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Abstract

We introduce a novel and powerful approach for solving certain classes of mixed integer
programs (MIPs): decomposition branching. Two seminal and widely used techniques for solving
MIPs, branch-and-bound and decomposition, form its foundation. Computational experiments
with instances of a weighted set covering problem and a regionalized p-median facility location
problem with assignment range constraints demonstrate its efficacy: it explores far fewer nodes
and can be orders of magnitude faster than a commercial solver and an automatic Dantzig-Wolfe
approach.

1 Introduction

Applications of mixed integer programming can be found in many industries, such as transportation,
healthcare, energy, and finance, and their economic impact is significant. This is due, in part, to the
availability of effective and robust commercial solvers, such as FICO Xpress Optimization (www.
fico.com), IBM ILOG CPLEX Optimization Studio (www.ibm.com), and Gurobi Optimizer (www.
gurobi.com). What were initially highly specialized optimization codes, sold by small companies,
have migrated to full optimization suites offered by large software and solution vendors.

It is well-known that mixed integer programs (MIPs) can be very difficult to solve. Their
challenge continues to stimulate research in the design and implementation of efficient and effective
techniques that can better solve them. For an overview of integer programming and its history,
we refer the interested reader to Nemhauser and Wolsey (1988); Schrijver (1998); Wolsey (1998);
Jünger et al. (2010); Bixby (2012); Conforti et al. (2014).

Two seminal and widely used techniques for solving MIPs, branch-and-bound and decomposi-
tion, form the foundation for the research presented in this paper, where we combine these tech-
niques in an innovative way to develop a novel approach for solving MIPs: decomposition branching.

Branch-and-bound (Land and Doig, 1960) has become the standard paradigm for solving MIPs.
Consequently, designing effective branching schemes has attracted substantial attention over the
years. Major developments in this area include the introduction of pseudo-cost branching (Bénichou
et al., 1971), strong branching (Applegate et al., 1995), and reliability branching (Achterberg et al.,
2005). Surveys on branching schemes include Linderoth and Savelsbergh (1999) and Morrison et al.
(2016). Recent research employs machine learning techniques to discover the best branching scheme
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for solving a particular instance as the search progresses (Le Bodic and Nemhauser, 2015; Khalil
et al., 2016; Lodi and Zarpellon, 2017; Dilkina et al., 2017). However, all this work concentrates
on branching schemes based on single-variable dichotomy, and focuses primarily on the variable
selection step, i.e., the choice of the variable to branch on. In this paper, we develop a new
branching scheme that is quite different and not based on single-variable dichotomy. The scheme’s
branching rules divide the search space by exploiting decomposable structure in the problem.

It is well-known that real-life instances often exhibit a decomposable or nearly decomposable
structure, where an instance has a nearly decomposable structure if the coefficient matrix has
a bordered block-diagonal form: the nonzeroes in the matrix comprise a set of disjoint blocks
with either a small set of linking constraints or linking variables. In their survey on progress in
presolving for MIPs, Gamrath et al. (2015) observe that many “real-world supply chain management
instances ... contain independent subproblems”, meaning that they have a decomposable form
with no linking variables nor linking constraints. Surprisingly, 34 out of 41 of the supply chain
management instances used in their computational study had independent subproblems, and many
had a large number of them. More than 180 independent subproblems were detected on average over
the 41 instances. Bergner et al. (2015) develop techniques to automatically detect decomposable
structure and test them on 39 instances from MIBLIB 2003 and 2010 (Achterberg et al., 2006;
Koch et al., 2011). In the best decomposable arrangement found for each of the 39 instances,
the majority (26 instances) had only linking constraints (i.e., no linking variables), which is the
form of decomposable structure that we focus on in this paper. Out of those 26 instances, the
linking constraints constituted less than 7% of the constraints in 23 cases, and less than 3% in 15
cases. It is possible, of course, that even more instances have decomposable structure with few
linking constraints and no linking variables, but that the techniques of Bergner et al. (2015) found
a different decomposable structure for them.

Several techniques have been developed for exploiting decomposable or nearly decomposable
structure, such as Lagrangian relaxation (Geoffrion, 1974), Dantzig-Wolfe decomposition (Dantzig
and Wolfe, 1960), and Benders decomposition (Benders, 1962). We note that branch-and-price
(Barnhart et al., 1998), the application of Dantzig-Wolfe decomposition for the solution of MIPs,
requires carefully designed branching rules to preserve the structure of the pricing problem (Van-
derbeck and Savelsbergh, 2006; Vanderbeck and Wolsey, 2010; Vanderbeck, 2011). The popularity
and importance of branch-and-price in applications, in particular, has initiated research into the
automatic detection of decomposable structures in MIPs, which has advanced significantly in recent
years (Bergner et al., 2015; Kruber et al., 2017). Quite recently, decomposable structure has also
been exploited in an approach that uses an integer programming master problem derived from a
multiobjective perspective (Bodur et al., 2016), as well as for generating cutting planes (Dey et al.,
2017).

In the research described in this paper, we seek to use decomposable structure to define a
new branching scheme. In their overview paper, Morrison et al. (2016) highlight that a great
as-yet-unexplored research direction when it comes to branching is different partitioning schemes:

“An important question here is: ‘How should the B&B algorithm branch in order to
generate the smallest number of unhelpful subproblems?’ In this context, an unhelp-
ful subproblem is a subproblem that does not lead to any optimal or near-optimal
solutions... [so it does] not provide any gain for the algorithm but may still require
substantial work to explore and prune. However, by considering a different partitioning
scheme for the branching strategy, it may be possible to avoid exploring some of these
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unhelpful subproblems... Finally, it may be beneficial to explore ‘hybrid’ binary-wide
branching strategies, which employ wide branching high in the search tree and switch
to binary branching in lower regions, or vice versa.” (Morrison et al., 2016)

As will become evident shortly, employing a different, wide partitioning scheme is exactly what
decomposition branching does. The branching rule by which decomposition branching divides the
search space at a node of the branch-and-bound tree is determined by solving a subproblem, and the
resulting branching constraints cannot be expressed without reference to the value of the solution
to the subproblem.

The idea of solving a subproblem to improve the performance of state-of-the-art branch-and-
bound software (specifically, the SCIP software (Achterberg, 2009)) was exploited by Gamrath et al.
(2015) in their survey on progress in presolving for MIPs, mentioned above. They discuss a new
technique called connected components, which identifies “small subproblems that are independent
of the remaining part of the problem and tries to solve those to optimality during the presolving
phase”. Using this new preprocessing technique on the 41 supply chain management instances led
to an average reduction of over 18% in the number of variables and of over 16% in the number of
constraints. Solving (small) subproblems to optimality is another key ingredient of decomposition
branching.

More specifically, we propose an approach that exploits decomposable structure by branching.
The key idea is to better solve a large MIP by solving several smaller MIPs, exploiting embedded
decomposable structure. We adopt the following notational convention in our presentation: for
vectors/matrices we use superscripts and for scalars/values we use subscripts. We consider a MIP
of the form

max
∑
i∈M

cixi (1)

s.t. xi ∈ Pi, ∀i ∈M (2)∑
i∈M

Aixi ≤ b1, (3)∑
i∈M

Dixi ≥ b2, (4)

where the input data is defined as follows: b1 ∈ Rm1
+ , b2 ∈ Rm2

+ , m1,m2 ∈ Z+, andM := {1, . . . ,M}
is the index set of blocks. For each i ∈ M, ci ∈ Rni , ni ∈ Z+ \ {0} and Ai ∈ Rm1×ni , Di ∈
Rm2×ni . We assume that Pi is nonempty and bounded for all i ∈ M, and includes any integrality
requirements on the variables. For each block i ∈M, the problem has m1+m2 coupling constraints,
linking different blocks together. The linking constraints (3) correspond to limits on a set of
resources shared among the blocks; we refer to b1 as the resource vector. Similarly, the linking
constraints (4) correspond to a set of requirements that must be satisfied, collectively, by the
blocks; we refer to b2 as the requirement vector.

Note that when m1 = m2 = 0 the problem is fully decomposable, so it can be solved by solving
M integer programs (of smaller sizes). For convenience, in the remainder, we assume that m1 +m2

is relatively small, so the coefficient matrix is nearly decomposable.
A multi-objective optimization perspective lies at the heart of our approach, in which we think

of the linking constraints as additional objectives along with the true objective. Given a frac-
tional solution to the MIP’s linear programming (LP) relaxation, the variables in each block satisfy
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the constraints for that block and contribute to the objective function and to each of the linking
constraints. We define a branching subproblem for each block, which seeks an integer (feasible)
solution that “respects” the contribution of the current LP solution to the linking constraints,
i.e., “consumes” at most as much in a ≤ constraint and “produces” at least as much in a ≥ con-
straint, and that maximizes the block’s contribution to the objective function (for a maximization
problem). If all branching subproblems yield (integer) solutions with the same contribution to the
objective function as the current fractional solution, then these solutions must be optimal for the
current branch-and-bound node and one can stop exploring it. Else, at least one of the branching
subproblems provides a branching cut that eliminates the incumbent fractional solution.

In the following, we present the details of our approach (for a general MIP formulation). We
then focus on two problems, a weighted set covering problem (Garey and Johnson, 2002) and
a regionalized p-median facility location problem with assignment range constraints (Daskin and
Tucker, 2018), to illustrate the implementation of the approach, to show its potential, and to intro-
duce extensions that improve its computational efficiency. Our computational study demonstrates
the benefits of decomposition branching: (1) it explores far fewer nodes and can be orders of mag-
nitude faster than a state-of-the-art LP-based branch-and-bound algorithm (CPLEX) and (2) it
significantly outperforms the implementation of Dantzig-Wolfe decomposition available in SCIP
(Gamrath et al., 2020).

The remainder of the paper is organized as follows. In Section 2, we introduce the principal
ideas of decomposition branching. In Section 3, we show how decomposition branching can be used
to solve instances of the weighted set covering problem. In Section 4, we discuss enhancements
that can result in significant performance improvements. In Section 5, we present the results of
an extensive computational study in which we investigate the use of the suggested methodology to
solve p-median and set-covering problems. Finally, in Section 6, we present some final remarks.

2 Decomposition Branching

The approach exploits an observation based on parameterization of the right-hand side vectors,
b1, b2, into partitions between the blocks. Specifically, the problem may be rewritten as

max

M∑
i=1

cixi

s.t. xi ∈ Pi, ∀i = 1, . . . ,M

Aixi ≤ ui, ∀i = 1, . . . ,M

Dixi ≥ `i, ∀i = 1, . . . ,M

M∑
i=1

ui ≤ b1,

M∑
i=1

`i ≥ b2,

where the variables, ui ∈ Rm1 and `i ∈ Rm2 for each i = 1, . . . ,M , are decomposition vectors
that describe how the right-hand side vector is partitioned between blocks. This can be written
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equivalently as a resource-directive master problem (RDMP)

max {
M∑
i=1

fi(u
i, `i) :

M∑
i=1

ui ≤ b1,
M∑
i=1

`i ≥ b2},

with subproblems SPi(y
1, y2) defined by

fi(y
1, y2) = max {ciξ : ξ ∈ Pi, Aiξ ≤ y1, Diξ ≥ y2},

for each i = 1, . . . ,M , where fi is the value function (with respect to block i’s component of the
linking constraint) of the ith subproblem.

Our approach is predicated on the assumption that subproblems of the form of SPi are relatively
tractable to solve (perhaps even by a recursive application of this approach), and their solution
is assumed to be a “black box” for the purpose of describing our approach. More specifically, we
propose to solve the original problem by branch-and-bound, in which we introduce the following
new branching rule, which exploits the decomposable structure in the problem. Suppose the LP
relaxation at some node of the tree has non-integer solution x̂ = (x̂1, . . . , x̂M ) ∈ RN , where N =∑M

i=1 ni. Also, let P̂i ⊆ Pi denote the feasible set for the ith subproblem at this node of the tree.
For each i = 1, . . . ,M for which x̂i is non-integer (in some component that the MIP requires to be
integer), solve the branching subproblem, BSPi(x̂

i), given by

z∗i (x̂i) = max {ciξ : ξ ∈ P̂i, Aiξ ≤ Aix̂i, Diξ ≥ Dix̂i}

to obtain solution ξi∗. If x̂i is integer, set ξi∗ := x̂i and z∗i (x̂i) = ciξi∗. If it turns out that
z∗i (x̂i) = cix̂i for every i = 1, . . . ,M , then it must be that ξ∗ = (ξ1∗, . . . , ξM∗) is an optimal solution
for the current node of the tree. Thus, the node is pruned by optimality. Otherwise, we may stop
computing BSPi(x̂

i) at the first i for which z∗i (x̂i) 6= cix̂i, in which case z∗i (x̂i) < cix̂i (otherwise x̂
is not optimal for the LP relaxation at this node of the tree). Suppose i is the first such branching
subproblem. Then we propose the following branching rule:

cixi ≤ z∗i (x̂i) ∨
m1∨
j=1

(Aijx
i > Aij x̂

i) ∨
m2∨
j=1

(Di
jx
i < Di

j x̂
i).

This gives a multi-way branch, with m1 +m2 + 1 child nodes, that cuts off x̂i. Observe that rather
than branching on the values of the variables, we branch on the contributions of the blocks to the
linking constraints. Furthermore, in one branch we use the contribution of a block to the objective
function, which, hopefully, leads to greater improvements in the dual bounds.

The implementation of a strict inequality in the branching rule is expected to make use of
a tolerance parameter, ε > 0, or integer rounding if the value of the left-hand side in the strict
inequality is known to be integer in any feasible solution. For example, to implement Aijx

i > Aij x̂
i,

add the constraint Aijx
i ≥ Aij x̂i + ε to the formulation of P̂i, or, if Aijx

i is known to be integer for

all xi ∈ P̂i, then add the constraint Aijx
i ≥ dAij x̂i+εe instead.

Since this branching rule does not necessarily partition the node problem feasible set, it can be
strengthened by ordering the branching constraints, and adding the opposite of prior constraints
to each child node created. For example, when creating the child node for the branching constraint
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Aijx
i > Aij x̂

i, the constraints

cixi > z∗i (x̂i) ∧
j−1∧
k=1

(Aikx
i ≤ Aikx̂i)

may also be added. This leads us to propose a slightly more careful expression of the branching
subproblem, BSPi(x̂

i), with double-sided bounds for each linking constraint and the objective value,
which may be written as

z∗i (x̂i) = max {ciξ : ξ ∈ P̂ i, αi ≤ cixi ≤ αi, βi ≤ Aiξ ≤ min{βi, Aix̂i}, µi ≥ Diξ ≥ max{µi, Dix̂i}}.

If Aij x̂
i = β

i
j then the branch for Aijx

i > Aij x̂
i can simply be eliminated. Similarly, if Di

j x̂
i = µi

j

then the branch for Di
jx
i < Di

j x̂
i can be eliminated.

The connection to multi-objective optimization derives from the fact that it is not difficult to
show that, without loss of generality, only solutions to the ith subproblem that are nondominated
points of the multi-objective optimization problem (MOSPi)

max ciξ, minAi1ξ, . . . ,minAim1
ξ,maxDi

1ξ, . . . ,maxDi
m2
ξ

s.t. ξ ∈ Pi,

need be considered, where Aij denotes the jth row of Ai and Di
j denotes the jth row of Di.

This is shown formally by Bodur et al. (2016), who use it to develop a new, resource-directive,
reformulation of integer programs having decomposable structure. The reformulation has a variable
for each nondominated point of a subproblem. Bodur et al. (2016) develop a solution algorithm for
their reformulation, in which a modified form of column generation is used at the first iteration to
initialize an integer programming master problem, and the integer programming master problem
is solved at each iteration thereafter.

2.1 Special cases: linking constraints with set packing or set covering structure

In the special case that some of the linking constraints take the form of either set packing or set
covering constraints, in some block, then the out-degree of the branch-and-bound tree nodes at
which this block is used for branching can be reduced through standard binary variable modeling
tricks. One branch can be used to model the branches for all linking constraints in the set packing
form, and one branch can be used to combine all constraints in the set covering form.

To be specific, in the case of set packing, where Ai is a binary matrix for each i and b1 = 1 is
the vector of all ones, suppose that for block i, it is known 1 that Aijx

i ∈ {0, 1} for any xi ∈ Pi, (so

it can be guaranteed that 0 ≤ Aij x̂
i ≤ 1), for all j = 1, . . . , q. Then, (assuming that Aij x̂

i < 1 for
all j = 1, . . . , q, since otherwise the branch would be eliminated), the disjunction reads

q∨
j=1

(Aijx
i > Aij x̂

i) =

q∨
j=1

(Aijx
i ≥ 1),

which can be modeled with the single constraint

q∑
j=1

Aijx
i ≥ 1.

1This can easily be guaranteed by adding the valid constraint Aixi ≤ 1 to the description of Pi.
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This replaces q of the child nodes by a single child node.
The situation for set covering is somewhat different, since Di

j x̂
i may take values that are greater

than b2j = 1, indicating that the jth item is “over-covered” by the ith block. In such a case, since

all values of Di
jx
i that are in excess of 1 affect the blocks other than i in the same way (making the

jth covering constraint redundant for all other blocks), it seems unhelpful to require Diξ ≥ Di
j x̂
i

in the branching subproblem. Instead, we suggest using the constraint Diξ ≥ min{1, Di
j x̂
i} in the

branching subproblem. Then (assuming Di
j x̂
i > 0 for all j) the disjunction becomes

q∨
j=1

(Di
jx
i < min{1, Di

j x̂
i}) =

q∨
j=1

(Di
jx
i ≤ 0) =

q∨
j=1

(Di
jx
i = 0). (5)

When for some block i, the term Di
jx
i must take on binary values for all j = 1, . . . , q, this

disjunction can be modeled by the single linear inequality

q∑
j=1

Di
jx
i ≤ q − 1,

replacing q of the child nodes by a single child node. In general, when Di
jx
i may take on integer

values greater than 1, modeling the disjunction linearly is less straightforward. We discuss one
approach to handling this in the case of the Weighted Set Covering problem in Section 4.1.1.

Replacing the multi-term disjunction by a single inequality in the manner described above for
set packing and set covering allows a multi-way branch to be replaced by a standard, two-way,
branch. However this may come at a cost in the strength of the formulation: the LP relaxation
bound implied by the two-way branch may be worse than that from the multi-way branch.

3 Decomposition Branching for the Weighted Set Covering Prob-
lem

Although often stated in terms of sets, e.g., Karp (1972), here we state the set covering problem
using a graph, as this makes the discussions about decomposition more transparent. We consider
an undirected graph G = (V,E), with a weight, wv, for each vertex v ∈ V . A vertex v ∈ V ,
can be covered by itself or any other vertex u ∈ V , such that (u, v) ∈ E. For v ∈ V , we let
δ(v) = {v} ∪ {u ∈ V : {u, v} ∈ E} denote v and its neighbors. For V ′ ⊆ V , we let C(V ′) = {v ∈
V : v ∈ V ′ or {u, v} ∈ E with u ∈ V ′} =

⋃
u∈V ′ δ(u) denote the set of vertices that are covered by

V ′. A set of vertices V ′ ⊆ V is called a cover (of G) if C(V ′) = V . The weight W (V ′) of a cover V ′

is W (V ′) =
∑

v∈V ′ wv. The Weighted Set Covering problem (WSC) is to find a minimum weight
cover of a graph.

Consider the following integer programming formulation of WSC:

min
∑
v∈V

wvxv (6)

s.t.
∑
u∈δ(v)

xu ≥ 1, ∀v ∈ V (7)

xv ∈ {0, 1}, ∀v ∈ V. (8)
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Now consider a partition of the vertices, V1 ∪ V2 ∪ . . . VM = V . For each i ∈ M = {1, 2, . . . ,M},
the variables xv for v ∈ Vi form the variables of block i; each set Vi corresponds to block i. We
define Ui = {v ∈ Vi : δ(v) ⊆ Vi} for each i ∈ M to be the set of vertices in Vi that can only be
covered by vertices in the same block. Note that for some i, it may be that Ui = ∅. The feasible
set for block i ∈M is defined by the coverage constraints for any vertex in Ui, i.e., by

Pi = {x ∈ {0, 1}Vi :
∑
u∈δ(v)

xu ≥ 1, ∀v ∈ Ui}.

The linking constraints are the coverage constraints for any vertex in V = V \ (
⋃
i∈M Ui). A vertex

in V is called a shared vertex. Define

Ni = {v ∈ V \ Ui : Vi ∩ δ(v) 6= ∅} = C(Vi) \ Ui

to be the set of vertices that may be covered by some vertex in Vi, but that may also be covered
by a vertex in Vj for some j 6= i. For a given solution x̂ to some LP relaxation, the contribution to
the linking constraint of a shared vertex v ∈ Ni by block i is∑

u∈Vi:v∈δ(u)

x̂u,

and, thus, the corresponding constraint in the decomposition branching subproblem is∑
u∈Vi:v∈δ(u)

xu ≥
⌈ ∑
u∈Vi:v∈δ(u)

x̂u

⌉
.

To illustrate, consider an example in which, for some block i, Ni = {v1, v2, v3, v4} and suppose
that x̂, the initial solution to the LP relaxation, has∑

v∈Vi:v1∈δ(v)

x̂v = 1,
∑

v∈Vi:v2∈δ(v)

x̂v = 2/3,
∑

v∈Vi:v3∈δ(v)

x̂v = 2/3 and
∑

v∈Vi:v4∈δ(v)

x̂v = 0.

Then the branching subproblem is

z∗i (x̂) = min{
∑
v∈Vi

wvxv : x ∈ Pi,
∑

v∈Vi:vk∈δ(v)

xv ≥ 1, k = 1, 2, 3},

since the left-hand side of each covering expression must be integer and the right-hand sides in the
constraints for v2 and v2 can be set to d2/3e = 1. If z∗i (x̂) =

∑
v∈Vi wvx̂v, then no branching is

needed from this subproblem; its integer solution could replace x̂v for v ∈ Vi to form an alternative
optimal solution to the current LP relaxation, having fewer fractional variables. Otherwise, it must
be that z∗i (x̂) >

∑
v∈Vi wvx̂v, and the branching disjunction would be∑

v∈Vi

wvxv ≥ z∗i (x̂)
∨ ∑

v∈Vi:v1∈δ(v)

xv = 0
∨ ∑

v∈Vi:v2∈δ(v)

xv = 0
∨ ∑

v∈Vi:v3∈δ(v)

xv = 0.

One way to ensure that these branches partition the solution space (and so form a polychotomy)
is to add the constraints

∑
v∈Vi:vk∈δ(v) xv ≥ 1 for all k = 1, 2, 3 to the first branch, add constraint∑

v∈Vi,v1∈δ(v) xv ≥ 1 to the latter two branches and add
∑

v∈Vi,v2∈δ(v) xv ≥ 1 to the last branch.
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4 Enhancements

Decomposition branching repeatedly solves branching subproblems to obtain branching constraints
that cut off fractional solutions. Therefore, in order to improve the computational efficiency, it is
critical to generate these branching constraints as efficiently as possible and to obtain branching
constraints that reduce the size of the search tree as much as possible. In this section, we discuss
enhancements that seek to achieve this.

4.1 Constraint aggregation

As has already been noted, decomposition branching is likely to be polychotomous, rather than
the usual dichotomous branching based on a single variable. For example, in the case of WSC,
after solving the branching subproblem for block i ∈ M, decomposition branching may create up
to |Ni|+1 branches. Here we introduce an enhancement that uses constraint aggregation to reduce
the number of branches created at a node.

Constraint aggregation can be accomplished by designing nonnegative k1×m1 matrices, Si, for
each i ∈ M, with k1 ≤ m1, and nonnegative k2 ×m2 matrices, T i, for each i, with k2 ≤ m2. We
call Si (and T i) aggregation matrices. Then the aggregated branching subproblem for i is

α∗i (x̂
i) = max {ciξ : ξ ∈ P̂i, SiAiξ ≤ SiAix̂i, T iDiξ ≥ T iDix̂i}.

Choosing Si to be the m1 ×m1 identity matrix would yield the original (first) set of constraints
(similarly for T i). At the other extreme, taking Si to be the 1×m1 matrix of all ones would yield
a single constraint in place of the (first) set of constraints. Some columns of Si (or T i) may be
zero, allowing some of the linking constraints to be ignored altogether. Any surrogate relaxation
suffices. Of course, it is also possible, but not necessary, to use the same aggregation matrices for
all i.

Consider the situation when the above aggregated branching subproblem is solved to obtain
solution ξi∗. If Aiξi∗ ≤ Aix̂i and Diξi∗ ≥ Dix̂i and α∗i (x̂

i) = cix̂i for every i = 1, . . . ,M , then it
must be that ξ∗ = (ξ∗1, . . . , ξ∗M ) is an optimal solution for the current node of the tree. Thus,
the node is pruned by optimality. Otherwise, select i for which α∗i (x̂

i) < cix̂i. If there is no such
i, then update one or more aggregation matrices so that the current subproblem solution is no
longer feasible, and re-solve the subproblem. We discuss possible update procedures in more detail
below. Here, we observe that – provided the update procedure has reasonable properties, e.g., after
a finite number of updates, the aggregation matrix becomes the identity matrix – this process must
eventually either (i) prune the node by optimality (construct a complete integer feasible solution
with the same objective value as that of the LP relaxation), or (ii) reach a situation in which
α∗i (x̂

i) < cix̂i for some i. Then the branching rule we suggest is:

(cixi ≤ α∗i (x̂i)) ∨
k1∨
j=1

((SiAi)jx
i > (SiAi)j x̂

i) ∨
k2∨
j=1

((T iDi)jx
i < (T iDi)j x̂

i).

This gives a multi-way branch, with k1 + k2 + 1 child nodes, that cuts off x̂i.
The most straightforward way to update an aggregation matrix is as follows. Suppose the jth

original constraint is violated by the current aggregated subproblem solution. For example, it may
be that Aijξ

∗i > Aij x̂
i. Then replace the jth column in the aggregation matrix by a column of
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zeros, and add a new row, consisting of the jth unit vector in Rm1 . The effect of this operation is
to remove the linking constraint j from the aggregation, and include it as a separate, individual,
constraint. This could be done for some, or all, violated constraints, adding a new row for each. A
more conservative approach would be to consider adding a single new constraint that aggregates
some of the violated constraints: to add an aggregation of constraints indexed by J , for each j ∈ J ,
replace the jth column in the aggregation matrix by a column of zeros, and then add a single row
to it, consisting of the sum of the jth unit vectors over all j ∈ J .

We next show how constraint aggregation ideas can be used for WSC.

4.1.1 Constraint aggregation for weighted set covering

For WSC, one natural approach to constraint aggregation would be to select a subset S ⊆ V and
replace the linking constraint

∑
v∈δ(u) xv ≥ 1 for each u ∈ S by the aggregation∑

u∈S

∑
v∈δ(u)

xv ≥ |S|. (9)

Note that we intend this replacement to occur only in the branching subproblem, not in the master
problem: the formulation of the LP relaxation is unchanged, except for the constraints to be
introduced by branching. Constraint (9) corresponds to taking the aggregation matrix T i to be
the 1 × |V | binary matrix that is the indicator vector of S, i.e., with T iv = 1 if v ∈ S and T iv = 0
otherwise.

Aggregation can lead to a relaxation of the original constraints; aggregation causes information
loss. In the aggregation (9), the distinction between over-covering one vertex and covering more
than one vertex may be lost. For example, consider the part of a WSC instance shown in Figure 1.
Here block 1, defined by vertex set V1, contains vertices {1, 2, 3} and does not contain vertex 4. The
two vertices {2, 4} ⊆ N1 are shared vertices, with δ(2)∩ V1 = {1, 2} and δ(4)∩ V1 = {3}. Consider
the aggregation (9) in this example with S = {2, 4}.

3

1

4

2

V1 S

Figure 1: An example illustrating information loss from the aggregation (9).

In the unaggregated multiobjective model for block 1, the objectives max(x1 + x2) and maxx3

appear, corresponding to covering vertices 2 and 4 respectively. If either of these objectives has value
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at least 1 in some solution, then block 1 covers the corresponding vertex in that solution. In the
aggregated model, these two objectives are replaced by the single objective max(x1 +x2 +x3). This
objective takes value 2 for a solution with x1 = 1, x2 = 1, x3 = 0, in which only vertex 2, but not
vertex 4, is covered by block 1. The aggregated objective cannot distinguish between this case and
the case of a solution in which both vertices in S are covered by V1, such as x1 = 1, x2 = 0, x3 = 1.
In other words, the aggregated objective does not accurately count the number of vertices in S that
are covered by V1, due to the possibility that some vertices may be over-covered.

A simple extension to the WSC model can rectify this information loss due to aggregation:
introduce binary variables `iv for each block i and shared vertex v ∈ V , to indicate whether or
not block i is “responsible” for covering vertex v. These variables now become part of the block i
subproblem. The variables for block i now consist of xv for each v ∈ Vi and `iv for each v ∈ Ni,
with the following feasible set (in place of Pi):

Qi = {(x, `i) ∈ {0, 1}Vi × {0, 1}Ni :
∑
v∈δ(u)

xv ≥ 1, ∀u ∈ Ui and
∑

v∈Vi∩δ(u)

xv ≥ `iu, ∀u ∈ Ni}.

The master problem linking constraints may be expressed in terms of the new binary variables as∑
i∈M,v∈Ni

`iv ≥ 1, ∀v ∈ V

and aggregated over a set S ⊆ V , allowing (9) to be replaced by∑
v∈S

∑
i∈M,v∈Ni

`iv ≥ |S|. (10)

Then, in the multi-objective form of the branching subproblem for block i, the objective

max
∑

v∈Ni∩S
`iv (11)

appears, in addition to the objective minimizing the total weight of vertices selected. The above
objective seeks to maximize the number of vertices in S that are covered by block i.

Of course, more than one subset of linking constraints may be aggregated. For example, a
heuristic could be used to partition V into a desired number of subsets. However, each such subset
would add one to the number of child nodes created at each branch-and-bound tree node by the
resulting decomposition branching rule, increasing the tree nodes’ degrees.

We illustrate the WSC decomposition branching rule that would result from constraint aggre-
gation over only a single subset of linking constraints, S, as follows. First, recall that the branching
subproblem will seek to do “at least as well” as the fractional LP solution in respect to each of
the objectives derived from a linking constraint. Thus, given a fractional LP solution, x̂, and a
block i, we need to determine “how well” (x̂v)v∈Vi is covering vertices in S; we need to evaluate the
contribution of block i to the left-hand side of constraint (10) and thus somehow need to determine
values of `iu for u ∈ Ni∩S that correspond to x̂. One simple expedient is to include the `iv variables
in the master problem in the obvious way, and allow them to be set to values, ˆ̀i

v, by the LP solver.
This has an added advantage: such variables are required in the master problem in order to model
the branching constraints that result from constraint aggregation, as shall become obvious below.
In what follows, we assume that ˆ̀i

v values are available, found by this or some other means.
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Consider an example in which, for some block i and set S ⊆ V , Ni ∩ S = {v1, v2, v3, v4} and
suppose that ˆ̀i, derived from the initial solution to the LP relaxation, has

4∑
k=1

ˆ̀i
vk

= 9/4.

Now the branching subproblem is

z∗i (x̂, ˆ̀) = min{
∑
v∈Vi

wvxv : (x, `i) ∈ Qi,
4∑

k=1

`ivk ≥

⌈
4∑

k=1

ˆ̀i
vk

⌉
= 3}.

If z∗i (x̂, ˆ̀) >
∑

v∈Vi wvx̂v, then the branching rule would be

∑
v∈Vi

wvxv ≥ z∗i (x̂, ˆ̀)
∨ 4∑

k=1

`ivk ≤ 2.

One way to ensure that these branches partition the solution space (and so form a dichotomy) is to
add the constraint

∑4
k=1 `

i
vk
≥ 3 to the first branch. Note that even if

∑4
k=1

ˆ̀i
vk

is already integer,

for example, it takes the value 3, then, since z∗i (x̂, ˆ̀) >
∑

v∈Vi wvx̂v, this branching rule cuts off the
current LP solution.

Clearly, branching constraints such as
∑4

k=1 `
i
vk
≤ 2 or

∑4
k=1 `

i
vk
≥ 3 cannot be added to the

master problem unless the ` variables are included in it.
If z∗i (x̂, ˆ̀) ≤

∑
v∈Vi wvx̂v, then, unlike the case without aggregation, branching from this sub-

problem may be needed. There is still the possibility that the subproblem solution has not covered
some particular, individual, shared vertex as well as the fractional solution did. In the next section,
we describe the specific strategies we developed to address this issue, and to decide which subset(s)
of linking constraints to aggregate, when.

Introducing the binary `iv variables provides an advantage quite apart from their use for con-
straint aggregation. Since `iv models min{1,

∑
u∈Vi∩δ(v) xu}, it allows the multi-term disjunction in

the form of (5) to be modeled as a single linear inequality, even in the general case that
∑

u∈Vi∩δ(v) xu

can be an integer greater than 1. If F i denotes the set of (shared) vertices in Ni that are required
to be covered in the current branching subproblem i, then the disjunction∨

v∈F i

(
∑

u∈Vi∩δ(v)

xu = 0) is equivalent to
∨
v∈F i

(`iv = 0),

which can be modeled by the single linear inequality∑
v∈F i

`iv ≤ |F i|−1.

4.1.2 A specific decomposition branching algorithm for WSC

Pseudocode for a decomposition branching algorithm with constraint aggregation for solving WSC
by branch-and-bound is presented in Algorithm 1. The algorithm is run at a node of the branch-
and-bound tree, after the master problem LP relaxation has been solved and found to be feasible,
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with one or more variables taking on non-integer values in the solution. Algorithm 1 takes as input
the current fractional LP solution, consisting of the pair x̂ and ˆ̀. It is assumed that all branching
constraints and corresponding bounds on variables applied to reach the current node have been
included in the appropriate branching subproblem; we signal this by writing Q̂i in place of Qi.

Our strategy is to apply constraint aggregation only to a block i for which ˆ̀i contains fractional
values. In this case, we first aggregate all linking constraints, and so take S = V . For an individual
block, i, this is equivalent to aggregating all linking constraints over Ni, and results in the branching
subproblem shown in lines 5 and 10 of Algorithm 1. If this fails to produce a branch, which occurs
if z∗i (x̂, ˆ̀) ≤

∑
v∈Vi wvx̂v, then we take S to be a singleton, consisting of one u for which ˆ̀i

u is
fractional. The resulting subproblem is given at line 17, and must produce a branch.

If for some block i, ˆ̀i contains only the values 0 or 1, but x̂v is fractional for some v ∈ Vi, we
revert to the unaggregated case, in which block i is required to cover all shared vertices that it
covers in the fractional solution. These vertices are indexed by the set F i, calculated at line 22.
The resulting branching subproblem is shown in line 23. The one additional strategy we employ is
to maintain a dichotomous branching rule, by modeling the multiway branches∨

v∈F i

(`iv = 0)

with the single constraint
∑

v∈F i `iv ≤ |F i|−1, along the same lines as discussed for the special case
of set covering in Section 2.1 and for the general case at the end of Section 4.1.1.

4.2 Re-using branching subproblem solutions

This enhancement is motivated by the observation that the same branching subproblem, or one with
slightly different parameters, can arise at different nodes of the search tree. Thus, it is beneficial to
store (relevant) information gathered during the solution of a branching subproblem and re-use it
whenever possible during the search. To implement this enhancement, we define a set of states for
a branching subproblem and maintain the best known solution for each of the states. Each time
we solve a branching subproblem, we use the solution obtained to update, if appropriate, the best
known solution for one or more of the states.

Recall that at a particular node of the search tree, the branching subproblem BSPi(x̂
i), for

i ∈M, can be written as

max {ciξ : ξ ∈ Pi, αi ≤ ciξi ≤ αi, βi ≤ Aiξ ≤ min{βi, Aix̂i}, µi ≥ Diξ ≥ max{µi, Dix̂i}},

where the branching constraints used to reach the current node of the search tree are encoded in

the bounds αi, αi, βi, β
i
, µi, and µi. Therefore, a state of a branching subproblem can be defined

as the set of intervals [αi, αi], [βi,min{βi, Aix̂i}], and [µi,max{µi, Dix̂i}]. This state definition may
or may not be practical, because the number of states may be too large to maintain and search
efficiently.

However, alternative (aggregated) state definitions may be possible. For example, when solving
instances of WSC, we use the following two state definitions for the branching subproblem for a
given i ∈M.

• A Type 1 state associated with branching subproblem i is defined by an integer s ∈ {0, . . . , |Ni|},
which represents the (minimum) number of shared vertices that have to be covered in any
solution to the branching subproblem.
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Algorithm 1: DB for WSC with constraints aggregation

Input: x̂, ˆ̀

1 foreach i ∈M with x̂v fractional for some v ∈ Vi do

2 if ˆ̀i
v is fractional for some v ∈ Ni then

3 σi :=
∑

v∈Ni
ˆ̀i
v

4 if σi is fractional then

5 Calculate z∗i (x̂, ˆ̀) = min{
∑

v∈Vi wvxv : (x, `i) ∈ Q̂i,
∑

v∈Ni
`iv ≥ dσie}

6 branch1 :
∑

v∈Ni
`iv ≥ dσie

∧ ∑
v∈Vi wvxv ≥ z

∗
i (x̂, ˆ̀)

7 branch2 :
∑

v∈Ni
`iv ≤ bσic

8 return

9 else

10 Calculate z∗i (x̂, ˆ̀) = min{
∑

v∈Vi wvxv : (x, `i) ∈ Q̂i,
∑

v∈Ni
`iv ≥ σi}

11 if z∗i (x̂, ˆ̀) >
∑

v∈Vi wvx̂v then

12 branch1 :
∑

v∈Ni
`iv ≥ σi

∧ ∑
v∈Vi wvxv ≥ z

∗
i (x̂, ˆ̀)

13 branch2 :
∑

v∈Ni
`iv ≤ σi − 1

14 return

15 else

16 Choose some u ∈ N i with ˆ̀i
u fractional

17 Calculate z∗i (x̂, ˆ̀) = min{
∑

v∈Vi wvxv : (x, `i) ∈ Q̂i, `iu = 1}
18 branch1 : `iu = 1

∧ ∑
v∈Vi wvxv ≥ z

∗
i (x̂, ˆ̀)

19 branch2 : `iu = 0
20 return

21 else

22 F i := {v ∈ Ni : ˆ̀i
v = 1}

23 Calculate z∗i (x̂, ˆ̀) = min{
∑

v∈Vi wvxv : (x, `i) ∈ Q̂i, `iv = 1, ∀v ∈ F i}
24 if z∗i (x̂, ˆ̀) >

∑
v∈Vi wvx̂v then

25 branch1 : `iv = 1, ∀v ∈ F i
∧ ∑

v∈Vi wvxv ≥ z
∗
i (x̂, ˆ̀)

26 branch2 :
∑

v∈F i `iv ≤ |F i|−1
27 return

28 else
29 Replace (x̂v)v∈Vi with the corresponding part of the solution of the branching

subproblem solved at line 23
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• A Type 2 state associated with branching subproblem i is defined by a set S ⊂ Ni, where S
represents a subset of shared vertices, every one of which must be covered in any solution to
the branching subproblem.

In Algorithm 1, the value stored for a Type 1 state may be used to avoid solving the branching
subproblem in lines 5 and 10, and the value stored for a Type 2 state may be used to avoid solving
the branching subproblem in lines 17 and 23.

4.3 Early termination of branching subproblem solving

To generate a branching constraint, it is not always necessary to solve a subproblem to optimality.
Instead of using the optimal solution value, an upper bound on the optimal solution value (for
a problem in maximization form) can be used to generate a branching constraint, if it cuts off
the fractional solution to the master problem. Thus, one can consider terminating solution of a
branching subproblem as soon as the value of the upper bound falls below the value of the fractional
solution to the master problem. Clearly, when solving a branching subproblem to optimality is
difficult, i.e., time consuming, early termination (especially early in the search process) may reduce
overall solution time. Early termination can be combined with re-use of branching subproblem
solutions (as discussed above) by storing the best known upper bound value for a state.

4.4 Branching subproblem ordering

For a given fractional solution to the master problem, decomposition branching solves the subprob-
lems to find a constraint that eliminates the current fractional solution to the master problem (or
to construct a feasible solution with the same objective function value). Thus, the order in which
the branching subproblems are solved affects the search (and thus the solution time).

Certain subproblem orderings may work better for different problem classes and instances. For
example, if solution times can differ significantly between branching subproblems, then it may be
beneficial to solve the branching subproblems in nondecreasing order of some “estimate” of their
solution time. Another consideration may be the likelihood that a branching constraint resulting
from the solution to a subproblem will improve the dual bound.

The latter, for example, has motivated the subproblem ordering used when solving WSC in-
stances. Recall that at a node in the search tree, because of earlier branching decisions, an interval
bounding the objective function value of subproblem i is known. For WSC, we process the branch-
ing subproblems in nondecreasing order of αi, a lower bound on the value of branching subproblem
i, in the hope that solutions to subproblems that have a larger contribution to the objective func-
tion will have a larger impact on the dual bound. Our computational results show that even such a
simple (and possibly naive) ordering rule can significantly improve the performance of the suggested
approach.

We emphasize that our aim here is only to provide an example that shows that even simple
ordering rules can enhance the computational performance. Clearly, more sophisticated ordering
rules can be developed, for example using integer infeasibilities, that may perform better. The
impact of subproblem ordering on solution time is somewhat similar to the impact of branching
variable selection in traditional branch-and-bound, for which many different options have been
explored, e.g., pseudo-cost branching, strong branching, and realibility branching.
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5 Computational experiments

In order to evaluate the effectiveness of decomposition branching (and the enhancements presented
to improve its computational efficiency), we have conducted a comprehensive numerical study
with instances from two problems: WSC, which we have used above to illustrate many aspects of
decomposition branching, and FLAR, a regionalized form of the p-median facility location problem
with assignment range constraints (Daskin and Tucker, 2018). The choice to use the latter is,
in part, motivated by the fact that real-life instances were available, but also because p-median
facility location is another fundamental problem in discrete optimization and this particular variant
is especially hard to solve.

We implemented our algorithms in Java using IBM ILOG CPLEX Studio 12.10. We use call-
backs to implement the proposed branching scheme. When CPLEX has solved the linear program-
ming relaxation at a node and is ready to branch, we take over control and (1) solve the branching
subproblems (using CPLEX in default settings) and (2) either produce a feasible solution with
the same objective function value, which is then passed to CPLEX and results in the node being
pruned, or define the child nodes by adding branching constraints, after which control is given back
to CPLEX. All experiments were run on a 64-bit Linux operated workstation with an Intel Xeon
Gold 6134 processor at 3.20 GHz and 96 GB of RAM.

In addition to comparing the performance of our decomposition branching algorithms to the
performance of CPLEX (with default settings), we also compare it to the performance of GCG
(Gamrath, 2010), the Dantzig-Wolfe decomposition implementation available in the SCIP Opti-
mization Suite 7.0 (Gamrath et al., 2020). We compile the SCIP Optimization Suite with CPLEX
as the LP solver and use GCG with its default settings, letting the algorithm automatically choose
how many threads to use. For both WSC and FLAR instances, we inform the solver about the
decomposition structure by indicating which are the linking constraints (i.e., (14) for the WSC
and (18) for the FLAR instances). We found that letting the solver automatically detect/decide
the decomposition structure resulted in significantly worse performance (even for FLAR instances,
where there is only a single linking constraint).

5.1 Weighted set covering

5.1.1 Instances

Each instance has M × n nodes, where M is the number of blocks and n the number of nodes in
a block, so V = V1 ∪ V2, . . . ∪ VM with |Vi|= n for all i = 1, . . . ,M . The node weights are drawn
from the set {1, . . . ,W} with equal probability. Each block has bρn(n − 1)/2c edges between its
nodes, where ρ ∈ (0, 1] represents the block density. Furthermore, s ×M edges connect different
blocks, where s ∈ {1, . . . , n} is a parameter representing the block connectivity. More specifically,
the edge set E is generated as follows.

• For each block, we generate a random Hamiltonian cycle and add its n edges to E.

• For each block, we randomly pick distinct pairs of nodes and add the edge connecting them
to E until we have added bρn(n− 1)/2c − n distinct edges (duplicates are skipped).

• For each block i = 1, . . . ,M , we randomly pick a set Ci ⊆ Vi of s nodes. Then for each
i = 1, . . . ,M and for each node in Ci, we randomly pick a node in V1 \C1∪ . . .∪Vi−1 \Ci−1∪
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Vi+1 \Ci+1 ∪ . . . ∪ VM \CM and add the edge connecting the two selected nodes to E, again
ensuring no duplicate edges are created.

5.1.2 Implementation

The master problem at a node is

min
∑
v∈V

wvxv (12)

s.t. ((xv)v∈Vi , `
i) ∈ Qi, ∀i ∈M (13)∑

i∈M,v∈Ni

`iv = 1, ∀v ∈ V (14)

together with all branching constraints added to create the node, where

Qi = {(x, `i) ∈ {0, 1}Vi × {0, 1}Ni :
∑
v∈δ(u)

xv ≥ 1, ∀u ∈ Ui and
∑

v∈Vi∩δ(u)

xv ≥ `iu, ∀u ∈ Ni}.

What we will refer to as the basic implementation follows Algorithm 1 and uses the two forms
of branching subproblem solution re-use discussed in Section 4.2. Preliminary experiments have
shown that for these instances, the branching subproblems solve quite fast and an optimal solution
is found quite early in the search. However, the (global) lower bound improves only slowly. As
a result, the order in which the branching subproblems are solved has a significant impact on
the overall performance, and always processing the subproblems in nonincreasing order of the best
known bound on the objective function value, as suggested in Section 4.4, provided the best results.
What we will refer to as the enhanced version uses this subproblem ordering. Because the branching
subproblems solve quickly, there is no need to incorporate early termination ideas.

5.1.3 Experiments

Among the instance parameters, M and s are the most relevant when it comes to determining
the potential of decomposition branching. As M increases and as s decreases, the benefit of
decomposition branching should increase. In our experiments, we set n = 150 and ρ = 0.3, consider
all combinations of W ∈ {3, 5, 7}, M ∈ {4, 6, 8} and s ∈ {2, 3, 4}, generate five random instances
for each combination, and impose a run time limit of 7200 seconds.

5.1.4 Analysis

The results of our experiments can be found in Table 1, where we compare the performance of
decomposition branching (DB) and its enhancement with branching subproblem ordering (DBE)
to the performance of commercial solver CPLEX and the Danzig-Wolfe (DW) decomposition im-
plementation in SCIP. In the table, for each algorithm, we report the solution time and optimality
gap averages along with the number of times an optimal solution is found (and proved to be opti-
mal) for the five random instances. For the solution times and optimality gaps, we report both the
arithmetic and geometric averages under the columns headed “mean” and “g.mean”, respectively.
When computing optimality gap averages, we consider only solutions with positive gaps, which
means that they might be taken over different instances.
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The results clearly demonstrate the benefits of decomposition branching (for these instances).
Enhanced decomposition branching (DBE) finds an optimal solution in all but three of the 135
instances within the time limit, whereas CPLEX only solves 21 of the instances within the time
limit. Note too that when CPLEX fails to find an optimal solution, the gaps are not small (around
30% for the harder instances). The difference in solution times is also striking. For the instances
solved by both algorithms, DBE is sometimes more than 1000 times faster than CPLEX. The reason
is obvious: decomposition branching results in drastically smaller search trees. As expected, the
solution times for decomposition branching start to increase when instances get larger, especially
when the block connectivity (s) increases and decomposition branching needs to explore more nodes
to converge. Importantly, we see that DBE also outperforms Dantzig-Wolfe decomposition. There
are many instances where DBE is more than 40 times faster than DW. Also, looking at the solution
statistics for the most challenging instances, i.e., with W = 3, and s = 4, for which both algorithms
sometimes fail to prove optimality within the given time limit, the optimality gaps for DBE are
much smaller than those for DW.

The results also show the impact of the order in which the branching subproblems are processed.
When processing branching subproblems in nondecreasing order of the current lower bound on their
objective function value, only three instances cannot be solved to optimality within the time limit
(as opposed to 31 when branching subproblems are processed in the order in which they appear in
the formulation). Furthermore, the enhanced version is around 10 times faster, where the difference
is more pronounced for instances with a more uniform weight distribution (W ≤ 5), a larger number
of blocks (M) and a larger block connectivity (s). Such instances have a larger root gap and hence
improving their (global) lower bound faster is critical. In Table 2, we present further details related
to the performance of DB and DBE. For each instance, we report (i) the number of branch-and-
bound nodes explored (BB) solving the master problem, (ii) the total number of nodes processed
when solving branching subproblems (the number of nodes processed when solving a branching
subproblem is taken to be one if it solves at the root node), (iii) the number of times a branching
subproblem is solved, (iv) the number of times a branching subproblem solve is avoided using
information stored from a previous branching subproblem solve (as a fraction/percentage of the
total), and (v) the average solve time of a branching subproblem (in seconds). Table 2 shows the
geometric mean for (i) and (ii) and the arithmetic mean for (iii) and (iv) over the five instances in
each class of instances in the columns headed BB, sub-BB, sub-solve, and sub-avoid, respectively.
The columns headed sub-time report (v) for DB and DBE. By reporting the geometric mean for
(i) and (ii), we reduce the effect of “outliers” on these statistics. We report the same statistics, but
with arithmetic mean for (i) and (ii) in Table 5 in Appendix A.

Most importantly, we see that the time required to solve a branching subproblem, on average,
is very small. Even though the branching subproblem is, essentially, a weighted set cover problem,
it has a much smaller set of nodes compared to the set of nodes defining the full instance. While
CPLEX cannot solve a full instance within the time limit of 7200 seconds (in most cases), it can
solve the branching subproblems in less than one second. This highlights the fundamental premise
and advantage of decomposition branching: solving a large MIP by solving a sequence of small MIPs
can be much faster than solving the large MIP directly. For the WSC instances, both the number
of branching subproblems solved and the time required to solve them are quite small, and, hence,
decomposition branching performs much better than traditional branch-and-bound. Furthermore,
we see that storing and re-using subproblem solutions (which is done in both variants) is critical,
especially when the instances get harder to solve. The number of times branching subproblem
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Table 2: DB and DBE solution details for WSC instances.

DB DBE

W N s CPLEX BB BB sub-BB sub-solve sub-avoid sub-time BB sub-BB sub-solve sub-avoid sub-time

3 4 2 9676718.5 992.0 3937.2 207.0 89.91 0.32 57.1 18.1 27.0 66.67 0.51
3 6435546.6 4806.0 10181.6 863.2 95.49 0.33 123.4 148.0 66.2 86.00 0.51
4 5988718.0 25123.3 28473.1 4739.2 95.62 0.29 165.1 4937.3 104.6 94.19 0.48

6 2 8546101.4 51613.7 18306.3 1464.6 99.14 0.30 799.4 7358.1 118.0 91.08 0.45
3 6492743.6 251879.9 50582.8 13267.4 98.47 0.25 452.9 1219.4 114.4 97.92 0.49
4 8322687.9 326785.2 106841.9 22677.6 97.77 0.22 894.4 1482.7 162.6 97.82 0.49

8 2 6674443.4 1038472.9 46401.6 3652.2 99.92 0.34 1386.5 5513.2 165.4 96.31 0.47
3 5187285.4 427804.7 87064.1 12175.6 99.37 0.26 7688.7 13871.6 455.4 99.25 0.43
4 6940123.1 265958.2 120468.5 15764.8 98.74 0.26 103594.3 38605.8 2511.8 99.64 0.39

5 4 2 12398253.3 201.4 1.0 138.2 87.55 0.29 32.7 1.0 19.0 48.65 0.38
3 12907732.2 454.1 2.2 107.2 89.22 0.34 44.2 2.2 22.6 71.10 0.39
4 11182910.9 966.6 1.0 191.6 91.31 0.32 43.0 1.0 22.6 63.90 0.38

6 2 6936629.7 1797.2 3.1 225.2 96.06 0.30 131.1 2.6 31.8 78.97 0.39
3 6188938.9 18721.5 15.0 1512.6 97.87 0.23 240.3 1.0 60.8 89.50 0.38
4 5513324.7 48734.4 43.4 3100.6 98.07 0.29 415.6 3.6 106.6 96.30 0.39

8 2 9933888.7 58979.2 7.4 1010.0 99.68 0.28 805.6 9.6 78.8 94.11 0.35
3 7867518.1 434202.6 22.1 5155.4 99.75 0.26 2502.6 13.0 126.6 98.80 0.43
4 7211619.6 564883.3 91.2 12089.6 99.45 0.23 13680.6 17.5 398.8 99.74 0.38

7 4 2 1104132.3 96.0 1.0 38.4 83.48 0.29 22.5 1.0 8.0 37.50 0.32
3 1073646.4 302.8 1.0 94.0 87.06 0.30 47.3 1.0 16.6 73.57 0.31
4 1009810.1 813.6 1.0 134.0 92.1 0.26 71.5 1.0 27.6 89.46 0.32

6 2 7843993.9 1231.7 2.4 174.4 96.88 0.28 246.7 2.4 45.8 91.58 0.32
3 9030398.3 14383.5 1.0 997.0 98.37 0.21 790.5 1.0 89.2 97.02 0.31
4 10338690.9 38791.2 2.0 3444.6 99.02 0.17 910.1 1.0 123.6 95.97 0.29

8 2 7294920.5 7892.1 2.2 361.6 98.69 0.28 733.9 2.7 64.8 96.87 0.34
3 6516897.8 49405.2 2.5 1327.0 99.33 0.24 1797.6 2.6 110.2 98.59 0.30
4 5885628.7 328959.3 1.0 3954.4 99.72 0.23 6163.6 1.0 257.8 99.65 0.31

state information can be used to avoid solving a branching subproblem increases rapidly when
the instances get larger and more difficult to solve. Without this enhancement, decomposition
branching might not have been able to solve as many instances as it has. The results also reveal
the benefits of the subproblem ordering employed in DBE, namely, of processing the branching
subproblems in nondecreasing order of their current objective lower bound value. On average, the
branching subproblem solution times are higher, but the drastic reduction in the number of nodes
in the search tree easily makes up for this.

5.2 p-median facility location with assignment range constraints

In this section, we analyze the computational performance of decomposition branching (and its
suggested enhancements) when solving instances of a regionalized variant of the p-median facility
location problem with assignment range constraints investigated by Daskin and Tucker (2018). The
formulation used in our computational experiments is given below. The main difference with the
formulation of Daskin and Tucker (2018) is that we have introduced regions so as to have a natural
nearly-decomposable structure.

We are given a set of regions R, a set of demand points I, with Ir the set of demand points in
region r ∈ R, a set of candidate facility locations J , with Jr the set of candidate facility locations
in region r ∈ R, a quantity hi at demand point i ∈ I, distances dij between demand point i ∈ I and
facility location j ∈ J , the maximum number p of facilities to locate, and the maximum allowable
range of assigned demands to a facility in a region, ρmax. We introduce the following decision
variables: xj , a binary variable indicating whether a facility is opened at location j ∈ J or not,
yij , a binary variable indicating whether a demand point i ∈ I is assigned to a facility at location
j ∈ J or not, Ur, the maximum demand assigned to any of the open facilities in region r ∈ R, and
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Lr the minimum demand assigned to any of the open facilities in region r ∈ R.
With these inputs and decision variables, our variant of the p-median facility location problem

with assignment range constraints (FLAR) can be formulated as follows (where Mr is a suitably
chosen constant):

min
∑
i∈I

∑
j∈J

hidijyij (15)

s.t.
∑
j∈Jr

yij ≥ 1 ∀r ∈ R, i ∈ Ir (16)

yij ≤ xj ∀r ∈ R, i ∈ Ir, j ∈ Jr (17)∑
j∈J

xj ≤ p (18)

Ur ≥
∑
i∈Ir

hiyij ∀r ∈ R,∀j ∈ Jr (19)

Lr ≤
∑
i∈Ir

hiyij +Mr(1− xj) ∀r ∈ R,∀j ∈ Jr (20)

Ur − Lr ≤ ρmax ∀r ∈ R (21)

xj ∈ {0, 1} ∀j ∈ J (22)

yij ∈ {0, 1} ∀r ∈ R, i ∈ Ir, j ∈ Jr. (23)

Constraints (19)-(21) capture the assignment range constraints and limit the difference between
the maximum demand assigned to a facility in a region and the minimum demand assigned to a
facility in a region.

There is just a single constraint linking the regions, namely the one that limits the number of
facilities that can be opened across the regions.

5.2.1 Instances

We generate instances using the 150-city and 880-city data sets from Daskin and Tucker (2018).
To partition the cities into regions, we use the region and division definitions of the United States
Census Bureau (2018). In Figure 2, we illustrate the partitions of the cities for the two data sets.
More information on the region and division definitions can be found in Table 6 in Appendix B.

For the 150-city data set, we consider two instances: one with four and one with nine blocks
(corresponding to US census regions and divisions, respectively). For the 880-city data set, we
consider a single instance with nine blocks (corresponding to US census divisions).

5.2.2 Implementation

Because FLAR has only a single linking constraint, there is no need for constraint aggregation. On
the other hand, as Figure 2 shows (and Table 6 does so even more clearly), the number of cities in
a region can differ widely. Branching subproblems with fewer cities are likely to be easier to solve.
Therefore, in what we refer to as the basic version of decomposition branching (DB), we process
branching subproblems in nondecreasing order of size (i.e., the number of cities in the associated
region). Preliminary experiments also revealed that some of the branching subproblems take quite
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(a) Partition of the 150 node US data set into
four census regions.

(b) Partition of the 880 node US data set into
nine census regions.

Figure 2: Region definitions.

a long time to solve. Therefore, in what we refer to as the enhanced version of decomposition
branching (DBE), we also incorporate an early termination strategy. To describe this strategy in
detail, we introduce the following notation.

A branching subproblem is completely characterized by the region, r, and the maximum number
of facilities allowed to be opened, u. We let S(r, u) and S(r, u) denote the best known lower and
upper bound values, respectively, on the objective function value of a branching subproblem, for
r ∈ R and u ∈ {1, . . . , p− (|R|−1)} (because at least one facility has to be opened in each region).
Furthermore, we let zr(u, t, g) and zr(u, t, g) denote the best upper and lower bounds found when
solving the branching subproblem for region r for t > 0 seconds, or, if at time t the optimality
gap is still greater than target g, until the time that the optimality gap drops below g. Finally,
let Solve(r, u, t, g) denote the process of solving branching subproblem r with control parameters
u, t, and g. Note that when Solve(r, u, t, g) terminates, the gap between zr(u, t, g) and the optimal
value for the branching subproblem for region r, restricted to at most u facilities, is guaranteed to
be no more than g.

As mentioned above, the regions are processed in nondecreasing order of the number of demand
points they contain. Given a fractional solution (x̄, ȳ) at a node in the search tree, the value of
the best known feasible solution to the master problem, zUB, and its associated optimality gap,
ḡ = 1−

∑
i∈Ir

∑
j∈Jr

hidij ȳij/zUB, the steps taken by the enhanced version of decomposition branching
are presented in Algorithm 2.

The algorithm first checks, for each of the branching subproblems associated with a region r ∈ R,
if the sum of the values of the decision variables indicating whether or not a facility is opened in
the current solution to the master problem, denoted by X̄r =

∑
j∈Jr x̄j , is fractional. If so, then the

branching constraints
∑

j∈Jr xj ≥ dX̄re for one branch and
∑

j∈Jr xj ≤ bX̄rc for the other, form a
dichotomy that cuts off the fractional solution. In this case, since the branching subproblem value
is not essential to determining branching constraints, the latter branch is strengthened through the
use of a lower bound known to be within 10% of optimality, rather than with the true optimal value
of the branching subproblem.

Preliminary computations revealed that even though it takes a significant effort to solve branch-
ing subproblems to optimality, high-quality solutions are often obtained early in the subproblem
solve. To take advantage of this, we embed a simple heuristic procedure (H-MIP) to obtain high-
quality feasible solutions during the tree search, which reduces the size of the search tree. More
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Algorithm 2: DBE for FLAR.

Input: x̄, ȳ, zUB , ḡ, t
1 foreach r ∈ R do
2 Set X̄rr :=

∑
j∈Jr

x̄j

3 foreach r ∈ R do
4 if X̄r is fractional then

5 if
(
1− S(r, bX̄rc)/S(r, bX̄rc)

)
> 0.1 then

6 Solve(r, bX̄rc, t, 0.1)
7 S(r, bX̄rc) := max{zr(bX̄rc, t, 0.1), S(r, bX̄rc)}
8 S(r, bX̄rc) := min{zr(bX̄rc, t, 0.1), S(r, bX̄rc)}

9 branch1 :
∑

j∈Jr
xj ≥ dX̄re

10 branch2 :
∑

j∈Jr
xj ≤ bX̄rc

∧ ∑
i∈Ir

∑
j∈Jr

hidijyij ≥ S(r, bX̄rc)
11 return

12 zUB
new =H-MIP(X̄)

13 if zUB
new < zUB then

14 zUB := zUB
new

15 foreach r ∈ R do
16 if S(r, X̄r) >

∑
i∈Ir

∑
j∈Jr

hidij ȳij then

17 branch1 :
∑

j∈Jr
xj ≥ X̄r + 1

18 branch2 :
∑

j∈Jr
xj ≤ X̄r

∧ ∑
i∈Ir

∑
j∈Jr

hidijyij ≥ S(r, X̄r)

19 return

20 foreach r ∈ R do

21 if
(
1− S(r, X̄r)/S(r, X̄r)

)
> ḡ then

22 Solve(r, X̄r, t, ḡ)
23 S(r, bX̄rc) := max{zr(bX̄rc, t, ḡ), S(r, bX̄rc)}
24 S(r, bX̄rc) := min{zr(bX̄rc, t, ḡ), S(r, bX̄rc)}
25 if S(r, X̄r) >

∑
i∈Ir

∑
j∈Jr

hidij ȳij then

26 branch1 :
∑

j∈Jr
xj ≥ X̄r + 1

27 branch2 :
∑

j∈Jr
xj ≤ X̄r

∧ ∑
i∈Ir

∑
j∈Jr

hidijyij ≥ S(r, X̄r)

28 return

29 zUB
new := 0

30 foreach r ∈ R do
31 Solve(r, X̄r,∞, 0)
32 S(r, X̄r) := zr(X̄r,∞, 0)

33 S(r, barXr) := zr(X̄r,∞, 0)
34 if S(r, X̄r) >

∑
i∈Ir

∑
j∈Jr

hidij ȳij then

35 branch1 :
∑

j∈Jr
xj ≥ X̄r + 1

36 branch2 :
∑

j∈Jr
xj ≤ X̄r

∧ ∑
i∈Ir

∑
j∈Jr

hidijyij ≥ S(r, X̄r)

37 return

38 else

39 zUB
new := zUB

new + S(r, X̄r)

40 if zUB
new < zUB then

41 zUB := zUB
new
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specifically, when we have X̄r integer, for all r ∈ R, we set a short time limit (10 seconds) for
solving the branching subproblems with the allocations X̄r, r ∈ R and combine the best solutions
found within this time to form a feasible solution for the whole problem.

After running H-MIP to look for a new upper bound, the algorithm checks, for each of the
subproblems, if there is a stored subproblem lower bound that provides a branching constraint on
the objective function value that eliminates the current solution to the master problem. If the
algorithm encounters such a stored subproblem lower bound, it uses it to branch.

If none of the branching subproblems has a stored lower bound that provides a branching con-
straint, then the algorithm seeks a branching subproblem that, when solved to a smaller optimality
gap than the current master problem gap, ḡ, yields a lower bound whose associated branching
constraint cuts off the current master problem solution.

Finally, the algorithm solves the subproblems to optimality to find a branching constraint on
the objective function value that eliminates the current solution to the master problem. If no such
branching constraint can be found for any of the subproblems, then a feasible solution to the master
problem has been identified. The algorithm updates the best known feasible solution, if necessary,
and then fathoms the node.

5.2.3 Experiments

For the maximum number of facilities to open, p, we consider p ∈ {6, 9, 12, . . . , 30} for the instance
with four regions and p ∈ {12, 15, . . . , 30} for the instances with nine regions. For the 150-city
instances, we use assignment range limit ρmax ∈ {100, 000, 125, 000} and for the 880-city instances,
we use assignment range limit ρmax ∈ {600, 000, 750, 000}.

The overall time limit for the 150-city and 880-city instances are set to 10,800 and 36,000
seconds, respectively. For the branching subproblem solution time limit, we use t = 25 seconds, for
the instances derived from the 150-city data set, and t = 150 seconds for the instance derived from
the 880-city data set; this time limit does not apply to the final subproblem solution (lines 31-33
in Algorithm 2), where we need to solve the subproblem to optimality to ensure the correctness of
the algorithm.

5.2.4 Analysis

The results of our experiments can be found in Table 3, where we compare the performance of
decomposition branching (DB) and its enhancement with early termination and primal heuristic
(DBE) to the performance of commercial solver CPLEX and the Danzig-Wolfe (DW) decomposition
implementation in SCIP. The information presented is the same as in Table 1. Here we use “TL”
to indicate that the time limit allowed for this instance was reached.

The results demonstrate the superior performance of decomposition branching, especially the
enhanced variant. It is clear that incorporating early termination and a primal heuristic provides
significant benefits, drastically reducing the solution time and finding optimal solutions for many
instances for which none of the other algorithms can find even near optimal solutions.

Interestingly, we see that the performance of DW for the FLAR instances is less consistent
than its performance for WSC instances, even though FLAR instances have only a single linking
constraint.

Table 4 presents further details about the computational performance of DB and DBE. The
column headings have the same meaning as in Table 2, but with #subSolve now counting how

24



Table 3: Results for FLAR instances.

CPLEX DB DBE DW

ρmax prob M p time gap time gap time gap time gap

100000 150 city 4 6 111 0.01 204 0.00 7 0.00 11016 ∞
9 1041 0.01 565 0.00 29 0.00 11016 ∞

12 10806 1.48 1046 0.00 72 0.00 11015 ∞
15 10807 3.15 2629 0.00 146 0.00 11015 ∞
18 10804 2.25 2642 0.00 225 0.00 11015 ∞
21 10803 0.86 2243 0.00 305 0.00 11015 ∞
24 10804 1.25 2744 0.00 406 0.00 11016 ∞
27 10804 0.98 3233 0.00 484 0.00 11015 ∞
30 10803 0.41 4636 0.00 587 0.00 11015 ∞

9 12 107 0.01 239 0.00 6 0.00 45 0.00
15 217 0.01 448 0.00 10 0.00 86 0.00
18 6860 0.01 712 0.00 39 0.00 451 0.00
21 10823 1.30 1048 0.00 137 0.00 124 0.00
24 10821 1.54 1542 0.00 457 0.00 535 0.00
27 10825 1.58 3022 0.00 1229 0.00 105 0.00
30 10815 1.33 6520 0.00 2559 0.00 128 0.00

125000 150 city 4 6 53 0.01 106 0.00 6 0.00 10806 0.57
9 137 0.01 568 0.00 22 0.00 11015 110.02

12 9323 0.01 614 0.00 59 0.00 36719 173.80
15 10806 2.29 1502 0.00 118 0.00 11015 188.23
18 10805 1.33 1608 0.00 169 0.00 11015 238.14
21 10802 0.52 2920 0.00 244 0.00 11015 292.13
24 10803 0.90 3140 0.00 336 0.00 11015 352.64
27 8138 0.01 2627 0.00 383 0.00 11015 425.66
30 10805 1.01 3998 0.00 456 0.00 11015 499.31

9 12 85 0.01 244 0.00 6 0.00 92 0.00
15 186 0.01 497 0.00 11 0.00 157 0.00
18 10800 0.04 1239 0.00 35 0.00 496 0.00
21 10819 1.44 2641 0.00 120 0.00 240 0.00
24 10833 1.95 3925 0.00 438 0.00 91 0.00
27 10831 2.40 4702 0.00 1229 0.00 164 0.00
30 10821 1.63 6242 0.00 2746 0.00 394 0.00

600000 880 City 9 12 1558 0.01 1332 0.00 151 0.00 5010 0
15 8789 0.01 28400 0.00 240 0.00 36694 7.29
18 36007 0.20 36000 8.66 163 0.00 28776 0
21 36006 4.50 36000 0.83 338 0.00 28142 0
24 20602 7.61 63650 6.46 624 0.00 36692 29.86
27 18400 8.88 66756 10.20 1770 0.00 36689 40.82
30 26392 8.97 54446 12.03 1841 0.00 31093 0

750000 880 City 9 12 1336 0.00 1686 0.00 159 0.00 6055 0
15 3067 0.00 27714 0.00 360 0.00 36698 9.24
18 36006 0.14 36000 6.05 275 0.00 35917 0
21 30601 3.20 36000 3.87 289 0.00 7309 0
24 25671 6.65 45893 8.01 572 0.00 36692 21.06
27 33687 7.62 44223 10.64 1101 0.00 36689 ∞
30 16154 7.41 39821 17.78 1875 0.00 36692 22.28

many times the function Solve() is executed.
The results clearly show that, unlike for the WSC instances, solving the branching subproblems

is challenging and time-consuming. For the 150-city instances, the branching subproblems can still
be solved in a reasonable time, but for the 880-city instances solving the branching subproblems
becomes computationally prohibitive without the early-termination enhancement. This is evidenced
by the fact that even though a time limit of 36,000 was imposed, for the instance with p = 27 and
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Table 4: DB and DBE solution details for FLAR instances.

DB DBE

rmax prob N p CPLEX BB BB sub-BB sub-solve sub-avoid sub-time BB sub-BB sub-solve sub-avoid sub-time

100000 150 city 4 6 78085 11 4428 7 63.158 23.5 17 6262 6 73.913 0.91
9 550051 31 32882 13 81.944 34.9 23 31104 11 68.571 2.24

12 2933661 71 206432 16 92.233 53.5 83 105911 18 86.567 3.79
15 2513949 185 874138 23 95.886 108.4 155 288737 24 90.805 5.83
18 1713849 479 930104 32 97.868 77.9 323 363419 33 94.349 6.49
21 865736 757 856861 43 98.252 48.5 667 403633 43 96.399 6.78
24 1257866 1769 878216 54 99.147 44.9 1199 442985 55 97.491 7.05
27 1639576 2071 1049243 61 99.209 47.7 1771 455401 64 98.109 7.24
30 1670604 1073 1345564 65 98.278 67.8 3071 494292 76 98.693 7.31

9 12 56580 75 416 16 94.872 14.3 85 416 18 91.781 0.25
15 241333 233 416 23 98.113 18.5 471 416 25 97.908 0.28
18 7355516 2211 26316 37 99.700 17.7 5276 23450 43 99.748 0.49
21 10358962 10241 204973 54 99.917 13.7 32310 202471 63 99.942 0.80
24 9684401 30973 226088 65 99.971 12.4 139647 162602 79 99.984 0.72
27 8658653 83596 234552 68 99.989 19.8 395035 57480 95 99.993 0.52
30 7265836 197475 239608 74 99.995 38.7 985429 225188 105 99.997 0.74

125000 150 city 4 6 38761 11 3976 7 72.000 11.4 17 4138 6 73.913 0.83
9 149701 27 10979 12 78.571 41.0 21 9245 11 64.516 1.62

12 3130062 83 190405 17 92.797 25.4 81 78160 18 86.154 3.03
15 2489900 195 450800 23 96.082 62.9 159 127451 24 91.078 4.63
18 1740275 459 591057 32 97.756 41.3 309 221646 32 94.275 5.10
21 1004997 775 730704 43 98.294 61.2 657 275665 43 96.337 5.40
24 1635509 1807 641797 54 99.163 49.0 1187 323251 53 97.605 5.93
27 1489238 2063 697022 62 99.184 38.3 1773 298370 66 98.043 5.52
30 1413044 2747 786366 67 99.348 54.6 3175 386111 76 98.739 5.69

9 12 176590 75 0 16 94.872 14.9 97 0 19 92.369 0.20
15 441551 235 0 23 98.115 20.4 423 0 25 97.835 0.28
18 8751352 2259 5310 37 99.704 28.3 5272 8606 43 99.748 0.40
21 10590957 10268 32586 55 99.910 38.6 29327 32378 62 99.936 0.44
24 9239053 30271 53222 63 99.968 42.7 135396 54068 79 99.984 0.58
27 10561325 93448 52481 68 99.989 39.7 395035 57480 95 99.993 0.52
30 7798522 211686 54349 73 99.995 31.8 984460 59161 104 99.997 0.58

600000 880 City 9 12 104983 27 498193 12 83.562 49.9 23 11369 12 66.667 5.72
15 447447 249 561386 24 98.021 28.1 48 0 15 84.375 12.72
18 1775127 91 1472762 26 96.491 442.2 29 30782 16 77.465 6.39
21 2157267 865 1680029 35 99.321 343.4 119 51717 25 90.942 8.62
24 1303148 159 5121914 34 97.611 1749.1 569 128138 38 97.769 10.40
27 889314 114 5373567 33 96.729 1924.1 2313 382884 55 99.855 14.74
30 1298186 49 6150496 33 91.057 1547.5 3832 387163 52 99.535 14.77

750000 880 City 9 12 107381 27 325030 12 83.562 42.6 23 12188 12 66.667 6.01
15 125037 243 415231 24 97.822 18.8 38 0 15 81.928 17.11
18 2148935 123 596607 25 96.966 114.0 16 156536 18 82.524 12.41
21 1820443 150 733444 29 97.013 113.6 99 50356 23 89.450 8.35
24 1150639 82 4669157 30 97.263 1350.1 480 109617 36 97.475 9.88
27 1274833 44 2368370 30 91.643 1374.1 1382 287589 48 98.815 12.62
30 814396 10 4328473 18 73.529 2205.4 3635 241118 58 99.441 12.54
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r = 600000 the DB algorithm finished after more than 66,000 seconds, indicating that the solution
of the last branching subproblem took more than 30,000 seconds. (In our implementation, the time
limit is checked only at the highest level and not during the execution of the subroutines.)

6 Final remarks

Our computational experiments with WSC and FLAR provide orthogonal perspectives on the
performance of decomposition branching. In the former, the branching subproblems are easy to
solve, and the linear programming bound is weak, whereas in the latter, the branching subproblems
are hard to solve, but the linear programming bound is strong. The results demonstrate that in
both cases decomposition branching can provide significant computational advantages over simply
handing an instance over to a commercial solver.

Even though the initial computational results have far exceeded our expectations regarding
the potential of decomposition branching, more research and experimentation is needed to fully
understand and assess its benefits and how to best implement it. One of the interesting avenues
for further research is to investigate recursive application of decomposition branching.
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Appendix A WSC solution statistics for DB and DBE

Table 5: DB and DBE solution details for WSC instances (arithmetic averages).

DB DBE

W N s CPLEX BB BB sub-BB sub-solve sub-avoid sub-time BB sub-BB sub-solve sub-avoid sub-time

3 4 2 10762313.2 1157.2 6752.4 207.0 89.91 0.32 63.8 882.6 27.0 66.67 0.51
3 6483242.6 9875.6 15113.2 863.2 95.49 0.33 369.8 7396.8 66.2 86.00 0.51
4 5991116.8 64432.2 40743.6 4739.2 95.62 0.29 1307.4 13796.0 104.6 94.19 0.48

6 2 9148801.8 61137.8 19952.8 1464.6 99.14 0.30 928.0 8185.6 118.0 91.08 0.45
3 6735174.8 313442.6 58392.2 13267.4 98.47 0.25 3564.0 11850.8 114.4 97.92 0.49
4 9435653.8 334347.8 126717.4 22677.6 97.77 0.22 5913.4 26899.0 162.6 97.82 0.49

8 2 7331639 1052678.0 48356.8 3652.2 99.92 0.34 3544.0 16023.8 165.4 96.31 0.47
3 5206759.2 430498.4 89492.6 12175.6 99.37 0.26 27678.0 22921.2 455.4 99.25 0.43
4 7437892.2 276824.6 140610.8 15764.8 98.74 0.26 339394.6 79919.8 2511.8 99.64 0.39

5 4 2 13592245.8 715.2 1.0 138.2 87.55 0.29 37.6 1.0 19.0 48.65 0.38
3 16522725.8 552.4 12.4 107.2 89.22 0.34 72.2 12.4 22.6 71.10 0.39
4 12047156.8 1312.6 1.0 191.6 91.31 0.32 60.4 1.0 22.6 63.90 0.38

6 2 7320028.8 2344.2 59.2 225.2 96.06 0.30 147.8 23.0 31.8 78.97 0.39
3 6232590.8 34165.2 88.4 1512.6 97.87 0.23 458.6 1.0 60.8 89.50 0.38
4 5521535.6 74052.8 109.0 3100.6 98.07 0.29 2546.2 124.6 106.6 96.30 0.39

8 2 10862502.4 80042.6 288.8 1010.0 99.68 0.28 1082.6 116.6 78.8 94.11 0.35
3 8775009.6 594490.8 143.2 5155.4 99.75 0.26 8142.4 248.8 126.6 98.80 0.43
4 7885695.2 577463.2 282.6 12089.6 99.45 0.23 123857.2 142.4 398.8 99.74 0.38

7 4 2 1238160 133.4 1.0 38.4 83.48 0.29 23.0 1.0 8.0 37.50 0.32
3 1167754.8 381.4 1.0 94.0 87.06 0.30 73.4 1.0 16.6 73.57 0.31
4 1069927 941.2 1.0 134.0 92.1 0.26 276.0 1.0 27.6 89.46 0.32

6 2 8049311.8 2181.2 18.6 174.4 96.88 0.28 474.8 16.2 45.8 91.58 0.32
3 9497699.2 28266.2 1.0 997.0 98.37 0.21 2118.4 1.0 89.2 97.02 0.31
4 10740509 140734.6 7.2 3444.6 99.02 0.17 2841.4 1.0 123.6 95.97 0.29

8 2 8040470.2 8601.8 11.0 361.6 98.69 0.28 1079.4 27.2 64.8 96.87 0.34
3 6664075.4 68058.2 22.4 1327.0 99.33 0.24 4321.8 26.8 110.2 98.59 0.30
4 5929355.4 409938.4 1.0 3954.4 99.72 0.23 40444.0 1.0 257.8 99.65 0.31
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Appendix B Partition of cities into United States census regions
and divisions

Table 6 details the partition of the cities in the two data sets into United States census regions and
divisions (United States Census Bureau).

Table 6: Partition of cities into United States census regions and divisions.

Number of Cities

Region Division 150 node 880 node

Northeast New England 7 58
Middle Atlantic 10 117

South South Atlantic 25 144
East South Central 11 73
West South Central 21 91

MidWest East North Central 18 117
West North Central 11 114

West Mountain 16 86
Pacific 31 80
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