dror et al.,

1993), the problem is typically solved with tailored branch-and-cut methods (Laporte et al., 1992).

The vast majority of exact solution methods for the chance constrained CVRP assume that the

customer demands are independent. A notable exception is Dinh et al. (2017), who develop a
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branch-and-cut-and-price scheme for the chance constrained CVRP under the assumption that the

customer demands follow either a joint normal distribution or a given discrete distribution.

Despite its conceptual simplicity and its intuitive appeal, the chance constrained CVRP suffers

from several statistical and computational shortcomings that may have contributed to its limited

adoption in practice. First and foremost, the assumption of independent customer demands is likely

to be violated in practice, and it can lead to severe misjudgment of the probability of satisfying a

vehicle’s capacity. Secondly, verifying whether a vehicle’s capacity is met with high probability—a

fundamental building block in exact solution methods for the CVRP—is itself typically a hard

optimization problem. Finally, an unrealistically large amount of demand data may be required to

estimate the probability distribution governing the customer demands with sufficient accuracy. We

will revisit these points in further detail in Section 2 of this paper.

The aforementioned shortcomings of the chance constrained CVRP can to some degree be

addressed by the robust CVRP, which abandons probability distributions and instead requires the

vehicle routes to be feasible for all customer demands within a pre-specified uncertainty set (e.g., a

box, polyhedron or ellipsoid). Branch-and-cut schemes for the exact solution of the robust CVRP

have been proposed by Sungur and Ordonez (2008) and Gounaris et al. (2013). The robust CVRP

is amenable to solution schemes that appear to scale better than those for the chance constrained

CVRP. However, the solutions obtained from the robust CVRP can be overly conservative since

all demand scenarios within the uncertainty set are treated as equally likely, and the routes are

selected solely in view of the worst demand scenario from the uncertainty set. Furthermore, the

shape of the uncertainty set is often selected ad hoc, and it remains unclear how this set should be

calibrated to historical demand data that may be available in practice.

In this paper, we study the distributionally robust chance constrained CVRP, which assumes

that the customer demands follow a probability distribution that is only partially known, and it

imposes chance constraints on the vehicles’ capacities for all distributions that are deemed plausible

in view of the available information. We argue that this formulation can offer an attractive trade-

off between the properties of the classical chance constrained CVRP and the robust CVRP. By

replacing a single probability distribution with a set of plausible distributions, the distributionally

robust chance constrained CVRP relieves the decision maker of estimating the entire joint demand

distribution for all customers, and it replaces computationally intractable operations on probability
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distributions with efficiently solvable optimization problems. Likewise, since the distributionally

robust chance constrained CVRP does not abandon probability distributions altogether, it can

determine delivery schedules that are less conservative than those of the robust CVRP.

While distributionally robust chance constraints have been considered for other problem classes

(see, e.g., the reviews by Ben-Tal and Nemirovski 2001, Nemirovski 2012 and Hanasusanto et al.

2015) and other classes of distributionally robust models have been proposed for variants of the

vehicle routing problem (see, e.g., Carlsson and Delage 2013, Adulyasak and Jaillet 2016, Jaillet

et al. 2016, Carlsson et al. 2017, Flajolet et al. 2018 and Zhang et al. 2018), the only treatment of

the distributionally robust chance constrained CVRP appears to be in the electronic companion of

Gounaris et al. (2013) and in Section 4 of Dinh et al. (2017). Gounaris et al. (2013) approximate

a particular class of distributionally robust chance constrained CVRPs by a robust CVRP and

solve instances with up to 23 customers using a standard branch-and-bound scheme. Dinh et al.

(2017) adapt their branch-and-cut-and-price scheme for the classical chance constrained CVRP to

a distributionally robust chance constrained CVRP where the uncertain customer demands are

characterized by their means and covariances. Under this assumption, the probability of satisfying

a vehicle’s capacity can be derived by replacing the unknown demand distribution with a normal

distribution of the same mean and covariances if the risk tolerance ε is adjusted accordingly.

The present paper aims to contribute to a deeper understanding of both the structural prop-

erties and the solution of the distributionally robust chance constrained CVRP. We show that the

rounded capacity inequalities (RCIs), a popular class of cutting planes for the deterministic CVRP,

can be adapted to the distributionally robust chance constrained CVRP whenever the underlying

ambiguity set satisfies a subadditivity property. While several classes of popular ambiguity sets,

such as φ-divergence (Hu and Hong, 2013; Jiang and Guan, 2015) and Wasserstein (Esfahani and

Kuhn, 2017; Zhao and Guan, 2018) ambiguity sets, violate this subadditivity property, the con-

dition holds for a wide class of moment ambiguity sets (El Ghaoui et al., 2003; Delage and Ye,

2010). Motivated by this insight, we study marginal moment ambiguity sets, which characterize

each customer demand individually, and generic moment ambiguity sets, which also describe the

interactions between different customer demands. We find that the distributionally robust chance

constrained CVRP over a marginal moment ambiguity set reduces to a deterministic CVRP with

altered customer demands. The same problem over a generic moment ambiguity set, on the other
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hand, does not have an equivalent reformulation as a deterministic CVRP in general. We present

RCI separation procedures for two classes of generic moment ambiguity sets. Our numerical ex-

periments indicate that contrary to the deterministic CVRP, which appears to be best solved with

branch-and-cut-and-price schemes, branch-and-cut algorithms may be competitive for the distribu-

tionally robust chance constrained CVRP.

More succinctly, the contributions of this paper may be summarized as follows.

1. We show that whether or not the distributionally robust chance constrained CVRP can

be solved with a standard branch-and-cut scheme depends on the presence or absence of

a subadditivity property in the employed ambiguity set. We prove that this subadditivity

property is present in a wide class of moment ambiguity sets.

2. We show that for marginal moment ambiguity sets, the distributionally robust chance con-

strained CVRP reduces to a deterministic CVRP with altered customer demands. We derive

these demands for various classes of marginal moment ambiguity sets, and we describe the

associated worst-case demand distributions in closed form.

3. We develop cut separation schemes for different classes of generic moment ambiguity sets, and

we show that the associated worst-case distributions can be determined a posteriori through

the solution of tractable optimization problems.

The intimate connection between the applicability of branch-and-cut schemes and the subadditivity

of ambiguity sets appears to have implications well beyond the CVRP, and we believe that this

relationship deserves further study in the wider context of distributionally robust optimization.

The remainder of the paper is organized as follows. Section 2 introduces and motivates the

distributionally robust chance constrained CVRP. Section 3 shows that the problem can be solved

with branch-and-cut schemes whenever the ambiguity set satisfies a subadditivity condition, and

that this subadditivity condition holds for a wide class of moment ambiguity sets. Sections 4 and 5

study the properties of marginal and generic moment ambiguity sets, respectively. We present our

numerical results in Section 6, and we offer concluding remarks in Section 7. For ease of exposition,

all proofs are relegated to the appendix. The source code of the proposed branch-and-cut algorithm

is available as part of the paper’s online supplement.

Notation. We denote scalars and vectors by regular and bold lowercase letters, whereas bold
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uppercase letters are reserved for matrices. The vectors e and 0 refer to the vectors of all ones

and all zeros, respectively, while ei is the i-th basis vector. For a set A ⊆ {1, . . . , n}, the vector

1A ∈ {0, 1}n satisfies (1A)i = 1 if and only if i ∈ A. We define the conjugate of a real-valued

function f : Rn 7→ R by f?(y) = sup {y>x− f(x) : x ∈ Rn}.

2 Capacitated Vehicle Routing under Uncertainty

We consider a complete and directed graph G = (V,A) with nodes V = {0, . . . , n} and arcs

A = {(i, j) ∈ V × V : i 6= j}. The node 0 ∈ V represents the unique depot, and the nodes

VC = {1, . . . , n} ⊂ V denote the customers. The depot is equipped with m homogeneous vehicles

of capacity Q ∈ R+, which we index through the set K = {1, . . . ,m}. Each vehicle incurs trans-

portation costs of c(i, j) ∈ R+ if it traverses the arc (i, j) ∈ A. Throughout the paper, we allow

for asymmetric transportation costs. As is standard in the literature, our models simplify if the

transportation costs satisfy c(i, j) = c(j, i) for all (i, j) ∈ A; see, e.g., Semet et al. (2014).

We denote by P(VC ,m) the set of all (ordered) partitions of the customer set VC into m mutually

disjoint and collectively exhaustive (ordered) routes R1, . . . ,Rm:

P(VC ,m) =

{
(R1, . . . ,Rm) : Rk 6= ∅ ∀k, Rk ∩Rl = ∅ ∀k 6= l,

⋃
k

Rk = VC

}

In this definition, each route Rk = (Rk,1, . . . , Rk,nk) is an ordered list, where Rk,l ∈ VC is the l-th

customer and nk the total number of customers visited by vehicle k ∈ K. With a slight abuse of

notation, we apply set operations to routes whenever the interpretation is clear. We also refer to

the collection of routes R1, . . . ,Rm as the route set R.

The deterministic CVRP asks for a route set R ∈ P(VC ,m) that minimizes the overall trans-

portation costs c(R) =
∑

k∈K
∑nk

l=0 c(Rk,l, Rk,l+1) while satisfying all vehicle capacities:

minimize c(R)

subject to Rk ∈ R(q) ∀k ∈ K

R ∈ P(VC ,m)

Here, we set Rk,0 = Rk,nk+1 = 0 for all k ∈ K so that each route starts and ends at the depot,

and we assume that each customer i ∈ VC has a known demand qi ∈ R+. The shorthand notation

Rk ∈ R(q) expresses the capacity constraint for the k-th vehicle, that is,
∑

i∈Rk qi ≤ Q.
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The robust CVRP seeks for a route set that satisfies the vehicle capacities for all anticipated

demand realizations within an uncertainty set Q. Thus, the formulation of the robust CVRP

replaces the deterministic capacity constraints Rk ∈ R(q) with the robust capacity constraints

Rk ∈
⋂
q∈QR(q), k ∈ K. The robust CVRP reduces to a deterministic CVRP if Q = {q}.

The chance constrained CVRP models the customer demands as a random vector q̃ governed

by a known probability distribution Q. The objective is to find a route set that satisfies all

vehicle capacities with high probability. Thus, we replace the capacity constraints Rk ∈ R(q) of

the deterministic CVRP with the probabilistic capacity constraints Q [Rk ∈ R(q̃)] ≥ 1 − ε, where

ε ∈ (0, 1) represents a prescribed tolerance for capacity violations. Note that the chance constrained

CVRP reduces to a deterministic CVRP if P = δq, where δq denotes the Dirac distribution that

places unit mass on the demand realization q̃ = q.

Although modeling the customer demands as a random vector that is governed by a known

distribution is intuitively appealing, the practicability of the chance constrained CVRP is challenged

in three ways: (i) most of the solution schemes for chance constrained CVRPs require the customer

demands to be independent; (ii) merely establishing the (in-)feasibility of a fixed route plan can

already be challenging from a computational perspective; and (iii) estimating the customer demand

distribution from historical records may require unrealistically large amounts of data. We elaborate

on these shortcomings in Section EC.1 of the electronic companion.

In this paper, we study the distributionally robust chance constrained CVRP :

minimize c(R)

subject to P [Rk ∈ R(q̃)] ≥ 1− ε ∀P ∈ P, ∀k ∈ K

R ∈ P(VC ,m)

(RVRP(P))

In this problem, the ambiguity set P contains all distributions that are deemed plausible for govern-

ing the random demand vector q̃. In particular, if the unknown true distribution Q is contained in

P, then any feasible solution to RVRP(P) is guaranteed to satisfy each vehicle’s capacity constraint

with a probability of at least 1 − ε under Q, that is, the corresponding route set is feasible in the

chance constrained CVRP with the unknown true distribution Q. Note that RVRP(P) reduces

to a deterministic CVRP if P = {δq}, to a robust CVRP if P = {δq : q ∈ Q} and to a chance

constrained CVRP if P = {Q}. In the remainder of the paper, we use the terms ‘distributionally

robust chance constrained CVRP’, ‘distributionally robust CVRP’ and ‘RVRP(P)’ interchangeably.
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As we will see in the following, the distributionally robust CVRP simultaneously addresses

all three of the aforementioned challenges: (i) it caters for dependent customer demands through

ambiguity sets that contain both independent and dependent demand distributions; (ii) for large

classes of ambiguity sets, the (in-)feasibility of a fixed route set can be established in polynomial

time; and (iii) since an ambiguity set only characterizes certain properties of the unknown true

distribution Q, its estimation requires less data and can often be done using historical records.

At this stage it is worth pointing out the potential shortcomings of the distributionally robust

CVRP. Firstly, the tractability of RVRP(P) crucially depends on the shape of the ambiguity set

P. As we will see in the remainder of the paper, some intuitively appealing ambiguity sets lead to

tractable reformulations, whereas others do not. Secondly, since the ambiguity set P only charac-

terizes certain properties of the unknown true distribution Q, it may contain other distributions

that are unlikely to govern the customer demands q̃ but that still need to be considered in the

vehicles’ capacity constraints in RVRP(P). Finally, and closely related, the worst-case distribution

infP∈P P
[
Rk ∈ R(q̃)

]
minimizing the probability of the k-th vehicle’s capacity constraint being

satisfied is typically a pathological distribution that is unlikely to be encountered in practice. In

fact, we will see that for the classes of ambiguity sets considered in this paper, one can construct

worst-case distributions that are supported on two demand realizations only. The aforementioned

shortcomings are intrinsic to the distributionally robust optimization methodology and are not

specific to the distributionally robust CVRP. We emphasize that despite these weaknesses, dis-

tributionally robust optimization has been successfully applied in many diverse application areas,

ranging from finance (Goldfarb and Iyengar, 2003) and energy systems (Zhao and Jiang, 2018) to

communication networks (Li et al., 2014) and healthcare (Meng et al., 2015). We therefore believe

that the distributionally robust CVRP serves as a complement to the existing modeling paradigms

for the CVRP under uncertainty, such as the robust CVRP and the chance constrained CVRP. In

particular, the most appropriate formulation for a specific application may depend on a variety of

factors, such as runtime and scalability requirements, the acceptable degree of conservatism and the

availability of historical records, and it ultimately needs to be decided upon by the domain expert.

Remark 1 (Joint Chance Constrained CVRP). Following the conventions of the vehicle routing

literature, we consider individual chance constraints. Instead, one could consider a joint chance

constraint, where the individual capacity requirements P [Rk ∈ R(q̃)] ≥ 1 − ε, k ∈ K, are replaced
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with a single joint capacity requirement P [Rk ∈ R(q̃) ∀k ∈ K] ≥ 1 − ε. The individual chance

constraints provide a guarantee for each individual route (and hence, for every customer along that

route), whereas the joint chance constraint offers a guarantee for the entire route plan. Since joint

chance constrained optimization problems are typically much more challenging from a computational

perspective (see, e.g., Hanasusanto et al. 2017 and Xie and Ahmed 2017), we will focus on the

individually chance constrained CVRP throughout this paper.

3 Distributionally Robust Two-Index Vehicle Flow Formulation

The distributionally robust CVRP enforces chance constraints for each route Rk with respect to

all probability distributions P ∈ P, of which there could be uncountably many. It is therefore not a

priori clear how RVRP(P) can be solved numerically. In the following, we show that under certain

conditions, RVRP(P) is equivalent to a two-index vehicle flow (2VF) formulation of the form

minimize
∑

(i,j)∈A

c(i, j)xij

subject to
∑
j∈V :

(i,j)∈A

xij =
∑
j∈V :

(j,i)∈A

xji = δi ∀i ∈ V

∑
i∈V \S

∑
j∈S

xij ≥ dP(S) ∀S ⊆ VC , S 6= ∅

xij ∈ {0, 1} ∀(i, j) ∈ A,

(2VF(P))

where δi = 1 for i ∈ VC and δ0 = m, and the demand estimator dP : 2VC 7→ R+ maps subsets

of the customer set VC to the non-negative real line. In this formulation, we have xij = 1 if and

only if one of the m vehicles traverses the arc (i, j) ∈ A. The objective function minimizes the

overall transportation costs across all vehicles. The first constraint set ensures that each customer

is visited by exactly one vehicle, and that m vehicles leave and return to the depot. The second

constraint set is commonly referred to as rounded capacity inequalities (RCIs), and they ensure

that the vehicles’ capacity constraints are met and that every route contains the depot node.

For a fixed set S of customers, the left-hand side of the associated RCI represents an upper

bound on the number of vehicles entering S (since some vehicles may enter S several times). Thus,

the demand estimator dP(S) on the right-hand side of the RCI has to provide a (sufficiently tight)

lower bound on the number of vehicles required to serve the customers in S. Since there are
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exponentially many RCIs, they are typically introduced iteratively as part of a branch-and-cut

scheme. 2VF(P) is one of the most well-studied formulations for the CVRP, and a large number

of branch-and-cut schemes have been designed for its solution (see, e.g., Lysgaard et al. 2004 and

Semet et al. 2014). Thus, if we can show that RVRP(P) is equivalent to 2VF(P) for some demand

estimator dP , then we can solve RVRP(P) as long as we can evaluate dP quickly.

For the deterministic CVRP, a popular choice for the demand estimator is
⌈

1
Q

∑
i∈S qi

⌉
, which

represents the minimum number of vehicles required to serve S if the deliveries could be split

continuously across vehicles, rounded up to the next integer number. It has been shown that

this lower bound is sufficiently tight to ensure that the capacity constraint of each vehicle is met

by any feasible solution to the corresponding 2VF formulation (Laporte et al., 1985). Moreover,

this demand estimator eliminates short cycles that do not contain the depot node as long as the

customer demands satisfy q > 0 component-wise. Although tighter RCIs could in principle be

obtained through the solution of bin packing problems, the increased strength of the cuts typically

does not justify the additional computational effort required to evaluate the demand estimator.

To quantify the number of vehicles required to serve a customer set S in the distributionally

robust CVRP, we define the value-at-risk of a random variable X̃ governed by the distribution Q as

Q-VaR1−ε
[
X̃
]

= inf
{
x ∈ R : Q

[
X̃ ≤ x

]
≥ 1− ε

}
,

which denotes the (1− ε)-quantile of X̃. Indeed, we have that

Q
[
X̃ ≤ τ

]
≥ 1− ε ⇐⇒ Q-VaR1−ε

[
X̃
]
≤ τ,

which in the case of the CVRP translates to

Q [Rk ∈ R(q̃)] ≥ 1− ε ⇐⇒ Q
[ ∑
i∈Rk

q̃i ≤ Q
]
≥ 1− ε ⇐⇒ Q-VaR1−ε

[ ∑
i∈Rk

q̃i

]
≤ Q.

Instead of considering a single probability distribution Q, however, RVRP(P) enforces chance

constraints for all probability distributions P ∈ P. A similar reasoning as before shows that

P
[
X̃ ≤ τ

]
≥ 1− ε ∀P ∈ P ⇐⇒ P-VaR1−ε

[
X̃
]
≤ τ ∀P ∈ P ⇐⇒ sup

P∈P
P-VaR1−ε

[
X̃
]
≤ τ,
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or, in the context of our distributionally robust CVRP,

P [Rk ∈ R(q̃)] ≥ 1− ε ∀P ∈ P ⇐⇒ P
[ ∑
i∈Rk

q̃i ≤ Q
]
≥ 1− ε ∀P ∈ P

⇐⇒ sup
P∈P

P-VaR1−ε

[ ∑
i∈Rk

q̃i

]
≤ Q. (1)

In view of the above equivalences and inspired by the RCIs for the deterministic CVRP, we are led

to the following demand estimator for the distributionally robust CVRP:

dP(S) = max

{⌈
1

Q
sup
P∈P

P-VaR1−ε

[∑
i∈S

q̃i

]⌉
, 1

}
∀S 6= ∅, (2)

as well as dP(∅) = 0. In this expression, the supremum corresponds to the worst-case (1 − ε)-

quantile of the cumulative customer demands in S (also called (1 − ε)-worst-case value-at-risk),

and the division of this term by Q is supposed to provide a lower bound on the number of vehicles

required to serve the customers in S. We take the maximum between this quantity (rounded up to

the next integer) and 1 to ensure the elimination of short cycles. Indeed, contrary to the cumulative

customer demands in the deterministic CVRP, the worst-case (1 − ε)-quantile could be zero even

if no individual customer demand is deterministically zero. Similar to the deterministic RCIs, our

demand estimator could in principle be tightened through the solution of a distributionally robust

chance constrained bin packing problem. As in the deterministic case, however, this would usually

not be attractive from a computational perspective.

One could expect RVRP(P) and 2VF(P) to be equivalent under any ambiguity set P as long

as the demand estimator dP is chosen as in (2). Unfortunately, this is not the case.

Example 1. Consider a distributionally robust CVRP instance with n = 2 customers and m = 2

vehicles of capacity Q = 1. We define the ambiguity set for the customer demands as

P =

P ∈ P0(R2) :

 P(q̃1 = 1) = 0.925, P(q̃1 = 2) = 0.075

P(q̃2 = 1) = 0.925, P(q̃2 = 2) = 0.075

 ,

that is, each customer has a demand of 1 (2) with probability 0.925 (0.075). Note that the ambiguity

set does not specify that the customer demands are independent.

For ε = 0.1, the route set R = (R1,R2) with R1 = (1) and R2 = (2) is feasible in RVRP(P)

since P
[
q̃i ≤ 1

]
= 0.925 ≥ 1 − ε = 0.9 for i = 1, 2 and all P ∈ P. However, this route set R is
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Figure 1. Probability distribution P? which illustrates that RVRP(P) and 2VF(P) are

not equivalent. The left graph shows the probability distribution itself, whereas the right

graph visualizes the customer demands q̃1 and q̃2 as a function of the underlying random

variable ũ used in the construction of P?.

infeasible in 2VF(P) since it violates the RCI constraint for S = {1, 2}. Indeed, we have that

dP({1, 2}) = max

{⌈
1

Q
sup
P∈P

P-VaR1−ε [q̃1 + q̃2]

⌉
, 1

}
≥ P?-VaR1−ε [q̃1 + q̃2] = 3

since the probability distribution P? with the dependence structure

q̃1 =


2 if ũ ∈ [0, 0.075],

1 otherwise,

q̃2 =


2 if ũ ∈ [0.1, 0.175],

1 otherwise,

where ũ is a uniformly distributed random variable supported on [0, 1], is contained in P (see

Figure 1). We thus conclude that RVRP(P) and 2VF(P) are not equivalent for this instance.

Intuitively, the equivalence between RVRP(P) and 2VF(P) fails to hold in Example 1 due to the

combination of two differences between the formulations. Firstly, RVRP(P) ignores the amount by

which a capacity restriction is violated, whereas this amount is considered in the demand estima-

tor (2) of 2VF(P). In particular, whenever the cumulative demands within a single vehicle exceed

that vehicle’s capacity in Example 1, then the cumulative demands are so large that they could

not be served by both vehicles in 2VF(P) either, even if the demands could be split continuously.

Secondly, since the vehicles’ capacity restrictions in Example 1 are violated in non-overlapping sce-

narios, the probability of exceeding some vehicle’s capacity is equal to the sum of probabilities of
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exceeding each individual vehicle’s capacity. More generally, RVRP(P) only considers the proba-

bilities of violating each individual vehicle’s capacity, whereas the demand estimator (2) of 2VF(P)

considers the joint violation probability (under the assumption that customer demands can be split

continuously).

The aforementioned differences between RVRP(P) and 2VF(P) relate to the fact that the RCIs

are agnostic to the assignment of customers to vehicles, and as such they consider the interplay

between demands allocated to different vehicles even though such dependencies should be ignored.

To avoid this problem, the demand estimator dP should not assign ‘excessively large’ numbers of

vehicles dP(S) to large customer subsets S. It turns out that this intuition can be formalized.

(S) Subadditivity. For all customer subsets S, T ⊆ VC , we have dP(S ∪ T ) ≤ dP(S) + dP(T ).

Indeed, the demand estimator in Example 1 violates the subadditivity condition (S).

Example 1 (cont’d). For the distributionally robust CVRP instance from Example 1, we have

sup
P∈P

P-VaR0.9(q̃1) = sup
P∈P

P-VaR0.9(q̃2) = 1,

but at the same time we have

sup
P∈P

P-VaR0.9(q̃1 + q̃2) ≥ P?-VaR0.9(q̃1 + q̃2) = 3

> sup
P∈P

P-VaR0.9(q̃1) + sup
P∈P

P-VaR0.9(q̃2) = 2.

In other words, the demand estimator dP violates the subadditivity condition (S) since

dP({1} ∪ {2}) 6≤ dP({1}) + dP({2}).

We now show that the condition (S) is sufficient for RVRP(P) and 2VF(P) to be equivalent.

Theorem 1. Assume that q̃ ≥ 0 P-a.s. for all P ∈ P and that dP satisfies the subadditivity

condition (S). Then the problems RVRP(P) and 2VF(P) are equivalent in the following sense:

(i) Any route set R that is feasible in RVRP(P) induces a unique solution x that is feasible in

2VF(P) via

xij = 1 ⇐⇒ ∃k ∈ K, ∃l ∈ {0, . . . , nk} : (i, j) = (Rk,l, Rk,l+1), (3)

and x and R attain the same transportation costs.
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(ii) Any solution x that is feasible in 2VF(P) induces a route set R that is feasible in RVRP(P)

via (3), and this route set is unique up to a reordering of the individual routes R1, . . . ,Rm.

Moreover, x and R attain the same transportation costs.

The proof of Theorem 1, together with all other proofs, can be found in the electronic companion

of the paper. According to the theorem, any ambiguity set P whose demand estimator dP satisfies

the subadditivity condition (S) allows us to use a branch-and-cut algorithm to solve 2VF(P) in

lieu of RVRP(P). Example 1 has shown that the subadditivity condition may be violated if the

ambiguity set P specifies the marginal distribution of each customer’s demand. The example

immediately implies that hypothesis test ambiguity sets (Bertsimas et al., 2018), which converge

to ambiguity sets that exactly specify the marginal distribution of each customer’s demand as

the available data increases, also give rise to demand estimators that violate the subadditivity

condition. Moreover, data-driven ambiguity sets, such as φ-divergence ambiguity sets (Ben-Tal

et al., 2013), Wasserstein ambiguity sets (Esfahani and Kuhn, 2017) and hypothesis test ambiguity

sets (Bertsimas et al., 2018), converge to singleton ambiguity sets as the available data increases,

and the resulting demand estimators also violate the subadditivity condition since the involved

worst-case values-at-risk converge to values-at-risk which are known to violate subadditivity.

In this paper, we study moment ambiguity sets of the form

P = {P ∈ P0(Rn) : P(q̃ ∈ Q) = 1, EP[q̃] = µ, EP[ϕ(q̃)] ≤ σ} . (4)

The moment ambiguity set (4) specifies that the uncertain customer demands q̃ are supported on a

rectangular set Q = [q, q] with q ≥ 0. It also stipulates that the expected customer demands EP[q̃]

are known to be µ, and that the upper bounds σi on the demand variations EP[ϕi(q̃)], i = 1, . . . , p,

of the customer demands are known. The demand variations are characterized by a dispersion

measure ϕ : Rn 7→ Rp which measures how ‘stretched out’ the joint probability distribution of the

customer demands is. Possible choices of dispersion measures include the mean absolute deviations,

ϕi(q) = |qi − µi|, the variances ϕi(q) = (qi − µi)2, higher order moments ϕi(q) = |qi − µi|q, q ≥ 3,

or Huber loss functions of the customer demands q̃. We will explore different dispersion measures

in Sections 4 and 5. Throughout this paper, we make the standard regularity assumptions that

µ ∈ intQ, that is, the expected demands are contained in the interior of the support Q, that the

dispersion measure ϕ is closed and component-wise convex, and that ϕ(µ) < σ. These assumptions
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will allow us to invoke strong convex duality, which is required for our results to hold. Moment

ambiguity sets are amongst the most popular ambiguity sets studied in the distributionally robust

optimization literature, see, e.g., El Ghaoui et al. (2003), Delage and Ye (2010), Zymler et al. (2013)

and Wiesemann et al. (2014).

We now show that in contrast to ambiguity sets constructed by marginal histograms, hypothesis

tests or deviation measures such as the Wasserstein distance and φ-divergences, moment ambiguity

sets lead to demand estimators dP that satisfy the desired subadditivity property.

Theorem 2. The demand estimator dP for moment ambiguity sets of the form (4) is subadditive.

In addition to satisfying the subadditivity condition (S), the distributions that minimize the

probability of satisfying a vehicle’s capacity requirement have a particularly simple structure if we

restrict ourselves to moment ambiguity sets of the form (4).

Proposition 1. Consider an instance of the moment ambiguity set (4). Then for any customer

subset S ⊆ VC , there is a sequence of two-point distributions Pt = pt1 · δqt1 +pt2 · δqt2 ∈ P, pt1, p
t
2 ∈ R+

and qt1, q
t
2 ∈ Q, such that Pt-VaR1−ε

[∑
i∈S q̃i

]
−→ supP∈P P-VaR1−ε

[∑
i∈S q̃i

]
as t −→∞.

Proposition 1 shows that for moment ambiguity sets of the form (4), the worst-case value-at-risk

supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

is asymptotically attained by a series of probability distributions that

place all probability mass on two demand scenarios. We emphasize that the two-point nature of

the worst-case distribution does not depend on the number of moment constraints contained in the

ambiguity set (4). In that sense, Proposition 1 strengthens the findings of the Richter-Rogosinski

theorem (Shapiro et al., 2014, Theorem 7.37), which applies to more general risk measures, to the

special case of the worst-case value-at-risk.

Proposition 1 confirms our intuition that the distributionally robust CVRP constitutes a com-

promise between the deterministic CVRP, which optimizes in view of a single expected (or most

likely) demand scenario, and the robust CVRP, which optimizes in view of the worst demand sce-

nario contained in an uncertainty set. At the same time, the distributionally robust CVRP also

offers a trade-off between the classical chance constrained CVRP, which is often challenging to solve

as it optimizes in view of a distribution that may place positive probability mass on many demand

scenarios, and the robust CVRP, which optimizes in view of a single worst-case scenario.
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Figure 2. Examples of probability distributions contained in a marginalized ambiguity

set. Since the conditions in the ambiguity set (5) only restrict the shapes of the marginal

distributions, the ambiguity set contains distributions of varying dependence structure,

ranging from independent (left graph) to perfectly correlated (right graph) ones.

4 Marginalized Moment Ambiguity Sets

In this section we study marginalized moment ambiguity sets of the form

P = {P ∈ P0(Rn) : P(q̃ ∈ Q) = 1, EP[q̃] = µ, EP[ϕi(q̃i)] ≤ σi ∀i ∈ VC} , (5)

where Q = [q, q] with q ≥ 0, µ ∈ intQ, and ϕi : R 7→ Rpi is closed as well as component-

wise convex and satisfies ϕi(µi) < σi with σi ∈ Rpi , i ∈ VC . In contrast to the generic moment

ambiguity set (4), a marginalized moment ambiguity set only specifies the variability of individual

customer demands and does not characterize the interactions between different customer demands.

Nevertheless, Figure 2 shows that the customer demands may still exhibit dependencies under the

probability distributions contained in a marginalized moment ambiguity set.

Marginalized moment ambiguity sets of the form (5) constitute a subclass of the generic moment

ambiguity sets (4), and thus the demand estimator dP over the ambiguity set (5) is subadditive

due to Theorem 2. In fact, a much stronger additivity property holds for the ambiguity set (5).

Theorem 3. Every marginalized moment ambiguity set of the form (5) satisfies

sup
P∈P

P-VaR1−ε

[∑
i∈S

q̃i

]
=
∑
i∈S

sup
P∈P

P-VaR1−ε
[
q̃i
]

∀S ⊆ VC , S 6= ∅.

Theorem 3 shows that the worst-case value-at-risk for a marginalized moment ambiguity set

is additive. Nevertheless, we provide an example in Section EC.2 of the electronic companion
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which illustrates that for individual probability distributions within such an ambiguity set, the

corresponding values-at-risk typically fail to be additive.

An immediate consequence of Theorem 3 is the following.

Corollary 1. The distributionally robust CVRP over a marginalized moment ambiguity set (5) is

equivalent to the deterministic CVRP with customer demands qi = supP∈P P-VaR1−ε
[
q̃i
]
, i ∈ VC .

If only marginal moment information is available, then Corollary 1 implies that a distributionally

robust CVRP can be solved with existing solution schemes for deterministic CVRPs, such as branch-

and-cut (Lysgaard et al., 2004; Semet et al., 2014) or branch-and-cut-and-price (Fukasawa et al.,

2006; Pecin et al., 2017) algorithms. In other words, we can ‘robustify’ a deterministic CVRP

instance without modifying the employed solution scheme by replacing the deterministic demands

qi with the (deterministic) worst-case value-at-risks supP∈P P-VaR1−ε
[
q̃i
]

for all customers i ∈ VC .

While very attractive from a computational perspective, Corollary 1 also points at several weak-

nesses of the marginalized moment ambiguity sets. Firstly, marginalized moment ambiguity sets

fail to capture any potentially known dependencies between customer demands. As a result, under

the worst-case distribution all customer demands will attain their worst values jointly with prob-

ability ε. This contradicts the common wisdom that extreme demands are not typically attained

simultaneously across all customers. Secondly, when using marginalized moment ambiguity sets

we are unable to obtain a structurally different feasible region than for a suitably modified deter-

ministic problem instance. As we will see in Section 5, this is in stark contrast to generic moment

ambiguity sets that may not correspond to any deterministic problem instance. Finally, under the

marginalized moment ambiguity sets the worst-case demand distribution does not depend on the

selected route set, as we would usually expect to be the case under the distributionally robust op-

timization framework. In other words, under the marginalized moment ambiguity sets the decision

maker cannot benefit from knowing the true probability distribution, as long as this distribution

could be any of the distributions within the ambiguity set.

If we remove the expectation and the dispersion constraint in the marginalized moment am-

biguity set (5), then the distributionally robust CVRP reduces to a deterministic CVRP with

component-wise worst-case customer demands q = q. If we remove the support and the dispersion

constraint, on the other hand, then the distributionally robust CVRP becomes infeasible since the

distribution κ · δq1 + (1 − κ) · δq2 with κ ∈ (ε, 1), q1 = 2Q · e and q2 = (µ − 2κQ · e)/(1 − κ) is
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contained in the ambiguity set and places probability mass κ > ε on the demand scenario 2Q · e,

resulting in a worst-case value-at-risk of supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

= 2Q|S|. In the next three

subsections, we develop closed-form solutions for the worst-case value-at-risk under support and

expectation constraints combined with first-order, variance and semi-variance dispersion measures.

4.1 First-Order Ambiguity Sets

We begin with first-order marginalized moment ambiguity sets of the form

P =
{
P ∈ P0(Rn) : P (q̃ ∈ Q) = 1, EP [q̃] = µ, EP [|q̃ − µ|] ≤ σ

}
, (6)

where the absolute value operator | · | is applied component-wise. As before, we assume that

Q = [q, q] with q ≥ 0 and µ ∈ intQ, and we additionally stipulate that σ > 0. Note that (6) is

a special case of the marginalized moment ambiguity set (5) where ϕi(qi) = |qi − µi|, i ∈ VC . The

dispersion constraint imposes an upper bound of σi on the mean absolute deviation EP [|q̃i − µi|]

of customer i’s demand, i ∈ VC .

Similar to the standard deviation, the mean absolute deviation measures the dispersion of a

random variable around its expected value. Compared to the standard deviation, however, the

mean absolute deviation is less affected by outliers and deviations from the standard modeling

assumptions (such as normality). Due to these properties, the mean absolute deviation is preferred

in the robust statistics literature, see, e.g., Casella and Berger (2002).

We now show that the worst-case value-at-risk of a customer’s demand q̃i under the marginalized

first-order moment ambiguity set (6) admits a closed-form solution.

Proposition 2. Every marginalized first-order ambiguity set of the form (6) satisfies

sup
P∈P

P-VaR1−ε
[
q̃i
]

= µi + min

{
qi − µi,

1− ε
ε

(µi − qi),
1

2ε
σi

}
∀i ∈ VC . (7)

Proposition 2 confirms our intuition that the worst-case value-at-risk of the demand of customer

i ∈ VC increases with the range qi − qi, the safety threshold 1 − ε as well as the upper bound on

the mean absolute deviation σi. In particular, if customer i’s demand is unbounded, then the

worst-case value-at-risk simplifies to µi + 1
2εσi, and if the dispersion bound in (6) is disregarded,

then the worst-case value-at-risk becomes min
{
qi,

1
εµi −

1−ε
ε qi

}
.

It is tempting to conclude from Proposition 2 that the worst-case value-at-risk (7) is attained

by the Dirac distribution that places all probability mass on the single demand realization µ +
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min
{
q − µ, 1−ε

ε (µ− q), 1
2εσ
}

, where the minimum is applied component-wise. This distribution,

however, is not contained in the ambiguity set as it violates the expected value constraint in (6).

Nevertheless, one can construct sequences of two-point distributions that are contained in the

ambiguity set and that attain the worst-case value-at-risk (7) asymptotically. We characterize this

sequence of distributions in Section EC.3.1 of the electronic companion.

4.2 Variance Ambiguity Sets

We next consider marginalized variance ambiguity sets of the form

P =
{
P ∈ P0(Rn) : P [q̃ ∈ Q] = 1, EP [q̃] = µ, EP

[
(q̃i − µi)2

]
≤ σi ∀i ∈ VC

}
, (8)

where Q = [q, q] with q ≥ 0 and µ ∈ intQ as well as σ > 0.

Similar to the mean absolute deviation, the worst-case value-at-risk of a customer’s demand q̃i

under the marginalized variance ambiguity set (8) admits a closed-form solution.

Proposition 3. Every marginalized variance ambiguity set of the form (8) satisfies

sup
P∈P

P-VaR1−ε
[
q̃i
]

= µi + min

{
qi − µi,

1− ε
ε

(µi − qi),
√

1− ε
ε

σi

}
∀i ∈ VC . (9)

The worst-case value-at-risk in Proposition 3 differs from the one in Proposition 2 only in the

last term of the minimum operator, which corresponds to the variance bound in (8). Similar to

the previous subsection, the expression (9) can be used to derive the worst-case value-at-risk if the

support constraints or the variance constraint in (8) is disregarded. We characterize a sequence

of two-point distributions attaining the worst-case value-at-risk in Section EC.3.2 of the electronic

companion.

4.3 Semi-Variance Ambiguity Sets

We finally consider marginalized semi-variance ambiguity sets of the form

P =

P ∈ P0(Rn) :

 P [q̃ ∈ Q] = 1, EP [q̃] = µ,

EP
[
[q̃i − µi]2+

]
≤ σ+i , EP

[
[µi − q̃i]2+

]
≤ σ−i ∀i ∈ VC

 , (10)

where Q = [q, q] with q ≥ 0 and µ ∈ intQ as well as σ+,σ− > 0.

As in the preceding two subsections, the worst-case value-at-risk of a customer’s demand q̃i

under the marginalized semi-variance ambiguity set (10) admits a closed-form solution.
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Proposition 4. Every marginalized semi-variance ambiguity set of the form (10) satisfies

sup
P∈P

P-VaR1−ε
[
q̃i
]

= µi + min

qi − µi, 1− ε
ε

(µi − qi),

√
σ+i
ε
,

√
(1− ε)σ−i

ε

 ∀i ∈ VC . (11)

The worst-case value-at-risk in Proposition 4 differs from the previous ones in the last two

terms of the minimum operator, which correspond to the semi-variance bounds in (10). Again,

the expression (11) can be used to derive the worst-case value-at-risk if the support constraints

or either or both of the two semi-variance constraint in (10) are disregarded. We characterize a

sequence of two-point distributions attaining the worst-case value-at-risk in Section EC.3.3 of the

electronic companion.

5 Generic Moment Ambiguity Sets

We now study generic moment ambiguity sets of the form (4), where the dispersion measure ϕ char-

acterizes the joint variability of multiple demands. In particular, we consider ambiguity sets that

stipulate bounds on the mean absolute deviations (Section 5.1) and the covariances (Section 5.2).

5.1 First-Order Ambiguity Sets

We begin with first-order generic moment ambiguity sets of the form

P =
{
P ∈ P0(Rn) : P [q̃ ∈ Q] = 1, EP [q̃] = µ, EP

[
1>Si |q̃ − µ|

]
≤ νi ∀i = 1, . . . , p

}
, (12)

where Q = [q, q] with q ≥ 0, µ ∈ intQ and ν > 0. As in Section 4.1, the absolute value operator

| · | is applied component-wise. Note that (12) is a special case of the generic moment ambiguity

set (4) where ϕi(q) =
∑

j∈Si |q̃j − µj |, i = 1, . . . , p. In particular, the demand estimator dP over

the ambiguity set (12) is subadditive due to Theorem 2.

As we pointed out in Section 4.1, the mean absolute deviation in (12) is a popular dispersion

measure in robust statistics. It is reminiscent of the standard deviation in classical statistics, but it is

less affected by outliers and deviations from the classical model assumptions (e.g., normality), which

makes it more robust if the distribution is estimated from historical data. It can be shown that the

sample mean absolute deviation outperforms the standard deviation in terms of asymptotic relative

efficiency if the sample distribution has fat tails or if it is contaminated with another distribution
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(Casella and Berger, 2002). For the use of the mean absolute deviation in (distributionally) robust

optimization, see Bandi and Bertsimas (2012), Wiesemann et al. (2014) and Postek et al. (2018).

The first-order generic moment ambiguity set (12) generalizes the first-order marginalized mo-

ment ambiguity set (6). The possibility to impose upper bounds on the mean absolute deviations

of sums of customer demands allows to reduce the ambiguity whenever customer demands are not

perfectly correlated. While one could in principle impose upper dispersion bounds on the cumula-

tive demands of any customer subset Si ⊆ VC , this approach would require large amounts of data

to estimate the corresponding dispersion bounds νi, and it would be computationally demanding

to determine the associated RCI cuts. Instead, one may impose upper dispersion bounds on some

‘canonical’ customer subsets that are dictated by the application area, for example, all customers

within a specific municipality, county or state. For a given set of demand observations, the disper-

sion bounds νi for different subsets Si ⊆ VC can be derived analytically using asymptotic arguments

(Pham-Gia and Hung, 2001; Segers, 2014) or empirically via bootstrapping (Chernick, 2007).

Contrary to the marginalized ambiguity sets studied in Section 4, distributionally robust CVRPs

with ambiguity sets of the form (12) typically cannot be reformulated as deterministic CVRPs.

Theorem 4. For some instances of the distributionally robust CVRP with ambiguity set (12) there

is no deterministic CVRP instance with the same set of feasible route sets.

Intuitively speaking, the non-existence of a deterministic reformulation is owed to the fact that

the deterministic CVRP cannot capture dependencies between customer demands. The proof of

Theorem 4 constructs a distributionally robust CVRP instance with four customers where the

demands of the customers 1 and 3 (as well as 2 and 4) cannot vary much jointly, whereas the

demands of the customers 1 and 2 (as well as 3 and 4) can vary much jointly. As a result, the

customer subsets {1, 3} and {2, 4} can each be served by a single vehicle in the distributionally

robust CVRP instance. In the deterministic CVRP, on the other hand, the potential presence

of joint variability of customer demands implies that at least some of the demands have to be

sufficiently high, which in turn excludes the possibility to serve all customers by two vehicles.

Although we are unable to evaluate the worst-case value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

in

closed form for the ambiguity set (12), the quantity can be computed in polynomial time.

Theorem 5. The worst-case value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

over the generic first-order
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ambiguity set (12) is equal to the optimal objective value of the following optimization problem.

minimize 1S
>µ+ min

{(
q − µ

)
,

1− ε
ε

(
µ− q

)}>[
1S − 2

p∑
i=1

γi1Si

]
+

+
1

ε
ν>γ

subject to γ ∈ Rp+

(13)

Problem (13) minimizes a non-smooth convex function over the non-negative orthant. It can be

reformulated as a linear program and solved with a ‘practical’ complexity of O([|S|+p]3), see Boyd

and Vandenberghe (2004, §11). Faster solution times can be obtained through warm-starting.

We characterize a sequence of two-point distributions attaining the worst-case value-at-risk in

Section EC.3.4 of the electronic companion.

Although problem (13) can be solved in polynomial time, its solution may still be prohibitively

expensive for large CVRP instances, where many RCIs have to be separated during the execution of

a branch-and-cut scheme. It is therefore instructive to study special cases of the first-order generic

moment ambiguity set (12) that allow for a faster computation of the worst-case value-at-risk (13).

Corollary 2. If the ambiguity set (12) satisfies Si ∩ Sj = ∅, 1 ≤ i < j < p,
⋃p−1
i=1 Si = VC and

Sp = VC , then the worst-case value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

evaluates to

1S
>µ+ min

{
νp
2ε
,

p−1∑
i=1

min
{

1S∩Si
>q̂,

νi
2ε

}}
, (14)

where q̂ = min
{(
q − µ

)
, 1−ε

ε

(
µ− q

)}
.

The assumption that
⋃p−1
i=1 Si = VC comes without loss of generality as we can always add

an auxiliary customer set Si with a sufficiently large dispersion bound νi. The ambiguity set in

Corollary 2 is a generalization of the first-order marginalized ambiguity set (6) that allows to impose

upper dispersion bounds on the cumulative demand of arbitrary non-overlapping customer subsets

as well as on the sum of all customer demands. The expression (14) can be evaluated in time

O(|S|). Moreover, if a customer subset S′ ⊆ VC differs from a customer subset S ⊆ VC through

the inclusion or removal of a single customer, then the expression (14) associated with S′ can be

computed from the expression (14) associated with S in time O(p).

An important special case of Corollary 2 arises when p = n+ 1 and Si = {i}, i = 1, . . . , p.
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Corollary 3. If the ambiguity set (12) satisfies p = n+ 1, Si = {i}, i = 1, . . . , n, and Sn+1 = VC ,

then the worst-case value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

has the closed-form expression

1S
>µ+ min

{
νn+1

2ε
,
∑
i∈S

min
{
q̂i,

νi
2ε

}}
, (15)

where q̂ = min
{(
q − µ

)
, 1−ε

ε

(
µ− q

)}
.

Compared to the first-order marginalized ambiguity set (6), the ambiguity set in Corollary 3

additionally imposes an upper bound on the sum of mean absolute deviations of all customer

demands. The expression (15) can be evaluated in time O(|S|). Moreover, if a customer subset

S′ ⊆ VC differs from a customer subset S ⊆ VC through the inclusion or removal of a single

customer, then the expression (15) associated with S′ can be computed from the expression (15)

associated with S in constant time O(1). If no support is present in Corollary 3, then the worst-case

value-at-risk (15) reduces to 1S
>µ + min{νn+1,

∑
i∈S νi}/(2ε), which is reminiscent of a budget

uncertainty set in classical robust optimization (Bertsimas and Sim, 2004).

5.2 Covariance Ambiguity Sets

We now consider second-order generic ambiguity sets (or covariance ambiguity sets) of the form

P =
{
P ∈ P0(Rn) : P [q̃ ∈ Q] = 1, EP [q̃] = µ, EP

[
(q̃ − µ)(q̃ − µ)>

]
� Σ

}
, (16)

where Q = [q, q] with q ≥ 0, µ ∈ intQ and Σ � 0. Note that (16) is a special case of the generic

moment ambiguity set (4) where ϕ(q) = maxz∈Rn\{0}
{
z>
[
(q − µ)(q − µ)> −Σ

]
z
}

and σ = 0,

and thus the demand estimator dP over the ambiguity set (16) is subadditive due to Theorem 2.

The covariance ambiguity set (16) generalizes the marginalized variance ambiguity set (8).

Similar to the mean absolute deviations on sums of customer demands in the previous subsection,

the possibility to impose upper bounds on the covariances between pairs of customer demands

allows to reduce the ambiguity whenever customer demands are not perfectly correlated. For a

given set of demand observations, the upper covariance bound Σ can be derived analytically using

McDiarmid’s inequality (Delage and Ye, 2010) or empirically via bootstrapping (Chernick, 2007).

As in the previous section, distributionally robust CVRPs with ambiguity sets of the form (16)

typically cannot be reformulated as deterministic CVRPs.
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Theorem 6. For some instances of the distributionally robust CVRP with ambiguity set (16) there

is no deterministic CVRP instance with the same set of feasible route sets.

Like the first-order generic ambiguity set from the previous section, the worst-case value-at-risk

supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

over the ambiguity set (16) can be computed in polynomial time.

Theorem 7. The worst-case value-at-risk supP∈P P-VaR
[∑

i∈S q̃i
]

over the covariance ambiguity

set (16) is equal to the optimal objective value of the optimization problem

maximize 1S
>µ+ 1S

>q

subject to q>Σ−1q ≤ 1− ε
ε

q ∈
[
q`, qu

]
,

(17)

where q` = max
{
−1−ε

ε (q − µ), q − µ
}

and qu = min
{
1−ε
ε (µ− q), q − µ

}
.

Problem (17) is a convex quadratically constrained quadratic program that maximizes an affine

function over the intersection of an ellipsoid and a hyperrectangle. The problem can be solved

with a ‘practical’ complexity of O(n3), see Boyd and Vandenberghe (2004, §11). We characterize a

sequence of two-point distributions attaining the worst-case value-at-risk in Section EC.3.5 of the

electronic companion.

Rather than solving problem (17) directly, we exploit strong convex duality, which applies since

problem (17) affords a Slater point, to conclude that the dual second-order cone program

minimize 1>Sµ+

√
1− ε
ε

∥∥Σ 1
2 (e− λ)

∥∥
2

+ qu>λ

subject to λ ∈ Rn+

attains the same optimal objective value as problem (17). Due to its benign structure, the dual

problem can be solved quickly using the Fast Iterative Shrinkage Thresholding Algorithm (Beck and

Teboulle, 2009) with adaptive restarts (O’Donoghue and Candès, 2015) if we move the nonnegativity

constraints to the objective function through indicator functions and apply a Moreau proximal

smoothing (Beck and Teboulle, 2012) to the conic quadratic term in the objective function.

An important special case of Theorem 7 arises when the upper covariance bound in the ambi-

guity set (16) satisfies Σ = diag (σ21, . . . , σ
2
n). This could be due to a priori structural knowledge

about the customer demands, or by bounding a non-diagonal matrix Σ from above (with respect

to the positive semidefinite cone) to obtain a conservative (outer) approximation of (16).
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Corollary 4. If the ambiguity set (16) satisfies Σ = diag (σ21, . . . , σ
2
n), then the worst-case value-

at-risk supP∈P P-VaR
[∑

i∈S q̃i
]

is equal to the optimal objective value of the optimization problem

maximize 1S
>µ+

∑
i∈S(θ)

qui +

√√√√√
1− ε

ε
−
∑
i∈S(θ)

(
qui
σi

)2
 ∑

i∈S\S(θ)

σ2i


subject to θ ∈ R+,

(18)

where S(θ) = {i ∈ S : σ2i > θ·qui } and qu = min
{
1−ε
ε (µ− q), q − µ

}
, and where the feasible region

is restricted to those values of θ for which the expression inside the square root is non-negative,

that is, for which
∑

i∈S(θ)

(
qui
σi

)2
≤ 1−ε

ε .

Corollary 4 allows us to compute the worst-case value-at-risk supP∈P P-VaR
[∑

i∈S q̃i
]

over the

covariance ambiguity set (16) with a diagonal upper bound Σ in time O(|S|), given that the ratios

qui /σ
2
i have been sorted upfront. Indeed, we can determine the set S(θ) ⊆ S that maximizes (18)

through a linear search that adds a single customer to the candidate set S(θ) in each iteration.

6 Numerical Results

In this section, we compare the performance of our tailored RCI cut evaluation schemes for the

generic ambiguity sets from Section 5 with a state-of-the-art commercial solver (Section 6.1), and

we compare the runtimes of the resulting branch-and-cut algorithms for the distributionally ro-

bust chance constrained CVRP with a corresponding implementation for the deterministic CVRP

(Section 6.2). Further numerical results can be found in Section EC.4 of the electronic compan-

ion, where we investigate how the parameter values of the marginal ambiguity sets from Section 4

impact the solution of the associated deterministic CVRP instances.

With the exception of Section 6.1 below, all numerical results are based on the CVRP benchmark

problems compiled by Dı́az (2006). The instances are named ‘X-nY -kZ’, where X denotes the

literature source of the instance, Y is the number of nodes in the instance (including the depot) and

Z is the number of vehicles. We only consider those problems for which two-dimensional coordinates

for the nodes are available. Following the literature convention, we set the transportation costs cij

to the Euclidean distance between i and j, rounded to the nearest integer.

Since the CVRP benchmark problems contain deterministic customer demands, we generate

distributions for our stochastic demands according to the following procedure. The unscaled de-
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Figure 3. Demand distributions for the instance A-n32-k5. The left graph visualizes the

histogram for customer 1, whereas the middle (right) graph illustrates the joint demand

distribution of customers 1 and 12 (1 and 30), which are located nearby (far away).

mand of customer i ∈ VC is set to χ̃i = 1
2 ξ̃i+

1
2|Ni|

∑
j∈Ni ξ̃j , where ξ̃ ∼ N (0, I) is an n-dimensional

normally distributed random vector and Ni ⊆ VC is the set of the b0.1nc customers closest to i in

terms of Euclidean distance. We subsequently apply an affine transformation which ensures that

the expected demand of customer i is µi, which we identify with customer i’s nominal demand

from the deterministic CVRP instance, and that 99% of customer i’s demand falls into the interval

[q, q], where the bounds (q, q) are set to (q, q) = (0.8µ, 1.2µ), unless specified otherwise. Finally,

we clamp customer i’s scaled demand distribution to the interval [q, q]. Our construction ensures

that the customer demands exhibit a dependence structure that is informed by geographical prox-

imity, see Figure 3. Since the unused vehicle capacities tend to be small already in the deterministic

CVRP instances, we follow the approach in Gounaris et al. (2013) and increase the vehicle capac-

ities Q in each benchmark instance by 20%. This ensures that all distributionally robust CVRP

instances remain feasible. We set the risk threshold to ε = 0.2.

We solve the deterministic and distributionally robust CVRP instances with a ‘vanilla’ branch-

and-cut algorithm that only separates RCI cuts according to the Tabu Search procedure proposed

by Augerat et al. (1998). Our branch-and-cut algorithm is implemented in C++ and uses the

branch-and-bound capability of CPLEX 12.8.1 The source code of the proposed branch-and-cut

algorithm is available as part of the paper’s online supplement. We solve all problems in single-core

mode on an Intel Xeon 2.66GHz processor with 8GB memory and a runtime limit of 12 hours.

1CPLEX website: https://www.ibm.com/analytics/cplex-optimizer.
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Figure 4. Runtimes for RCI cut evaluation. Shown are the average runtimes that

CPLEX (solid lines) and our evaluation schemes (dashed lines) for first-order ambiguity

sets (left graph), generic covariance ambiguity sets (middle graph) and covariance am-

biguity sets with diagonal Σ (right graph) require to evaluate the right-hand side of a

single RCI cut. The dotted lines represent the implied speedups.

6.1 Generic Ambiguity Sets: RCI Cut Evaluation

We first compare our tailored evaluation of the worst-case value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

for first-order generic moment ambiguity sets (12) and covariance ambiguity sets (16) with their

solution as linear and quadratically constrained quadratic programs via CPLEX, respectively. To

this end, we generate random problem instances in which n ∈ {10, 15, . . . , 200} customers have

nominal demands µi that are uniformly distributed on the set {1, . . . , 10} as well as random locations

that are uniformly distributed on the square [0, 10]2. We generate the demand distributions as

described in the beginning of this section.

For the first-order ambiguity set (12), we partition the customers into four quadrants of equal

size, and we select mean absolute deviations bounds for each quadrant as well as for the cumulative

demands based on a sample from the joint demand distribution. Similarly, for the covariance

ambiguity set (16), we select the covariance bound Σ based on a sample from the joint demand

distribution. We also consider the special case of a diagonal covariance bound (see Corollary 4)

where we set all non-diagonal elements of the previously described covariance bound Σ to zero.

Figure 4 compares the runtimes of our tailored evaluation schemes with those of CPLEX for

evaluating the right-hand side of a single RCI cut, that is, an individual worst-case value-at-risk

supP∈P P-VaR1−ε
[∑

i∈S q̃i
]
, on 1,000 randomly generated problem instances for each instance size
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Figure 5. Runtimes and optimality gaps for our branch-and-cut schemes. Shown are

the runtimes (left graph) and optimality gaps after 12 hours (right graph) for our deter-

ministic branch-and-cut scheme with nominal demands q = q (blue, circles) as well as

our distributionally robust branch-and-cut schemes over first order ambiguity sets (green,

squares), second order ambiguity sets (red, triangles) and second order ambiguity sets

with diagonal covariance bounds (cyan, stars).

n. While the achieved speedups are most significant for first-order ambiguity sets, they remain

substantial for covariance ambiguity sets, especially if the covariance bound Σ is diagonal. The

results are in line with our theoretical complexity estimates from Section 5, and they confirm our

intuition that it is essential to study special classes of ambiguity sets P that give rise to easily

computable demand estimators dP .

6.2 Generic Ambiguity Sets: Branch-and-Cut Scheme

We finally use our RCI cut evaluation schemes for the first-order and the two covariance ambiguity

sets from the previous subsection to solve the CVRP benchmark instances of Dı́az (2006). We

compare the runtimes and optimality gaps of the resulting branch-and-cut procedures with those

of a deterministic branch-and-cut algorithm applied to the deterministic CVRP with worst-case

demands q = q. The results are summarized in Figure 5 as well as in Section EC.5 of the electronic

companion.

The results show that our branch-and-cut schemes for the first-order as well as the diagonal

covariance ambiguity set perform very similar to the branch-and-cut scheme for the deterministic
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CVRP, both in terms of the runtimes for successfully solved instances as well as the optimality

gaps after 12 hours of runtime. In particular, all three algorithms can solve about 75% of the

benchmark instances within the time limit, and the optimality gap is below 10% for roughly 90% of

the instances. As expected from the previous subsection, our branch-and-cut scheme for covariance

ambiguity sets with a non-diagonal bound Σ is slower; it solves about 65% of the benchmark

instances within 12 hours, and the optimality gap is below 10% for about 80% of the instances.

To assess the conservatism of the obtained solutions, we consider 55 instances where all of

the branch-and-cut schemes determined optimal solutions within the time limit and where the

optimal solution of the deterministic CVRP with expected demands q = µ (henceforth the ‘nominal

solution’) has strictly lower transportation costs than the optimal solution of the deterministic

CVRP with component-wise worst-case demands q = q (henceforth the ‘worst-case solution’). We

then compute how much of the objective gap between the nominal solution and the robust solution

is covered by each of the distributionally robust solutions. For our first-order ambiguity set as

well as the covariance ambiguity set with a diagonal bound, every distributionally robust solution

improves upon the worst-case solution, and the solutions close 75.5% of the objective gap on average.

For our covariance ambiguity set with a non-diagonal bound, the distributionally robust solutions

improve upon the worst-case solutions in 53 out of the 55 instances and close 52.1% of the objective

gap on average. The results indicate that the distributionally robust CVRP can help to reduce the

conservatism of näıve worst-case solutions.

7 Conclusions

Motivated by some of the shortcomings of the classical chance constrained CVRP, which assumes

that the uncertain customer demands are governed by a precisely known distribution, we investi-

gated the distributionally robust CVRP, in which this distribution is only partially characterized.

In particular, we studied the computational tractability of the distributionally robust CVRP.

The solvability of the distributionally robust CVRP is largely determined by the choice of the

ambiguity set. First and foremost, the ambiguity set should lead to a subadditive demand estimator

so that standard branch-and-cut schemes can be used to solve the problem. This turns out to be

the case for a large class of moment ambiguity sets. Secondly, the demand estimator should be

easily computable. To this end, we have identified several classes of first-order and second-order
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moment ambiguity sets whose demand estimators can be computed by tailored algorithms that

outperform an off-the-shelf commercial optimization package by orders of magnitude.

An interesting question that we have not touched upon is the comparison of different ambiguity

sets in terms of their statistical properties, such as the degree of conservativeness of the obtained

solutions as well as the amount of data required for a sufficiently accurate calibration of the am-

biguity set. We believe that such a comparison would best be done empirically using a large set

of benchmark instances, and we identify this as a fruitful avenue for future research. We also

note that some of our results may have applications outside the domain of vehicle routing. For

example, Theorem 3 can be readily generalized to show that linear worst-case chance constraints

over marginalized moment ambiguity sets reduce to deterministic inequality constraints. It there-

fore appears instructive to further explore the consequences of highly structured ambiguity sets in

distributionally robust optimization in general.
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Electronic Companion

This e-companion contains material that has been omitted from the main paper for the sake of

brevity and readability. Section EC.8 discusses several shortcomings of the classical chance con-

strained CVRP formulation. Section EC.9 provides an example where the value-at-risk fails to be

additive for individual probability distributions contained in a marginalized moment ambiguity set.

Section EC.10 provides series of worst-case distributions that attain the worst-case values-at-risk

for each of the five ambiguity sets considered in the main paper. Section EC.11 provides a numeri-

cal example that explores how the minimum number of vehicles as well as the transportation costs

increase with the coefficient of variation for a marginalized variance ambiguity set. Section EC.12

provides omitted details of our numerical experiments from the main paper. Section EC.13, finally,

contains the proofs of all results from the main text.

EC.8 Shortcomings of the Chance Constrained CVRP

In the following three examples, we discuss each of the challenges of modeling the random customer

demands using a known distribution in the chance constrained CVRP.

Example 2 (Independence). Consider a chance constrained CVRP instance where a single vehicle

of capacity Q = 12 serves the customers VC = {1, . . . , 20}. The marginal distribution of each
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Figure 6. Chance constrained CVRP instance with uniformly distributed marginal cus-

tomer demands (dotted lines) that are combined through a Gaussian copula. The left

and middle graphs illustrate projections of the probability density functions correspond-

ing to the correlations ρ = 0 and ρ = 1 onto two customers, respectively, and the right

graph presents the probabilities of satisfying the vehicle’s capacity for all 20 customers.
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customer’s demand is a uniform distribution over the interval [0, 1]. We model the dependence

between the customer demands via a Gaussian copula. The left and the middle graph in Figure 6

visualize the joint demand distribution for two customers when their demands are independent

(correlation ρ = 0) and perfectly dependent (correlation ρ = 1), respectively. The right graph in

Figure 6 visualizes the probability Q
[
e>q̃ ≤ Q

]
of satisfying the capacity restriction of the vehicle for

varying levels of demand dependence. While 20 customers with independently distributed demands

can be served with a high probability of approximately 0.95, this probability decreases to 0.6 for

perfectly correlated (comonotone) demands. We thus conclude that it is crucial to model demand

dependencies that may be present in the problem instance.

For a branch-and-cut-and-price algorithm for the chance constrained CVRP that does not re-

quire independent customer demands, we refer to Dinh et al. (2016, 2017).

Example 3 (Complexity). Consider a chance constrained CVRP instance where the customer de-

mands are uniformly distributed over a hyperrectangle [q, q] with q, q ∈ Rn+. In this case, evaluating

the probability Q
[
1Rk

>q̃ ≤ Q
]

of satisfying the capacity of vehicle k is tantamount to calculating

the volume of the knapsack polytope, which is known to be #P-hard (Dyer and Stougie, 2006; Hana-

susanto et al., 2016). This is problematic for exact solution schemes, which typically rely on the

repeated evaluation of the feasibility of candidate routes to determine an optimal route set.

We note that if the customer demands follow a multivariate normal distribution, then the cu-

mulative demand along a candidate route is also normally distributed. In this case, the satisfaction

of the corresponding vehicle’s capacity reduces to evaluating the inverse cumulative distribution

function of a standard normal distribution, which can be done efficiently. Moreover, by invoking

a central limit theorem, a similar argument can be made for non-normally distributed customer

demands as long as (i) the customer demands are (sufficiently) independent and (ii) each vehicle

serves sufficiently many customers (with 30 being a common quote in the literature).

Example 4 (Estimation). Consider a chance constrained CVRP instance where three vehicles

of capacity Q = 10 serve the customer set VC = {1, . . . , 8}. The expected customer demands are

µ = (3, 5, 2, 5, 1, 6, 1, 1)>, and each customer demand q̃i follows an independent uniform distribution

supported on [(2/3)µi, (4/3)µi]. The left part of Figure 7 shows the route set R = (R1,R2,R3),

R1 = (1, 2), R2 = (3, 4, 5) and R3 = (6, 7, 8), which is feasible at the tolerance ε = 0.05 since
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Figure 7. Chance constrained CVRP instance with independent and uniformly dis-

tributed customer demands. The three graphs in the middle visualize the true probability

density functions of the cumulative customer demands, which correspond to generalized

Irwin-Hall distributions, for the three routes on the left. The graph on the right shows

the likelihood of the route set on the left being feasible if we replace the true distribution

with an empirical distribution Qν of varying sample size ν. The box-and-whisker plots

report the ranges and the quartiles of 1,000 statistically independent sets of samples.

the vehicles’ capacities are satisfied with probability 0.97, 0.98 and 0.97, respectively. (For ease of

illustration, we have duplicated the depot in the figure.) In practice, the true distribution Q of the

customer demands is typically unknown. In this case, the literature often suggests to replace the

unknown true distribution Q with the empirical distribution Qν = 1
ν

∑
` δq`, where q1, . . . , qν denote

historical observations of the customer demands under the distribution Q; this approach is often

referred to as ‘sample average approximation’ in the stochastic programming literature (Shapiro

et al., 2014). The right part of Figure 7 shows the likelihood of the route set R being feasible ( i.e.,

satisfying the capacity constraints Qν
[
q̃1 + q̃2 ≤ 10

]
≥ 0.95, Qν

[
q̃3 + q̃4 + q̃5 ≤ 10

]
≥ 0.95 and

Qν
[
q̃6 + q̃7 + q̃8 ≤ 10

]
≥ 0.95) if we replace the unknown true distribution Q with the empirical

distribution Qν resulting from different sample sizes ν. We observe that despite the small number

of customers and vehicles, ν ≥ 800 samples are required for the route set R to be feasible under the

chance constraints corresponding to the empirical distribution Qν with a confidence of 0.99.

We note that smaller numbers of samples than those presented in Example 4 may suffice in

practice if the risk tolerance ε of the value-at-risk is adjusted judiciously. The interested reader is
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referred to Luedtke and Ahmed (2008) for further details.

EC.9 Additivity of the Value-at-Risk over Marginalized Moment

Ambiguity Sets

The following example illustrates that for individual probability distributions within a marginalized

moment ambiguity set of the form (5), the corresponding values-at-risk typically fail to be additive.

Example 5. Consider the following marginalized moment ambiguity set for two customers:

P =
{
P ∈ P0(R2) : P(q̃ ∈ [2, 7]× [5, 15]) = 1, EP[q̃] = (3.2, 7.8)>, EP[|q̃i − µi|] ≤ 1.5, i = 1, 2

}
Here, | · | denotes the absolute value operator. We have P1 ∈ P for the distribution P1 = P11 × P12

under which the two customer demands are independent and governed by the marginal distributions

P11 = 0.8 · δ3 + 0.2 · δ4 ∈ P0(R) and P12 = 0.8 · δ7 + 0.2 · δ11 ∈ P0(R). One readily verifies that

14 = P1-VaR0.9 [q̃1 + q̃2] < P1-VaR0.9 [q̃1] + P1-VaR0.9 [q̃2] = 4 + 11,

that is, the 0.9-value-at-risk is subadditive under P1. Likewise, we have P2 ∈ P for the distribution

P2 = P21×P22 with the marginals P21 = 0.6·δ2+0.4·δ5 ∈ P0(R) and P22 = 0.9·δ7+0.1·δ15 ∈ P0(R).

The distribution P2 satisfies

12 = P2-VaR0.9 [q̃1 + q̃2] = P2-VaR0.9 [q̃1] + P2-VaR0.9 [q̃2] = 5 + 7,

that is, the value-at-risk is additive under P2. Finally, we have P3 ∈ P for P3 = P31×P32 with the

marginals P31 = 0.9 · δ3 + 0.1 · δ5 ∈ P0(R) and P32 = 0.9 · δ7 + 0.1 · δ15 ∈ P0(R). One verifies that

12 = P3-VaR0.9 [q̃1 + q̃2] > P3-VaR0.9 [q̃1] + P3-VaR0.9 [q̃2] = 3 + 7,

that is, the value-at-risk is superadditive under P3.

EC.10 Worst Case Distributions

In this section, we consider each of the five ambiguity sets from the main paper and provide

sequences of two-point distributions that are contained in the ambiguity set and that attain the

worst-case values-at-risk asymptotically.

34



EC.10.1 First Order Marginalized Ambiguity Sets

Proposition EC.1. A sequence of distributions Pti ∈ P, t = 1, 2, . . ., that attain the worst-case

value-at-risk supP∈P P-VaR1−ε
[
q̃i
]

in Proposition 2 asymptotically as t −→ ∞ can be defined as

follows:

(i) If (7) is minimized by qi − µi, then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with q1 =

µ− ε
1−ε(qi − µi)ei and q2 = µ+ 1−ε−1/t

ε+1/t
ε

1−ε(qi − µi)ei.

(ii) If (7) is minimized by 1−ε
ε (µi − q

i
), then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with

q1 = µ− (µi − qi)ei and q2 = µ+ 1−ε−1/t
ε+1/t (µi − qi)ei.

(iii) If (7) is minimized by 1
2εσi, then Pti = (1− ε− 1/t) · δq1 + (ε+ 1/t) · δq2 with q1 = µ− σi

2(1−ε)ei

and q2 = µ+ 1−ε−1/t
ε+1/t

σi
2(1−ε)ei.

Proof of Proposition EC.1. We have to show for each of the three cases that Pti ∈ P, that is,

that (a) Pti is supported on Q, (b) EPti

[
q̃
]

= µ and (c) EPti

[∣∣q̃ − µ∣∣] ≤ σ hold. The claim of the

proposition then follows since in each of the three cases, the distribution places a probability mass

of ε+ 1/t on q2, and q2i converges to sup
P∈P

P-VaR1−ε
[
q̃i
]

as t −→∞. The proof that Pti ∈ P follows

along similar lines as the proof of Proposition 1 and is thus omitted for the sake of brevity.

Proposition EC.1 presents a sequence of worst-case distributions Pti for the demand q̃i of each

individual customer i ∈ VC . Using similar arguments as in the proof of Theorem 3 from the main

text, we can construct a sequence of worst-case distributions Pt for the demand of all customers

i ∈ VC via the Fréchet-Hoeffding upper bound copula

Pt(q̃ ≤ q) = min
i∈VC

Pti(q̃i ≤ qi).

For the ambiguity set (6), this sequence of worst-case distributions Pt has a simple description: it

satisfies Pt −→ (1− ε) · δq1 + ε · δq2 for the two-point distribution characterized by

(q1i, q2i) =



(
1

1−εµi −
ε

1−εqi, qi

)
if (7) is minimized by qi − µi,(

q
i
, 1
εµi −

1−ε
ε qi

)
if (7) is minimized by 1−ε

ε (µi − qi),(
µi − σi

2(1−ε) , µi + σi
2ε

)
if (7) is minimized by 1

2εσi

∀i ∈ VC .

This joint worst-case distribution is illustrated in Figure 8 for an example with two customers.
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Figure 8. Fréchet-Hoeffding upper bound copula P? for a distributionally robust CVRP

instance with two customers and a marginalized first-order ambiguity set (6) with support

Q = [4, 6]× [8, 10], mean µ> = (4.5, 9), mean absolute deviation bounds σ> = (0.1, 0.15)

and risk threshold ε = 0.1. The marginal distributions are highlighted via dotted green

and red lines, and the worst-case value-at-risk supP∈P P-VaR1−ε
[
q̃1 + q̃2

]
(the worst-case

demand realization) is indicated by a white (dark gray) circle.

Example 5 (cont’d). Proposition EC.2 shows that the 0.9-worst-case values-at-risk for the two

customer demands q̃1 and q̃2 from our previous example are 5 and 15, respectively. Moreover,

Proposition EC.1 implies that each individual worst-case value-at-risk is attained asymptotically

by a sequence of distributions that converges to the asymptotic distribution 0.9 · δq1 + 0.1 · δq2
with q1 = (3, 7)> and q2 = (5, 15)>. Finally, since each element of the sequence is a two-point

distribution that places a probability mass greater than 0.1 on each scenario, the value-at-risk is

indeed additive for each member of the sequence. Note, however, that although the worst-case

values-at-risk of q̃1 + q̃2 converge to 20 for the distributions in the sequence, the worst-case value-

at-risk under the asymptotic distribution is 10.

EC.10.2 Variance Marginalized Ambiguity Sets

Proposition EC.2. A sequence of distributions Pti ∈ P, t = 1, 2, . . ., that attain the worst-case

value-at-risk supP∈P P-VaR1−ε
[
q̃i
]

in Proposition 3 asymptotically as t −→ ∞ can be defined as

follows:
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(i) If (9) is minimized by qi − µi, then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with q1 =

µ− ε
1−ε(qi − µi)ei and q2 = µ+ 1−ε−1/t

ε+1/t
ε

1−ε(qi − µi)ei.

(ii) If (9) is minimized by 1−ε
ε (µi − q

i
), then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with

q1 = µ− (µi − qi)ei and q2 = µ+ 1−ε−1/t
ε+1/t (µi − qi)ei.

(iii) If (9) is minimized by
√

1−ε
ε σi, then Pti = (1−ε−1/t)·δq1+(ε+1/t)·δq2 with q1 = µ−

√
ε

1−εσiei

and q2 = µ+ 1−ε−1/t
ε+1/t

√
ε

1−εσiei.

Proof of Proposition EC.2. This proposition can be proved in the same way as Proposition

EC.1.

EC.10.3 Semi-Variance Marginalized Ambiguity Sets

Proposition EC.3. A sequence of distributions Pti ∈ P, t = 1, 2, . . ., that attain the worst-case

value-at-risk supP∈P P-VaR1−ε
[
q̃i
]

in Proposition 4 asymptotically as t −→ ∞ can be defined as

follows:

(i) If (11) is minimized by qi − µi, then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with q1 =

µ− ε
1−ε(qi − µi)ei and q2 = µ+ 1−ε−1/t

ε+1/t
ε

1−ε(qi − µi)ei.

(ii) If (11) is minimized by 1−ε
ε (µi − q

i
), then Pti = (1 − ε − 1/t) · δq1 + (ε + 1/t) · δq2 with

q1 = µ− (µi − qi)ei and q2 = µ+ 1−ε−1/t
ε+1/t (µi − qi)ei.

(iii) If (11) is minimized by

√
σ+
i
ε , then Pti = (1−ε−1/t)·δq1+(ε+1/t)·δq2 with q1 = µ− ε

1−ε

√
σ+
i
ε ei

and q2 = µ+ 1−ε−1/t
ε+1/t

ε
1−ε

√
σ+
i
ε ei.

(iv) If (11) is minimized by

√
(1−ε)σ−i
ε , then Pti = (1−ε−1/t)·δq1+(ε+1/t)·δq2 with q1 = µ−

√
σ−i
1−εei

and q2 = µ+ 1−ε−1/t
ε+1/t

√
σ−i
1−εei.

Proof of Proposition EC.3. This proposition can be proved in the same way as Proposition

EC.1.
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EC.10.4 First Order Generic Ambiguity Sets

Proposition EC.4. A sequence of distributions Pt ∈ P, t = 1, 2, . . ., that attain the worst-case

value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

in Theorem 5 asymptotically as t −→ ∞ can be defined

as Pt = (ξ1 − 1/t) · δq1 + (ξ2 + 1/t) · δq2, where q1 = ζ1
ξ1

and q2 = ζ2
ξ2
− 1

t

(
ζ2
ξ2
− ζ1

ξ1

)
, and (ξi, ζi) is

an optimal solution to the linear program

minimize ξ1

subject to ξ1 + ξ2 = 1, ζ1 + ζ2 = µ

qξi ≤ ζi ≤ qξi, −ρi ≤ ζi − µξi ≤ ρi

ξ2τ ≤ 1>S ζ2, S(ρ1 + ρ2) ≤ ν

ξi ∈ R+, ζi ∈ Rn, ρi ∈ Rn+, i = 1, 2,

where S is a p× n matrix with rows 1>Si, i = 1, . . . , p.

Proof of Proposition EC.4. The proof follows along similar lines as the proof of Proposition

EC.1.

EC.10.5 Covariance Generic Ambiguity Sets

Proposition EC.5. A sequence of distributions Pt ∈ P, t = 1, 2, . . ., that attain the worst-case

value-at-risk supP∈P P-VaR1−ε
[∑

i∈S q̃i
]

in Theorem 7 asymptotically as t −→∞ can be defined as

Pt = (ξ1 − 1/t) · δq1 + (ξ2 + 1/t) · δq2, where q1 = ζ1
ξ1

and q2 = ζ2
ξ2

+ 1
t(ξ2+1/t)(

ζ1
ξ1
− ζ2

ξ2
), and (ξi, ζi)is

an optimal solution to the convex optimization problem

minimize ξ1

subject to ξ1 + ξ2 = 1, ζ1 + ζ2 = µ

qξi ≤ ζi ≤ qξi, 1>S ζ2 ≥ ξ2τ
1

ξ1
(ζ1 − ξ1µ) (ζ1 − ξ1µ)> +

1

ξ2
(ζ2 − ξ2µ) (ζ2 − ξ2µ)> � Σ

ξi ∈ R+, ζi ∈ Rn, i = 1, 2.

Proof of Proposition EC.5. The proof follows along similar lines as the proof of Proposition

EC.1.
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Figure 9. Minimum number of vehicles and optimal transportation costs for the instance

A-n32-k5 with a marginalized variance ambiguity set and different variation coefficients ρ.

EC.11 Numerical Results for Marginalized Ambiguity Sets

We solve a distributionally robust version of the benchmark instance A-n32-k5 with a marginalized

variance ambiguity set of the form (8). To this end, we identify the expected customer demands

µ with the nominal customer demands from the benchmark instance and set (q, q) = (0.5µ, 2µ).

Moreover, we select σi = (ρµi)
2, i ∈ VC , where ρ represents the coefficient of variation, which is

assumed to be common for all customer demands. Contrary to the other experiments, we use the

same vehicle capacities as in the benchmark instances.

Figure 9 illustrates the minimum number of vehicles required to serve all customers’ demands,

as well as the resulting transportation costs, as a function of the coefficient of variation ρ. Moreover,

Figure 10 shows the optimal route sets corresponding to three different values of ρ. We observe

that a higher coefficient of variation ρ in the ambiguity set (8) hedges against larger sets of demand

distributions in the distributionally robust CVRP instance, which in turn leads to higher nominal

customer demands in the corresponding deterministic CVRP instance. As a result, both the number

of vehicles and the transportation costs tend to increase with larger values of ρ.

EC.12 Detailed Numerical Results

Table 1 summarizes the best determined solution as well as the runtime of our branch-and-cut
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Figure 10. Optimal route sets for the instance A-n32-k5 with a marginalized variance

ambiguity set and variation coefficients ρ = 0 (left; 5 vehicles), ρ = 0.23 (middle; 7

vehicles) and ρ = 0.45 (right; 9 vehicles).

scheme for the deterministic CVRP (‘Deterministic’) as well as the distributionally robust CVRP

over a first order ambiguity set (‘First Order’), a second order ambiguity set (‘Second Order’) as

well as a second order ambiguity set with diagonal covariance bounds (‘Diagonal’). Instances that

have been solved to certified optimality (within the runtime limit of 12 hours) are marked with

an asterisk: in this case, the ‘Opt’ column denotes the optimal objective value, and the ‘t (sec)’

column provides the runtime. For all other instances, the ‘Opt’ column denotes the objective value

of the best route set found, and the ‘[LB]’ column presents the lower bound at termination.
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Problem

Deterministic First Order Second Order Diagonal
———————– ———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB] [LB]

A-n32-k5 784.0? 0.17 753.0? 0.18 756.0? 0.24 753.0? 0.19
A-n33-k5 661.0? 0.4 639.0? 0.31 652.0? 3.61 639.0? 0.62
A-n33-k6 742.0? 0.68 716.0? 0.91 731.0? 34.02 716.0? 1.28
A-n34-k5 778.0? 0.78 702.0? 0.27 724.0? 34.21 702.0? 0.26
A-n36-k5 799.0? 1.82 762.0? 5.39 770.0? 14.79 762.0? 10.57
A-n37-k5 669.0? 0.2 656.0? 0.62 663.0? 1.5 656.0? 0.28
A-n37-k6 949.0? 35.67 884.0? 6.98 902.0? 95.44 884.0? 12.33
A-n38-k5 730.0? 1.67 684.0? 2.83 704.0? 10.76 684.0? 1.22
A-n39-k5 822.0? 10.09 767.0? 13.11 792.0? 409.91 767.0? 8.49
A-n39-k6 831.0? 2.47 791.0? 3.02 800.0? 56.15 791.0? 2.17
A-n44-k6 937.0? 43.99 903.0? 241.45 917.0? 2088.51 903.0? 160.27
A-n45-k6 944.0? 25.07 873.0? 1.94 903.0? 70.57 873.0? 2.36
A-n45-k7 1146.0? 484.95 1077.0? 4510.15 1119.0 [1095.0] 1077.0? 2614.56
A-n46-k7 917.0? 2.67 887.0? 7.28 892.0? 11.99 887.0? 20.46
A-n48-k7 1073.0? 28.28 1027.0? 6439.49 1036.0? 11257.9 1027.0? 27366.7
A-n53-k7 1010.0? 27.12 968.0? 30.43 980.0? 192.44 968.0? 19.55
A-n54-k7 1167.0? 528.51 1087.0? 4709.69 1138.0 [1090.83] 1087.0? 12903.8
A-n55-k9 1073.0? 18.31 1023.0? 57.89 1047.0? 1396.58 1023.0? 88.19
A-n60-k9 1371.0 [1342.33] 1320.0 [1225.95] 1362.0 [1234.71] 1265.0 [1233.0]
A-n61-k9 1044.0 [1021.4] 958.0? 1829.01 998.0 [969.727] 958.0? 5888.66
A-n62-k8 1288.0? 8480.34 1237.0 [1160.15] 1245.0 [1185.42] 1228.0 [1162.67]
A-n63-k9 1682.0 [1588.17] 1605.0 [1444.61] 1588.0 [1465.27] 1551.0 [1442.24]
A-n63-k10 1326.0 [1293.44] 1231.0 [1212.3] 1254.0 [1219.17] 1233.0 [1203.94]
A-n64-k9 1457.0 [1360.81] 1380.0 [1267.45] no-feas — 1421.0 [1271.71]
A-n65-k9 1174.0? 1080.06 1098.0? 994.57 1193.0 [1100.48] 1098.0? 2119.66
A-n69-k9 1159.0 [1143.28] 1094.0 [1091.54] 1143.0 [1085.97] 1094.0? 16385.9
A-n80-k10 no-feas — 1744.0 [1588.17] 1778.0 [1596.94] 1863.0 [1582.24]
B-n31-k5 672.0? 0.25 651.0? 0.63 652.0? 1.35 651.0? 0.26
B-n34-k5 788.0? 1.32 764.0 [757.8] 769.0? 29.69 768.0 [755.5]
B-n35-k5 955.0? 0.28 867.0? 0.05 888.0? 5.74 867.0? 0.07
B-n38-k6 805.0? 0.3 732.0? 0.29 732.0? 0.62 732.0? 0.25
B-n39-k5 549.0? 0.27 521.0? 0.19 532.0? 0.38 521.0? 0.15
B-n41-k6 829.0? 1.02 791.0? 1.6 797.0? 8.05 791.0? 0.68
B-n43-k6 742.0? 14.58 680.0? 4.69 683.0? 4.49 680.0? 2.88
B-n44-k7 909.0? 1.74 841.0? 1.78 847.0? 21.92 841.0? 2.02
B-n45-k5 751.0? 3.78 677.0? 2.36 702.0? 3.33 677.0? 2.47
B-n45-k6 678.0? 13.82 626.0? 2.36 660.0? 59.67 626.0? 4.19

Table 1. Optimally solved instances are highlighted with an asterisk, and the adjacent

entries report the solution times t. For all other instances, we present the best solution

found within 12 hours and the lower bound at termination.

We now provide detailed numerical results for each branch-and-cut scheme in turn. To this

end, Tables 2–5 provide the percentage gap at the root node (measured relative to the best route

set found at termination), the time to process the root node, the number of RCI cuts introduced

throughout the execution of our branch-and-cut scheme, the amount of time spent on identifying
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Problem

Deterministic First Order Second Order Diagonal
———————– ———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB] [LB]

B-n50-k7 741.0? 0.52 679.0? 0.1 724.0? 2.99 679.0? 0.13
B-n50-k8 1312.0? 1487.59 1233.0 [1209.0] 1231.0? 12567.6 1230.0 [1214.84]
B-n51-k7 1032.0? 6.63 929.0? 3.63 964.0? 17285.8 929.0? 1.66
B-n52-k7 747.0? 0.44 676.0? 0.96 679.0? 2.33 676.0? 0.45
B-n56-k7 707.0? 0.73 623.0? 7.43 624.0? 60.66 623.0? 2.02
B-n57-k9 1598.0? 94.52 1541.0? 15505.3 1580.0 [1547.24] 1541.0? 1788.11
B-n63-k10 1496.0? 3488.23 1434.0 [1368.87] 1587.0 [1379.17] 1419.0 [1362.11]
B-n64-k9 861.0? 141.12 803.0? 6.67 803.0? 3.21 803.0? 2.87
B-n66-k9 1316.0? 6490.27 1212.0? 14206.8 1361.0 [1208.0] 1212.0? 4563.34
B-n67-k10 1032.0? 65.55 980.0? 340.58 1014.0? 2416.87 980.0? 690.97
B-n68-k9 1275.0 [1266.71] 1315.0 [1154.56] 1354.0 [1176.14] 1207.0 [1153.67]
B-n78-k10 1221.0? 3359.2 1132.0 [1105.92] 1148.0 [1129.2] 1123.0 [1104.28]
E-n101-k8 820.0 [806.437] 793.0 [784.607] 806.0 [785.587] 799.0 [783.205]
E-n101-k14 1206.0 [1024.4] 1034.0 [991.635] no-feas — 1240.0 [989.23]
E-n22-k4 375.0? 0.03 373.0? 0.02 373.0? 0.02 373.0? 0.02
E-n23-k3 569.0? 0.01 564.0? 0.0 569.0? 0.04 564.0? 0.0
E-n30-k3 534.0? 2.25 492.0? 0.05 495.0? 0.11 492.0? 0.04
E-n33-k4 835.0? 0.41 814.0? 0.45 814.0? 2.17 814.0? 0.53
E-n51-k5 521.0? 0.88 516.0? 36.0 516.0? 15.45 516.0? 34.72
E-n76-k7 682.0? 13066.8 661.0? 1909.01 667.0 [665.143] 661.0? 6614.39
E-n76-k8 737.0 [725.244] 706.0 [700.631] 716.0 [700.12] 706.0 [699.462]
E-n76-k10 851.0 [801.247] 792.0 [765.87] 799.0 [767.762] 790.0 [765.091]
E-n76-k14 no-feas — 973.0 [912.894] 1004.0 [915.242] 968.0 [911.564]
F-n135-k7 1162.0? 106.59 1086.0? 13961.3 1209.0 [1094.58] 1086.0? 26643.3
F-n45-k4 724.0? 0.18 715.0? 0.59 720.0? 0.76 715.0? 0.5
F-n72-k4 237.0? 11.59 232.0? 0.43 232.0? 1.53 232.0? 0.33
M-n101-k10 820.0? 5.58 804.0? 52.45 809.0? 102.53 804.0? 36.29
M-n121-k7 1041.0 [1017.04] 1065.0 [945.488] no-feas — 997.0 [949.634]
M-n151-k12 1120.0 [968.683] no-feas — no-feas — 1182.0 [935.127]
P-n19-k2 212.0? 0.03 195.0? 0.0 195.0? 0.0 195.0? 0.0
P-n20-k2 216.0? 0.05 208.0? 0.01 209.0? 0.02 208.0? 0.01
P-n21-k2 211.0? 0.03 208.0? 0.01 211.0? 0.02 208.0? 0.01
P-n22-k2 216.0? 0.03 213.0? 0.03 215.0? 0.03 213.0? 0.03
P-n22-k8 604.0? 0.3 559.0? 0.04 593.0? 0.55 559.0? 0.07
P-n23-k8 529.0? 5.62 504.0? 0.92 524.0? 43.7 504.0? 1.25
P-n40-k5 458.0? 0.39 449.0? 0.26 454.0? 4.02 449.0? 0.39
P-n45-k5 510.0? 2.17 500.0? 2.13 501.0? 16.21 500.0? 2.37
P-n50-k7 554.0? 32.13 543.0? 24.85 545.0? 114.94 543.0? 31.51
P-n50-k8 644.0 [620.417] 588.0? 130.92 592.0? 390.6 588.0? 77.8
P-n50-k10 696.0? 7635.86 662.0? 208.73 670.0? 1013.43 662.0? 208.7
P-n51-k10 741.0? 7841.63 695.0? 134.74 714.0? 7168.28 695.0? 84.04

Table 1. (Continued from previous page.)
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Problem

Deterministic First Order Second Order Diagonal
———————– ———————– ———————– ———————–

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

Opt
t (sec)

[LB] [LB] [LB] [LB]

P-n55-k10 696.0 [694.0] 665.0? 237.22 680.0? 23861.2 665.0? 171.93
P-n55-k7 568.0? 339.01 551.0? 50.72 554.0? 152.11 551.0? 55.96
P-n55-k8 594.0? 97.82 575.0? 21.8 584.0? 386.29 575.0? 5.53
P-n55-k15 no-feas — 886.0? 4922.87 933.0 [885.795] 886.0? 3433.36
P-n60-k10 744.0? 30258.2 712.0? 2678.99 716.0? 9448.37 712.0? 5553.23
P-n60-k15 973.0 [948.558] 926.0? 17824.9 949.0 [920.5] 926.0? 17177.0
P-n65-k10 799.0 [782.652] 761.0? 23003.3 770.0 [761.0] 761.0? 25022.8
P-n70-k10 830.0 [803.776] 789.0 [768.618] 801.0 [768.222] 796.0 [768.104]
P-n76-k4 593.0? 16.13 588.0? 4.89 589.0? 103.87 588.0? 4.14
P-n76-k5 627.0? 570.43 614.0? 1457.71 615.0? 873.37 614.0? 595.71
P-n101-k4 681.0? 9.27 673.0? 3.34 673.0? 8.93 673.0? 3.98
att-n48-k4 40002.0? 3.25 38637.0? 1.73 38966.0? 6.58 38637.0? 1.21

Table 1. (Continued from previous page.)

RCI cuts as well as the number of branch-and-bound nodes created.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

A-n32-k5 8.80% 0.03 223 0.04 45
A-n33-k5 2.53% 0.15 274 0.12 59
A-n33-k6 1.61% 0.42 307 0.16 59
A-n34-k5 2.83% 0.35 358 0.21 74
A-n36-k5 2.07% 0.32 522 0.79 330
A-n37-k5 0.00% 0.18 103 0.02 0
A-n37-k6 4.97% 0.75 2,758 10.79 2,940
A-n38-k5 12.88% 0.05 697 0.62 255
A-n39-k5 17.86% 0.04 1,604 2.41 774
A-n39-k6 4.75% 0.29 665 1.04 351
A-n44-k6 4.12% 0.75 2,898 12.30 2,689
A-n45-k6 5.15% 0.65 2,017 6.91 1,602
A-n45-k7 4.78% 2.40 6,351 63.29 13,686
A-n46-k7 1.06% 0.60 854 0.93 136
A-n48-k7 3.77% 1.57 2,303 8.25 1,245
A-n53-k7 10.80% 0.12 1,822 8.50 1,485
A-n54-k7 5.01% 3.41 5,213 68.83 12,059
A-n55-k9 2.70% 1.49 1,121 8.24 1,774
A-n60-k9 13.68% 1.74 24,243 2,253.15 296,214
A-n61-k9 5.79% 3.24 50,713 647.81 106,151
A-n62-k8 13.52% 1.53 11,191 483.35 76,017
A-n63-k9 17.42% 4.65 37,127 1,391.02 199,160
A-n63-k10 22.40% 0.08 27,591 1,794.41 227,390
A-n64-k9 15.95% 2.74 45,515 972.17 131,772
A-n65-k9 6.08% 3.07 4,982 178.73 18,669
A-n69-k9 6.34% 4.14 23,146 1,712.53 170,185
A-n80-k10 1,611.78% 4.97 55,387 813.87 59,793
B-n31-k5 4.61% 0.10 276 0.04 43
B-n34-k5 6.21% 0.20 513 0.46 295
B-n35-k5 7.51% 0.13 318 0.03 67
B-n38-k6 0.24% 0.23 186 0.05 14
B-n39-k5 3.28% 0.10 202 0.08 32
B-n41-k6 4.34% 0.41 407 0.29 144
B-n43-k6 20.65% 0.09 2,081 4.38 1,167
B-n44-k7 9.35% 0.73 885 0.22 22
B-n45-k5 0.90% 0.63 912 1.27 473
B-n45-k6 3.05% 0.52 1,586 5.29 1,505

Table 2. Detailed numerical results for our deterministic branch-and-cut scheme. Shown

is the gap at the root node, the time required to process the root node, the number of

RCI cuts introduced throughout the search, the time spent on identifying RCI cuts and

the size of the overall branch-and-bound tree (in order of appearance).
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

B-n50-k7 4.12% 0.09 423 0.14 73
B-n50-k8 11.90% 2.62 10,186 137.43 20,986
B-n51-k7 6.36% 0.33 1,068 2.41 798
B-n52-k7 4.21% 0.15 287 0.09 33
B-n56-k7 3.49% 0.08 387 0.23 43
B-n57-k9 9.89% 0.10 3,446 29.59 3,903
B-n63-k10 11.43% 5.37 23,103 161.14 16,698
B-n64-k9 6.11% 0.32 5,842 27.82 3,169
B-n66-k9 17.28% 5.51 22,026 268.89 30,531
B-n67-k10 5.97% 1.71 2,692 17.61 2,455
B-n68-k9 11.66% 2.82 25,156 1,488.26 255,735
B-n78-k10 16.79% 2.84 16,680 178.24 15,615
E-n101-k8 4.50% 3.60 30,712 1,108.90 109,437
E-n101-k14 20.17% 0.72 58,691 1,389.14 65,811
E-n22-k4 0.80% 0.03 41 0.00 3
E-n23-k3 0.00% 0.01 12 0.00 0
E-n30-k3 9.59% 0.04 663 0.72 1,319
E-n33-k4 1.22% 0.33 221 0.05 10
E-n51-k5 2.00% 0.38 373 0.25 23
E-n76-k7 4.01% 3.05 13,073 609.01 111,864
E-n76-k8 5.61% 5.77 23,396 1,304.07 169,627
E-n76-k10 9.97% 7.59 46,341 899.08 68,335
E-n76-k14 1,004.04% 2.61 73,328 1,157.97 58,012
F-n135-k7 7.20% 4.28 2,875 9.45 559
F-n45-k4 2.07% 0.05 173 0.04 27
F-n72-k4 1.69% 0.77 1,431 2.89 1,533
M-n101-k10 0.77% 4.90 609 0.51 13
M-n121-k7 9.19% 31.06 15,294 1,171.71 94,427
M-n151-k12 17.09% 20.39 38,922 1,129.98 43,820
P-n19-k2 0.00% 0.03 25 0.00 0
P-n20-k2 1.70% 0.03 64 0.01 33
P-n21-k2 0.24% 0.03 30 0.00 2
P-n22-k2 0.00% 0.03 30 0.00 0
P-n22-k8 4.33% 0.02 355 0.14 67
P-n23-k8 10.42% 0.03 1,747 2.48 471
P-n40-k5 1.52% 0.18 203 0.13 28
P-n45-k5 4.31% 0.04 789 0.93 257
P-n50-k7 3.17% 0.66 2,346 11.15 1,841
P-n50-k8 10.07% 0.71 45,881 771.23 140,653
P-n50-k10 6.24% 1.11 15,289 625.22 76,105
P-n51-k10 6.59% 0.92 20,397 376.89 44,558

Table 2. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

P-n55-k10 5.74% 1.35 18,663 2,761.96 439,225
P-n55-k7 4.24% 0.53 4,957 67.23 13,381
P-n55-k8 3.99% 0.77 3,306 27.15 4,988
P-n55-k15 986.58% 3.89 85,026 779.67 60,092
P-n60-k10 6.26% 2.89 18,509 1,817.38 220,933
P-n60-k15 11.18% 0.16 29,304 2,736.74 217,385
P-n65-k10 6.44% 3.13 26,086 1,869.01 220,693
P-n70-k10 7.81% 4.15 38,508 1,277.46 100,265
P-n76-k4 1.32% 1.48 1,637 3.30 694
P-n76-k5 3.55% 1.94 5,427 54.18 11,008
P-n101-k4 0.77% 1.87 961 2.65 404
att-n48-k4 2.62% 0.51 547 1.19 951

Table 2. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

A-n32-k5 0.64% 0.16 87 0.02 6
A-n33-k5 7.08% 0.04 224 0.12 81
A-n33-k6 2.65% 0.17 334 0.36 205
A-n34-k5 2.14% 0.12 185 0.06 44
A-n36-k5 8.19% 0.07 749 1.90 1,613
A-n37-k5 3.66% 0.13 259 0.21 125
A-n37-k6 9.07% 0.17 1,044 2.76 1,288
A-n38-k5 4.24% 0.22 636 1.03 493
A-n39-k5 6.26% 0.64 1,412 3.19 1,460
A-n39-k6 4.63% 0.19 537 1.30 747
A-n44-k6 5.83% 0.64 4,040 35.06 13,726
A-n45-k6 3.79% 0.48 334 0.71 219
A-n45-k7 14.90% 0.20 13,254 304.42 91,182
A-n46-k7 5.88% 0.13 1,026 3.08 940
A-n48-k7 8.81% 0.72 9,168 350.46 133,682
A-n53-k7 8.32% 0.25 1,284 11.10 2,504
A-n54-k7 7.28% 3.11 6,864 395.41 114,838
A-n55-k9 7.54% 0.44 2,129 24.05 4,667
A-n60-k9 19.03% 0.69 41,073 1,200.80 235,201
A-n61-k9 10.10% 0.67 8,835 207.29 29,502
A-n62-k8 18.19% 0.90 33,033 921.39 140,083
A-n63-k9 21.80% 0.66 45,214 1,189.42 230,934
A-n63-k10 13.15% 0.47 19,973 2,248.64 388,767
A-n64-k9 12.52% 10.18 41,546 944.52 133,645
A-n65-k9 8.01% 0.70 5,914 140.58 28,429
A-n69-k9 7.52% 1.13 14,681 2,457.60 407,054
A-n80-k10 19.59% 0.59 38,716 1,037.21 102,557
B-n31-k5 1.96% 0.11 421 0.18 154
B-n34-k5 3.80% 0.15 22,506 830.25 1,006,939
B-n35-k5 0.17% 0.05 36 0.00 5
B-n38-k6 4.17% 0.03 314 0.09 78
B-n39-k5 2.98% 0.06 203 0.03 68
B-n41-k6 1.69% 0.10 634 0.64 309
B-n43-k6 7.79% 0.09 1,007 1.74 595
B-n44-k7 18.61% 0.08 612 0.62 100
B-n45-k5 2.73% 0.27 526 0.97 365
B-n45-k6 2.39% 0.32 660 0.87 383

Table 3. Detailed numerical results for our distributionally robust branch-and-cut

scheme over first order ambiguity sets. The columns are the same as in Table 2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

B-n50-k7 1.18% 0.08 87 0.01 19
B-n50-k8 11.92% 0.81 31,056 1,375.71 393,742
B-n51-k7 1.27% 0.12 695 2.08 667
B-n52-k7 4.73% 0.16 400 0.32 122
B-n56-k7 3.37% 0.41 960 3.14 1,034
B-n57-k9 6.77% 0.33 19,596 1,422.81 242,756
B-n63-k10 17.19% 0.23 36,888 1,991.49 372,514
B-n64-k9 3.13% 0.34 734 3.80 437
B-n66-k9 14.29% 0.74 24,773 515.11 75,099
B-n67-k10 7.92% 0.18 3,435 102.70 14,767
B-n68-k9 22.59% 1.10 37,064 1,503.80 221,916
B-n78-k10 18.37% 1.00 22,453 2,512.12 332,470
E-n101-k8 3.70% 1.10 23,580 1,699.66 120,921
E-n101-k14 8.13% 0.92 34,050 2,525.48 112,334
E-n22-k4 0.00% 0.02 17 0.00 0
E-n23-k3 0.00% 0.00 6 0.00 0
E-n30-k3 0.24% 0.04 39 0.01 2
E-n33-k4 2.18% 0.14 372 0.08 102
E-n51-k5 3.69% 0.42 1,709 9.45 3,565
E-n76-k7 4.39% 0.67 7,776 187.81 28,781
E-n76-k8 5.69% 1.80 14,279 2,435.24 304,396
E-n76-k10 9.18% 0.44 29,876 1,787.28 221,637
E-n76-k14 10.95% 1.42 37,663 2,619.79 195,994
F-n135-k7 9.28% 4.90 11,290 743.93 79,677
F-n45-k4 3.87% 0.05 380 0.10 105
F-n72-k4 0.00% 0.41 69 0.02 0
M-n101-k10 4.73% 2.07 1,319 24.62 2,003
M-n121-k7 21.29% 2.17 25,715 889.68 100,398
M-n151-k12 1,007.57% 17.79 33,566 1,780.50 52,380
P-n19-k2 0.00% 0.00 2 0.00 0
P-n20-k2 0.00% 0.01 8 0.00 0
P-n21-k2 0.00% 0.01 10 0.00 0
P-n22-k2 0.35% 0.03 19 0.00 4
P-n22-k8 0.00% 0.04 34 0.00 0
P-n23-k8 5.65% 0.02 429 0.50 282
P-n40-k5 0.98% 0.15 117 0.07 18
P-n45-k5 3.20% 0.11 493 1.06 397
P-n50-k7 4.71% 0.33 1,427 10.26 3,145
P-n50-k8 4.96% 0.64 2,405 38.69 10,523
P-n50-k10 5.72% 0.44 3,556 64.73 12,038

Table 3. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

P-n51-k10 5.07% 0.34 2,574 48.55 8,253
P-n55-k10 5.00% 0.63 3,233 75.73 13,805
P-n55-k7 3.31% 0.41 1,936 17.92 4,612
P-n55-k8 3.22% 0.28 1,372 10.28 1,821
P-n55-k15 5.76% 0.59 11,686 820.36 84,568
P-n60-k10 5.80% 1.25 5,997 478.57 77,248
P-n60-k15 5.89% 0.66 9,642 3,647.42 397,186
P-n65-k10 6.92% 0.36 11,478 2,064.94 290,779
P-n70-k10 8.20% 0.78 19,677 3,024.37 400,755
P-n76-k4 2.64% 0.41 669 2.07 422
P-n76-k5 3.89% 0.62 7,598 108.29 25,154
P-n101-k4 0.78% 0.62 312 1.10 123
att-n48-k4 1.54% 0.36 379 0.54 394

Table 3. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

A-n32-k5 0.88% 0.17 100 0.07 3
A-n33-k5 9.27% 0.05 366 2.96 472
A-n33-k6 5.24% 0.22 968 26.66 4,342
A-n34-k5 4.76% 0.23 1,232 25.71 4,234
A-n36-k5 6.30% 0.21 659 11.97 1,472
A-n37-k5 4.90% 0.10 243 1.15 70
A-n37-k6 9.13% 0.25 1,963 67.19 7,016
A-n38-k5 4.81% 0.28 657 8.75 933
A-n39-k5 10.41% 0.31 3,884 167.48 22,474
A-n39-k6 5.32% 0.24 1,725 43.72 3,427
A-n44-k6 7.94% 0.47 6,821 907.55 58,357
A-n45-k6 9.52% 0.11 1,465 55.35 3,617
A-n45-k7 14.54% 0.29 30,388 7,769.22 454,813
A-n46-k7 4.61% 0.41 565 10.32 403
A-n48-k7 11.31% 0.50 9,292 3,841.96 148,705
A-n53-k7 7.41% 0.45 1,530 160.80 5,100
A-n54-k7 15.64% 0.50 32,890 8,621.02 273,935
A-n55-k9 7.56% 1.30 5,775 890.82 30,153
A-n60-k9 24.01% 0.14 31,016 11,954.02 228,278
A-n61-k9 12.84% 0.66 19,059 13,276.38 304,638
A-n62-k8 19.74% 1.05 30,499 6,682.17 196,778
A-n63-k9 21.39% 0.92 36,943 9,421.22 226,004
A-n63-k10 20.45% 0.07 30,239 10,365.47 216,149
A-n64-k9 1,236.57% 0.34 51,599 5,620.44 130,836
A-n65-k9 16.33% 0.91 32,861 11,697.69 316,333
A-n69-k9 11.88% 2.03 26,141 12,435.64 244,488
A-n80-k10 19.83% 1.71 42,743 10,253.69 134,555
B-n31-k5 1.76% 0.13 437 0.88 250
B-n34-k5 8.19% 0.13 1,200 23.28 3,333
B-n35-k5 1.34% 0.09 870 4.16 783
B-n38-k6 4.17% 0.02 317 0.41 80
B-n39-k5 3.99% 0.07 275 0.14 84
B-n41-k6 2.22% 0.19 662 6.36 1,024
B-n43-k6 8.20% 0.06 806 3.12 376
B-n44-k7 19.19% 0.07 1,149 17.78 1,121
B-n45-k5 7.95% 0.09 308 2.74 247
B-n45-k6 2.70% 0.13 1,273 47.87 4,590

Table 4. Detailed numerical results for our distributionally robust branch-and-cut

scheme over second order ambiguity sets. The columns are the same as in Table 2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

B-n50-k7 1.75% 0.09 593 2.16 241
B-n50-k8 13.48% 0.13 16,809 3,840.93 116,174
B-n51-k7 3.30% 0.32 14,994 4,899.57 404,450
B-n52-k7 2.36% 0.24 400 1.69 128
B-n56-k7 3.89% 0.42 1,629 51.74 1,720
B-n57-k9 7.31% 0.40 27,203 13,061.37 459,242
B-n63-k10 23.09% 0.60 43,961 10,941.47 272,627
B-n64-k9 3.55% 0.52 266 2.48 24
B-n66-k9 24.98% 0.63 56,503 6,127.27 158,376
B-n67-k10 10.89% 0.18 7,345 1,655.82 31,546
B-n68-k9 22.17% 0.69 37,478 14,580.46 293,702
B-n78-k10 17.13% 2.99 30,486 14,825.17 139,882
E-n101-k8 5.06% 1.54 29,045 14,248.27 121,826
E-n101-k14 1,054.00% 0.91 36,531 19,669.39 73,112
E-n22-k4 0.00% 0.02 18 0.00 0
E-n23-k3 0.00% 0.02 10 0.02 0
E-n30-k3 0.13% 0.08 47 0.03 3
E-n33-k4 2.58% 0.16 534 1.43 235
E-n51-k5 3.91% 0.29 814 12.59 942
E-n76-k7 5.10% 0.57 14,438 15,433.94 284,828
E-n76-k8 8.00% 0.34 16,598 19,485.62 271,932
E-n76-k10 9.48% 1.28 30,125 14,273.25 136,172
E-n76-k14 15.29% 0.44 47,456 15,796.83 118,497
F-n135-k7 16.10% 9.14 28,690 14,498.58 55,654
F-n45-k4 4.54% 0.05 204 0.51 69
F-n72-k4 0.86% 0.39 140 1.11 24
M-n101-k10 4.46% 1.57 958 94.88 478
M-n121-k7 950.33% 3.42 20,421 14,041.34 69,004
M-n151-k12 998.08% 3.98 19,697 26,267.34 40,896
P-n19-k2 0.00% 0.00 2 0.00 0
P-n20-k2 0.00% 0.02 10 0.00 0
P-n21-k2 0.95% 0.01 21 0.01 5
P-n22-k2 1.55% 0.02 31 0.01 9
P-n22-k8 2.56% 0.03 277 0.43 95
P-n23-k8 9.26% 0.02 1,956 33.25 5,106
P-n40-k5 1.55% 0.24 355 3.40 297
P-n45-k5 2.59% 0.04 660 14.21 1,292
P-n50-k7 5.31% 0.45 1,853 93.86 3,666
P-n50-k8 7.70% 0.19 2,732 306.98 9,854
P-n50-k10 7.91% 0.28 3,907 785.45 18,990

Table 4. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

P-n51-k10 7.63% 0.36 6,623 4,141.96 132,791
P-n55-k10 7.76% 0.40 12,911 10,772.11 261,138
P-n55-k7 3.92% 0.44 1,937 124.32 4,649
P-n55-k8 5.06% 0.32 2,768 297.57 9,981
P-n55-k15 10.68% 0.40 36,951 18,004.99 232,056
P-n60-k10 7.61% 0.44 5,653 6,506.57 123,579
P-n60-k15 7.73% 1.07 16,838 28,090.32 214,042
P-n65-k10 7.86% 0.67 10,710 24,639.16 294,987
P-n70-k10 9.64% 1.35 20,694 18,413.52 245,107
P-n76-k4 2.80% 0.36 1,549 80.69 2,438
P-n76-k5 3.60% 0.68 4,342 567.82 12,544
P-n101-k4 0.79% 0.80 206 7.50 107
att-n48-k4 1.65% 0.45 476 4.72 560

Table 4. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

A-n32-k5 0.59% 0.18 59 0.01 4
A-n33-k5 7.08% 0.05 298 0.29 220
A-n33-k6 3.14% 0.19 403 0.51 391
A-n34-k5 3.15% 0.18 130 0.04 13
A-n36-k5 8.14% 0.06 1,189 3.45 2,421
A-n37-k5 3.09% 0.14 94 0.08 38
A-n37-k6 8.19% 0.16 1,201 4.77 2,657
A-n38-k5 2.34% 0.35 388 0.39 204
A-n39-k5 6.52% 0.33 1,057 2.28 1,218
A-n39-k6 4.96% 0.14 478 0.99 736
A-n44-k6 5.98% 0.55 3,590 27.83 11,279
A-n45-k6 4.19% 0.33 588 0.89 259
A-n45-k7 12.33% 0.40 8,480 253.71 74,868
A-n46-k7 5.88% 0.16 1,968 6.61 1,723
A-n48-k7 11.19% 0.25 13,612 1,005.50 412,658
A-n53-k7 7.15% 0.45 1,070 8.35 2,040
A-n54-k7 11.98% 0.46 10,251 831.14 233,414
A-n55-k9 7.93% 0.35 2,052 40.24 7,419
A-n60-k9 15.69% 0.55 24,807 2,156.01 308,711
A-n61-k9 10.65% 0.34 11,494 651.52 100,321
A-n62-k8 17.26% 0.35 35,582 1,151.97 282,771
A-n63-k9 16.00% 4.32 45,954 1,204.07 196,922
A-n63-k10 12.26% 0.65 21,539 2,570.20 368,590
A-n64-k9 19.04% 0.42 47,264 1,287.94 218,242
A-n65-k9 8.25% 1.61 9,073 229.99 41,152
A-n69-k9 7.80% 0.78 12,260 1,445.01 189,889
A-n80-k10 22.56% 4.63 45,429 1,287.34 147,232
B-n31-k5 1.91% 0.10 227 0.05 68
B-n34-k5 8.79% 0.08 18,094 1,625.71 1,711,050
B-n35-k5 0.00% 0.07 37 0.00 2
B-n38-k6 4.17% 0.04 195 0.09 55
B-n39-k5 2.98% 0.07 139 0.02 31
B-n41-k6 0.54% 0.40 181 0.17 68
B-n43-k6 7.79% 0.08 576 1.10 504
B-n44-k7 18.61% 0.08 644 0.67 154
B-n45-k5 4.13% 0.23 468 1.14 495
B-n45-k6 2.65% 0.34 965 1.49 634

Table 5. Detailed numerical results for our distributionally robust branch-and-cut

scheme over second order ambiguity sets with diagonal covariance bounds. The columns

have the same interpretation as in Table 2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

B-n50-k7 1.18% 0.08 102 0.02 24
B-n50-k8 11.13% 0.81 25,668 1,574.21 368,764
B-n51-k7 1.27% 0.12 430 0.91 263
B-n52-k7 4.73% 0.13 307 0.09 78
B-n56-k7 3.49% 0.46 465 0.73 260
B-n57-k9 6.55% 0.71 9,297 288.68 39,564
B-n63-k10 16.31% 0.24 32,541 3,134.08 518,803
B-n64-k9 2.88% 0.45 730 0.97 180
B-n66-k9 14.60% 0.63 12,257 330.91 60,197
B-n67-k10 7.92% 0.21 4,569 164.72 24,308
B-n68-k9 15.63% 0.67 39,837 2,391.10 407,652
B-n78-k10 17.12% 1.12 17,842 3,132.44 323,583
E-n101-k8 4.06% 2.07 22,403 2,245.80 168,540
E-n101-k14 23.35% 1.27 33,049 3,777.12 194,335
E-n22-k4 0.00% 0.02 18 0.00 0
E-n23-k3 0.00% 0.00 6 0.00 0
E-n30-k3 1.07% 0.04 44 0.00 2
E-n33-k4 2.21% 0.13 294 0.12 127
E-n51-k5 3.49% 0.46 1,749 9.24 4,370
E-n76-k7 4.53% 0.63 11,179 580.14 78,018
E-n76-k8 5.92% 1.37 11,679 3,486.02 243,887
E-n76-k10 8.92% 0.49 23,723 2,574.44 252,486
E-n76-k14 11.90% 0.58 31,041 3,238.67 199,176
F-n135-k7 9.53% 4.29 16,108 1,917.77 123,567
F-n45-k4 3.87% 0.04 313 0.12 134
F-n72-k4 0.81% 0.31 92 0.02 2
M-n101-k10 5.76% 0.73 1,257 18.00 1,501
M-n121-k7 15.67% 2.86 26,325 993.00 67,071
M-n151-k12 23.35% 20.86 30,041 3,050.43 88,252
P-n19-k2 0.00% 0.00 2 0.00 0
P-n20-k2 0.00% 0.01 8 0.00 0
P-n21-k2 0.00% 0.01 11 0.00 0
P-n22-k2 0.63% 0.03 26 0.00 7
P-n22-k8 0.00% 0.07 36 0.00 0
P-n23-k8 5.65% 0.02 657 0.63 458
P-n40-k5 1.11% 0.14 162 0.15 66
P-n45-k5 3.20% 0.11 471 1.18 582
P-n50-k7 4.10% 0.55 1,380 13.13 4,200
P-n50-k8 4.74% 0.56 2,438 27.12 5,894
P-n50-k10 6.06% 0.28 2,890 68.16 14,987

Table 5. (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes

P-n51-k10 5.47% 0.21 2,745 33.21 6,673
P-n55-k10 5.40% 0.43 3,688 55.22 11,508
P-n55-k7 4.13% 0.24 1,732 21.91 5,742
P-n55-k8 3.31% 0.28 743 3.08 781
P-n55-k15 5.59% 0.37 8,309 955.02 95,393
P-n60-k10 6.48% 0.63 7,364 828.66 136,069
P-n60-k15 6.74% 0.33 9,798 4,132.93 462,037
P-n65-k10 5.80% 0.61 11,542 2,407.29 360,166
P-n70-k10 9.17% 0.44 22,465 3,135.99 345,192
P-n76-k4 2.64% 0.40 618 1.62 341
P-n76-k5 3.21% 0.65 4,857 74.25 23,370
P-n101-k4 0.82% 0.96 368 1.36 180
att-n48-k4 1.83% 0.33 320 0.33 234

Table 5. (Continued from previous page.)
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EC.13 Proofs

Proof of Theorem 1. For the first statement, assume that the route set R is feasible in RVRP(P).

We need to show that x defined through (3) satisfies the constraints of 2VF(P) and attains the same

transportation costs. One readily verifies that x satisfies the binarity and the degree constraints of

2VF(P). In view of the RCI constraints, we note that for any S ⊆ VC , S 6= ∅, we have

dP(S) = dP

( ⋃
k∈K

[Rk ∩ S]
)
≤

∑
k∈K:

Rk∩S 6=∅

dP(Rk ∩ S) ≤
∑
k∈K:

Rk∩S 6=∅

dP(Rk)

= |k ∈ K : Rk ∩ S 6= ∅| ≤
∑
i∈V \S

∑
j∈S

xij(R),

where the first identity follows from the fact that R ∈ P(VC ,m) and thus
⋃
kRk = VC , the

first inequality holds because dP is subadditive, and the second inequality is due to the fact that

Rk ∩ S ⊆ Rk and q̃ ≥ 0 P-a.s. for all P ∈ P, which in turn implies that dP(S) ≤ dP(T ) for

all S ⊆ T ⊆ VC . The second equality holds since P [Rk ∈ R(q̃)] ≥ 1 − ε for all P ∈ P implies

that supP∈P P-VaR1−ε
[∑

i∈Rk q̃i
]
≤ Q and hence dP(Rk) = 1. In view of the last inequality, let

jk ∈ Rk ∩ S be the first customer on the route Rk that is contained in S, where k ∈ K satisfies

Rk ∩ S 6= ∅. By the feasibility of R and the definition of jk, we have
∑

i∈V \S xijk(R) = 1. The

inequality now follows from the fact that there are |k ∈ K : Rk ∩ S 6= ∅| different customer nodes

jk with this property.2 We thus conclude that x also satisfies the RCI constraints of 2VF(P).

Moreover, equation (3) implies that the transportation costs of x and R coincide.

For the second statement, we fix a feasible solution x ∈ 2VF(P) and construct a route set R

satisfying (3) as follows. Since
∑

j∈VC x0j = m, there are j1, . . . , jm ∈ VC , j1 < . . . < jm, such

that x0,j1 = . . . = x0,jm = 1. For each route Rk, k ∈ K, we set Rk,1 ← jk and nk ← 1. Since∑
j∈V xRk,nk ,j = 1, we either have xRk,nk ,j = 1 for some j ∈ VC or xRk,nk ,0 = 1. In the former

case, we extend route k by the customer Rk,nk+1 ← j, we set nk ← nk + 1 and we continue the

procedure with customer j. In the latter case, we have completed the route Rk. By construction,

the resulting route set R satisfies (3). We now show that R is feasible in RVRP(P).

To see that R ∈ P(VC ,m), we first observe that Rk 6= ∅ due to the existence of the customers

j1, . . . , jm. Moreover, the degree constraints in 2VF(P) ensure that Rk ∩Rl = ∅ for all k 6= l. It

2Note that the same vehicle may enter and leave the customer set S several times, which implies that we cannot

strengthen the inequality to an equality in general.
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remains to be shown that
⋃
kRk = VC . Imagine, to the contrary, that there is a customer j ∈ VC

such that j /∈
⋃
kRk. By construction of the above algorithm, j must lie on a short cycle S ⊂ VC

that is not connected to the depot node 0. Since dP(S) ≥ 1 but
∑

i∈V \S
∑

j∈S xij = 0, the RCI

constraint corresponding to the customer set S is violated. We thus conclude that x cannot be

feasible in 2VF(P), which is a contradiction.

We now show that P [Rk ∈ R(q̃)] ≥ 1 − ε for all P ∈ P and k ∈ K. By construction of the

route set R and the feasibility of x in 2VF(P), we have
∑

i∈V \Rk
∑

j∈Rk xij = 1 ≥ dP(Rk) for

all k ∈ K, and the definition of dP then implies that supP∈P P-VaR1−ε
[∑

i∈Rk q̃i
]
≤ Q and thus

P [Rk ∈ R(q̃)] ≥ 1− ε for all P ∈ P.

Finally, imagine that two route sets R and R′ satisfy (3), and that there is no reordering of the

routes in R′ that yields R. Then there must be a customer pair (i, j) ∈ VC × VC such that (i, j)

is visited by the same vehicle in immediate succession in R but not in R′. This, however, violates

the assumption that both R and R′ satisfy (3), as xij would have to be both 0 and 1 in that case.

We thus conclude that the route set R satisfying (3) is indeed unique up to a reordering of the

individual routes R1, . . . ,Rm.

The proof of Theorem 2 relies on the following auxiliary result, which we prove first.

Lemma 1 (Strong Duality). Let Q = [q, q], f : Rn 7→ R be an arbitrary function and ϕ : Rn 7→ Rp

be continuous. Assume that µ ∈ intQ and that ϕ(µ) < σ. Then, strong duality holds between the

primal moment problem

minimize

∫
Q
f(q)P(dq)

subject to

∫
Q
P(dq) = 1∫

Q
q P(dq) = µ∫

Q
ϕ(q)P(dq) ≤ σ

P ∈M+(Q)

and its semi-infinite dual problem

maximize α+ µ>β − σ>γ

subject to α+ q>β −ϕ(q)>γ ≤ f(q) ∀q ∈ Q

α ∈ R, β ∈ Rn, γ ∈ Rp+.
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Proof of Lemma 1. The result follows from Proposition 3.4 in Shapiro (2001) if we can show

that the point (1,µ,σ) resides in the interior of the convex cone

V =

(a, b, c) ∈ R× Rn × Rp : ∃µ ∈M+(Q) such that

∫
µ(dξ) = a,∫
q µ(dξ) = b,∫
ϕ(q)µ(dξ) ≤ c

 .

In the following, we denote by Bρ(x) the closed Euclidean ball of radius ρ > 0 that is centered at x.

We prove the statement by showing that any point (s,m, s) ∈ Bκ(1)×Bκ(µ)×Bκ(σ), where κ > 0

is sufficiently small, is contained in V. Indeed, assume that κ is small enough so that m/s ∈ Q

and ϕ(m/s) ≤ s/s. This is possible since µ ∈ intQ, ϕ(µ) < σ and ϕ is continuous. We then have

that the scaled Dirac measure s · δm/s satisfies s · δm/s ∈M+(Q),
∫
s · δm/s = s,

∫
q s · δm/s = m

as well as
∫
ϕ(q) s · δm/s = s ·ϕ(m/s) ≤ s. We thus conclude that (s,m, s) ∈ V as desired.

Proof of Theorem 2. We claim that the epigraph of the worst-case value-at-risk,

M =

{
(λ, τ) ∈ Rn × R : sup

P∈P
P-VaR1−ε

[
λ>q̃

]
≤ τ

}
, (19)

is convex for moment ambiguity sets of the form (4). We then have

sup
P∈P

P-VaR1−ε

[∑
i∈S

q̃i

]
= n · sup

P∈P
P-VaR1−ε

[ 1

n

∑
i∈S

q̃i

]
≤
∑
i∈S

sup
P∈P

P-VaR1−ε
[
q̃i
]
,

where the identity follows from the positive homogeneity of the value-at-risk (which carries over to

the worst-case value-at-risk), and the inequality follows from the stated convexity of the epigraph

of the worst-case value-at-risk (Rockafellar, 1970, Theorem 4.2).

We now show that the epigraph (19) is indeed convex for moment ambiguity sets. To this end,

we note that supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ if and only if the optimal value of the moment problem

minimize

∫
Q
I[λ>q≤τ ] P(dq)

subject to

∫
Q
P(dq) = 1∫

Q
q P(dq) = µ∫

Q
ϕ(q)P(dq) ≤ σ

P ∈M+(Q)
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is greater than or equal to 1− ε. By Lemma 1, this is the case if and only if the optimal objective

value of the semi-infinite dual problem

maximize α+ µ>β − σ>γ

subject to α+ q>β −ϕ(q)>γ ≤ I[λ>q≤τ ] ∀q ∈ Q

α ∈ R, β ∈ Rn, γ ∈ Rp+

is greater than or equal to 1− ε. By splitting up the semi-infinite constraint, we obtain

maximize α+ µ>β − σ>γ

subject to α+ q>β −ϕ(q)>γ ≤ 1 ∀q ∈ Q

α+ q>β −ϕ(q)>γ ≤ 0 ∀q ∈ Q : λ>q > τ

α ∈ R, β ∈ Rn, γ ∈ Rp+.

(20)

We first assume that τ 6= [λ]>+ q − [−λ]>+ q. In that case, we have {q ∈ Q : λ>q > τ} 6= ∅ if and

only if {q ∈ Q : λ>q ≥ τ} 6= ∅, and we can replace the strict inequality in the parameterization of

the second constraint with a weak one due to the convexity (and, a fortiori, continuity) of ϕ.

The first constraint in (20) is satisfied if and only if maximize α+ q>β −ϕ(q)>γ

subject to q ∈ Q

 ≤ 1 ⇐⇒

 minimize −q>β +ϕ(q)>γ

subject to q ∈ [q, q]

 ≥ α− 1.

Strong convex duality, which holds since the support Q has a nonempty interior, implies that this

is the case if and only if the optimal value of the dual problem,

maximize q>ν1 − q>ν1 −
p∑
i=1

γiϕ
?
i (φi/γi)

subject to

p∑
i=1

φ1i = β + ν1 − ν1

ν1,ν1 ∈ Rn+, φ1i ∈ Rn, i = 1, . . . , p,

is greater than or equal to α− 1. Here, ϕ?i is the conjugate function of ϕi.

The second constraint in (20) is satisfied if and only if
maximize α+ q>β −ϕ(q)>γ

subject to q ∈ Q

λ>q ≥ τ

 ≤ 0 ⇐⇒


minimize −q>β +ϕ(q)>γ

subject to q ∈ [q, q]

λ>q ≥ τ

 ≥ α. (21)
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In the following, we distinguish three mutually exclusive and collectively exhaustive cases: (i) there

is a Slater point q ∈ intQ satisfying λ>q > τ ; (ii) there is no q ∈ Q that satisfies λ>q ≥ τ ; and

(iii) there are q ∈ Q that satisfy λ>q ≥ τ , but none of them satisfies q ∈ intQ and λ>q > τ . In

the first case, strong convex duality holds, and (21) is satisfied if and only if the optimal value of

the dual problem,

maximize q>ν0 − q>ν0 + τη −
p∑
i=1

γiϕ
?
i (φ0i/γi)

subject to

p∑
i=1

φ0i = β + ν0 − ν0 + ηλ

ν0,ν0 ∈ Rn+, η ∈ R+, φ0i ∈ Rn, i = 1, . . . , p,

(22)

is greater than or equal to α. In the second case, fix η ∈ R+ and set ν0 = [−β−ηλ]+, ν0 = [β+ηλ]+

and φ0i = 0, i = 1, . . . , p. This choice is feasible in (22) and attains the objective value

q>[−β− ηλ]+− q>[β+ ηλ]+ + τη− c = η
(
q>[−β/η−λ]+− q>[β/η+λ]+ + τ

)
− c −→ +∞

as η −→ +∞ since q>[−β/η − λ]+ − q>[β/η + λ]+ −→ −q̂>λ for q̂ ∈ Q defined via q̂i = q
i

if

λi < 0 and q̂i = qi otherwise, i = 1, . . . , n, and λ>q < τ for all q ∈ Q. In this argument, the term

c =
∑p

i=1 γiϕ
?
i (φ0i/γi) = γ>ϕ?(0) is constant. As for the third case, denote by (21ε) and (22ε) the

variants of problems (21) and (22) where we replace the parameters (q, q) with (q − εe, q + εe),

respectively. Ignoring the trivial case where λ = 0 and τ = 0, we observe that strong duality holds

between (21ε) and (22ε) for every ε > 0. Moreover, one readily verifies that the mapping ε 7→ (21ε)

is right continuous at ε = 0, that the problems (21) ≡ (210) and (22) ≡ (220) are both feasible,

and that the optimal value of (21) is greater than or equal to the optimal value of (22) by weak

duality. Since the optimal value of (22ε′) is greater than or equal to the optimal value of (22ε) for

all 0 ≤ ε′ ≤ ε, we thus conclude that the optimal values of the problems (21) and (22) also coincide.

The previous two paragraphs imply that for all τ ∈ R, τ 6= [λ]>+ q − [−λ]>+ q, we have that
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supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ if and only if

∃α ∈ R, β ∈ Rn, γ ∈ Rp+, ν1,ν1,ν0,ν0 ∈ Rn+,

η ∈ R+, φ1i,φ0i ∈ Rn, i = 1, . . . , p :



α+ µ>β − σ>γ ≥ 1− ε

q>ν1 − q>ν1 −
p∑
i=1

γiϕ
?
i (φ1i/γi) ≥ α− 1

q>ν0 − q>ν0 + τη −
p∑
i=1

γiϕ
?
i (φ0i/γi) ≥ α

p∑
i=1

φ1i = β + ν1 − ν1,
p∑
i=1

φ0i = β + ν0 − ν0 + ηλ.

We claim that any feasible solution to this system of equations satisfies η > 0. Assume to the

contrary that there was a feasible solution with η = 0. In that case, the constraint system would

be independent of τ , and we would have supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ either for all τ ∈ R or for no

τ ∈ R. However, this cannot be the case since q̃ ∈ Q P-a.s. for all P ∈ P and the support Q is

bounded. We thus conclude that η > 0, which allows us to replace all decision variables by their

division through η and replace η with 1/η. We have thus established that for τ 6= [λ]>+ q− [−λ]>+ q,

we have supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ if and only if

∃α ∈ R, β ∈ Rn, γ ∈ Rp+, ν1,ν1,ν0,ν0 ∈ Rn+,

η ∈ R+, φ1i,φ0i ∈ Rn, i = 1, . . . , p :



α+ µ>β − σ>γ ≥ (1− ε)η

q>ν1 − q>ν1 −
p∑
i=1

γiϕ
?
i (φ1i/γi) ≥ α− η

q>ν0 − q>ν0 + τ −
p∑
i=1

γiϕ
?
i (φ0i/γi) ≥ α

p∑
i=1

φ1i = β + ν1 − ν1,
p∑
i=1

φ0i = β + ν0 − ν0 + λ.

(23)

Assume now that τ = [λ]>+ q − [−λ]>+ q. In that case, the application of our continuity argument

to equation (20) could imply that supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ but the equation system (23) is not

satisfiable. To prove that this is not possible, we show that the set-valued mapping τ 7→ S(τ), where

S(τ) is the set of all (α,β,γ,νi,νi, η,φij) satisfying (23), is outer semicontinuous (Rockafellar and

Wets, 1997, Definition 5.4). This is the case if and only if the graph of S—that is, the set of

all λ ∈ Rn, τ ∈ R and α ∈ R, β ∈ Rn, γ ∈ Rp+, ν1,ν1,ν0,ν0 ∈ Rn+, η ∈ R+ as well as

φ1i,φ0i ∈ Rn, i = 1, . . . , p, satisfying (23)—is closed (Rockafellar and Wets, 1997, Theorem 5.7).

Indeed, the conjugate functions ϕ?i are convex by construction, and their convexity is preserved

by the perspective functions (Boyd and Vandenberghe, 2004, §3.2.6). The result now follows since
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convex functions are continuous (Rockafellar and Wets, 1997, Theorem 2.35) and the lower level sets

of continuous functions are closed (Rockafellar and Wets, 1997, Theorem 1.6). We thus conclude

that for all τ ∈ R, we have supP∈P P-VaR1−ε
[
λ>q̃

]
≤ τ if and only if (23) is satisfiable.

By construction, the set of all λ ∈ Rn, τ ∈ R and α ∈ R, β ∈ Rn, γ ∈ Rp+, ν1,ν1,ν0,ν0 ∈ Rn+,

η ∈ R+ as well as φ1i,φ0i ∈ Rn, i = 1, . . . , p, satisfying the equation system (23) is convex. The

set M is a projection of this set onto λ and τ and is thus convex as well.

Proof of Proposition 1. The proof of Theorem 2 implies that for every τ ≥ supP∈P P-VaR1−ε
[
λ>q̃

]
,

the optimal value of the optimization problem

maximize α+ µ>β − σ>γ

subject to q>ν1 − q>ν1 −
p∑
i=1

γiϕ
?
i (φ1i/γi) ≥ α− 1

q>ν0 − q>ν0 + τη −
p∑
i=1

γiϕ
?
i (φ0i/γi) ≥ α

p∑
i=1

φ1i = ν1 − ν1,
p∑
i=1

φ0i = β + ν0 − ν0 + ηλ

α ∈ R, β ∈ Rn, γ ∈ Rp+, ν1,ν1,ν0,ν0 ∈ Rn+
η ∈ R+, φ1i,φ0i ∈ Rn, i = 1, . . . , p

(24)

is greater than or equal to 1−ε. We claim that for τ = τ?, where τ? = supP∈P P-VaR1−ε
[
λ>q̃

]
, the

optimal value of problem (24) is in fact equal to 1−ε. Indeed, assume to the contrary that for τ = τ?,

the optimal solution (α?,β?,γ?,ν?i ,ν
?
i , η

?,φ?ij) to problem (24) satisfied α?+µ>β?−σ>γ? > 1−ε.

In that case, we could replace α? with α̂ < α? such that (α̂,β?,γ?,ν?i ,ν
?
i , η

?,φ?ij) remains feasible

for τ̂ < τ? and still satisfies α̂+µ>β?−σ>γ? ≥ 1−ε. This, however, would contradict the definition

of τ? as the smallest value of τ for which there is (α,β,γ,νi,νi, η,φij) feasible in problem (24)

with an objective value greater than or equal to 1− ε. We thus conclude that the optimal value of

the problem (24) for τ = τ? is exactly 1− ε. Strong convex duality, which holds since problem (24)
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admits a Slater point, then implies that the optimal value of the dual problem,

minimize ξ1

subject to ξ0 + ξ1 = 1, ζ0 + ζ1 = µ

ξiq ≤ ζi ≤ ξiq ∀i ∈ {0, 1}

λ>ζ0 ≥ ξ0τ?

ξ0 ·ϕ(ζ0/ξ0) + ξ1 ·ϕ(ζ1/ξ1) ≤ σ

ξi ∈ R+, ζi ∈ Rn, i = 0, 1,

(25)

is also equal to 1− ε. Let (ξ?i , ζ
?
i ) be an optimal solution to this problem.

We claim that the sequence of two-point distribution Pt defined by

Pt = (ξ?1 − 1/t) · δ ζ?1
ξ?1

+ (ξ?0 + 1/t) · δ ζ?0
ξ?0

+ 1
t(ξ?0+1/t)

(
ζ?1
ξ?1
−

ζ?0
ξ?0

), t = 1, 2, . . . ,

satisfies (i) Pt ∈ P for sufficiently large t as well as (ii) Pt-VaR1−ε
[
λ>q̃

]
−→ τ? as t −→∞.

In view of statement (i), we note that Pt is a probability distribution for t sufficiently large since

(ξ?0 , ξ
?
1) = (ε, 1− ε) due to the first constraint set in (25). Also, Pt is supported on Q for sufficiently

large t since ζ?i /ξ
?
i ∈ [q, q], i = 0, 1, due to the second constraint in (25) and for t sufficiently large,

ζ?0
ξ?0

+ 1
t(ξ?0+1/t)

(
ζ?1
ξ?1
− ζ?0

ξ?0

)
is a convex combination of ζ?0/ξ

?
0 and ζ?1/ξ

?
1 . Likewise, we have

EPt
[
q̃
]

= (ξ?1 − 1/t) · ζ
?
1

ξ?1
+ (ξ?0 + 1/t) · ζ

?
0

ξ?0
+

1

t

(
ζ?1
ξ?1
− ζ

?
0

ξ?0

)
= µ

due to the first constraint set in (25) as well as, for t sufficiently large,

EPt
[
ϕ(q̃)

]
= (ξ?1 − 1/t) ·ϕ

(
ζ?1
ξ?1

)
+ (ξ?0 + 1/t) ·ϕ

(
ζ?0
ξ?0

+
1

t(ξ?0 + 1/t)

[
ζ?1
ξ?1
− ζ

?
0

ξ?0

])
≤ (ξ?1 − 1/t) ·ϕ

(
ζ?1
ξ?1

)
+

1

t
·ϕ
(
ζ?1
ξ?1

)
+ ξ?0 ·ϕ

(
ζ?0
ξ?0

)
≤ σ,

where the inequalities follow from the convexity of ϕ and the fourth constraint in (25), respectively.

To show statement (ii), we note that Pt places a probability mass of ξ?0 + 1/t = ε+ 1/t on the

scenario
ζ?0
ξ?0

+ 1
t(ξ?0+1/t)

(
ζ?1
ξ?1
− ζ?0

ξ?0

)
, which satisfies

λ>
[
ζ?0
ξ?0

+
1

t(ξ?0 + 1/t)

(
ζ?1
ξ?1
− ζ

?
0

ξ?0

)]
≥ τ? +

1

t(ξ?0 + 1/t)
λ>
(
ζ?1
ξ?1
− ζ

?
0

ξ?0

)
−→
t−→∞

τ?.

Here, the inequality follows from the fact that λ>ζ?0/ξ
?
0 ≥ τ? due to the third constraint in (25).

The convergence of the middle expression to τ? holds since λ> (ζ?1/ξ
?
1 − ζ?0/ξ?0) is finite while t(ξ?0 +
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1/t) −→ ∞ as ξ?0 = ε > 0. We have thus established that Pt-VaR1−ε
[
λ>q̃

]
−→ τ ′ with τ ′ ≥ τ? as

t −→ ∞. Since Pt ∈ P for sufficiently large t, on the other hand, the definition of τ? implies that

τ ′ ≤ τ? as well, which concludes the proof.

Proof of Theorem 3. Since the assumptions of Theorem 2 are satisfied, we conclude that

sup
P∈P

P-VaR1−ε

[∑
i∈S

q̃i

]
≤
∑
i∈S

sup
P∈P

P-VaR1−ε
[
q̃i
]

∀S ⊆ VC , S 6= ∅.

To show the reverse inequality, we note that for any κ > 0, we have

∑
i∈S

sup
P∈P

P-VaR1−ε
[
q̃i
]
≤
∑
i∈S

(
P?i -VaR1−ε

[
q̃i
]

+ κ
)

=
∑
i∈S

(
P?-VaR1−ε

[
q̃i
]

+ κ
)

= P?-VaR1−ε

[∑
i∈S

q̃i

]
+ |S|κ. (26)

Here, P?i ∈ P is a distribution that satisfies P?i -VaR1−ε
[
q̃i
]
≥ supP∈P P-VaR1−ε

[
q̃i
]
− κ, which

implies the first inequality. In the second row, we define the probability measure P? via

P?
(
q̃ ≤ q

)
= min

i∈S
P?i
(
q̃i ≤ qi

)
∀q ∈ Rn.

By construction, P? has the same marginal distributions as P?i , i ∈ VC , that is, P?
(
q̃i ∈ A

)
=

P?i
(
q̃i ∈ A

)
for all i ∈ VC and for every measurable set A (Dhaene et al., 2002, Theorem 2). From

the definition of the marginalized moment ambiguity sets, we thus conclude that P? ∈ P. Since P?

is comonotonic (Dhaene et al., 2002, Definition 4 and Theorem 2), the last equality in (26) follows

from the comonotone additivity of the value-at-risk (Pflug, 2000, Proposition 3). As κ was chosen

arbitrarily in (26) and since P? ∈ P, we thus conclude that

∑
i∈S

sup
P∈P

P-VaR1−ε
[
q̃i
]
≤ sup

P∈P
P-VaR1−ε

[∑
i∈S

q̃i

]
as desired. This completes the proof.

Proof of Corollary 1. Since the ambiguity set P is subadditive, Theorem 1 implies that RVRP(P)

is equivalent to 2VF(P). Moreover, Theorem 3 allows us to interpret 2VF(P) as the two-index ve-

hicle flow formulation of a deterministic CVRP with customer demands qi = supP∈P P-VaR1−ε
[
q̃i
]
,

i ∈ VC . The statement now follows from the well-known equivalence of the two-index vehicle flow

formulation and the deterministic CVRP.
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Proof of Proposition 2. We apply Theorem 5 on page 21 of the main paper to conclude that

the worst-case value-at-risk supP∈P P-VaR1−ε
[
q̃i
]

is equal to the optimal objective value of the

following problem.

minimize µi + min
{(
qi − µi

)
,

1− ε
ε

(
µi − qi

)}
· [1− 2γ]+ +

1

ε
νγ

subject to γ ∈ R+.

The first and second terms in the objective function are constant and non-decreasing in γ, respec-

tively, for γ ≥ 1/2. Without loss of generality, we can therefore assume that γ ≤ 1/2 at optimality.

We thus obtain a linearized version of the problem as follows.

minimize µi + min
{(
qi − µi

)
,

1− ε
ε

(
µi − qi

)}
· [1− 2γ] +

1

ε
νγ

subject to γ ∈ [0, 1/2]

Since the objective function is linear in γ, the problem is optimized by either γ = 0 or γ = 1/2.

The result now follows from a case distinction.

Proof of Proposition 3. We apply Theorem 7 on page 24 of the main paper to conclude that the

worst-case value-at-risk supP∈P P-VaR1−ε
[
q̃i
]

is equal to the optimal objective value of the problem

maximize µi + qi

subject to q>Σ−1q ≤ 1− ε
ε

q ∈
[
q`, qu

]
,

(27)

where q` = max
{
−1−ε

ε (q − µ), q − µ
}

, qu = min
{
1−ε
ε (µ− q), q − µ

}
and the covariance matrix

satisfies Σ = diag (σ1, σ2, . . . , σn). If q is feasible for the above problem, then so is q′ with q′i = qi

and q′j = 0 for all j 6= i. Indeed, we have q` ≤ 0 since −1−ε
ε (q − µ) ≤ 0 and q − µ ≤ 0, as

well as qu ≥ 0 since 1−ε
ε (µ − q) ≥ 0 and q − µ ≥ 0. Moreover, we have q>Σ−1q =

n∑
j=1

q2j /σj ≥

q2i /σi = q′>Σ−1q′. Since q and q′ attain the same objective value in (27), we thus conclude that

problem (27) attains the same optimal value as the univariate optimization problem

maximize µi + qi

subject to q2i /σi ≤
1− ε
ε

qi ∈
[
q`i , q

u
i

]
.

(28)
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At optimality we have q2i /σi = 1−ε
ε or qi = qui . The result now follows from a case distinction.

Proof of Proposition 4. The rectangularity of the ambiguity set P allows us to conclude that

sup
P∈P

P-VaR1−ε
[
q̃i
]

= sup
P∈Pi

P-VaR1−ε
[
q̃i
]

with

Pi =

P ∈ P0(R) :

 P
[
q̃i ∈ [q

i
, qi]

]
= 1, EP [q̃i] = µi,

EP
[
[q̃i − µi]2+

]
≤ σ+i , EP

[
[µi − q̃i]2+

]
≤ σ−i ∀i ∈ VC

 .

For a fixed scalar τ ∈ R, we then have supP∈Pi P-VaR1−ε
[
q̃i
]
≤ τ if and only if the optimal

objective value of the moment problem

minimize

∫
[q
i
, qi]

I[qi≤τ ]P(dqi)

subject to

∫
[q
i
, qi]

P(dqi) = 1∫
[q
i
, qi]

qi P(dqi) = µi∫
[q
i
, qi]

([qi − µi]+)2 P(dqi) ≤ σ+i∫
[q
i
, qi]

([µi − qi]+)2 P(dqi) ≤ σ−i

P ∈M+(R)

is greater than or equal to 1− ε. A similar reasoning as in the proof of Theorem 2 shows that this

is the case if and only if the optimal objective value of the problem

maximize α+ µiβ − σ+i γ
+ − σ−i γ

−

subject to α− µi(χq1 − π
q
1) +

1

4γ+
(πq1 + π01)2 +

1

4γ−
(χq1 + χ0

1)
2 − q

i
φ
1

+ qiφ1 ≤ 1

α− µi(χq0 − π
q
0) +

1

4γ+
(πq0 + π00)2 +

1

4γ−
(χq0 + χ0

0)
2 − q

i
φ
0

+ qiφ0 − τω ≤ 0

πq1 − χ
q
1 + φ1 − φ1 = β, πq0 − χ

q
0 + φ0 − φ0 − ω = β

α, β ∈ R, γ+, γ− ∈ R+, χ
q
j , χ

0
j , π

q
j , π

0
j , φj , φj ∈ R+, j = 0, 1, ω ∈ R+.

(29)

is greater than or equal to 1− ε.
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We now consider the problem supP∈Pi P-VaR1−ε[q̃i], which can be formulated as

minimize τ

subject to sup
P∈P

P-VaR1−ε[q̃i] ≤ τ

τ ∈ R.

Our previous arguments imply that this problem is equivalent to

minimize τ

subject to α+ µiβ − σ+i γ
+ − σ−i γ

− ≥ 1− ε

α− µi(χq1 − π
q
1) +

1

4γ+
(πq1 + π01)2 +

1

4γ−
(χq1 + χ0

1)
2 − q

i
φ
1

+ qiφ1 ≤ 1

α− µi(χq0 − π
q
0) +

1

4γ+
(πq0 + π00)2 +

1

4γ−
(χq0 + χ0

0)
2 − q

i
φ
0

+ qiφ0 − τω ≤ 0

πq1 − χ
q
1 + φ1 − φ1 = β, πq0 − χ

q
0 + φ0 − φ0 − ω = β

α, β ∈ R, γ+, γ− ∈ R+, χ
q
j , χ

0
j , π

q
j , π

0
j , φj , φj ∈ R+, j = 0, 1, ω ∈ R+, τ ∈ R.

(30)

Similar manipulations as in the proof of Theorem 7 on page 24 of the main paper allow us to

conclude that this problem has the same objective value as

minimize (qi − µi)φ0 +

(
1− ε
ε

)
(µi − qi)φ1 +

1

4γ+
(πq0)

2
+

(
1− ε
ε

)
1

4γ−
(χq1)

2
+ µi +

σ+i
ε
γ+ +

σ−i
ε
γ−

subject to πq0 + χq1 + φ0 + φ
1

= 1

γ+, γ− ∈ R+, χ
q
1, π

q
0, φ1, φ0 ∈ R+.

The unconstrained first-order optimality condition with respect to γ+ gives γ+ = ±1
2

√
ε
σ+
i

πq0. Since

the second derivative 1
2
(πq0)

2

(γ+)3
is non-negative for γ+ ≥ 0, we thus conclude that γ+ = 1

2

√
ε
σ+
i

πq0 is

optimal in the above problem. A similar reasoning shows that γ− = 1
2

√
1−ε
σ−i
χq1 is optimal as well.

We thus obtain the equivalent optimization problem

minimize µi + (qi − µi)φ0 +

(
1− ε
ε

)
(µi − qi)φ1 +

√
σ+i
ε
πq0 +

√
(1− ε)σ−i

ε
χq1

subject to πq0 + χq1 + φ0 + φ
1

= 1

χq1, π
q
0, φ1, φ0 ∈ R+.

Since all objective coefficients are strictly positive, there is an optimal solution that sets one of the

four decision variables with minimum objective coefficient to 1 and all other variables to 0. The

statement then follows from a case distinction.
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Proof of Theorem 4. To prove the statement, we consider a distributionally robust CVRP

instance with n = 4 customers, m = 2 vehicles of capacity Q = 10, a risk threshold ε = 0.1 and

a first-order generic moment ambiguity set of the form (12) with support Q = [1, 10]4, expected

demands µ = 4.6e and the following dispersion constraints:

EP [|q̃1 − µ1|+ |q̃3 − µ3|] ≤ 0.1, EP [|q̃2 − µ2|+ |q̃4 − µ4|] ≤ 0.1

Evaluating the worst-case values-at-risk of all customer subsets shows that the subsets {1}, {2},

{3}, {4}, {1, 3} and {2, 4} can all be served by a single vehicle, {1, 2}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3, 4} and {2, 3, 4} require two vehicles, and the set of all customers also requires two ve-

hicles. This implies that the set of feasible route sets consists of the permutations of {{1, 3}, {2, 4}}.

We claim that there is no deterministic CVRP instance that has this set of feasible route sets.

Assume to the contrary that there is a demand vector q such that the associated deterministic

CVRP instance has the aforementioned set of feasible route sets. In this case, we have q1 + q2 > 10

since {1, 2} cannot be served by a single vehicle. Since the four customers together require two

vehicles, we also have 10 < q1 + q2 + q3 + q4 ≤ 20. We thus conclude that q3 + q4 ≤ 10. This is not

possible, however, since the route {3, 4} cannot be served by a single vehicle.

Proof of Theorem 5. For any fixed scalar τ ∈ R, we have supP∈P P-VaR1−ε
[
1S
>q̃
]
≤ τ if and

only if the optimal objective value of the moment problem

minimize

∫
Q
I[1S>q≤τ ] P(dq)

subject to

∫
Q
P(dq) = 1∫

Q
q P(dq) = µ∫

Q
1>Si |q − µ|P(dq) ≤ νi ∀i = 1, . . . , p

P ∈M+(Q)

is greater than or equal to 1− ε. A similar reasoning as in the proof of Theorem 2 shows that this
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is the case if and only if the optimal objective value of the problem

maximize α+ µ>β − ν>γ

subject to α+ µ>(π+
1 − π

−
1 ) + q>φ1 − q>φ1

≤ 1

α+ µ>(π+
0 − π

−
0 ) + q>φ0 − q>φ0

− τω ≤ 0

π+
1 − π

−
1 + φ1 − φ1

= β

π+
0 − π

−
0 + φ0 − φ0

− 1Sω = β

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, ω ∈ R+

α ∈ R, β ∈ Rn, γ ∈ Rp+.

is greater than or equal to 1− ε.

We now consider the problem supP∈P P-VaR1−ε
[
1S
>q̃
]
, which can be formulated as

minimize τ

subject to sup
P∈P

P-VaR1−ε
[
1S
>q̃
]
≤ τ

τ ∈ R.

Our previous arguments imply that this problem is equivalent to

minimize τ

subject to α+ µ>β − ν>γ ≥ 1− ε

α+ µ>(π+
1 − π

−
1 ) + q>φ1 − q>φ1

≤ 1

α+ µ>(π+
0 − π

−
0 ) + q>φ0 − q>φ0

− τω ≤ 0

π+
1 − π

−
1 + φ1 − φ1

= β

π+
0 − π

−
0 + φ0 − φ0

− 1Sω = β

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, ω ∈ R+

α ∈ R, β ∈ Rn, γ ∈ Rp+, τ ∈ R.

(31)

Note that in the absence of the first constraint, it would be optimal to choose α as small as possible.

We can thus remove the first constraint and replace α with (1− ε)−µ>
(
π+
1 −π

−
1 +φ1−φ1

)
+ν>γ

in the second constraint, resulting in(
q − µ

)>
φ1 −

(
q − µ

)>
φ
1

+ ν>γ ≤ ε,
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as well as with (1− ε)−µ>
(
π+
0 −π

−
0 +φ0−φ0

− 1Sω
)

+ ν>γ in the third constraint, resulting in

(
q − µ

)>
φ0 −

(
q − µ

)>
φ
0

+ ν>γ + µ>1Sω − τω ≤ −(1− ε).

Moreover, since β is unrestricted in sign, we can remove it from the problem by replacing the fourth

and fifth constraint in the above problem with the single constraint

π+
1 − π

−
1 + φ1 − φ1

= π+
0 − π

−
0 + φ0 − φ0

− 1Sω.

The optimization problem (31) is thus equivalent to

minimize τ

subject to
(
q − µ

)>
φ1 −

(
q − µ

)>
φ
1

+ ν>γ ≤ ε(
q − µ

)>
φ0 −

(
q − µ

)>
φ
0

+ ν>γ + µ>1Sω − τω ≤ −(1− ε)

π+
1 − π

−
1 + φ1 − φ1

= π+
0 − π

−
0 + φ0 − φ0

− 1Sω

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, ω ∈ R+, γ ∈ Rp+, τ ∈ R.

We claim that any feasible solution (π+
i ,π

−
i ,φi,φi, ω,γ, τ) to this problem must satisfy ω > 0.

Indeed, if there was a feasible solution with ω = 0, then the problem would be unbounded, which

is impossible because supP∈P P-VaR1−ε
[
1S
>q̃
]
≥
∑

i∈S qi > −∞. We can thus conduct the sub-

stitutions π+
i ← π+

i /ω, π−i ← π−i /ω, φi ← φi/ω, φ
i
← φ

i
/ω, i = 0, 1, γ ← γ/ω and ω ← 1/ω to

obtain the equivalent problem

minimize τ

subject to
(
q − µ

)>
φ1 −

(
q − µ

)>
φ
1

+ ν>γ ≤ εω(
q − µ

)>
φ0 −

(
q − µ

)>
φ
0

+ ν>γ + µ>1S − τ ≤ −(1− ε)ω

π+
1 − π

−
1 + φ1 − φ1

= π+
0 − π

−
0 + φ0 − φ0

− 1S

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, ω ∈ R+, γ ∈ Rp+, τ ∈ R.

Note that the second constraint in this problem must be binding at optimality. We can thus remove
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this constraint as well as the epigraphical variable τ to obtain the equivalent problem

minimize
(
q − µ

)>
φ0 −

(
q − µ

)>
φ
0

+ µ>1S + ν>γ + (1− ε)ω

subject to
(
q − µ

)>
φ1 −

(
q − µ

)>
φ
1

+ ν>γ ≤ εω

π+
1 − π

−
1 + φ1 − φ1

= π+
0 − π

−
0 + φ0 − φ0

− 1S

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, ω ∈ R+, γ ∈ Rp+.

In this problem, the left-hand side of the first constraint is nonnegative by construction. We thus

conclude that the constraint is binding at optimality, which allows us to remove the constraint as

well as the variable ω to obtain the equivalent problem

minimize
(
q − µ

)>(
φ0 +

1− ε
ε
· φ1

)
−
(
q − µ

)>(
φ
0

+
1− ε
ε
· φ

1

)
+

1

ε
ν>γ + µ>1S

subject to
(
π+
0 + π−1

)
−
(
π−0 + π+

1

)
+
(
φ0 + φ

1

)
−
(
φ
0

+ φ1

)
= 1S

π+
1 + π−1 ≤

p∑
i=1

γi1Si , π
+
0 + π−0 ≤

p∑
i=1

γi1Si

π+
i ,π

−
i ,φi,φi ∈ Rn+, i = 0, 1, γ ∈ Rp+.

The objective function and the second set of constraints imply that larger values of π+
i , π−i ,

φi and φ
i
, i = 0, 1, are all detrimental to the objective function. We can thus assume that

π−0 = π+
1 = φ

0
= φ1 = 0 at optimality. This leads to the simplified formulation

minimize
(
q − µ

)>
φ0 −

1− ε
ε

(
q − µ

)>
φ
1

+
1

ε
ν>γ + µ>1S

subject to
(
π+
0 + π−1

)
+
(
φ0 + φ

1

)
= 1S

π−1 ≤
p∑
i=1

γi1Si , π
+
0 ≤

p∑
i=1

γi1Si

π+
0 ,π

−
1 ,φ0,φ1

∈ Rn+, γ ∈ Rp+.

Since the constraints are symmetric in π+
0 and π−1 , we can replace both variable vectors with a

single vector π ∈ Rn+:

minimize
(
q − µ

)>
φ0 −

1− ε
ε

(
q − µ

)>
φ
1

+
1

ε
ν>γ + µ>1S

subject to 2π +
(
φ0 + φ

1

)
= 1S

π ≤
p∑
i=1

γi1Si

π,φ0,φ1
∈ Rn+, γ ∈ Rp+.
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For a fixed value of γ, the variable vector π satisfies π = min{1S/2− (φ0 +φ
1
)/2,

∑p
i=1 γi1Si} at

optimality. We can thus remove π from the problem and obtain the equivalent reformulation

minimize
(
q − µ

)>
φ0 −

1− ε
ε

(
q − µ

)>
φ
1

+
1

ε
ν>γ + µ>1S

subject to φ0 + φ
1

= max
{
φ0 + φ

1
, 1S − 2

p∑
i=1

γi1Si

}
φ0,φ1

∈ Rn+, γ ∈ Rp+.

The constraint in this problem is equivalent to φ0 + φ
1
≥ 1S − 2

∑p
i=1 γi1Si . Since both φ0 and

φ
1

are penalized in the objective function, we thus conclude that φ0 + φ
1

=
[
1S − 2

∑p
i=1 γi1Si

]
+

at optimality. The statement then follows since we can assume that φ0
>φ

1
= 0 at optimality.

Proof of Corollary 2. Under the assumption that
⋃p−1
i=1 Si = VC , problem (13) can be written as

minimize 1S
>µ+

p−1∑
i=1

∑
j∈S∩Si

q̂j

[
1− 2(γi + γp)

]
+

+
1

ε
ν>γ

subject to γ ∈ [0, e/2].

For a fixed value of γp, an optimal choice of γi, i = 1, . . . , p− 1, is γi = 0 if 1S∩Si
>q̂ ≤ νi/(2ε) and

γi = 1
2 − γp otherwise. The problem thus simplifies to the one-dimensional problem

minimize 1S
>µ+

p−1∑
i=1

min

{
(1− 2γp)1S∩Si

>q̂,
νi
ε

[
1

2
− γp

]}
+
νp
ε
γp

subject to γp ∈ [0, 1/2].

Since the objective function is concave, its minimum is attained at γ?p ∈ {0, 1/2}.

Proof of Corollary 3. The statement immediately follows from Corollary 2 if we use the defini-

tions of the sets Si in (14) and reorder the summation terms.

Proof of Theorem 6. To prove the statement, we consider the same distributionally robust

CVRP instance as in the proof of Theorem 4, with the exception that the expected demands

satisfy µ = 4.5e and the demand dispersion is bounded from above by the covariance matrix

Σ =


0.1 0 −0.05 0

0 0.1 0 −0.05

−0.05 0 0.1 0

0 −0.05 0 0.1

 .
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An evaluation of the worst-case values-at-risk for all customer subsets reveals that the set of feasible

route sets is exactly the same as in the distributionally robust CVRP instance from the proof of

Theorem 4. Thus, we can use the same argument as in that proof to conclude that there is no

deterministic CVRP instance that has the same set of feasible route sets.

Proof of Theorem 7. For a fixed scalar τ ∈ R, we have supP∈P P-VaR1−ε
[
1S
>q̃
]
≤ τ if and only

if the optimal objective value of the moment problem

minimize

∫
Q
I[1S>q≤τ ] P(dq)

subject to

∫
Q
P(dq) = 1∫

Q
q P(dq) = µ∫

Q
(q − µ)(q − µ)> P(dq) � Σ

P ∈M+(Rn)

is greater than or equal to 1− ε. A similar reasoning as in the proof of Theorem 2 shows that this

is the case if and only if the optimal objective value of the problem

maximize α+ µ>β − 〈Σ,Γ〉

subject to α+
1

4
(β + φ

1
− φ1)

>Γ−1(β + φ
1
− φ1)

+ (q − µ)>φ1 − (q − µ)>φ
1

+ µ>β ≤ 1

α+
1

4
(β + φ

0
− φ0 + 1Sω)>Γ−1(β + φ

0
− φ0 + 1Sω)

+ (q − µ)>φ0 − (q − µ)>φ
0

+ µ>(β + 1Sω)− τω ≤ 0

φ
i
,φi ∈ Rn+, i = 0, 1, ω ∈ R+, α ∈ R, β ∈ Rn, Γ ∈ Sn×n+ .

is greater than or equal to 1− ε.
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We now consider the problem supP∈P P-VaR1−ε
[
1S
>q̃
]
, which can be formulated as

minimize τ

subject to α+ µ>β − 〈Σ,Γ〉 ≥ 1− ε

α+
1

4
(β + φ

1
− φ1)

>Γ−1(β + φ
1
− φ1)

+ (q − µ)>φ1 − (q − µ)>φ
1

+ µ>β ≤ 1

α+
1

4
(β + φ

0
− φ0 + 1Sω)>Γ−1(β + φ

0
− φ0 + 1Sω)

+ (q − µ)>φ0 − (q − µ)>φ
0

+ µ>(β + 1Sω)− τω ≤ 0

φ
i
,φi ∈ Rn+, i = 0, 1, ω ∈ R+, α ∈ R, β ∈ Rn, Γ ∈ Sn×n+ , τ ∈ R.

As in the proof of Theorem 5, we can substitute out α and remove the first constraint, conclude

that ω is strictly positive and replace all remaining decision variables (except for τ) with their

divisions by ω and remove the variables τ and ω to obtain the equivalent problem

minimize
1

ε
〈Σ,Γ〉+

1

4
(β + φ

0
− φ0 + 1S)>Γ−1(β + φ

0
− φ0 + 1S)

+
1

4
· 1− ε

ε
(β + φ

1
− φ1)

>Γ−1(β + φ
1
− φ1)

+ (q − µ)>
[
φ0 +

1− ε
ε
· φ1

]
− (q − µ)>

[
φ
0

+
1− ε
ε
· φ

1

]
+ µ>1S

subject to φ
i
,φi ∈ Rn+, i = 0, 1, β ∈ Rn, Γ ∈ Sn×n+ .

We can now replace β with its optimal value β = ε(φ0 − φ0
− 1S) + (1 − ε)(φ1 − φ1

) from the

first-order unconstrained optimality condition to obtain the equivalent reformulation

minimize
1

ε
〈Σ,Γ〉+

1

4
(1− ε)(φ1 − φ1

+ φ
0
− φ0 + 1S)>Γ−1(φ1 − φ1

+ φ
0
− φ0 + 1S)

+ (q − µ)>
[
φ0 +

1− ε
ε
· φ1

]
− (q − µ)>

[
φ
0

+
1− ε
ε
· φ

1

]
+ µ>1S

subject to φ
i
,φi ∈ Rn+, i = 0, 1, Γ ∈ Sn×n+ .

Since φ
i

and φi, i = 0, 1, are all penalized in the second row of the objective function, we can

assume that φ1
>φ

0
= 0 and φ

1
>φ0 = 0 at optimality. This leads to the simplified formulation

minimize
1

ε
〈Σ,Γ〉+

1

4
(1− ε)(φ+ − φ− + 1S)>Γ−1(φ+ − φ− + 1S)

+ q+>φ+ + q−>φ− + µ>1S

subject to φ+,φ− ∈ Rn+, Γ ∈ Sn×n+ ,
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where q+ = min
{
1−ε
ε (q − µ), −(q − µ)

}
and q− = min

{
−1−ε

ε (q − µ), q − µ
}

. We apply an

epigraph reformulation to obtain the equivalent problem

minimize
1

ε
〈Σ,Γ〉+

1

4
(1− ε)κ+ q+>φ+ + q−>φ− + µ>1S

subject to κ ≥ (φ+ − φ− + 1S)>Γ−1(φ+ − φ− + 1S)

φ+,φ− ∈ Rn+, Γ ∈ Sn×n+ , κ ∈ R,

(32)

and an application of Schur’s complement allows us to reformulate the constraint in (32) as κ (φ+ − φ− + 1S)>

(φ+ − φ− + 1S) Γ

 � 0.

Strong conic duality, which holds since the primal problem (32) is strictly feasible, implies that (32)

attains the same optimal objective value as its associated dual problem, which—after some minor

simplifications—can be expressed as

maximize 1S
>µ− 2 · 1S>ϕ

subject to θ ≤ 1

4
(1− ε)

ϕ ∈
[
−q−/2, q+/2

]
Λ � 1

ε
Σθ ϕ>

ϕ Λ

 ∈ S(n+1)×(n+1)
+

θ ∈ R, ϕ ∈ Rn, Λ ∈ Sn×n.

Applying Schur’s complement to the last constraint in this problem shows that the last two con-

straints are satisfied if and only if 1
θϕϕ

> � Λ � 1
εΣ for some Λ ∈ Sn×n, that is, if and only if

1
θϕϕ

> � 1
εΣ. Since the first constraint imposes the only upper bound on θ, we can replace θ with

the right-hand side of that constraint, θ = 1
4(1− ε), to obtain the equivalent reformulation

maximize 1S
>µ− 2 · 1S>ϕ

subject to ϕ ∈
[
−q−/2, q+/2

]
ϕϕ> � 1− ε

4ε
·Σ

ϕ ∈ Rn.

Finally, two further applications of Schur’s complement yield

1− ε
4ε
·Σ−ϕϕ> � 0 ⇐⇒

1 ϕ>

ϕ 1−ε
4ε ·Σ

 � 0 ⇐⇒ 1− 4ε

1− ε
·ϕ>Σ−1ϕ ≥ 0,
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which simplifies the problem to

maximize 1S
>µ− 2 · 1S>ϕ

subject to ϕ ∈
[
−q−/2, q+/2

]
ϕ>Σ−1ϕ ≤ 1− ε

4ε

ϕ ∈ Rn.

The statement now follows from the variable transformation q ← −2ϕ.

Proof of Corollary 4. The statement follows from Theorem 7 as well as an adaptation of

Lemma 2 in Pessoa and Poss (2015) that replaces the box constraints q ∈ [−e,+e] from that paper

with q ∈ [q`, qu] and the ellipsoidal constraint q>q ≤ κ2 with q>Σ−1q ≤ 1−ε
ε .
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