
Accelerated Bregman proximal gradient methods for relatively

smooth convex optimization

Filip Hanzely ∗ Peter Richtárik ∗†‡ Lin Xiao §

August 8, 2018

Abstract

We consider the problem of minimizing the sum of two convex functions: one is differen-
tiable and relatively smooth with respect to a reference convex function, and the other can be
nondifferentiable but simple to optimize. The relatively smooth condition is much weaker than
the standard assumption of uniform Lipschitz continuity of the gradients, thus significantly in-
creases the scope of potential applications. We present accelerated Bregman proximal gradient
(ABPG) methods that employ the Bregman distance of the reference function as the proximity
measure. These methods attain an O(k−γ) convergence rate in the relatively smooth setting,
where γ ∈ [1, 2] is determined by a triangle scaling property of the Bregman distance. We
develop adaptive variants of the ABPG method that automatically ensure the best possible rate
of convergence and argue that the O(k−2) rate is attainable in most cases. We present numer-
ical experiments with three applications: D-optimal experiment design, Poisson linear inverse
problem, and relative-entropy nonnegative regression. In all experiments, we obtain numerical
certificates showing that these methods do converge with the O(k−2) rate.

1 Introduction

Let Rn be the n-dimensional real Euclidean space endowed with inner product 〈x, y〉 =
∑n

i=1 x
(i)y(i)

and the Euclidean norm ‖x‖ =
√
〈x, x〉. We consider optimization problems of the form

minimize
x∈C

{
φ(x) := f(x) + Ψ(x)

}
, (1)

where C is a closed convex set in Rn, and f and Ψ are proper, closed convex functions. We assume
that f is differentiable on an open set that contains the relative interior of C (denoted as rintC).
For the development of first-order methods, we also assume that C and Ψ are simple, whose precise
meaning will be explained in the context of specific algorithms.

First-order methods for solving (1) are often based on the idea of minimizing a simple approx-
imation of the objective φ during each iteration. Specifically, in the proximal gradient method, we

∗Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah Univer-
sity of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. Emails: filip.hanzely@kaust.edu.sa,
peter.richtarik@kaust.edu.sa
†School of Mathematics, The University of Edinburgh, Edinburgh, United Kingdom.
‡Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
§Microsoft Research, Redmond, Washington, United States. Email: lin.xiao@microsoft.com

1

start with an initial point x0 ∈ rintC and generate a sequence xk for k = 1, 2, . . . with

xk+1 = arg min
x∈C

{
f(xk) + 〈∇f(xk), x− xk〉+

Lk
2
‖x− xk‖2 + Ψ(x)

}
, (2)

where Lk > 0 for all k ≥ 0. Here, we use the gradient ∇f(xk) to construct a local quadratic
approximation of f around xk while leaving Ψ untouched. Our assumption that C and Ψ are
simple means that the minimization problem in (2) can be solved efficiently, especially if it admits
a closed-form solution.

Assuming that φ is bounded below, convergence of the proximal gradient method can be estab-
lished if φ(xk+1) ≤ φ(xk) for all k ∈ N. A sufficient condition for this to hold is that the quadratic
approximation of f in (2) is an upper approximation (majorization). This is the basic idea behind
many general methods for nonlinear optimization. To this end, a common assumption is for the
gradient of f to satisfy a uniform Lipschitz condition, i.e., there exists a constant Lf such that

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ rintC. (3)

This smoothness assumption implies (see, e.g., [19])

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
Lf
2
‖x− y‖2, ∀x ∈ C, y ∈ rintC. (4)

Therefore, setting Lk = Lf for all k ∈ N ensures that the quadratic approximation of f in (2) is
always an upper bound of f , which implies φ(xk+1) ≤ φ(xk) for all k ∈ N. Moreover, it can be
shown that the proximal gradient method enjoys an O(k−1) convergence rate, i.e.,

φ(xk)− φ(x) ≤ Lf
k

‖x− x0‖2
2

, ∀x ∈ C. (5)

See, e.g., [6], [21] and [5, Chapter 10]. Under the same assumption, accelerated proximal gradient
methods [19, 2, 6, 26, 21] can achieve a faster O(k−2) convergence rate:

φ(xk)− φ(x) ≤ 4Lf
(k + 2)2

‖x− x0‖2
2

, ∀x ∈ C, (6)

which is optimal (up to a constant factor) for this class of convex optimization problems [17, 19].

1.1 Relative smoothness

While the uniform smoothness condition (3) is central in the development and analysis of first-order
methods, there are many applications where the objective function does not have this property,
despite being convex and differentiable. For example, in D-optimal experiment design (e.g., [14, 1])
and Poisson inverse problems (e.g., [11, 7]), the objective functions involve the logarithm in the
form of log-determinant or relative entropy, whose gradients may blow up towards the boundary
of the feasible region. In order to develop efficient first-order algorithms for solving such problems,
the notion of relative smoothness was introduced by several recent works [3, 16, 27].

Let h be a strictly convex function that is differentiable on rintC. In fact, we require C is the
closure of domh, i.e., C = domh. The Bregman distance [9] associated with h is defined as

Dh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉, ∀x ∈ domh, y ∈ rint domh.

2

Definition 1. The function f is called L-smooth relative to h on C if there is an L > 0 such that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ LDh(x, y), ∀x ∈ C, y ∈ rintC. (7)

As shown in [3] and [16], this notion of relative smoothness is equivalent to the following
statements:

• Lh− f is a convex function on rintC.

• If both f and h are twice differentiable, then ∇2f(x) � L∇2h(x) for all x ∈ rintC.

• 〈∇f(x)−∇f(y), x− y〉 ≤ L〈∇h(x)−∇h(y), x− y〉 for all x, y ∈ rintC.

The definition of relative smoothness in (7) gives an upper approximation of f that is similar
to (4). In fact, (4) is a special case of (7) with h = (1/2)‖x‖2 and Dh(x, y) = (1/2)‖x − y‖2.
Therefore it is natural to consider a more general algorithm by replacing the squared Euclidean
distance in (2) with a Bregman distance:

xk+1 = arg min
x∈C

{
f(xk) + 〈∇f(xk), x− xk〉+ LkDh(x, xk) + Ψ(x)

}
. (8)

Here, our assumption that C and Ψ are simple means that the minimization problem in (8) can
be solved efficiently. Similar to the proximal gradient method (2), this algorithm can also be
interpreted through operator splitting mechanism: it is the composition of a Bregman proximal
step and a Bregman gradient step (see details in [3, Section 3.1]). Therefore, it is called the Bregman
proximal gradient (BPG) method [25].

Under the relative smoothness condition (7), setting Lk = L ensures that the function being
minimized in (8) is a majorization of φ, which implies φ(xk+1) ≤ φ(xk) for all k ∈ N. It was first
shown in [8] (for the case Ψ ≡ 0) that the BGD method has a O(k−1) convergence rate:

φ(xk)− φ(x) ≤ L

k
Dh(x, x0), ∀x ∈ domh.

This is a generalization of (5). The same convergence rate for the general case (with nontrivial
Ψ) is obtained in [3], where the authors also discussed the effect of a symmetry measure for the
Bregman distance. Similar results are also obtained in [16] and [27]. In addition, [16] introduced
the notion of relative strong convexity and obtained linear convergence of the BPG method when
both relative smoothness and relative strong convexity hold. More recently, [12] studied stochastic
gradient descent and randomized coordinate descent methods in the relatively smooth setting, and
[15] extended this framework to minimize relatively continuous convex functions.

An apparent interesting question is whether we can obtain the accelerated O(k−2) convergence
rate in the relatively smooth setting [16, 25], which is the focus of our investigation in this paper.

1.2 Contributions and outline

We propose accelerated Bregman proximal gradient (ABPG) methods that attain an O(k−γ) con-
vergence rate, for some γ ∈ [1, 2], in the relatively smooth setting. More specifically, under the
assumption (7), the basic ABPG method produces a sequence {xk}k∈N satisfying

φ(xk)− φ(x) ≤
(

γ

k + γ

)γ
LDh(x, x0), ∀x ∈ domh. (9)

3

The exact value of γ depends on a triangle scaling property of the Bregman distance. For Dh(x, y) =
(1/2)‖x− y‖2, we have γ = 2 and L = Lf , hence the result in (9) recovers that in (6).

In Section 2, we define the triangle-scaling property for general Bregman distances, where γ ap-
pears as a triangle-scaling exponent (TSE). We estimate the value of γ for some Bregman distances
that appear frequently in applications. Moreover, we derive an intrinsic triangle-scaling property
that allows us to use γ = 2 locally for all h that is twice continuously differentiable.

In Section 3, we present the basic ABPG method and prove that it attains the convergence rate
in (9). We also give an adaptive variant that can automatically search for the largest possible value
of γ. In Section 4, we develop adaptive ABPG methods that automatically adjust an additional
gain factor in order to work with the intrinsic TSE γ = 2 and are capable of obtaining the O(k−2)
convergence rate. In Section 5, we present an accelerated Bregman dual-averaging algorithm that
attains the O(k−γ) convergence rate.

Finally, in Section 6, we present numerical experiments with three applications: the D-optimal
experiment design problem, a Poisson linear inverse problem, and relative-entropy nonnegative
regression. In all experiments, the ABPG methods, especially the adaptive variants, demonstrate
superior performance compared with the BPG method. Moreover, we obtain numerical certificates
that the ABPG methods converge with O(k−2) rate in all three applications.

Related work. The relative smoothness condition directly extends the upper approximation
property (4) with more general Bregman distances. Nesterov [22] took an alternative approach by
extending the Lipschitz condition (3). Specifically, he considered functions with Hölder continuous
gradients with a parameter ν ∈ [0, 1]:

‖∇f(x)−∇f(y)‖∗ ≤ Lν‖x− y‖ν , x, y ∈ C,
and obtained O(k−(1+ν)/2) rate with a universal gradient method and O(k−(1+3ν)/2) rate with ac-
celerated schemes. These methods are called “universal” because they do not assume the knowledge
of ν and automatically ensure the best possible rate of convergence. The accelerated O(k−(1+3ν)/2)
rate interpolates between O(k−1/2) and O(k−2) with ν ∈ [0, 1]. There seems to be no simple con-
nection or correspondence between the Hölder smoothness property and the combination of relative
smoothness and the triangle scaling property studied in this paper.

Technical assumptions. Development and analysis of optimization methods in the relatively
smooth setting require some delicate assumptions in order to cover many interesting applications
without loss of rigor. Here we adopt the same assumptions made in [3] regarding problem (1).

Assumption A. The set C = domh is convex, and the following statements hold:

1. h : Rn → (−∞,∞] is of Legendre type [24, Section 26]. In other words, it is essentially
smooth and strictly convex in rint domh. Essential smoothness means that it is differentiable
and ‖∇h(xk)‖ → ∞ for every sequence {xk}k∈N converging to a boundary point of domh.

2. f : Rn → (−∞,∞] is a proper and closed convex function, and it is differentiable on rintC.

3. Ψ : Rn → (−∞,∞] is a proper and closed convex function, and dom Ψ ∩ rint domh 6= ∅.
4. infx∈C{f(x) + Ψ(x)} > −∞, i.e., problem (1) is bounded below.

5. The BPG step (8) is well posed, meaning that xk+1 is unique and belongs to rint domh.

Sufficient conditions for the well-posedness of (8) are given in [3, Lemma 2]. The same conditions
also ensure that our proposed accelerated methods are well-posed.

4

��
��
��
��

��
��
��
��

�
�
�
�

����

��
��
��
��

x

z

z̃

(1− θ)x+ θz

(1− θ)x+ θz̃

Figure 1: Illustration of different points in the triangle scaling property.

2 Triangle scaling of Bregman distance

In this section, we define the triangle scaling property for Bregman distances and discuss two
different notions of triangle scaling exponent (TSE).

Definition 2. Let h be a convex function that is differentiable on rint domh. The Bregman distance
Dh has the triangle scaling property if there is some γ > 0 such that for all x, z, z̃ ∈ rint domh,

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
≤ θγDh(z, z̃), ∀ θ ∈ [0, 1]. (10)

We call γ a (uniform) triangle scaling exponent (TSE) of Dh.

Figure 1 gives a geometric illustration of the points involved in the above definition. When
γ = 1, inequality (10) holds if Dh(x, y) is jointly convex in (x, y). This is because

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
≤ (1− θ)Dh(x, x) + θDh(z, z̃) = θDh(z, z̃).

Therefore it is useful to study jointly convex Bregman distances. Suppose h : R → (−∞,∞] is
strictly convex and twice continuously differentiable on an open interval in R. Let h′′ denotes the
second derivative of h. It was shown in [4] that the Bregman distance Dh(·, ·) is jointly convex if
and only if 1/h′′ is concave. This result applies directly to separable functions which can be written
as h(x) =

∑n
i=1 hi(x

(i)). If 1/h′′i is concave for each i = 1, . . . , n, then we conclude that Dh has a
uniform TSE of at least 1. Below are some specific examples:

• The squared Euclidean distance. Let h(x) = (1/2)‖x‖22 and Dh(x, y) = (1/2)‖x− y‖22. Obvi-
ously, here Dh is jointly convex in its two arguments. But it is also easy to see that

1

2

∥∥(1− θ)x+ θz −
(
(1− θ)x+ θz̃

)∥∥2
2

=
1

2
‖θ(z − z̃)‖22 = θ2

1

2
‖z − z̃‖22.

Therefore the squared Euclidean distance has a uniform TSE γ = 2, which is much larger
than 1 obtained by following the jointly convex argument.

• The generalized Kullback-Leibler (KL) divergence. Let h be the negative Boltzmann-Shannon
entropy: h(x) =

∑n
i=1 x

(i) log x(i) defined on Rn+. The Bregman distance associated with h is

DKL(x, y) =
n∑

i=1

(
x(i) log

(
x(i)

y(i)

)
− x(i) + y(i)

)
. (11)

5

Since 1/h′′i = x(i) is linear thus concave for each i, we conclude that DKL(x, y) is jointly
convex in (x, y), which implies that it has a uniform TSE γ = 1.

• The Itakura-Saito (IS) distance. The IS distance is the Bregman distance generated by Burg’s
entropy h(x) =

∑n
i=1− log(x(i)) with domh = Rn++:

DIS(x, y) =

n∑

i=1

(
− log

(
x(i)

y(i)

)
+
x(i)

y(i)
− 1

)
. (12)

Since 1/h′′i = (x(i))2 is not concave, we conclude that DIS(·, ·) is not jointly convex. Hence
if it has a uniform TSE, then it is likely to be less than 1. In fact, it can be easily checked
numerically that any γ > 0.5 is not a uniform TSE for DIS.

We observe that the largest uniform TSEs are quite different for the three popular Bregman
distances listed above. An important question is: Are these differences essential such that they lead
to different convergence rates if different Bregman distances are used in an accelerated algorithm?
It would be ideal to derive an intrinsic characterization that is common for most Bregman distances
and essential for convergence analysis of accelerated algorithms.

2.1 The intrinsic triangle-scaling exponent

For any fixed triple {x, z, z̃} ⊂ rint domh, we consider a relaxed version of triangle scaling:

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
≤ G(x, z, z̃) θγDh(z, z̃), ∀ θ ∈ [0, 1], (13)

where G(x, z, z̃) depends on the triple {x, z, z̃} but does not depend on θ.

Definition 3. The intrinsic TSE of Dh, denoted γin, is the largest γ such that (13) holds with
some finite G(x, z, z̃) for all triples {x, z, z̃} ⊂ rint domh.

Notice that when θ is bounded away from 0, we can always find sufficiently large G(x, z, z̃) to
make the inequality in (13) hold with any value of γ. Therefore, the intrinsic TSE is determined
only by the asymptotic behavior of Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
when θ → 0. More precisely,

it is the largest γ such that

lim sup
θ→0

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)

θγ
< ∞.

We show that a broad family of Bregman distances share the same intrinsic TSE γin = 2.

Theorem 1. If h is convex and twice continuously differentiable on rint domh, then the intrinsic
TSE of the Bregman distance Dh is 2. Specifically, for any {x, z, z̃} ⊂ rint domh, we have

lim
θ→0

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)

θ2
=

1

2

〈
∇2h(x)(z − z̃), z − z̃

〉
. (14)

Proof. Consider the limit in (14), since both the numerator Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
and

the denominator θ2 converge to zero as θ → 0, we apply L’Hospital’s rule. First, by definition of
the Bregman distance, we have

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)

= Dh

(
x+ θ(z − x), x+ θ(z̃ − x)

)

= h
(
x+ θ(z − x)

)
− h
(
x+ θ(z̃ − x)

)
−
〈
∇h
(
x+ θ(z̃ − x)

)
, θ(z − z̃)

〉
.

6

The derivative of Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
with respect to θ is

d

dθ
Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
= A(θ)−

〈
∇2h(x+ θ(z̃ − x))(z̃ − x), θ(z − z̃)

〉
,

where

A(θ) =
〈
∇h(x+ θ(z − x)), z − x

〉
−
〈
∇h(x+ θ(z̃ − x)), z̃ − x

〉
−
〈
∇h(x+ θ(z̃ − x)), z − z̃

〉
.

Therefore,

lim
θ→0

Dh

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)

θ2
= lim

θ→0

A(θ)−
〈
∇2h

(
x+ θ(z̃ − x)

)
(z̃ − x), θ(z − z̃)

〉

2θ

= lim
θ→0

A(θ)

2θ
− lim
θ→0

〈
∇2h

(
x+ θ(z̃ − x)

)
(z̃ − x), z − z̃

〉

2

= lim
θ→0

A(θ)

2θ
− 1

2

〈
∇2h(x)(z̃ − x), z − z̃

〉
. (15)

Notice that
lim
θ→0

A(θ) =
〈
∇h(x), z − x

〉
−
〈
∇h(x), z̃ − x

〉
−
〈
∇h(x), z − z̃

〉
= 0,

so we apply L’Hospital’s rule again:

lim
θ→0

A(θ)

2θ
=

〈
∇2h(x)(z − x), z − x

〉
−
〈
∇2h(x)(z̃ − x), z̃ − x

〉
−
〈
∇2h(x)(z̃ − x), z − z̃

〉

2
.

Plugging the last equality into (15) and after some simple algebra, we arrive at (14).

According to Theorem 1, the three examples we considered earlier, the squared Euclidean
distance, the generalized KL-divergence and the IS-distance, share the same intrinsic TSE γin = 2.
Theorem 1 also implies that the largest uniform TSE cannot exceed 2.

2.2 Estimating the triangle-scaling gain

It can be hard to give a general upper bound on the triangle-scaling gain G(x, z, z̃) in (13) that
works with the intrinsic TSE. Here we give specific bounds on G(x, z, z̃) for the KL-divergence and
the IS-distance.

For the generalized KL-divergence defined in (11), we have

DKL

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)

=
n∑

i=1

((
(1− θ)x(i) + θz(i)

)
log

(
(1− θ)x(i) + θz(i)

(1− θ)x(i) + θz̃(i)

)
− θ
(
z(i) − z̃(i)

))

(∗)
≤

n∑

i=1

((
(1− θ)x(i) + θz(i)

) θ(z(i) − z̃(i))
(1− θ)x(i) + θz̃(i)

− θ
(
z(i) − z̃(i)

))

= θ
n∑

i=1

(
(1− θ)x(i) + θz(i)

(1− θ)x(i) + θz̃(i)
− 1

)(
z(i) − z̃(i)

)

= θ2
n∑

i=1

(
z(i) − z̃(i)

)2

(1− θ)x(i) + θz̃(i)
, (16)

7

where the inequality (*) used log(α) ≤ α− 1 for all α > 0. In order to make (13) hold with γ = 2,
we can replace the denominator (1− θ)x(i) + θz̃(i) in (16) with min{x(i), z̃(i)} and set

GKL(x, z, z̃) =
n∑

i=1

(
z(i) − z̃(i)

)2

min{x(i), z̃(i)}

/
DKL(z, z̃). (17)

For the IS-distance defined in (12), we can derive a similar bound (using log(α) ≤ α− 1 again):

DIS

(
(1− θ)x+ θz, (1− θ)x+ θz̃

)
≤ θ2

n∑

i=1

(
z(i) − z̃(i)

)2
(
(1− θ)x(i) + θz(i)

)(
(1− θ)x(i) + θz̃(i)

) . (18)

To satisfy (13) with γ = 2, we can set

GIS(x, z, z̃) =

n∑

i=1

(
z(i) − z̃(i)

)2
(
min{x(i), z(i), z̃(i)}

)2
/
DIS(z, z̃). (19)

We note that the two upper bounds in (16) and (18) are asymptotically tight, meaning that they
match the limit in (14) as θ → 0.

Remark. Suppose h is twice continuously differentiable. If ‖z− z̃‖ is small, then by definition of
the Bregman distance,

Dh(z, z̃) =
1

2

〈
∇2h(z̃)(z − z̃), z − z̃

〉
+ o(‖z − z̃‖2). (20)

Therefore, in the regime of θ → 0 and ‖z − z̃‖ small, a good estimate based on (14) and (20) is

G(x, z, z̃) = O

(〈
∇2h(x)(z − z̃), z − z̃

〉
〈
∇2h(z̃)(z − z̃), z − z̃

〉
)
.

If in addition ∇2h(x) � ∇2h(z̃) or ‖x− z̃‖ is small, then it suffices to have G(x, z, z̃) = O(1).

3 Accelerated Bregman proximal gradient method

In this section, we present the accelerated Bregman proximal gradient (ABPG) method for solving
problem (1), and analyze its convergence rate under the uniform triangle-scaling property. Adaptive
variants based on the intrinsic TSE are developed in Section 4.

To simplify notation, we define a lower approximation of φ(x) = f(x) + Ψ(x) by linearizing f
at a given point y:

`(x|y) := f(y) + 〈∇f(y), x− y〉+ Ψ(x).

If f is L-smooth relative to h (Definition 1), then we have both a lower and an upper approximation:

`(x|y) ≤ φ(x) ≤ `(x|y) + LDh(x, y). (21)

Algorithm 1 describes the ABPG method. Its input parameters include a uniform TSE γ of Dh

and an initial point x0 ∈ rintC. The sequence {θk}k∈N in Algorithm 1 satisfies 0 < θk ≤ 1 and

1− θk+1

θγk+1

≤ 1

θγk
, ∀ k ≥ 0. (22)

8

Algorithm 1: Accelerated Bregman proximal gradient (ABPG) method

input: initial point x0 ∈ rintC and γ ≥ 1.

initialize: z0 = x0 and θ0 = 1.

for k = 0, 1, 2, . . . do

1 yk = (1− θk)xk + θkzk

2 zk+1 = arg minz∈C
{
`(z|yk) + θγ−1k LDh(z, zk)

}

3 xk+1 = (1− θk)xk + θkzk+1

4 choose θk+1 ∈ (0, 1] such that
1−θk+1

θγk+1
≤ 1

θγk

end

When γ = 2 and Ψ ≡ 0, Algorithm 1 reduces to the IGA (improved interior gradient algorithm)
method in [2], which is an extension of Nesterov’s accelerated gradient method in [18] to the
Bregman proximal setting. It was shown in [2] that the IGA method attains O(k−2) rate of
convergence under the uniform Lipschitz condition 3. In this paper, we consider the general case
γ ∈ [1, 2] under the much weaker relatively smooth condition.

Using the definition of `(·|·), line 2 in Algorithm 1 can be written as

zk+1 = arg min
x∈C

{
f(yk) + 〈∇f(yk), x− yk〉+ θγ−1k LDh(x, zk) + Ψ(x)

}
, (23)

which is very similar to the BPG step (8). Here the function f is linearized around yk but the
Bregman distance is measured from a different point zk. Therefore it does not fit into the framework
of majorization and the sequence φ(xk) may not be monotone decreasing. However, the upper
bound in (21) is still crucial to ensure convergence of the algorithm. Under the same assumption
that the BPG step is well-posed (Assumption A.5), the ABPG method is also well-posed, meaning
that zk+1 ∈ rintC always and it is unique.

3.1 Convergence analysis of ABPG

We show that the ABPG method converges with a sublinear rate of O(k−γ). First, we state a basic
property of optimization with Bregman distance [10, Lemma 3.2].

Lemma 1. For any closed convex function ϕ : Rn → (−∞,∞] and any z ∈ rint domh, if

z+ = arg min
x∈C

{
ϕ(x) +Dh(x, z)

}

and h is differentiable at z+, then

ϕ(x) +Dh(x, z) ≥ ϕ(z+) +Dh(z+, z) +Dh(x, z+), ∀x ∈ domh.

The following lemma establishes a relationship between the two consecutive steps of Algorithm 1.
It is an extension of Proposition 1 in [26] , which uses γ = 2 under the assumption (3).

Lemma 2. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ is a uniform
TSE of Dh. For any x ∈ domh, the sequences generated by Algorithm 1 satisfy, for all k ≥ 0,

1− θk+1

θγk+1

(
φ(xk+1)− φ(x)

)
+ LDh(x, zk+1) ≤

1− θk
θγk

(
φ(xk)− φ(x)

)
+ LDh(x, zk). (24)

9

Proof. First, using the upper approximation in (21) and line 1 and line 3 in Algorithm 1, we have

φ(xk+1) ≤ `(xk+1|yk) + LDh(xk+1, yk)

= `(xk+1|yk) + LDh

(
(1− θk)xk + θkzk+1, (1− θk)xk + θkzk

)

≤ `(xk+1|yk) + θγkLDh(zk+1, zk), (25)

where in the last inequality we used the triangle-scaling property (10). Using xk+1 = (1− θk)xk +
θkzk+1 and convexity of `(·|yk), we have

φ(xk+1) ≤ (1− θk)`(xk|yk) + θk`(zk+1|yk) + θγkLDh(zk+1, zk) (26)

= (1− θk)`(xk|yk) + θk

(
`(zk+1|yk) + θγ−1k LDh(zk+1, zk)

)
.

Now applying Lemma 1 with ϕ(x) = `(x|yk)/(θγ−1L) yields, for any x ∈ domh,

`(zk+1|yk) + θγ−1k LDh(zk+1, zk) ≤ `(x|yk) + θγ−1k LDh(x, zk)− θγ−1k LDh(x, zk+1).

Hence

φ(xk+1) ≤ (1− θk)`(xk|yk) + θk

(
`(x|yk) + θγ−1k LDh(x, zk)− θγ−1k LDh(x, zk+1)

)

= (1− θk)`(xk|yk) + θk`(x|yk) + θγk
(
LDh(x, zk)− LDh(x, zk+1)

)

≤ (1− θk)φ(xk) + θkφ(x) + θγk
(
LDh(x, zk)− LDh(x, zk+1)

)
,

where in the last inequality we used the lower bound in (21). Subtracting φ(x) from both sides of
the inequality above, we obtain

φ(xk+1)− φ(x) ≤ (1− θk)
(
φ(xk)− φ(x)

)
+ θγk

(
LDh(x, zk)− LDh(x, zk+1)

)
.

Dividing both sides by θγk and rearranging terms yield

1

θγk

(
φ(xk+1)− φ(x)

)
+ LDh(x, zk+1) ≤

1− θk
θγk

(
φ(xk)− φ(x)

)
+ LDh(x, zk). (27)

Finally applying the condition (22) gives the desired result.

Lemma 3. The sequence θk = γ
k+γ for k = 0, 1, 2, . . . satisfies the condition (22).

Proof. With θk = γ
k+γ , we have

1− θk+1

θγk+1

=

(
1− γ

k + 1 + γ

)(
k + 1 + γ

γ

)γ
=

(k + 1)(k + 1 + γ)γ−1

γγ
(28)

and
1

θγk
=

(
k + γ

γ

)γ
=

(k + γ)γ

γγ
. (29)

Recall the weighted arithmetic mean and geometric mean inequality (see, e.g., [13, Section 2.5].),
i.e., for any positive real numbers a, b, α and β, it holds that

aαbβ ≤
(
αa+ βb

α+ β

)α+β
. (30)

10

Setting a = k + 1, b = k + 1 + γ, α = 1 and β = γ − 1, we arrive at

(k + 1)(k + 1 + γ)γ−1 ≤
(
k + 1 + (γ − 1)(k + 1 + γ)

1 + γ − 1

)1+γ−1
= (k + γ)γ ,

which, together with (28) and (29), implies the inequality (22).

A slightly faster converging sequence θk can be obtained by solving the equality in (22). Since
there is no closed-form solution in general, we can find θk+1 as the root of

θγ − θγk(1− θ) = 0 (31)

numerically, say, using Newton’s method with θk as the starting point.

Lemma 4. Let θ0 = 1 and θk+1 be the solution to (31) for all k ≥ 0. Then θk ≤ γ
k+γ for all k ≥ 0.

Proof. Let ϑk = γ
k+γ and define another sequence ξk such that ξ0 = 1 and

1− ξk+1

ξγk+1

=
1

ϑγk
, ∀ k ≥ 0. (32)

Notice that the function

ω(θ) :=
1− θ
θγ

is monotone decreasing in θ. Since ω(ϑk+1) ≤ 1/ϑγk by Lemma 3 and ω(ξk+1) = 1/ϑγk by (32), we
have ξk+1 ≤ ϑk+1 for all k ≥ 0.

Next we prove θk ≤ ϑk for all k ≥ 0 by mathematical induction. This obviously holds for k = 0
since θ0 = ϑ0 = 1. Suppose θk ≤ ϑk holds for some k ≥ 0. Then using the facts ω(θk+1) = 1/θγk and
ω(ξk+1) = 1/ϑγk , we obtain ω(θk+1) ≥ ω(ξk+1). Since ω is monotone decreasing, we conclude that
θk+1 ≤ ξk+1. Combining with ξk+1 ≤ ϑk+1 obtained above, we have θk+1 ≤ ϑk+1. This completes
the induction.

Theorem 2. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ is a uniform
TSE of Dh. If θk ≤ γ

k+γ for all k ≥ 0, then the outputs of Algorithm 1 satisfy, for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γ

k + γ

)γ
LDh(x, x0), ∀ k ≥ 0.

Proof. A direct consequence of Lemma 2 is, for any x ∈ domh,

1− θk
θγk

(
φ(xk)− φ(x)) + LDh(x, zk) ≤

1− θ0
θ0

(
φ(x0)− φ(x)

)
+ LDh(x, z0).

Combining with (27), we have

1

θγk

(
φ(xk+1)− φ(x)) + LDh(x, zk+1) ≤

1− θ0
θ0

(
φ(x0)− φ(x)

)
+ LDh(x, z0).

Using Dh(x, zk+1) ≥ 0 and the initializations θ0 = 1 and z0 = x0, we obtain

1

θγk

(
φ(xk+1)− φ(x)) ≤ LDh(x, z0),

which implies
φ(xk+1)− φ(x) ≤ θγkLDh(x, x0).

It remains to apply the condition θk ≤ γ
k+γ .

11

Algorithm 2: ABPG method with exponent adaption (ABPG-e)

input: initial point x0 ∈ rintC, γ0 ≥ 2, γmin > 0, and δ > 0.

initialize: z0 = x0, γ−1 = γ0, and θ0 = 1.

for k = 0, 1, 2, . . . do

yk = (1− θk)xk + θkzk

repeat for t = 0, 1, 2, . . .

γk = max{γk−1 − δt, γmin}
zk+1 = arg minz∈C

{
`(z|yk) + θγk−1k LDh(z, zk)

}

xk+1 = (1− θk)xk + θkzk+1

until f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+ θγkk LDh(zk+1, zk)

choose θk+1 ∈ (0, 1] such that
1−θk+1

θ
γk
k+1

≤ 1
θ
γk
k

end

3.2 ABPG method with exponent adaption

The best convergence rate of the ABPG method is obtained with the largest uniform TSE for the
Bregman distance. Since it is often hard to determine the largest TSE, we present in Algorithm 2
a variant of the ABPG method with automatic exponent adaption, called the ABPG-e method.

This method starts with a large γ0 ≥ 2. During each iteration k, it reduces γk by a small amount
δ > 0 until some stopping criterion is satisfied. An obvious choice for the stopping criterion is the
local triangle-scaling property

Dh(xk+1, yk) ≤ θγkk Dh(zk+1, zk), (33)

where xk+1 = (1− θk)xk + θkzk+1 and yk = (1− θk)xk + θkzk. According to the proof of Lemma 2,
we can also use the inequality (25) as stopping criterion, which is implied by (33) and the relatively
smooth assumption. For convergence, we only need (25) to hold, which can be less conservative
than (33). In Algorithm 2, we use the following inequality as the stopping criterion

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+ θγkk LDh(zk+1, zk),

which is equivalent to (25) (by subtracting Ψ(xk+1) from both sides of the inequality). In practice,
this condition often leads to much faster convergence than using (33). Computationally, it is slightly
more expensive since it needs to evaluate f(xk+1) in addition to ∇f(yk) during each inner loop,
while (33) does not.

The lower bound γmin can be any known uniform TSE, which guarantees that the stopping
criterion can always be satisfied. Since γk+1 ≤ γk and θk+1 ∈ (0, 1), we always have θ

γk+1

k+1 ≥ θγkk+1.
Therefore

1− θk+1

θ
γk+1

k+1

≤ 1− θk+1

θγkk+1

≤ 1

θγkk
.

By replacing inequality (22) with the one above and repeating the analysis in Section 3.1, we obtain
the following result.

12

Algorithm 3: ABPG method with monotone gain adaption

input: initial points x0 ∈ C, γ > 1, and ρ > 1.

initialize: z0 = x0, θ0 = 1, G−1 = 1.

for k = 0, 1, 2, . . . do

yk = (1− θk)xk + θkzk

repeat for t = 0, 1, 2, . . .

Gk = Gk−1ρ
t

zk+1 = arg minz∈C
{
`(z|yk) +Gkθ

γ−1
k LDh(z, zk)

}

xk+1 = (1− θk)xk + θkzk+1

until f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+Gkθ
γ
kLDh(zk+1, zk)

choose θk+1 ∈ (0, 1] such that
1−θk+1

θγk+1
≤ 1

θγk

end

Theorem 3. Suppose Assumption A holds, f is L-smooth relative to h on C, and γmin is a uniform
TSE of Dh. Then the sequences generated by Algorithm 2 satisfy, for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γk
k + γk

)γk
LDh(x, x0), ∀ k ≥ 0.

The convergence rate of ABPG-e is determined by the last value γk. Since we only need to
satisfy the local triangle-scaling property (33) instead of the uniform condition (10), it is very likely
that γk is greater than the largest uniform TSE. However, according to Theorem 1, when k →∞,
the limit of γk (which always exists) cannot be larger than the intrinsic TSE γin = 2.

4 ABPG methods with gain adaption

In this section, we present and analyze adaptive ABPG methods based on the concept of intrinsic
TSE developed in Section 2.1. Instead of searching for the largest uniform TSE as in Algorithm 2,
we can replace line 2 in Algorithm 1 by

zk+1 = arg min
z∈C

{
`(z|yk) +Gkθ

γ−1
k LDh(z, zk)

}

and adjust the gain Gk while keeping γ = γin fixed. Algorithm 3 is such a method with monotone
gain adaption, meaning that Gk+1 ≥ Gk for all k ≥ 0. Let ρ > 1 be an adaption parameter. During
each iteration k, it finds the smallest integer t ≥ 0 such that Gk = Gk−1ρ

t satisfies the stopping
criterion

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+Gkθ
γk
k LDh(zk+1, zk), (34)

which is implied by the relative smoothness and the local triangle-scaling property

Dh(xk+1, yk) = Dh

(
(1− θ)xk + θzk+1, (1− θ)xk + θzk

)
≤ GkθγDh(zk+1, zk). (35)

By definition of the intrinsic TSE, such a Gk always exists for γ = γin, i.e., the stopping criterion
for gain adaption in Algorithm 3 can always be satisfied.

13

Theorem 4. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ = γin is the
intrinsic TSE of Dh. Then the sequences generated by Algorithm 3 satisfy, for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γ

k + γ

)γ
GkLDh(x, x0), ∀ k ≥ 0. (36)

Proof. We follow the same steps as in Section 3.1. In light of (35), the inequality (25) becomes

φ(xk+1) ≤ `(xk+1|yk) +Gkθ
γ
kLDh(zk+1, zk), (37)

and the inequality (27) becomes

1

Gkθ
γ
k

(
φ(xk+1)− φ(x)

)
+ LDh(x, zk+1) ≤

1− θk
Gkθ

γ
k

(
φ(xk)− φ(x)

)
+ LDh(x, zk). (38)

Since {θk}k∈N satisfy
1−θk+1

θγk+1
≤ 1

θγk
and the algorithm ensures Gk+1 ≥ Gk, we have

1− θk+1

Gk+1θ
γ
k+1

≤ 1− θk+1

Gkθ
γ
k+1

≤ 1

Gkθ
γ
k

.

Thus the following inequality replaces (24) in Lemma 2:

1− θk+1

Gk+1θ
γ
k+1

(
φ(xk+1)− φ(x)

)
+ LDh(x, zk+1) ≤

1− θk
Gkθ

γ
k

(
φ(xk)− φ(x)

)
+ LDh(x, zk). (39)

The rest of the proof is similar to that for Theorem 2.

4.1 ABPG method with non-monotone gain adaption

Although the gain adaption loop in Algorithm 3 always exits with a finite Gk that satisfies (34), it
could be very large. More importantly, since {Gk}k∈N is monotone non-decreasing, the algorithm
may stuck with some large Gk even if much smaller gains would work for later iterations. The
convergence rate obtained in Theorem 4 depends on the last Gk, which is also the largest gain up
to iteration k.

Algorithm 4 describes another variant of ABPG with an adaptive, non-monotone gain search
scheme. At the beginning of each iteration k, a smaller tentative gain, Mk = max{Gk−1/ρ, Gmin}
where ρ > 1, is first proposed. The gain adaption loop finds the smallest integer t ≥ 0 such that
Gk = Mkρ

t and the corresponding vectors yk, zk+1, xk+1 satisfy the inequality (34).
Another major difference between Algorithm 4 and all previous variants is that the sequence

{θk}k∈N in Algorithm 4 is generated by solving the equation

1− θk+1

Gk+1θ
γ
k+1

=
1

Gkθ
γ
k

. (40)

Since we don’t have a priori bounds on the gains Gk, it is hard to characterize how fast θk converges
to zero. In fact, {θk}k∈N may not be a monotone decreasing sequence. Instead of tracking Gk and θk
separately, we analyze the convergence of the combined quantity Gkθ

γ
k . The following simple lemma

will be very useful.

14

Algorithm 4: ABPG method with non-monotone gain adaption (ABPG-g)

input: initial points x0 ∈ C, γ > 1, ρ > 1 and Gmin > 0.

initialize: z0 = x0, G−1 = 1

for k = 0, 1, 2, . . . do

Mk = max{Gk−1/ρ, Gmin}
repeat for t = 0, 1, 2, . . .

Gk = Mkρ
t

if k > 0 then compute θk by solving
1− θk
Gkθ

γ
k

=
1

Gk−1θ
γ
k−1

yk = (1− θk)xk + θkzk

zk+1 = arg minz∈C

{
`(z|yk) +Gkθ

γ−1
k LDh(z, zk)

}

xk+1 = (1− θk)xk + θkzk+1

until f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+Gkθ
γ
kLDh(zk+1, zk)

end

Lemma 5. For any α, β > 0 and γ ≥ 1, the following inequality holds:

αγ − βγ ≤ γ(α− β)αγ−1.

Proof. The case of γ = 1 is obvious. Assume γ > 1. The desired inequality is equivalent to

αγ−1β ≤ (γ − 1)αγ + βγ

γ
=

(γ − 1)αγ + 1 · βγ
(γ − 1) + 1

.

Applying the weighted arithmetic and geometric mean inequality (30), we have

(γ − 1)αγ + 1 · βγ
(γ − 1) + 1

≥
(

(αγ)γ−1(βγ)1
) 1
γ

= αγ−1β,

which completes the proof.

Theorem 5. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ = γin is the
intrinsic TSE of Dh. Then the sequences generated by Algorithm 4 satisfy, for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γ

k + γ

)γ
GkLDh(x, x0), ∀ k ≥ 0, (41)

where Gk is a weighted geometric mean of the gains at each step:

Gk = (Gγ0G1 · · ·Gk)
1

k+γ . (42)

Proof. Following the analysis outlined in the proof of Theorem 4, and using the equality (40), we
can show that (39) still holds. Then the same arguments in the proof of Theorem 2 lead to

φ(xk+1)− φ(x) ≤ Gkθ
γ
kLDh(x, x0). (43)

15

Next we derive an upper bound for Gkθ
γ
k . For convenience, let’s define for k = 0, 1, 2, . . .,

Ak =
1

Gkθ
γ
k

, ak+1 =
1

Gk+1θ
γ−1
k+1

.

Then (40) implies ak+1 = Ak+1 −Ak. Moreover, we have

Ak+1 =
1

Gk+1θ
γ
k+1

= G
1

γ−1

k+1a
γ
γ−1

k+1 = G
1

γ−1

k+1

(
Ak+1 −Ak

) γ
γ−1

. (44)

Applying Lemma 5 with α = A
1/γ
k+1 and β = A

1/γ
k , we obtain

Ak+1 −Ak =
(
A

1
γ

k+1

)γ
−
(
A

1
γ

k

)γ
≤ γ

(
A

1
γ

k+1 −A
1
γ

k

)
A
γ−1
γ

k+1 .

Combining with (44) yields

Ak+1 = G
1

γ−1

k+1

(
Ak+1 −Ak

) γ
γ−1 ≤ G

1
γ−1

k+1γ
γ
γ−1

(
A

1
γ

k+1 −A
1
γ

k

) γ
γ−1

Ak+1

We can eliminate the common factor Ak+1 on both sides of the above inequality to obtain

1 ≤ G
1

γ−1

k+1γ
γ
γ−1

(
A

1
γ

k+1 −A
1
γ

k

) γ
γ−1

,

which implies

A
1
γ

k+1 −A
1
γ

k ≥
1

γ G
1/γ
k+1

, k = 0, 1, 2,

Summing the above inequality from step 0 to k − 1 and using A0 = G0, we have

A
1
γ

k ≥
k∑

t=1

1

γ G
1/γ
t

+A
1
γ

0 =

k∑

t=1

1

γ G
1/γ
t

+
1

G
1/γ
0

=
1

γ

(
k∑

t=1

1

G
1/γ
t

+
γ

G
1/γ
0

)
.

Using the weighted arithmetic and geometric mean inequality (e.g., [13, Section 2.5]) gives

k∑

t=1

1

G
1/γ
t

+
γ

G
1/γ
0

≥ (k + γ)

((
1

G
1/γ
0

)γ 1

G
1/γ
1

· · · 1

G
1/γ
k

) 1
k+γ

= (k + γ)
(
Gγ0G1 · · ·Gk

) −1
γ(k+γ)

.

Combining the last two inequalities above, we arrive at

Ak ≥
(
k + γ

γ

)γ
(Gγ0G1 · · ·Gk)

−1
k+γ .

Therefore,

Gkθ
γ
k =

1

Ak
≤
(

γ

k + γ

)γ
(Gγ0G1 · · ·Gk)

1
k+γ .

Finally, substituting the inequality above into (43) gives the desired result.

The geometric mean Gk in (42) can be much smaller than Gmax = max{G0, G1, . . . , Gk}. Thus
the convergence rate in (41) can be much faster than the one in (36) where the gains are monotone
non-decreasing and thus Gk = Gmax.

Under the assumption of uniform Lipschitz smoothness (3), Nesterov [21] proposed an accel-
erated gradient method with non-monotone line search. However, the complexity obtained there
still depends on the global Lipschitz constant Lf , more specifically, replacing GkL in (41) with ρLf
when γ = 2. Our result in (41) can be more tight if the local Lipschitz constants are smaller.

16

Total number of oracle calls. We follow the approach of [21, Lemma 4]. Notice that each
inner loop needs to call a gradient oracle to compute ∇f(yk), and also f(xk+1) when we use (34)
as the stopping criterion for gain adaption. Let ni ≥ 1 be the number of calls of the oracle (for
∇f(yk)) at the ith iteration, for i = 0, . . . , k. Then

Gi+1 = max{Gi/ρ,Gmin}ρni−1 ≥ Giρni−2, i = 0, . . . , k − 1.

Thus

ni ≤ 2 + logρ
Gi+1

Gi
= 2 +

1

ln ρ
ln
Gi+1

Gi
.

Therefore, the total number of oracle calls is

Nk =

k∑

i=0

ni ≤
k∑

i=0

(
2 +

1

ln ρ
ln
Gi+1

Gi

)
= 2(k + 1) +

1

ln ρ
ln
Gk
G0

.

Roughly speaking, on average each iteration need two oracle calls (unless Gk is very large).

An explicit update rule for θk. As an alternative to calculating θk+1 by solving the equa-
tion (40), we can also use the following explicit update rule:

1

θk+1
=

γαk
1 + αk(γ − 1)

1

θk
+

1

1 + αk(γ − 1)
,

where αk = Gk+1/Gk for k = 0, 1, 2, This recursion is obtained by solving a linearized equation
of (40). In particular, if αk = 1 for all k ≥ 0, then this formula produces θk = γ/(k + γ). The
sequence {θk}k∈N generated this way satisfies an inequality obtained by replacing the “=” sign with
“≤” in (40). Although Theorem 5 does not apply to this sequence, it often has comparable or even
faster performance in practice, especially when the αk’s are close to 1.

4.2 Towards the O(k−2) convergence rates

Theorem 1 shows that the intrinsic TSE γin = 2 for all Bregman distances Dh where h is convex
and twice continuously differentiable. This covers most Bregman distances of practical interest.
For the ABPG-g method (Algorithm 4) to obtain true O(k−2) convergence rate, we need to make
sure that Gk defined in (42) is O(1).

If the sequence {zk}k∈N converges, according to the remark at the end of Section 2.2, we have

Gk ≤ ρG(xk+1, zk+1, zk) = O

(〈
∇2h(xk+1)(zk+1 − zk), zk+1 − zk

〉
〈
∇2h(zk)(zk+1 − zk), zk+1 − zk

〉
)

(45)

when k is large. If in addition ‖xk+1 − zk‖ is small, certainly if {xk} and {zk} converges to the
same point, then Gk = O(1) and so is the geometric mean Gk when k is large.

For concrete discussion, we consider relatively smooth optimization with the generalized KL-
divergence and the IS-distance. If all coordinates of xk and zk are bounded away from zero, then
we can easily bound Gk using (17) or (19), thus obtain the O(k−2) rate. A particularly interesting

case is when some of the coordinates x
(i)
k → 0. Since xk+1 = (1− θk)xk + θkzk+1, we know that the

sequence {xk} is obtained by taking convex combinations of the sequence {zk}. If both sequences

17

Algorithm 5: Accelerated Bregman dual averaging (ABDA) method

input: initial point z0 ∈ rintC and γ > 1.

initialize: x0 = z0, ψ0(x) ≡ 0, and θ0 = 1.

for k = 0, 1, 2, . . . do

1 yk := (1− θk)xk + θkzk

2 ψk+1(x) := ψk(x) + θ1−γk `(x|yk)
3 zk+1 := arg minz∈C

{
ψk+1(z) + Lh(z)

}

4 xk+1 := (1− θk)xk + θkzk+1

5 find θk+1 ∈ (0, 1] such that
1−θk+1

θγk+1
= 1

θγk

end

converge and some coordinates x
(i)
k → 0, we must also have the corresponding z

(i)
k → 0, indeed at

the same or a faster rate because θk → 0. Therefore, even though the diagonal entries of the Hessian

∇2
iih(xk)→∞ (as 1/x

(i)
k for KL-divergence or 1/(x

(i)
k)2 for IS-distance), the corresponding entries

∇2
iih(zk)→∞ at the same or a faster rate. Hence, according to (45), we still have Gk = O(1).

While a formal proof of the above arguments may require additional technical assumptions and
more careful analysis, we note that the sequence {Gk} is readily available as part of the computation
and we can easily check the magnitude of Gk. When it is small, we obtain a numerical certificate
that the algorithm did converge with the O(k−2) rate. This is exactly what we observe in the
numerical experiments in Section 6.

5 Accelerated Bregman dual averaging method

In this section, we present an accelerated Bregman dual averaging (ABDA) method under the rel-
ative smoothness assumption. This method extends Nesterov’s accelerated dual averaging method
([20] and [26, Algorithm 3]) to the relatively smooth setting. Here we focus on a simple variant in
Algorithm 5 based on the uniform triangle-scaling property, although it is also possible to develop
more sophisticated variants with automatic exponent or gain adaption.

Line 2 in Algorithm 5 defines a sequence of functions {ψk}k∈N starting with ψ0 ≡ 0:

ψk+1(x) := ψk(x) + θ1−γk `(x|yk). (46)

In other words, ψk+1 is a weighted sum of the lower approximations in (21) constructed at y0, . . . , yk:

ψk+1(x) =
k∑

t=0

θ1−γt `(x|yt). (47)

Line 3 in Algorithm 5 can be written as

zk+1 = arg min
z∈C

{
〈gk, z〉+ ϑkΨ(z) + Lh(z)

}
(48)

where

gk =
k∑

t=1

θ1−γt ∇f(yt), ϑk =
k∑

t=1

θ1−γt .

18

When implementing Algorithm 5, we only need to keep track of gk and ϑk, and there is no need
to maintain the abstract form of ψk(x). Here our assumption of C and Ψ being simple means that
the minimization problem in (48) can be solved efficiently. This requirement is equivalent to that
for the BPG method (8) and all variants of the ABPG methods in this paper.

Algorithm 5 (line 5) requires the sequence {θk}k∈N satisfy

1− θk+1

θγk+1

=
1

θγk
, ∀ k ≥ 0. (49)

Under this condition, we can show

ϑk =
k∑

i=0

θ1−γi =
1

θγk
. (50)

To see this, we use induction. Clearly it holds for k = 0 if we choose θ0 = 1. Suppose it holds for
some k ≥ 0, then in light of (50) and (49),

ϑk+1 =

k+1∑

i=0

1

θγ−1i

=
1

θγk
+

1

θγ−1k+1

=
1− θk+1

θγk+1

+
1

θγ−1k+1

=
1− θk+1 + θk+1

θγk+1

=
1

θγk+1

.

Therefore the inequality (50) holds for all k ≥ 0.
To analyze the convergence of Algorithm 5, we need the following simple variant of Lemma 1.

Lemma 6. Suppose h is convex and differentiable on rintC. For any closed convex function ϕ, if

z = arg min
x∈C

{
ϕ(x) + h(x)

}

and h is differentiable at z, then

ϕ(x) + h(x) ≥ ϕ(z) + h(z) +Dh(x, z), ∀x ∈ domh.

Lemma 7. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ is a uniform
TSE of Dh. Then the sequences generated by Algorithm 5 satisfy, for all x ∈ domh and all k ≥ 1,

1− θk+1

θγk+1

φ(xk+1)− ψk+1(zk+1)− Lh(zk+1) ≤
1− θk
θγk

φ(xk)− ψk(zk)− Lh(zk). (51)

Proof. We can start with the inequality (26):

φ(xk+1) ≤ (1− θk)`(xk|yk) + θk`(zk+1|yk) + θγkLDh(zk+1, zk)

= (1− θk)`(xk|yk) + θγk

(
θ1−γk `(zk+1|yk) + LDh(zk+1, zk)

)

≤ (1− θk)φ(xk) + θγk

(
θ1−γk `(zk+1|yk) + LDh(zk+1, zk)

)
. (52)

Notice that for k ≥ 1, zk is the minimizer of ψk(z) + Lh(z) over C. We use Lemma 6 to obtain

ψk(zk) + Lh(zk) + LDh(zk+1, zk) ≤ ψk(zk+1) + Lh(zk+1),

19

which gives
LDh(zk+1, zk) ≤ ψk(zk+1) + Lh(zk+1)− ψk(zk)− Lh(zk). (53)

Combining the inequalities (52) and (53), we obtain

φ(xk+1) ≤ (1− θk)φ(xk) + θγk

(
θ1−γk `(zk+1|yk) + ψk(zk+1) + Lh(zk+1)− ψk(zk)− Lh(zk)

)

= (1− θk)φ(xk) + θγk
(
ψk+1(zk+1) + Lh(zk+1)− ψk(zk)− Lh(zk)

)
,

where in the last equality we used recursive definition of ψk+1 in (46). Dividing both sides of the
above inequality by θγk , we have

1

θγk
φ(xk+1) ≤

1− θk
θγk

φ(xk) + ψk+1(zk+1) + Lh(zk+1)− ψk(zk)− Lh(zk).

Using (49) and rearranging terms gives the desired result (51), which holds for k ≥ 1.

Theorem 6. Suppose Assumption A holds, f is L-smooth relative to h on C, and γ is a uniform
TSE of Dh. The sequences generated by Algorithm 5 satisfy:

(a) if z0 = arg minz∈C h(z), then for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γ

k + γ

)γ
L
(
h(x)− h(z0)

)
, ∀ k ≥ 0; (54)

(b) otherwise, for any x ∈ domh,

φ(xk+1)− φ(x) ≤
(

γ

k + γ

)γ
L
(
h(x)− h(z1) +Dh(z1, z0)

)
, ∀ k ≥ 0. (55)

Proof. If z0 = arg minz∈C h(z), we use the definition ψ0 ≡ 0 to conclude that

z0 = arg min
z∈C

{
ψ0(z) + Lh(z)

}
.

In this case, we can extend the result of Lemma 7 to hold for all k ≥ 0. Applying the inequality (51)
for iterations 0, 1, . . . , k, we obtain

1− θk+1

θγk+1

φ(xk+1)− ψk+1(zk+1)− Lh(zk+1) ≤
1− θ0
θγ0

φ(x0)− ψ0(z0)− Lh(z0) = − Lh(z0),

where we used θ0 = 1 and ψ0 ≡ 0. Next using (49) and rearranging terms, we have

1

θγk
φ(xk+1) ≤ ψk+1(zk+1) + Lh(zk+1)− Lh(z0)

≤ ψk+1(x) + Lh(x)− Lh(x0) (56)

=

k∑

t=0

θ1−γt `(x|yt) + L
(
h(x)− h(z0)

)

≤
k∑

t=0

θ1−γt φ(x) + L
(
h(x)− h(z0)

)

=
1

θγk
φ(x) + L

(
h(x)− h(z0)

)
, (57)

20

where the second inequality used the fact that zk+1 is the minimizer of ψk+1(z) +Lh(z), the third
inequality used `(x|yt) ≤ φ(x), and the last equality used (50). Rearranging terms of (57) yields

φ(xk+1)− φ(x) ≤ θγkL
(
h(x)− h(z0)

)
.

According to Lemma 4, we have θk ≤ γ
k+γ if (49) holds, which gives (54).

If z0 6= arg minz∈C h(z), then we can only apply (51) for k ≥ 1 to obtain

1

θγk
φ(xk+1)− ψk+1(zk+1)− Lh(zk+1) ≤

1− θ1
θγ1

φ(x1)− ψ1(z1)− Lh(z1)

=
1

θγ0
φ(x1)− θ1−γ0 `(z1|y0)− Lh(z1)

= φ(z1)− `(z1|z0)− Lh(z1)

≤ LDh(z1, z0)− Lh(z1),

where the first equality used (49), the second equality used θ0 = 1, y0 = z0 and x1 = z1, and the
last inequality is due to relative smoothness: φ(z1) ≤ `(z1|z0) + LDh(z1, z0). Therefore,

1

θγk
φ(xk+1) ≤ ψk+1(zk+1) + Lh(zk+1) + LDh(z1, z0)− Lh(z1)

≤ 1

θγk
φ(x) + L

(
h(x)− h(z1) +Dh(z1, z0)

)
,

where the last inequality repeats the arguments from (56) to (57). Rearranging terms leads to

φ(xk+1)− φ(x) ≤ θγkL
(
h(x)− h(z1) +Dh(z1, z0)

)
,

and further applying Lemma 4 gives the desired result (55).

As a sanity check, we show that the right-hand-side of (55) is strictly positive for any x ∈ domh
such that φ(x) < φ(z1) + LDh(x, z1). We exploit the fact that z1 = arg minz∈C{`(z|z0) + Lh(z)}.
Using Lemma 6, we have

`(z1|z0) + Lh(z1) ≤ `(x|z0) + Lh(x)− LDh(x, z1),

which implies
L
(
h(x)− h(z1)

)
≥ LDh(x, z1) + `(z1|z0)− `(x|z0).

Then we have

L
(
h(x)− h(z1) +Dh(z1, z0)

)
≥ LDh(x, z1) + `(z1|z0)− `(x|z0) + LDh(z1, z0)

= LDh(x, z1) +
(
`(z1|z0) + LDh(z1, z0)

)
− `(x|z0)

≥ LDh(x, z1) + φ(z1)− `(x|z0)
≥ LDh(x, z1) + φ(z1)− φ(x),

where the second inequality used the upper bound in (21), and the last inequality used the lower
bound in (21). Therefore, for any x such that φ(x) < φ(z1) + LDh(x, z1), we have

L
(
h(x)− h(z1) +Dh(z1, z0)

)
> LDh(x, z1) ≥ 0.

This completes the proof.

21

0 200 400 600 800 1000
iteration number k

10−5

10−4

10−3

10−2

10−1

100
φ

(x
k
)
−
φ
?

BPG

ABPG γ=1.0

ABPG γ=1.5

ABPG γ=2.0

ABPG γ=2.2

(a) ABPG method with different TSE γ.

0 200 400 600 800 1000
iteration number k

10−3

10−2

10−1

100

Ĝ
k

ABPG γ=1.0

ABPG γ=1.5

ABPG γ=2.0

ABPG γ=2.2

(b) Local triangle scaling gain Ĝk.

0 200 400 600 800 1000
iteration number k

10−5

10−4

10−3

10−2

10−1

100

φ
(x

k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG-e

ABPG-g

(c) Adaptive ABPG with γ = 2 (log-linear plot).

100 101 102 103

iteration number k

10−5

10−4

10−3

10−2

10−1

100

φ
(x

k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG-e

ABPG-g

(d) Adaptive ABPG with γ = 2 (log-log plot).

Figure 2: D-optimal design: random problem instance with m = 80 and n = 200.

6 Numerical experiments

We consider three applications of relatively smooth convex optimization: D-optimal experiment de-
sign, Poisson linear inverse problem, and relative-entropy nonnegative regression. For each applica-
tion, we compare the algorithms developed in this paper with the BPG method (8) and demonstrate
significant performance improvement. Our implementations and experiments are shared through
an open-source repository at https://github.com/Microsoft/accbpg.

6.1 D-optimal experiment design

Given n vectors v1, . . . , vn ∈ Rm where n ≥ m+ 1, the D-optimal design problem is

minimize f(x) := − log det
(∑n

i=1 x
(i)viv

T
i

)

subject to
∑n

i=1 x
(i) = 1

x(i) ≥ 0, i = 1, . . . , n.

(58)

22

https://github.com/Microsoft/accbpg

0 10 20 30 40 50
iteration number k

10−11

10−9

10−7

10−5

10−3

10−1

φ
(x

k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG RS

ABPG-g

ABPG-g RS

Figure 3: D-optimal design: random problem instance with m = 80 and n = 120.

In the form of problem (1), we have Ψ ≡ 0, φ(x) ≡ f(x), and C is the standard simplex in Rn.
In statistics, this problem corresponds to maximizing the determinant of the Fisher information
matrix (e.g., [14, 1]). It is shown in [16] that f defined in (58) is 1-smooth relative to Burg’s entropy
h(x) = −∑n

i=1 log(x(i)) on Rn+. In this case, Dh is the IS-distance defined in (12).
In our first experiment, we set m = 80 and n = 200 and generated n random vectors in Rm,

where the entries of the vectors were generated following independent Gaussian distributions with
zero mean and unit variance. The results are shown in Figure 2.

Figure 2(a) shows the reduction of optimality gap by the BPG method (8) and the ABPG
method (Algorithm 1) with four different values of γ. For γ = 1, the ABPG method converges
with O(k−1) rate, but is slower than the BPG method. When we increase γ to 1.5 and then 2, the
ABPG method is significantly faster than BPG. Interestingly, ABPG still converges with γ = 2.2
(which is larger than the intrinsic TSE γin = 2) and is even faster than with γ = 2. To better
understand this phenomenon, we plot the local triangle-scaling gain

Ĝk =
Dh(xk+1, yk)

θγDh(zk+1, zk)
=
Dh((1− θ)xk + θzk+1, (1− θ)xk + θzk)

θγDh(zk+1, zk)
. (59)

Figure 2(b) shows that for γ = 1.0 and 1.5, Ĝk is mostly much smaller than 1. For γ = 2, Ĝk is
much closer to 1 but always less than 1. This gives a numerical certificate that the ABPG method
converged with O(k−2) rate. For γ = 2.2, Ĝk stayed close to 1 for the first 700 iterations and then
jumped to 3 and stayed around. The method diverges with larger value of γ. We didn’t plot the
ABDA method (Algorithm 5) because it overlaps with ABPG for the same value of γ when the
initial point is taken as the center of the simplex, see part (a) of Theorem 6.

Figure 2(c) compares the basic BPG and ABPG methods with their adaptive variants. The
BPG-LS method is a variant of BPG equipped with the same adaptive line-search scheme in Algo-
rithm 4 (see also [21, Method 3.3]). For all variants of ABPG, we set γ = γin = 2. For BPG-LS and
ABPG-g, we set ρ = 1.5 for adjusting the gain Gk. The adaptive variants converged faster than
their respective basic versions. Figure 2(d) shows the same results in log-log scale. We can clearly
see the different slopes of the BPG variants and ABPG variants, demonstrating their O(k−1) and
O(k−2) convergence rates respectively. For ABPG-e, we started with γ0 = 3 and it eventually
settled down to γ = 2, which is reflected in its gradual change of slope in Figure 2(d).

23

0 1000 2000 3000 4000 5000
iteration number k

10−6

10−4

10−2

100

102
φ

(x
k
)
−
φ
?

BPG

ABPG γ=1.0

ABPG γ=1.5

ABPG γ=2.0

ABDA γ=2.0

(a) ABPG (varying γ) and ABDA (γ = 2) methods.

100 101 102 103

iteration number k

10−6

10−4

10−2

100

102

φ
(x

k
)
−
φ
?

BPG

ABPG γ=1.0

ABPG γ=1.5

ABPG γ=2.0

ABDA γ=2.0

(b) Same results in (a) in log-log plot.

100 101 102 103

iteration number k

10−6

10−4

10−2

100

φ
(x

k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG-e

ABPG-g

(c) Adaptive ABPG methods γ = 2 (log-log plot).

0 1000 2000 3000 4000 5000
iteration number k

10−3

10−2

10−1

100

101

102

Ĝ
k

BPG-LS

ABPG

ABPG-e

ABPG-g

(d) Local triangle-scaling gain Ĝk.

Figure 4: Poisson linear inverse problem: random instance with m = 200 and n = 100.

Figure 3 shows the comparison of different methods on another random problem instance with
m = 80 and n = 120. All methods converge much faster and reach very high precision. In
particular, BPG and BPG-LS look to have linear convergence. This indicates that this problem
instance is much better conditioned and the objective function may be strongly convex relative to
Burg’s entropy. In this case, it is shown in [16] that the BPG method attains linear convergence.
The ABPG and ABPG-g methods demonstrate periodic non-monotone behavior. A well-known
technique to avoid such oscillations and attain fast linear convergence is to restart the algorithm
whenever the function value starts to increase [23]. We applied restart (RS) to both ABPG and
ABPG-g, which resulted in a much faster convergence as shown in Figure 3.

6.2 Poisson linear inverse problem

In Poisson inverse problems (e.g., [11, 7]), we are given a nonnegative observation matrix A ∈ Rm×n+

and a noisy measurement vector b ∈ Rm++, and the goal is to reconstruct the signal x ∈ Rn+ such that
Ax ≈ b. A natural measure of closeness of two nonnegative vectors is the KL-divergence defined

24

0 500 1000 1500 2000
iteration number k

10−9

10−7

10−5

10−3

10−1
φ

(x
k
)
−
φ
? BPG

BPG-LS

ABPG

ABPG-e

ABPG-g

0 500 1000 1500 2000
iteration number k

10−3

10−1

101

103

G
k

BPG-LS

ABPG

ABPG-e

ABPG-g

Figure 5: Poisson linear inverse problem: random instance with m = 100 and n = 1000.

in (11). In particular, minimizing DKL(b, Ax) corresponds to maximizing the Poisson log-likelihood
function. We consider problems of the form

minimize
x∈Rn+

φ(x) := DKL(b, Ax) + Ψ(x),

where Ψ(x) is a simple regularization function. It is shown in [3] that f(x) = DKL(b, Ax) is L-
smooth relative to h(x) = −∑n

i=1 log(x(i)) on Rn+ for any L ≥ ‖b‖1 =
∑m

i=1 b
(i). Therefore, in the

BPG and ABPG methods, we use again the IS-distance DIS in (12) as the proximity measure.
Figure 4 shows our computational results for a randomly generated instance with m = 200 and

n = 100 and Ψ ≡ 0 (no regularization). The entries of A and b are generated following independent
uniform distribution over the interval [0, 1].

Figure 4(a) shows the reduction of objective gap by BPG and ABPG with γ = 1.0, 1.5 and 2.0,
as well as the ABDA method (Algorithm 5). ABPG and ABDA with γ = 2 mostly overlap each
other in this figure. Figure 4(b) plots the same results in log-log scale, which reveals that ABPG
and ABDA (both with γ = 2) behave quite differently in the beginning. The ABDA method has
a jump of objective value at k = 1 because z0 6= arg minz∈C h(z), and its convergence rate is
governed by part (b) of Theorem 6. In fact, for C = Rn+, Burg’s entropy h(x) = −∑n

i=1 log(x(i))
is unbounded below as ‖x‖ → ∞. In contrast, for the D-optimal design problem in Section 6.1, C
is the standard simplex, and if we choose z0 = x0 = (1/n, . . . , 1/n) then z0 = arg minz∈C h(z). In
that case, we can show that ABPG and ABDA are equivalent when Ψ ≡ 0.

Figure 4(c) compares the basic and adaptive variants of BPG and ABPG. For the ABPG
and ABPG-g methods, we set γ = γin = 2. For ABPG-e, we start with γ0 = 3, and the final
γk = 2.8 after k = 5000 iterations (δ = 0.2 in Algorithm 2). Although ABPG-e uses a much
larger γ most of the time, we see ABPG-g converges faster than ABPG-e in the beginning and
they eventually become similar. This can be explained through the effective triangle-scaling gains
plotted in Figure 4(d). For ABPG and ABPG-e, the effective gains plotted are Ĝk defined in (59).
For BPG-LS and ABPG-g, we plot the Gk’s which are adjusted directly in the algorithms. For
ABPG-g, Gk ≈ 0.025 most of the time. The effective Ĝk for ABPG-e is almost 1000 times larger,
which counters the large value of γ used. The sudden reduction of Ĝk around k = 2000 is when γ
is reduced from 3 to 2.8. We expect γk → 2 as k continues to increase.

25

0 500 1000 1500 2000
iteration number k

10−10

10−7

10−4

10−1

102
φ

(x
k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG RS

ABPG-g

ABPG-g RS

(a) m = 1000 and n = 100.

0 500 1000 1500 2000
iteration number k

10−10

10−8

10−6

10−4

10−2

φ
(x

k
)
−
φ
?

BPG

BPG-LS

ABPG

ABPG RS

ABPG-g

ABPG-g RS

(b) m = 100 and n = 1000.

Figure 6: Two random instances of relative entropy nonnegative regression (γ = 2 for ABPG).

Figure 5 shows the results for a randomly generated instance with m = 100 and n = 1000. In
this case, since m < n, we added a regularization Ψ(x) = (λ/2)‖x‖2 with λ = 0.001. ABPG-g has
the best performance. Again we observe that Gk � 1 most of the time, which gives a numerical
certificate that the ABPG methods do converge with O(k−2) rate.

6.3 Relative-entropy nonnegative regression

An alternative approach for solving the nonnegative linear inverse problem described in Section 6.2
is to minimize DKL(Ax, b), i.e.,

minimize
x∈Rn+

φ(x) := DKL(Ax, b) + Ψ(x).

In this case, it is shown in [3] that f(x) = DKL(Ax, b) is L-smooth relative to the Boltzmann-
Shannon entropy h(x) =

∑n
i=1 x

(i) log(x(i)) on Rn+ for any L such that

L ≥ max
1≤j≤n

m∑

i=1

Aij = max
1≤j≤n

‖A:j‖1

where A:j denotes the jth column of A. Therefore, in the BPG and ABPG methods, we use
the KL-divergence DKL defined in (11) as the proximity measure. In our experiment, we apply
`1-regularization Ψ(x) = λ‖x‖1 with λ = 0.001.

Figure 6(a) shows the results for a randomly generated instance withm = 1000 and n = 100. For
all variants of the ABPG method, we set γ = γin = 2. Since the accelerated methods demonstrate
oscillations in objective value, we tried the restart (RS) trick [23] and obtained faster convergence
with apparent linear rate. Figure 6(b) shows the results for a random instance with m = 100 and
n = 1000. In this case, we clearly see linear convergence of the BPG and BPG-LS methods. Again,
ABPG methods with restart achieve the fastest convergence. For the ABPG-g method, we always
obtain small gains Gk at each step. Therefore their geometric mean Gk is also small, which serves
as a certificate of the O(k−2) convergence rate for this problem instance.

26

Acknowledgments

We thank Haihao Lu, Robert Freund and Yurii Nesterov for helpful conversations.

References

[1] C. L. Atwood. Optimal and efficient designs of experiments. The Annals of Mathematical
Statistics, 40(5):1570–1602, 1969.

[2] A. Auslender and M. Teboulle. Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16(3):697–725, 2006.

[3] H. H. Bauschke, J. Bolte, and M. Teboulle. A descent Lemma beyond Lipschitz gradient
continuity: first-order method revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

[4] H. H. Bauschke and J. M. Borwein. Joint and separate convexity of the Bregman distance.
In D. Butnariu, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in Feasibility
and Optimization and their Applications (Haifa 2000), pages 23–26. Elsevier, 2001.

[5] A. Beck. First-Order Methods in Optimization. MOS-SIAM Series on Optimization. SIAM,
2017.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[7] M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini. Image deblurring with Poisson data:
from cells to galaxies. Inverse Problems, 25(12), 2009.

[8] B. Birnbaum, N. R. Devanur, and L. Xiao. Distributed algorithms via gradient descent for
Fisher markets. In Proceedings of the 12th ACM conference on Electronic Commerce, pages
127–136, San Jose, California, USA, June 2011.

[9] L. M. Bregman. The relaxation method of finding the common points of convex sets and its
application to the solution of problems in convex programming. U.S.S.R. Comput. Math. and
Math. Phys., 7:200–217, 1967.

[10] G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm
using Bregman functions. SIAM Journal on Optimization, 3(3):538–543, August 1993.

[11] I. Csiszár. Why least squares and maximum entropy? an axiomatic approach to inference for
linear iverse problems. The Annals of Statistics, 19(4):2032–2066, 1991.

[12] F. Hanzely and P. Richtárik. Fastest rates for stochastic mirror descent methods. arXiv
preprint arXiv:1803.07374, 2018.

[13] G. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 2nd
edition, 1952.

27

[14] J. Kiefer and J. Wolfowitz. Optimal design in regression problems. The Annals of Mathematical
Statistics, 30(2):271–294, 1959.

[15] H. Lu. “Relative-continuity” for non-Lipschitz non-smooth convex optimization using stochas-
tic (or deterministic) mirror descent. arXiv preprint arXiv:1710.04718, 2017.

[16] H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[17] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in Optimization. J.
Wiley & Sons, New York, 1983.

[18] Y. Nesterov. On an approach to the construction of optimal methods of minimization of
smooth convex functions. Èkonom. i. Mat. Metody, 24:509–517, 1988.

[19] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[20] Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

[21] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, Ser. B, 140:125–161, 2013.

[22] Y. Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, Ser. A, 152:381–404, 2015.

[23] B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes. Foundations
of Computational Mathematics, 15(3):715–732, 2015.

[24] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[25] M. Teboulle. A simplified view of first order methods for optimization. Mathematical Pro-
gramming, Ser. B, 170:67–96, 2018.

[26] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Un-
published manuscript, 2008.

[27] Y. Zhou, Y. Liang, and L. Shen. A unified approach to proximal algorithms using Bregman
distance. Technical Report, 2016.

28

	Introduction
	Relative smoothness
	Contributions and outline

	Triangle scaling of Bregman distance
	The intrinsic triangle-scaling exponent
	Estimating the triangle-scaling gain

	Accelerated Bregman proximal gradient method
	Convergence analysis of ABPG
	ABPG method with exponent adaption

	ABPG methods with gain adaption
	ABPG method with non-monotone gain adaption
	Towards the O(k-2) convergence rates

	Accelerated Bregman dual averaging method
	Numerical experiments
	D-optimal experiment design
	Poisson linear inverse problem
	Relative-entropy nonnegative regression

