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We propose an efficient algorithm to solve positive a semidefinite matrix
approximation problem with a trace constraint. Without constraints, it is
well known that positive semidefinite matrix approximation problem can be
easily solved by one-time eigendecomposition of a symmetric matrix. In this
paper, we confirmed that one-time eigendecomposition is also sufficient even
if a trace constraint is included. Although an additional binary search is
necessary, it is not computationally expensive.
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1 Introduction

In this short paper, we are interested in the problem (P):

minimize
1

2
‖X −A‖2F ,

subject to Tr (X) = b, (1.1)

X � 0,

where A is a n × n symmetric real matrix, b is a nonnegative scalar, and ‖·‖F be a
Frobenius norm of a matrix. Without the constraint (1.1), it is well known that the
problem (P) becomes a positive semidefinite matrix approximation problem which can
be solved efficiently by one-time eigendecomposition [7].

Positive semidefinite matrix approximation problems have been widely researched with
additional constraints or more generalized objective. For example, if we add Xii = 1
for all i = 1, · · · , n, the problem becomes nearest correlation matrix problem which has
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many applications in finance [8]. Positive semidefinite matrix approximation problems
can also include rank constraint [4] or condition number constraint [9]. If the whole
of the additional constraints is an affine subspace, general approaches are reviewed by
[6]. In terms of generalized objective, weighted objective ‖H ◦ (X −A)‖2F , where H is
a n × n symmetric matrix whose element is 0 or 1 and ◦ is a element-wise product of
matrices, is possible [1]. However, positive semidefinite matrix approximation problems
with a trace constraint have not been researched as a special case.

In this paper, we propose an algorithm to solve (P) with one-time eigendecomposition
and an additional binary-search which are not computationally expensive.

This paper is organized as follows. In section 2, we explain some preliminary results
for positive semidefinite matrix approximation problems. In section 3, we propose an
algorithm which can efficiently solve (P). In section 4, we consider to what extent the
proposed algorithm can be applied. In particular, we can see that (1.1) can be replaced
with an inequality such as Tr (X) ≤ b, b ≤ Tr (X), or b ≤ Tr (X) ≤ b̄ without com-
promising its efficiency. In section 5, we consider an origin of the problem (P) and it
is confirmed that (P) is essentially equivalent to a projection of λ(A), eigenvalues of A,
onto a simplex ∆b = {x|

∑n
i=1 xi = b, x ≥ 0}. In section 6, we consider an application

of alternating projection method to the problem (P) and explain the difference from the
proposed algorithm. In the final section, we give a conclusion of this paper.

We use the following notation throughout this paper. For a given x ∈ R, |x|+ and |x|−
denote max(x, 0) and max(−x, 0) respectively. For a given a ∈ Rn, |a|+ and |a|− denote
(|a1|+, · · · , |an|+) and (|a1|−, · · · , |an|−) respectively. Therefore, we have 〈|a|+, |a|−〉 =
0. We define δij = 1 if i = j, otherwise 0. We denote Sn be a set of n×n real symmetric
matrices and S+n be a set of n× n real positive semidefinite ones.

2 Preliminaries

It is well known that applying eigendecomposition for a given A ∈ Sn, we obtain

A =

n∑
i=1

λipip
T
i ,

where λ = (λ1, · · · , λn) are eigenvalues and P = (p1, · · · , pn) are corresponding eigen-
vectors, such that 〈pi, pj〉 = δij .

Using this result, we can decompose every real symmetric matrix A ∈ Sn into positive
and negative parts as follows:

A+ =
n∑

i=1

|λi|+pipTi , A− =
n∑

i=1

|λi|−pipTi .

For this decomposition, it is well known that following properties hold.

Lemma 2.1. Let A be a real symmetric matrix, the following hold.

(i) A+ � 0, A− � 0, and A = A+ −A−.
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(ii) 〈A+, A−〉 = 0.

Proof. Item (i) is obvious. To prove item (ii), we can see that

〈A+, A−〉 =
n∑

i=1

n∑
j=1

|λi|+|λj |−〈pipTi , pjpTj 〉 =
n∑

i=1

|λi|+|λi|−〈pipTi , pipTi 〉 = 0.

We have completed the proof.

Using the result, we can see that the solution of (P) without (1.1) is given by X = A+.

Lemma 2.2. For a given A ∈ Sn, X = A+ is an optimal solution of the following
minimization problem.

minimize
1

2
‖X −A‖2F ,

subject to X � 0.

Proof. We have that

1

2
‖X −A‖2F =

1

2

∥∥X −A+ +A−
∥∥2
F

=
1

2

∥∥X −A+
∥∥2
F

+ 〈X −A+, A−〉+
1

2

∥∥A−∥∥2
F

=
1

2

∥∥X −A+
∥∥2
F

+ 〈X,A−〉+
1

2

∥∥A−∥∥2
F
.

We have 〈X,A−〉 ≥ 0 because X � 0 and A− � 0. Therefore, we obtain

1

2
‖X −A‖2F ≥

1

2

∥∥A−∥∥2
F
, (2.1)

where the equality holds at X = A+.

In fact, X = A+ minimizes ‖X −A‖ subject to X � 0 for any matrix norm, see [4,
Section 3].

3 Algorithm

In this section, we propose an algorithm to solve (P). Let us consider the Karush-Kuhn-
Tucker(KKT) conditions of the problem (P) given as follows:

X − Z −A+ yI = 0, (3.1)

〈I,X〉 = b, (3.2)

X � 0, Z � 0, 〈X,Z〉 = 0, (3.3)

where y ∈ R is the dual value of the constraint (1.1) and Z � 0 is the dual matrix of the
positive semidefinite constraint X � 0.
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Suppose that y is fixed. In this case, by means of Lemma 2.1, X and Z which satisfies
(3.1) and (3.3) are obtained by

X = (A− yI)+, Z = (A− yI)−.

Therefore, what remains is to adjust a scalar y to satisfy (3.2), and hence we can apply
binary search. This is the outline of the proposed algorithm.

The point is that eigenvectors of A− yI are invariable for all y ∈ R. Therefore, we do
not have to decompose A− yI again even if y is updated. Furthermore, the fact is that
we do not even need to calculate (A − yI)+ except for the case of the final step in the
algorithm. Following lemma is easy to confirm but essential for the proposed algorithm.

Lemma 3.1. For A ∈ Sn, the following hold.

Tr
(
(A− yI)+

)
=

n∑
i=1

|λi − y|+.

Proof. We have that

Tr
(
(A− yI)+

)
= 〈I, (A− yI)+〉 = 〈I,

n∑
i=1

|λi − y|+pipTi 〉 =

n∑
i=1

|λi − y|+.

We have completed the proof.

It follows that only λ and y are necessary to judge whether (3.2) is satisfied or not.
Now, we are ready to propose the algorithm, one-time eigendecomposition with binary
search(OEBS), to solve (P).

Algorithm 1 One-time eigendecomposition with binary search

1: Inputs:
choose yU and yL sufficiently large and small.
choose ε sufficiently small. given A ∈ Sn and b ∈ R+.

2: Initialize:
decompose A =

∑n
i=1 λipip

T
i such that pTi pj = δij . set r ← +∞.

3: while |r| > ε do
4: set y ← (yL + yU )/2.
5: set r ←

∑n
i=1 |λi − y|+ − b.

6: update yU ← y if r ≥ 0 or yL ← y otherwise
7: end while
8: set X ←

∑n
i=1 |λi − y|+pipTi .

9: set Z ← X − (A− yI).
10: return (X, y, Z)

We can see that the most computationally expensive part is the one-time eigendecom-
position in its initial step, and what remains is just a simple binary search to obtain
proper y, which is less expensive than eigendecomposition.
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4 Extensions

In this section, we consider to what extent the proposed algorithm can be generalized.
In the first subsection, we consider whether the trace condition (1.1) can be replaced
with an inequality. In the second subsection, we consider the possibility that (1.1) can
be replaced with more generalized equality constraint 〈C,X〉 = b for C ∈ Sn.

4.1 Inequality

We first consider that whether Tr (X) = b can be replaced with Tr (X) ≤ b. We can
easily confirm that the answer is yes. Let y ≥ 0 be a dual value of Tr (X) ≤ b, the KKT
conditions for the replaced problem (P) is given as follows:

X − Z −A+ yI = 0, (4.1)

〈I,X〉 ≤ b, y ≥ 0, y(〈I,X〉 − b) = 0, (4.2)

X � 0, Z � 0, 〈X,Z〉 = 0. (4.3)

Conditions (4.1) and (4.3) are equivalent to (3.1) and (3.3) respectively. Therefore,
X = (A − yI)+ and Z = (A − yI)− satisfies (4.1) and (4.3). The new point is that
we have to search y which satisfies (4.2). If y = 0, the required condition in (4.2) is
〈I, A+〉 ≤ b. Otherwise, 〈I,X〉 = b is required to satisfy (4.2). Putting these considera-
tions altogether, we can extend the proposed algorithm below. By a similar argument,

Algorithm 2 OEBS for Tr (X) ≤ b
1: Inputs:

choose yU sufficiently large. choose ε sufficiently small.
given A ∈ Sn and b ∈ R.

2: Initialize:
decompose A =

∑n
i=1 λipip

T
i such that pTi pj = δij .

set r ← +∞, y ← 0, and yL ← 0.
3: Goto 9 if

∑n
i=1 |λi|+ ≤ b.

4: while |r| > ε do
5: set y ← (yL + yU )/2.
6: set r ←

∑n
i=1 |λi − y|+ − b.

7: update yU ← y if r ≥ 0 or yL ← y otherwise
8: end while
9: set X ←

∑n
i=1 |λi − y|+pipTi .

10: set Z ← X − (A− yI).
11: return (X, y, Z)

replacing (1.1) with Tr (X) ≥ b is also possible.
If we want to replace (1.1) with b ≤ Tr (X) ≤ b̄ such that b < b̄, the situation becomes

more complicated. Nevertheless, we can extend the proposed algorithm. Let y ≥ 0
and ȳ ≥ 0 be dual values of b ≤ Tr (X) and Tr (X) ≤ b̄ respectively. Then, the KKT
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conditions of the replaced (P) is given as follows:

X − Z −A+ (ȳ − y)I = 0, (4.4)

〈I,X〉 ≤ b̄, ȳ ≥ 0, ȳ(〈I,X〉 − b̄) = 0, (4.5)

〈I,X〉 ≥ b, y ≥ 0, y(〈I,X〉 − b) = 0, (4.6)

X � 0, Z � 0, 〈X,Z〉 = 0. (4.7)

Let y = ȳ − y. Then, we have that ȳ = |y|+ and y = |y|− because yȳ = 0 by definition.
Therefore, we can see that X = (A− yI)+ and Z = (A− yI)− satisfies (4.4) and (4.7),
and hence what remains is to search y which satisfies (4.5) and (4.6).

If y = 0, (4.5) and (4.6) are satisfied except the primal feasibility condition, b ≤
〈I,X〉 ≤ b̄. Therefore, we need to calculate 〈I,X〉 = 〈I, A+〉 =

∑n
i=1 |λi|+. Even if

b ≤
∑n

i=1 |λi|+ ≤ b̄ does not hold, the value of
∑n

i=1 |λi|+ suggests whether optimal y is
positive or negative. If

∑n
i=1 |λi|+ > b̄ holds, first condition of (4.5) implies

∑n
i=1 |λi|+ ≥

b̄ ≥ 〈I,X〉 and 〈I,X〉 = 〈I, (A − yI)+〉 =
∑n

i=1 |λi − y|+. Thus, we have
∑n

i=1 |λi|+ >∑n
i=1 |λi − y|+ and it follows that y > 0. Similarly, we deduce y < 0 if

∑n
i=1 |λi|+ < b.

In the case of y > 0, it implies that ȳ = y > 0 and y = 0. Therefore, 〈I,X〉 = b̄ is
necessary and sufficient to hold (4.5) and (4.6), since b ≤ 〈I,X〉 ≤ b̄ is automatically
satisfied if 〈I,X〉 = b̄ holds. By a similar argument, in the case of y < 0, (4.5) and (4.6)
come down to 〈I,X〉 = b. Putting these considerations altogether, we can extend the
proposed algorithm as follows.

Algorithm 3 OEBS for b ≤ Tr (X) ≤ b̄.
1: Inputs:

choose yU and yL sufficiently large and small.
choose ε sufficiently small. given A ∈ Sn and b ∈ R.

2: Initialize:
decompose A =

∑n
i=1 λipip

T
i such that pTi pj = δij .

set r = +∞ and r0 ←
∑n

i=1 |λi|+.
3: Goto 11 if b ≤ r0 ≤ b̄
4: set b← b̄ and update yL ← 0 if r0 > b̄.
5: set b← b and update yU ← 0 if r0 < b.
6: while |r| > ε do
7: set y ← (yL + yU )/2.
8: set r ←

∑n
i=1 |λi − y|+ − b.

9: update yU ← y if r ≥ 0 or yL ← y otherwise
10: end while
11: set X ←

∑n
i=1 |λi − y|+pipTi .

12: set Z ← X − (A− yI).
13: return (X, y, Z)
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4.2 Generalized Constraint

In this subsection, we consider the case that (1.1) is replaced with a more generalized
affine constraint:

〈C,X〉 = b. (4.8)

In this case, the framework of the proposed algorithm is still applicable, however it is
not efficient anymore. Let us consider the KKT conditions in this case,

X −A− Z + yC = 0, (4.9)

〈C,X〉 = b, (4.10)

X � 0, Z � 0, 〈X,Z〉 = 0. (4.11)

Therefore we can confirm that X = (A − yC)+ and Z = (A − yC)− satisfies (4.9) and
(4.11) by a similar argument. Unfortunately, in calculating 〈C, (A − yC)+〉, we cannot
use the eigenvalues of A directly and we have to decompose A−yC every time whenever
y is updated. Thus, the algorithm becomes expensive.

This observation suggests that the proposed algorithm is still efficient ifX = (A−yC)+

is easily calculated. For example, if A and C have the same eigenvectors, then C can be
decomposed as

C =
n∑

i=1

µipip
T
i ,

and hence Tr ((A− yC)+) can be easily calculated without decomposing A − yC. Pre-
cisely, by a similar argument of Lemma 3.1, we have that

Tr
(
(A− yC)+

)
= 〈I, (A− yC)+〉 = 〈I,

n∑
i=1

|λi − yµi|+pipTi 〉 =

n∑
i=1

|λi − yµi|+.

Therefore, only one-time eigendecompositon is necessary.

5 Projection onto a simplex

In this section, we describe another aspect of the proposed algorithm. Let us consider
the problem of obtaining a projection of a vector a ∈ Rn to a simplex ∆b = {x ∈
Rn|

∑n
i=1 xi = b, x ≥ 0}. This problem can be written as a quadratic optimization

problem (S) as follows:

minimize
1

2
‖x− a‖2 ,

subject to eTx = b, (5.1)

x ≥ 0, (5.2)

where e = (1, · · · , 1) ∈ Rn. We can see that the problem (P) is a generalization of (S) by
replacing vectors to symmetric matrices. Furthermore, it is confirmed that an optimal
solution of (S) provides an optimal solution of (P) if a are eigenvalues of the matrix A.
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Proposition 5.1. For a given A ∈ Sn, Let a ∈ Rn be eigenvalues of the matrix A. If
x∗ be an optimal solution of the problem (S), then an optimal X∗ for (P) is given by
X∗ =

∑n
i=1 x

∗
i pip

T
i , where pi is a eigenvector of A with respect to ai.

Proof. Let y ∈ R and z ∈ Rn
+ be dual variables of (5.1) and (5.2) respectively. Then,

the KKT conditions of (S) is given as follows:

x− z − a+ ye = 0, (5.3)

eTx = b, (5.4)

x ≥ 0, z ≥ 0, xT z = 0. (5.5)

Therefore, (x∗, z∗) = (|a − y∗e|+, |a − y∗e|−) satisfies (5.3) and (5.5). In order to hold
(5.4), we have

∑n
i=1 x

∗
i =

∑n
i=1 |ai − y∗|+ = b. It follows that Tr (X) =

∑n
i=1 x

∗
i = b,

and hence (3.2) hold. Let Z∗ =
∑n

i=1 z
∗
i pip

T
i . Then, conditions (3.1) and (3.3) hold by

means of Lemma 2.1. Therefore, X∗ is proved to be optimal for (P).

To solve (S), an algebric procedure is explained at [3]. Another idea of applying a
binary search is proposed by [2].

6 Alternating projection method

In this section, we consider the proposed algorithm from a viewpoint of alternating
projection method which has been applied to the nearest correlation matrix problem by
Higham [8]. This idea can be applicable to the problem (P). To explain the procedure,
we denote ΠF as a projection operator onto a convex set F . We also explicitly define
the subspace of symmetric matrices which satisfies the trace constraint:

Tb = {X |X ∈ Sn, Tr (X) = b}.

In our setting, the alternating projection method is given below:

Algorithm 4 Alternating projection method for (P)

1: Inputs:
choose ε sufficiently small. given A ∈ Sn and b ∈ R.

2: Initialize:
set X0 ← A.

3: for k = 0, 1, 2, · · · do
4: set X̄k ← ΠSn+(Xk).

5: set ∆Xk ← ΠTb
(X̄k)− X̄k.

6: break if ‖∆Xk‖ ≤ ε
7: update Xk+1 ← Xk + ∆Xk.
8: end for
9: return X
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Note that we have introduced the notation X̄k to make the framework easy to under-
stand. X̄k is, of course, equivalent to X+

k .
The computational difficulty of the method depends on the cost of calculating ΠSn+(Xk)

and ΠTb
(X̄k). In our setting, they are not expensive. Moreover, even matrix calculations

are not necessary. We can compress the alternating projection method into a more
simplified form using λ, eigenvalues of A, as follows:

Algorithm 5 Compressed alternating projection method for (P)

1: Inputs:
choose ε sufficiently small. given A ∈ Sn and b ∈ R.

2: Initialize:
decompose A =

∑n
i=1 λipip

T
i . set x0 ← λ.

3: for k = 0, 1, 2, · · · do
4: set ∆xk ← 1

n(b−
∑n

i=1 |xki |+)e.
5: break if

∥∥∆xk
∥∥ ≤ ε.

6: update xk+1 ← xk + ∆xk.
7: end for
8: set X ←

∑n
i=1 |xki |+pipTi .

9: return X.

In the compressed algorithm, it can be seen that the procedure starts from y = 0 and
moving to an optimal y∗ gradually, in other words, y never leaping over an optimal y∗

during the procedure. Let

∆yk =
1

n

(
n∑

i=1

|xki |+ − b

)
, yk+1 = yk + ∆yk, y0 = 0,

then the sign of yk is invariable, the sequence {yk} is monotonically increasing or de-
creasing, and we have yk → y∗. Furthermore, we have that xk = λ− yk. To show these
properties, we use the following lemma which is easy to confirm.

Lemma 6.1. For a arbitrary scalar v ∈ R and a nonnegative scalar ∆ > 0, the folloing
hold.

(i) |v|+ ≤ |v + ∆|+ ≤ |v|+ + ∆.

(ii) |v|+ ≥ |v −∆|+ ≥ |v|+ −∆.

Proposition 6.2. Let f(y) =
∑n

i=1 |λi − y|+ − b, for the generated sequence {yk}, the
following hold.

(i) If f(0) ≥ 0, then f(yk) ≥ f(yk+1) ≥ 0 holds for all k. Otherwise, f(yk) ≤
f(yk+1) ≤ 0 holds for all k.

(ii) If f(0) ≥ 0, then yk+1 ≥ yk ≥ 0 holds for all k. Otherwise, yk+1 ≤ yk ≤ 0 holds
for all k.
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(iii) The sequence {yk} converges to an optimal y∗.

Proof. We prove item (i) by induction. If f(yk) ≥ 0 for some k, we have ∆yk =
f(yk)/n ≥ 0. Therefore, by means of Lemma 6.1 item (ii), we have

f(yk+1) = f(yk + ∆yk) =
n∑

i=1

|λi − yk −∆yk|+ − b

≥
n∑

i=1

|λi − yk|+ − n∆yk − b = 0.

On the other hand, again by means of Lemma 6.1 item (ii), we have

f(yk+1) = f(yk + ∆yk) =
n∑

i=1

|λi − yk −∆yk|+ − b

≤
n∑

i=1

|λi − yk|+ − b = f(yk).

Therefore f(yk) ≥ f(yk+1) ≥ 0 holds. It implies that if f(y0) ≥ 0 holds, we have
f(yk) ≥ f(yk+1) ≥ 0 for all k. By a similar argument, if f(y0) ≤ 0, f(yk) ≤ f(yk+1) ≤ 0
holds for all k. We have proved item (i).

Let us move on to item (ii). If f(0) ≥ 0, item (i) implies that ∆yk = f(yk)/n ≥ 0 for
all k. Therefore, we have yk+1 = yk +∆yk ≥ yk =

∑k−1
j=0 ∆yk ≥ 0. Similarly, if f(0) ≤ 0,

we deduce yk+1 ≤ yk ≤ 0 for all k. We have proved item (ii).
By means of item (ii), the sequence {yk} is nondecreasing or nonincreasing and

bounded. Therefore, it converges to some ȳ ∈ R. Assume that ȳ is not an optimal y∗,
this yields f(ȳ) 6= 0. On the other hand, ∆yk = f(yk)/n implies that limk→∞∆yk 6= 0.
This is a contradiction. We have proved item (iii).

The compressed alternating projection method can also be regarded as a variant of
dual ascent method. Let θ(y) be a dual function of the problem (P) defined as follows:

L(X, y) =
1

2
‖X −A‖2F + y(〈I,X〉 − b),

θ(y) = min
X�0

L(X, y).

Let X(y) = arg minX�0 L(X, y), by definition, we have

〈I,X(y)〉 − b ∈ ∂θ(y).

By means of Lemma 2.2, X(y) = (A− yI)+. This yields

n∑
i=1

|λi − y|+ − b ∈ ∂θ(y).

Therefore, an update yk in the alternating projection method can be seen a dual method
with stepsize 1/n. The relationship between the two methods for a more generalized case
is explained at [5].
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7 Conclusion

We propose an algorithm which solves the positive semidefinite matrix approximation
problems with a trace constraint efficiently. The proposed algorithm is a combination of
one-time eigendecomposition and a binary search. Furthermore, it is essentially equiva-
lent to a projection of eigenvalues onto a simplex.

Alternating projection methods and dual methods are also applicable to the problem.
By exploiting the structure of the problem, only one-time eigendecomposition is nec-
essary in every case and the difference between these methods is just how to use the
information of

∑n
i=1 |λi − y|+ − b to reach an optimal y∗.
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[5] Didier Henrion and Jérôme Malick. Projection methods for conic feasibility problems:
applications to polynomial sum-of-squares decompositions. Optimization Methods &
Software, 26(1):23–46, 2011.
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