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1 Introduction

Optimization with (structured) nonconvex and nonsmooth functions has become one of the pri-

mary focuses of contemporary research in optimization, partially motivated by interesting appli-

cations in statistics [1,2], machine learning and compressive sensing [3]. While analysis of general

nonconvex nonsmooth functions is much more complicated than the convex case, many existing

techniques in convex analysis can be exploited in the study of difference-of-convex (DC) function-

s [4,5]. It has been observed that DC functions is in fact a very rich class of nonconvex functions

in optimization; e.g, see [6,7] for recent examples and discussions. DC programming and the DC

algorithm (DCA) have been successfully employed in many applications [1–3,5,8,9]. See [10] for

a recent survey.

In this paper, we focus on a class of structured nonsmooth DC programming where both of

the convex and concave parts of the objective function are allowed to be nonsmooth and with

a finite max structure in the concave part [1–3]. The first question immediately raised is about

“stationary” which usually plays the role of computational solution. There are two commonly used

stationarity notions in DC programming: critical point and strongly critical point [4, 5, 8, 10, 11].

Much of the literature of DC programming uses the notion of critical point, and the classical

DCA converges to such point. Criticality (critical point) can be regarded as a relaxation of

strong criticality (strongly critical point). Recently, Pang and coauthors in [12] advocated using

the concept of d(irectional)-stationary point which is arguably the sharpest kind among the

various stationary solutions for the structured nonsmooth DC programming. On the other hand,

it has been verified that d stationarity is equivalent to strong criticality under some technique

conditions [11, Theorem3.1]. Obviously, strong criticality is the strongest necessary condition for

local optimality. Furthermore, under some extra assumptions, strong criticality is also sufficient

for optimality [8]. From theoretically aspect, strong criticality can be achievable via using the

complete DCA, see e.g. [4, 8]. The complete DCA remains nonconvex programs and thus they

are still of a difficult task [8]. Recently, some DCA-based novel algorithms were developed for

converging to d-stationary points [9,12]. These algorithms inherited the advantage of the classical

DCA, and they only required to solve a series of convex subproblem. In [9, 12], its subsequential
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convergence were established. The authors did not provide sequential convergence analysis and

convergence rate for such algorithms. At the same time, the authors of [12] also introduced

another stationary notion, called weak d-stationary (also called lifted stationary). This notion is

related to the concept of quasi-Nash equilibrium (QNE) [14] which is popular in characterizing

the stationarity of Nash equilibrium problem. However, there does not present any algorithms to

compute a weak d-stationary point in [12].

The main purpose of the present paper is to propose two types of algorithms for a class of

structured nonsmooth DC programming: one is a specific version of DCA converging to a weak

d-stationary point, while the other is a variant of DCA, called ε-DCA (which is equivalent to

Algorithm 1 in [12]) for computing a d-stationary point. According to the existing literatures on

the algorithms for computing d-stationarity [9,12], it seems to be that it is hard to establish the

whole sequential convergence for such algorithms, let alone its convergence rate analysis. There-

fore, we aim to prove its linear convergence rate of these two algorithms under some conditions,

thus its sequential convergence results are also established as a corollary. More specifically, our

assumptions include a locally linear regularity condition, the generalized versions of the classi-

cal error bound and proper separation of isocost surfaces conditions proposed in [13]. We also

discuss sufficient conditions for such assumptions. To the best of our knowledge, our work is

the first 1 to identify conditions under which the linear convergence to a (weak or standard)

d(irectional)-stationary point for a large class of nonsmooth DC programs studied in [12] can be

established.

As a by-product, we show that the basic algorithm in [12] in fact converges to a closed subset

of all d-stationary points; hence providing a sharper characterization of the limit points of this

algorithm and a stronger computable optimality condition than d-stationary. By using the notion

of approximate subdifferentials, this characterization naturally lies between the d-stationary set

and the global optimum as characterized in [8,15]. Although when preparing this manuscript, we

became aware of a recent work [16] which proposed an equivalent concept, our interpretation by

1 The first version of this paper with complete results appeared in 2018 on Optimization Online http://www.

optimization-online.org/DB_HTML/2018/08/6766.html

http://www.optimization-online.org/DB_HTML/2018/08/6766.html
http://www.optimization-online.org/DB_HTML/2018/08/6766.html
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using approximate subdifferentials is new and connects to the global optimality condition in a

more stylish manner.

The rest of this paper proceeds as follows. In Section 2, we present technical setting and

nomenclature and review some related works. In Section 3, some preliminary discussions, in-

cluding the equivalence of a prox-linear mapping (used in the literature) and a DC step with

a difference decomposition by two strongly convex functions and a key technical lemma are p-

resented. In section 4, we consider a specific version of DCA (sDCA) where the subgradient is

chosen to be an active gradient. We show this algorithm converges to a weak d-stationary point.

Three key assumptions including the error bound and proper separation of isocost surfaces, as

well as one additional assumption on the locally linear regularity of related sets are introduced

in this section. We prove linear convergence (and as a corollary, sequential convergence) of s-

DCA under these assumptions. In section 5, we consider the basic algorithm proposed in [12]

for computing a d-stationary point. Firstly, as a detour, we provide a sharper characterization

of the set of points that this algorithm may converge to. It further motivates us to propose t-

wo notions: A-stationarity and Aε-stationarity which naturally lying between d-stationarity and

global optimum. We then prove the linear convergence (and sequential convergence) of the con-

sidered algorithm. The proof in this section is somewhat in parallel to that in Section 5, although

with important differences. We conduct further discussions on checking these key assumptions

in Section 6. Especially, we show that several statistical estimation models satisfy all these key

assumptions. Finally, we present some concluding remarks in Section 7.

2 Technical Setting, Nomenclature and Related Works

In this paper, we consider the following structured nonsmooth DC program with convex con-

straints:

min
x∈X

F (x) := H(x)− max
1≤i≤m

gi(x), (1)

whereX ⊆ Rn andG(x) := max1≤i≤m gi(x). We make the following blanket assumption through-

out this paper:
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Assumption 1 The triplet (H,X, {gi}mi=1) satisfy the following properties with positive param-

eters (σ, {Li}mi=1):

(a) X is a closed and convex set in Rn (or Rn itself);

(b) H(·) and gi(·) (i = 1, ...,m) are proper closed convex functions whose domains contain an

open superset of X; gi(·) is continuously differentiable at every point in X, and ∇gi(·) is

Lipschitz on X with modulus Li > 0;

(c) (Strong convexity) H(·) and gi(·) (i = 1, ...,m) are all strongly convex with parameter σ > 0;

(d) (Level-boundedness) For any α ∈ R, {x ∈ X | F (x) ≤ α} is bounded; F (x) is bounded below

on X, i.e., infx∈X F (x) > −∞.

It is easy to see that the strong convexity assumption incurs no loss of generality as a quadratic

term σ‖x‖2/2 can be simultaneously added to H(·) and all gi(·) (i = 1, ...,m). More specifically,

by setting H̃(x) := H(x) + σ
2 ‖x‖

2 and g̃i(x) := gi(x) + σ
2 ‖x‖

2, it yields that

F (x) = H̃(x)− G̃(x), G̃(x) := max
1≤i≤m

g̃i(x).

For the special case m = 1, we will often use lower case g(·) instead of G(·) in (1), and without

confusion we say a triplet (H,X, g) satisfies Assumption 1 with parameter (σ, L). For the general

case, we define L̂ := max1≤i≤m Li.

Although, for general DC program, the symmetric relation between the primal DC program

and the dual DC program can provide us with many inspiring ideas to work with [4,5,8]. However,

the dual DC program of (1) can not be provided in an explicit way. Therefore, we only focus

on the primal DC program (1) instead of considering both of them. Obviously, the difference-of-

convex algorithm (DCA) (also called simplified DCA, see [5,8]) can be directly applied to (1). As

we know, there exists an infinite number of DC decomposition of (1) and each of them results in a

different DCA scheme. For succinctness, we only focus on the DC decomposition of F := H −G.

With properly chosen x0, in (k + 1)-th iteration, the following convex subproblem is solved to

compute xk+1:

xk+1 ← argmin
x∈X

{
H(x)− η(xk)>(x− xk)

}
, (2)

where η(xk) ∈ ∂G(xk), and ∂G(·) represents the subdifferentials of G(·) at xk. Under Assumption

1, we have ∂G(x) = conv {∇gi(x) : i = 1, ...,m} , ∀x ∈ X, where conv denotes the convex hull.

The standard convergence theory of DCA (see e.g. [5]), guarantees that any limit point of the
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sequence generated by (2) is a critical point. A vector x̄ ∈ X is a critical point to (1) if

∂G(x̄) ∩
(
∂H(x̄) +NX(x̄)

)
6= ∅, (3)

where NX(x̄) is the normal cone of X at x̄. (We will use ιX to denote the indicator function

of X which takes value 0 on X and +∞ elsewhere. Under Assumption 1, it is easy to see that

∂(H + ιX)(x) = ∂H(x) + NX(x) for all x ∈ X.) Another criticality notion for DC program is

strong criticality [11]. A vector x̄ is called a strongly critical point of (1) if

∂G(x̄) ⊆
(
∂H(x̄) +NX(x̄)

)
, (4)

which is stronger than critical point. As already mentioned in some early works (e.g., [15, Remark

3.6]), the notion of critical point depends on the DC decomposition, which is not unique. Also,

one can find univariate convex functions with non-minimizing critical points [17, Example 2].

Pang and coauthors in [12] advocated using the concept of d(irectional)-stationary points

instead. A point x̄ ∈ X is called a d-stationary point to (1) if F ′(x̄; y − x̄) ≥ 0, ∀y ∈ X, where

F ′(x̄; y − x̄) is the directional derivative of F (·) at x̄ in the feasible direction y − x̄. Obviously,

this definition depends entirely on the geometry of F (and X) instead of the DC decomposition

used. Since F ′(x̄; y − x̄) = H ′(x̄; y − x̄)−G′(x̄; y − x̄) and G′(x̄; y − x̄) = maxv∈∂G(x̄) v
>(y − x̄)

under Assumption 1, it follows that x̄ is a d-stationary of (1) if and only if

H ′(x̄; y − x̄) ≥ v>(y − x̄), ∀v ∈ ∂G(x̄), ∀y ∈ X,

which is equivalent to x̄ ∈ arg minx∈X(H(x)−v>x), for any v ∈ ∂G(x̄). Consequently, it is easy to

see that x̄ ∈ X is d-stationary implies ∂G(x̄) ⊆ ∂H(x̄) +NX(x̄) which is precisely the definition

of strong criticality (see (4)) [11].

Another stationarity tailed for the nonsmooth DC program (1) is called weak d-stationarity.

As indicated in [12], x ∈ X is called a weak d-stationary point for (1) if and only if there exists

i ∈M(x) such that H ′(x;x′ − x) ≥ g′i(x;x′ − x)
(
= ∇gi(x)>(x′ − x)

)
, ∀x′ ∈ X, where M(x) is

the active set and defined as:

M(x) , argmax
1≤j≤m

gj(x) = {j : gj(x) = G(x)} . (5)
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Local convergence rates for DCA and its variants have been studied in the literature [8] for some

special cases of (1). One popular approach for convergence rate analysis is to exploit Kurdyka-

 Lojasiewicz (KL) property established in [18], which holds for proper closed subanalytic functions.

In [11], Le Thi, Huynh and Pham Dinh analyzed the convergence rate of DCA under the assump-

tions that one of the gradients of (H + ιX) and G of (1) is Lipschitz continuous and that KL

property holds for the objective function. For the special case that G(·) in (1) is continuously

differentiable (in other words m = 1), Wen, Chen and Pong [19] studied a variant of DCA (with

extrapolation steps), proved the sequential convergence under the assumption of an auxiliary

function with KL property. Very recently, Liu, Pong and Takeda [20] further studied the sequen-

tial convergence of the variant of DCA proposed in [19], and removed the assumption of ∇G(·)

continuously differentiable while still requiring the KL property of another merit function [20].

The convergence rate results in [8, 11, 19, 20] depend on the (usually unknown) exponent in the

KL inequality, and locally linear convergence can only be achieved when this exponent is no

more than 1
2 . Moreover, all these convergence results are aiming at converging to a critical point

defined in (3) instead of a (weak or standard) d-stationary point. In a very recent work [16], Lu,

Zhou and Sun proved the sequential convergence of proximal DC algorithm with extrapolation

step converging to a d-stationary by assuming that one of the two conditions holds: (a) one of

the elements of Γ is isolated (Γ denotes the accumulation set of the generated sequence); (b) A

certain merit function is a KL function and for each x̄ ∈ Γ , M(x̄) defined in (5) is a singleton

and the parameter ε in the proximal DCA satisfies 0 < ε < (G(x̄) − max
i∈Mc(x̄)

∇gi(x̄))/2 where

Mc(·) denotes its complementary set of M(·). However, when the concerned stationary point x̄

is satisfying that the index number ofM(x̄) is a singleton, these three concepts of critical point,

weak d-stationary and d-stationary are equivalent for the problem (1) which will be shown in

Lemma 3.2.

An alternative approach to derive linear convergence rate is based on error bound assumption.

Some early references include [13,21–23]. In some recent papers (e.g., [24,25]), an error bound has

been defined for the case of m = 1 and G(·) not necessarily convex. It is a direct generalization

of the error bound assumption defined in [13] for convex-constrained smooth minimization. We
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adapt related notions to our problem setting (1) with Assumptions 1 and m = 1. For clarity, we

use g(·) to replace G(·) when m = 1. Firstly, the subdifferential set of function (H + ιX − g) is

given by:

∂(H + ιX − g)(x) = ∂H(x) +NX(x)−∇g(x), ∀x ∈ X. (6)

This definition coincides with Frechet, limiting and Clarke subdifferentials of (H + ιX − g) in

variational analysis. Let Ω be the set of all stationary points defined as,

Ω :=
{
x̄ ∈ X : ∇g(x̄) ∈ ∂H(x̄) +NX(x̄)

}
. (7)

Note that Ω is exactly the set of d-stationary points in this case. In [26], an error bound holds

around x̄ ∈ X if there exists an open neighborhood of x̄, denoted by N , such that

dist(x,Ω) ≤ τ ·
∥∥x− Proxρ−1(H+ιX)(x+ ρ−1∇g(x))

∥∥ , ∀x ∈ N , (8)

where ρ > 0 is some (fixed) parameter and Proxf (v) := arg minx

{
f(x) + 1

2‖x− v‖
2
}

is the usual

proximal mapping defined for a convex function f . (‖ · ‖ is the Euclidean norm throughout this

paper.) An important observation made in [26] (which generalizes a similar observation in [27]

for the convex setting) is that (8) is the same as the subregularity of the prox-gradient mapping

x→ σ
(
x− Proxσ−1(H+ιX)(x+ σ−1∇g(x))

)
,

where “→ ” represents a mapping. It is then equivalent to (up to a constant factor) the subreg-

ularity of the set-valued mapping

x→ ∂(H + ιX − g)(x)

as defined in (6). In [25, Assumption 3.1] and [24, Assumption 2], the inequality (8) with a uniform

τ is assumed to hold for all x such that F (x) ≤ ζ and ‖x− ProxH+ιX (x+∇G(x))‖ ≤ ε where

ζ and ε are positive scalars such that infx∈X F (x) ≤ ζ. Convergence rate analysis, including

conditions under which linear convergence holds, are aiming at converging to a critical point

provided in these papers [13, 21–25]. Therefore, none of these results apply to our setting due

to the existence of nonsmoothness in the “concave part” G(·), where the characterization of

d-stationarity is more complicated than (7).
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3 Preliminary and Some Technical Lemmas

In this section, we present some preliminary discussions and technical lemmas to be used in later

section. Throughout this paper, let Rn denote the n-dimensional Euclidean space, 〈·, ·〉 denote

the standard inner product, and ‖·‖ denote the Euclidean norm. For any δ > 0, Bδ(x) is the open

neighborhood {y : ‖y−x‖ < δ}. Given an index setM, |M| denotes the index number in the set

M. We use Oc to denote the complement set of O. The domain of a function f : Rn → [−∞,∞]

is denoted by dom f = {x ∈ Rn : f(x) < +∞}. A proper closed function f is said to be level

bounded if for any α ∈ R, the set {x ∈ Rn : f(x) ≤ α} is bounded. Given a convex function f

defined on Rn and a positive scalar ε, a vector y ∈ Rn is an ε-subgradient of f at x̄ if

f(x) ≥ f(x̄) + y>(x− x̄)− ε, ∀x ∈ Rn . (9)

The set of all ε-subgradients of f at x̄, i.e., the ε-subdifferential, is denoted as ∂εf(x̄). By rear-

ranging terms in (9) and taking supremum over x, it is straightforward to see that y ∈ ∂εf(x̄)

if and only if f∗(y) + f(x̄)− x̄>y ≤ ε. When ε = 0, ∂εf is the usual convex subdifferential. It is

easy to verify that for any 0 ≤ ε ≤ ε′, ∂εf ⊆ ∂ε′f . More results on approximate subdifferentials

can be found in [28]. For a convex set X ⊆ Rn and x ∈ X, the normal cone of X at x is denoted

by NX(x) [29].

The following lemma includes a few basic facts of weak d-stationary points.

Lemma 3.1 (i) A point x̄ ∈ X is a weak d-stationary point for (1) if and only if there exists

i ∈M(x̄) such that

∇gi(x̄) ∈ ∂(H + ιX)(x̄) = ∂H(x̄) +NX(x̄). (10)

(ii) Let {xk}∞k=1 be a sequence in X converging to x∞. Suppose that there exists a sequence {zk}
such that zk ∈ ∂(H + ιX)(xk) and limk 7→+∞ zk = z∞, then z∞ ∈ ∂(H + ιX)(x∞).

Proof The proof is elementary, thus we omit here. ut

Similarly, as clarified in [12], x ∈ X is called a d-stationary point for (1) if and only if for any

i ∈M(x) such that ∇gi(x̄) ∈ ∂H(x̄) +NX(x̄).

The following lemma present a sufficient condition to show when these three stationary con-

cepts are equivalent.

Lemma 3.2 Considering the problem (1), suppose that x̄ ∈ X, and |M(x̄)| = 1. Then, the

following three assertions are equivalent:
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(i) x̄ is a critical point;

(ii) x̄ is a weak d-stationary point;

(iii) x̄ is a d-stationary point.

Proof For (i)⇒(ii), suppose that x̄ is a critical point, i.e., ∂G(x̄) ∩ (∂H(x̄) +NX(x̄)) 6= ∅. Note

that |M(x̄)| = 1, and let i :=M(x̄), one has ∂G(x̄) = ∇gi(x̄). Consequently, we gets

∇gi(x̄) ∈ ∂(H + ιX)(x̄).

Hence, the assertion (ii) holds. Note the converse direction is also true according to the above

proof. For (ii)⇔(iii), it follows directly from |M(x̄)| = 1. ut

Next, we establish explicitly the equivalence of a prox-linear step used in algorithms in [12,

19, 25, 26] and a DC step with a perturbed DC decomposition. Consider the triplet (H,X, g)

satisfying Assumption 1 with parameters (σ, L) and the associated DC program

min
x∈X

f(x) := H(x)− g(x), (11)

a prox-linear mapping G : X → X for (11) with parameter ρ > 0 is

GH+ιX ,g
ρ (x) := Proxρ−1(H+ιX)(x+ ρ−1∇g(x)) = argmin

y∈X
{H(y)−∇g(x)>y +

ρ

2
‖y − x‖2}.

A typical DC step employs the following mapping which amounts to the prox-linear mapping

with ρ = 0:

TH+ιX ,g(x) := argmin
y∈X

{
H(y)−∇g(x)>y

}
.

Note that the right hand side is a singleton as H is assumed to be strongly convex in Assumption

1. Obviously GH+ιX ,g
ρ 6= TH+ιX ,g in general. However if we define Ĥ and ĝ by

Ĥ(x) := H(x)− σ

2
‖x‖2, ĝ(x) := g(x)− σ

2
‖x‖2.

Note that H − g = Ĥ − ĝ. Then, for any x ∈ X,

TH+ιX ,g(x) = argmin
y∈X

{
Ĥ(y) +

σ

2
‖y‖2 − (∇ĝ(x) + σx)>y

}
= GĤ+ιX ,ĝ

σ (x).

Note that the convexity of Ĥ and ĝ is guaranteed by the σ-strong convexity of H and g. This

equivalence suggests to use the DC-step mapping in our later discussion, which enjoys a slightly
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simpler form with one less parameter to carry. Another immediate implication is the Lipschitz

continuity of the DC-step mapping, i.e., for any x, y ∈ X,

∥∥TH+ιX ,g(x)− TH+ιX ,g(y)
∥∥ =

∥∥∥GĤ+ιX ,ĝ
σ (x)− GĤ+ιX ,ĝ

σ (y)
∥∥∥

=
∥∥∥Proxσ−1(Ĥ+ιX)(x+ σ−1∇ĝ(x))− Proxσ−1(Ĥ+ιX)(y + σ−1∇ĝ(y))

∥∥∥
≤ ‖x− y + σ−1[(∇g(x)− σx)− (∇g(y)− σy)])‖ ≤ σ−1L‖x− y‖. (12)

The first inequality is due to the nonexpansivity of proximal operators [30], and the last inequality

is due to the Lipschitz continuity of ∇g. Without confusion, in the rest of this paper, we will

use T to denote TH+ιX ,g when we discuss the triplet (H,X, g), and T (i) := TH+ιX ,gi when we

discuss the general case of
(
H,X, {gi}mi=1

)
.

Next we introduce the concept of locally linearly regularity (LLR) for the intersection of two

closed sets, and this concept stated in [31] as follows.

Definition 3.1 Given two closed sets C and D in Rn, and x̄ ∈ C ∩D. We say C ∩D is locally

linearly regular at x̄ with parameter (δ, η) if there exists an open neighborhood Bδ(x̄) and a

constant η ≥ 1 such that

dist(x,C ∩D) ≤ ηmax(dist(x,C),dist(x,D)), ∀x ∈ Bδ(x̄). (13)

This definition is symmetric over C and D. Since in our context, the two sets involved have

different meanings, we find it convenient to work with the following equivalent, but asymmetric,

definition.

Definition 3.2 (Locally Linearly Regularity) Given an ordered pair of closed sets (C,D) in

Rn and x̄ ∈ C ∩ D, we say locally linearly regularity (LLR) holds at x̄ with parameter (δ, η) if

there exists an open neighborhood Bδ(x̄) and a constant η ≥ 1 such that

dist(x,C ∩D) ≤ η dist(x,C), ∀x ∈ D ∩Bδ(x̄). (14)

The following proposition proves the equivalence of these two definitions:

Proposition 3.1 Let C and D be two closed sets in Rn, and let x̄ ∈ C ∩D. If (13) holds with

parameters (δ, η), then (14) holds with the same parameters (δ, η). If (14) holds with parameters

(δ, η), then (13) holds with parameters (δ/2, 2η + 1).

Proof The proof for (13) ⇒ (14) is straightforward. Suppose that x ∈ D ∩Bδ(x̄), then we have

dist(x,D) = 0. Hence, max(dist(x,C),dist(x,D)) = dist(x,C). Now, suppose that (14) holds

with parameters (δ, η). Consider any arbitrary y ∈ Bδ/2(x̄), we let x̂ be a point in D such that
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‖y − x̂‖ = dist(y,D) ≤ ‖y − x̄‖ < δ/2. By triangular inequality ‖x̂− x̄‖ < δ, i.e., x̂ ∈ D ∩Bδ(x̄).

By (14), dist(x̂, C ∩D) ≤ η dist(x̂, C). Therefore

dist(y, C ∩D) ≤ ‖y − x̂‖+ dist(x̂, C ∩D) ≤ dist(y,D) + η dist(x̂, C)

≤ dist(y,D) + η(‖y − x̂‖+ dist(y, C)) = (η + 1) dist(y,D) + η dist(y, C)

≤ (2η + 1) max(dist(y, C),dist(y,D)). ut

The following technical lemma establish an inequality that will be used multiple times in our

later analysis.

Lemma 3.3 Let (H,X, g) be a triplet satisfying Assumption 1 with parameters (σ, L), and set f

with H − g. Let T := TH+ιX ,g, then for any x, y ∈ X,

f(y) ≥ f(T (x))− L

2
‖x− y‖2 +

σ

2
‖T (x)− y‖2 +

σ

2
‖T (x)− x‖2.

Proof By the definition of T (x),

∇g(x)>(T (x)− y) ≥ H(T (x))−H(y) +
σ

2
‖T (x)− y‖2, ∀ y ∈ X. (15)

By strong convexity of g(·), g(T (x)) ≥ g(x) +∇g(x)>(T (x) − x) + σ
2 ‖T (x) − x‖2. By Lipschitz

continuity of ∇g(·), we get g(x) − g(y) + L
2 ‖x − y‖2 ≥ ∇g(x)>(x − y). Adding these three

inequalities together, we have

H(y)− g(y) ≥ H(T (x))− g(T (x))− L

2
‖x− y‖2 +

σ

2
‖T (x)− y‖2 +

σ

2
‖T (x)− x‖2.

Then, by invoking the definition of f , the desired inequality follows directly. ut

The following is a simple fact regarding the accumulation points of a bounded sequence.

Lemma 3.4 Suppose that {xk}∞k=1 is a bounded sequence with the set of all accumulation points

L. Then L is compact and limk 7→+∞ dist(xk,L) = 0.

Proof The proof is similar to [32, Proposition 1], thus we omit here. ut

4 Linear Convergence of sDCA Converging to a Weak d-Stationary Point

In this section, we consider a specific version of DCA (sDCA) where the subgradient η(xk) in the

subproblem (2) is chosen to be one of the “active gradients”. See Algorithm 1 for details. As a

Algorithm 1 A specific version of DCA for computing a weak d-stationary point

Initialization: choose x0 ∈ X.

for k = 0, 1, 2, ... do

Choose an index ik ∈M(xk), then compute xk+1 by

xk+1 ←− T (ik)(xk). (16)

end for
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preparation of our convergence rate analysis, we first show that this algorithm converges to a weak

d-stationary point. Our main result in this section is the proof of (locally) linear convergence of

this algorithm under three assumptions. The same set of assumptions will be used in Section 5 for

analyzing an algorithm computing a d-stationary point of (1). Along with natural generalizations

of the error bound and separation of isocost surfaces assumptions proposed in [13], we propose

an additional regularity condition regarding the intersection of pairs of related sets. Each pair

includes one set characterizing stationarity of (H − gi) while another set being the region where

gi is “active”. Our linear convergence results include sequential convergence as a corollary.

We let Ω(i) to denote the set of all points where (10) holds for i, and D(i) be the region where

gi(x) is active, i.e.,

Ω(i) := {x ∈ X : ∇gi(x) ∈ ∂(H + ιX)(x)} , D(i) := {x ∈ X : gi(x) ≥ G(x)} . (17)

Then, the set of all weak d-stationary points can be written as

m⋃
i=1

(
Ω(i) ∩ D(i)

)
.

For Algorithm 1, it is easy to show that the optimality condition of the subproblem (16) is

characterized with

∇gik(xk) ∈ ∂(H + ιX)(xk+1), (18)

which will be repeatedly used in our later analysis. The following is a simple lemma regarding

the active sets of the points in an open neighborhood of x̄ ∈ X.

Lemma 4.1 For any x̄ ∈ X, there exists an open neighborhood Bδ(x̄) (δ > 0) such that for any

x ∈ Bδ(x̄), M(x) ⊆M(x̄).

Proof By definition for any i /∈ M(x̄), gi(x̄) < G(x̄). By continuity, there exists a neighborhood

Bδ(x̄), such that for any x ∈ Bδ(x̄) and any i /∈ M(x̄), gi(x) < G(x), which implies that

M(x) ⊆M(x̄). ut

The following lemma is known in the literature; e.g., [8]. For completeness, we present here as

a simple corollary of Lemma 3.3. Consequently, subsequential convergence of Algorithm 1 follows

directly from this lemma.

Lemma 4.2 Let {xk} be the sequence generated by Algorithm 1. For each k,

F (xk+1) ≤ F (xk)− σ

2
‖xk+1 − xk‖2. (19)
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Proof Recall that ik is the active index chosen in step k of Algorithm 1. By applying Lemma 3.3

with f = Fik := H − gik , x = y = xk and T = TH+ιX ,gik , we have

Fik(xk) ≥ Fik(xk+1) + σ‖xk+1 − xk‖2.

Then, (19) follows directly by noting the facts that F (xk) = Fik(xk) and Fik(xk+1) ≥ F (xk+1).

ut

Next, we prove the convergence of Algorithm 1. Note that the assertions (i)-(iii) of Theorem

4.1 are standard in the literature [11], and thus we omit the proof here.

Theorem 4.1 Let the sequence {xk} be generated by Algorithm 1. Then, the following properties

hold:

(i) The sequence {F (xk)} is convergent, i.e.,

F ∗ := lim
k→+∞

F (xk); (20)

(ii) The sequence {xk} is bounded;

(iii)
∑∞
k=1 ‖xk − xk+1‖2 < +∞ (which implies that limk→+∞ ‖xk − xk+1‖ = 0);

(iv) Let {xkj}j be a subsequence of {xk}k such that xkj → x∞, and ī ∈ {1, ...,m} is an index

appearing infinitely many times in {ikj}j, then x∞ ∈ Ω (̄i); Consequently, any accumulation

point of {xk} is a weak d-stationary point;

(v) All accumulation points of {xk} have the same objective values;

(vi) Suppose that one of the elements in the accumulation set of {xk} is isolated. Then, the whole

sequence {xk} converges to a weak d-stationary point.

Proof (iv) Let x∞ be any accumulation point of {xk}, and {xkj}∞j=1 be a subsequence converging

to x∞. Since {ikj}∞j=1 consists of finitely many distinct values, there are some indices appearing

infinitely many times in this sequence. Without loss of generality (by restricting to a subsequence

if necessary), we assume that ikj ≡ ī ∈ {1, ...,m} for all j. By (iii), one has that limk→+∞ ‖xk −
xk+1‖ = 0, which implies that {xkj+1}∞j=1 also converges to x∞. By the optimality condition

(18), we have ∇g ī(xkj ) ∈ ∂H(xkj+1) + NX(xkj+1). Since ∇g ī(xkj ) → ∇g ī(x∞) as j → +∞,

by Lemma 3.1, we have ∇g ī(x∞) ∈ ∂H(x∞) +NX(x∞). Thus, we have x∞ ∈ Ω (̄i). Since g ī(·)
is active at infinitely many points {xkj}∞j=1, it implies that g ī(x

kj ) ≥ G(xkj ). Invoking {xkj}∞j=1

converging to x∞, it yields that g ī(x
∞) ≥ G(x∞). Thus, one gets x∞ ∈ D(̄i). Consequently,

ī ∈ M(x∞). Therefore, x∞ ∈ Ω (̄i) ∩ D(̄i), and it is a weak d-stationary point to (1). Finally, we

prove (v). Let x∞ be a accumulation point of {xk} and {xkj}∞j=1 be a subsequence converging to

x∞. Then, by the continuity of F (over X) and the assertion (1),

F (x∞) = lim
j→+∞

F (xkj ) = lim
k→+∞

F (xk) = F ∗.

For the assertion (vi), it follows by combining the assertion (iii) and Proposition 8.3.10 in [33]. ut

To prove linear convergence of Algorithm 1, we will need the following construction and

assumptions. For each k, we construct an auxiliary point x̄k as follows

x̄k ∈ arg min
x

{
‖x− xk‖ : x ∈ Ω(ik) ∩ D(ik)

}
, (21)
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provided that Ω(ik) ∩ D(ik) is nonempty. Obviously, Ω(ik) ∩ D(ik) is a closed set due to Lemma

3.1 and the continuity of functions {gi}mi=1. The following lemma shows that the projection (21)

is well-defined for all sufficiently large k.

Lemma 4.3 Let {xk} be the sequence generated by Algorithm 1, and ik be the index chosen in

step k. Let L to denote the set of all accumulation points of {xk}. Then there exists K such that

for all k ≥ K, L∩D(ik) ∩Ω(ik) is nonempty, where ik is the index chosen in (16).

Proof It is easy to see that L is a closed set. Since {xk} is bounded, so is L. By Lemma 3.4, we

have limk→∞ dist(xk,L) = 0. We show that L∩D(ik) ∩Ω(ik) is non-empty for all k sufficiently

large. It suffices to show the non-emptiness of L∩D(̄i) ∩Ω (̄i) for all ī appearing infinitely many

times in the sequence {ik}k. Take such a subsequence {xkj}j with ikj ≡ ī. Any of its accumulation

points is obviously in L, and also in D(̄i) due to the continuity of functions {gj}mj=1. Also, such a

limit point is in Ω (̄i) due to the assertion (iv) of Theorem 4.1. Hence, L∩D(̄i) ∩Ω (̄i) 6= ∅ for all

ī appearing infinitely many times. It further implies that L∩D(ik) ∩Ω(ik) 6= ∅ for all sufficiently

large k. ut

Our analysis of linear convergence depends on three assumptions. The first two are natural

generalization of the error bound and the proper separation of isocost surfaces assumptions as

discussed in [13] and the references therein. The third assumption is a regularity condition on

the intersection of Ω(i) and D(i) at a limit point. It is reasonable to expect the necessity of such

a regularity condition, as the step xk → T (ik)(xk) moves xk “towards” Ω(ik), while “knowing

nothing” about D(ik).

We are now ready to state the main assumptions for proving linear convergence.

Assumption 2 Let Ω(i), D(i) be sets defined in (17). Define the index set

I =
{
j : Ω(j) ∩ D(j) 6= ∅

}
. (22)

The following three conditions hold:

(A) For any ζ ≥ infx∈X F (x), there exists τ, ε > 0 such that for any i ∈ I,

dist(x,Ω(i)) ≤ τ‖x− T (i)(x)‖, ∀x ∈ D(i), F (x) ≤ ζ, ‖x− T (i)(x)‖ ≤ ε.

(B) There exists a positive constant µ such that for any i ∈ I and x1, x2 ∈ Ω(i) ∩ D(i), it holds

that ‖x1 − x2‖ ≥ µ whenever F (x1) 6= F (x2).

(C) For each i ∈ I, the intersection Ω(i) ∩ D(i) satisfies the LLR condition at every point of

Ω(i) ∩ D(i).

Remark 4.1 The readers may compare Assumption 2(A), 2(B) with [25, Assumption 3.1] applied

to the problem of minimizing (H − gi) over X. Note that our assumption 2(A) is slightly weaker

than [25, Assumption 3.1(i)] in the sense that we only need the error bound to hold for all x
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in D(i). Obviously, if Assumption 3.1(i) in [25] holds for Fi := H + ιX − gi with i ∈ I, then

Assumption 2(A) holds. One sufficient (but not necessary) condition for our Assumption 2(B) is

that [25, Assumption 3.1(ii)] holds for all (H−gi) (i = 1, ...,m). If for all i ∈ I and x1, x2 ∈ Ω(i),

H(x1)− gi(x1) 6= H(x2)− gi(x2) implies that ‖x1 − x2‖ ≥ µ, then Assumption 2(B) holds. This

is due to the simple fact that if x1, x2 ∈ D(i), then F (xj) = H(xj)− gi(xj), j = 1, 2.

Now, consider Assumption 2(C). In fact, it will become evident that we only require the LLR

condition to hold at all accumulation points of the sequence generated by Algorithm 1. Since

the set of all accumulation points is compact under our blanket Assumption 1, the LLR (see

Definition 3.2) parameters (δ, η) defined with respect to the concerned point x can be made

uniform for all the points lying in the set L∩Ω(i) ∩ D(i) which is nonempty.

Lemma 4.4 (Existence of uniform LLR parameters) Suppose Assumption 2(C) holds and

L is a compact subset of Rn, then for each i ∈ {1, ...,m} such that L∩Ω(i) ∩ D(i) 6= ∅, there

exists uniform parameters δ̄i > 0 and η̄i ≥ 1 such that

dist(x,Ω(i) ∩ D(i)) ≤ η̄i · dist(x,Ω(i)), ∀x ∈ Bδ̄i(L∩Ω
(i) ∩ D(i)) ∩ D(i) . (23)

Proof Let i be any index such that L∩Ω(i)∩D(i) 6= ∅. For any x̄ ∈ L∩Ω(i)∩D(i), by Assumption

2(C), there exists δi(x̄) > 0 and ηi(x̄) ≥ 1 such that,

dist(y,Ω(i) ∩ D(i)) ≤ ηi(x̄) · dist(y,Ω(i)), ∀y ∈ Bδi(x̄)(x̄) ∩ D(i) . (24)

Since V :=
{

Bδi(x̄)/2(x̄) : x̄ ∈ L∩Ω(i) ∩ D(i)
}

is an open cover of the compact set L∩Ω(i) ∩D(i),

there exists a finite subcover. Let S to denote the set of centers of open balls in this finite subcover.

We claim that (23) holds with η̄i := maxx̄∈S ηi(x̄) and δ̄i := minx̄∈S δi(x̄)/2. Indeed, note that

for any y ∈ Bδ̄i(L∩Ω
(i)∩D(i))∩D(i), there exists x̂ ∈ S such that ‖y− x̂‖ < δi(x̂)/2+ δ̄i ≤ δi(x̂).

Thus, (23) follows easily from (24). ut

The following lemma implies that for all k sufficiently large, F (x̄k) = F ∗ where F ∗ is defined

in (20).

Lemma 4.5 Let {xk} be the sequence generated by Algorithm 1, and let ik be the index chosen

in step k, we have

lim
k→+∞

dist(xk,L∩Ω(ik) ∩ D(ik)) = 0. (25)

Moreover, if the Assumption 2(B) holds, then for all k sufficiently large, F (x̄k) = F ∗ with x̄k

defined in (21).

Proof Assume otherwise, i.e., limk→+∞ dist(xk,L∩Ω(ik) ∩ D(ik)) 6= 0, then there exists a sub-

sequence {xkj}j and ε > 0 such that dist(xkj ,L∩Ω(ikj ) ∩ D(ikj )) ≥ ε for all j. Without loss of

generality, we assume the subsequence converges to x∞ ∈ L such that ikj ≡ ī. Since ī is active at

all points in this subsequence, and combining its continuity of {gi}mi=1, one has ī ∈ M(x∞), i.e.,
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x∞ ∈ D(̄i). Therefore, by the assertion (iv) of Theorem 4.1, we have x∞ ∈ L∩Ω (̄i) ∩ D(̄i). This

contradicts with our assumption that dist(xkj ,L∩Ω (̄i) ∩ D(̄i)) ≥ ε. Consequently, we must have

that limk→+∞ dist(xk,L∩Ω(ik) ∩ D(ik)) = 0. Next, we further assume Assumption 2(B) holds.

For all k sufficiently large, we have dist(xk,L∩Ω(ik)∩D(ik)) < µ/2 due to (25), where µ is defined

in Assumption 2(B). By the definition of x̄k in (21), we have

‖xk − x̄k‖ = dist(xk, Ωik ∩ D(ik)) ≤ dist(xk,L∩Ωik ∩ D(ik)) < µ/2.

Then, using triangle inequality, there exists x̂k ∈ L∩Ωik ∩ D(ik) such that

‖x̂k − x̄k‖ ≤ ‖xk − x̂k‖+ ‖xk − x̄k‖ < µ/2 + µ/2 = µ.

Finally, Assumption 2(B) implies that F (x̄k) = F (x̂k) = F ∗. ut

Lemma 4.6 Let {xk} be a sequence generated by Algorithm 1. Suppose that Assumption 2(B)

holds. Then for all k sufficiently large,

F (xk+1) ≤ F ∗ +
Lik
2
‖xk − x̄k‖2,

where Lik is the Lipschitz constant for ∇gik(·).

Proof Applying Lemma 3.3 with f = Fik := H − gik , x = xk, y = x̄k and T = TH+ιX ,gik , we

have

Fik(x̄k) ≥ Fik(xk+1)− Lik
2
‖xk − x̄k‖2.

By definition, Fik(xk+1) ≥ F (xk+1). Invoking (21) and Lemma 4.5, Fik(x̄k) = F (x̄k) = F ∗.

Therefore, we have the desired inequality. ut

Now, we are ready to prove linear convergence of Algorithm 1 by piecing together all previous

lemmas and constructions.

Theorem 4.2 Let the sequence {xk} be generated by Algorithm 1, and let ik be the index chosen

in step k. Suppose that all conditions in Assumption 2 hold. Then, the following properties hold:

(i) The sequence of objective function values {F (xk)− F ∗} converges to zero Q-linearly;

(ii) The sequence {xk} converges R-linearly to a weak d-stationary point x∞; furthermore, if î

appears infinitely many times in {ik}k, then x∞ ∈ Ω (̂i) ∩ D(̂i).

Proof (i) Invoking Lemma 4.6, we get F (xk+1) ≤ F ∗ + L̂
2 ‖x

k − x̄k‖2. Let L be the set of all

accumulation points of {xk}, and (δ̄i, η̄i) be the uniform LLR parameters as in Lemma 4.4.

Furthermore, define

δ := min
i
{δ̄i : L∩Ω(i) ∩ D(i) nonempty }, η := max

i
{η̄i : L∩Ω(i) ∩ D(i) nonempty }.

For all k sufficiently large such that xk ∈ Bδ(L∩Ω(ik) ∩ D(ik)), we have

‖xk − x̄k‖ = dist(xk, Ω(ik) ∩ D(ik)) ≤ η dist(xk, Ω(ik)) ≤ ητ‖xk − xk+1‖,

where the last inequality follows from Assumption 2(A). Therefore,

F (xk+1) ≤ F ∗ +
L̂η2τ2

2
‖xk − xk+1‖2.
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Combining Lemma 4.2 and the above inequality, we obtain

F (xk+1) ≤ F ∗ +
L̂η2τ2

σ
(F (xk)− F (xk+1)).

By rearranging terms, we have the desired inequality that for all k sufficiently large,

F (xk+1)− F ∗ ≤ M

1 +M
(F (xk)− F ∗),

where M := L̂η2τ2/σ.

(ii) Recalling Lemma 4.2, we obtain that

‖xk − xk+1‖ ≤
√

2/σ
√
F (xk)− F (xk+1) ≤

√
2/σ

√
F (xk)− F ∗.

Consequently,

+∞∑
i=0

‖xk+i+1 − xk+i‖ ≤
√

2/σ

+∞∑
i=0

√
F (xk+i)− F ∗

≤
√

2/σ
(

1−
√
M/(M + 1)

)−1√
F (xk)− F ∗ < +∞,

where the last inequality is due to
√
F (xk)− F ∗ converges to zero Q-linearly. Since {xk} is

bounded, it implies that its limit point of {xk} is unique, and we denote it by x∗. Then, using

triangle inequality yields that

‖xk − x∗‖ ≤
√

2/σ
(

1−
√
M/(M + 1)

)−1√
F (xk)− F ∗.

Because
√
F (xk)− F ∗ converges to zero Q-linearly, {xk} converges to x∗ R-linearly. The last

assertion follows easily from the assertion (iv) of Theorem 4.1 and the continuity of functions

{gi}mi=1. ut

5 Linear Convergence of ε-DCA

We now consider the basic algorithm proposed in [12, Section 5.1] for computing a d-stationary

solution. This algorithm is described in Algorithm 2. The ε-active set at any x ∈ X is defined as:

Mε(x) := {i : gi(x) ≥ G(x)− ε} .

Note that the authors of [12] defined xk,i by a prox-linear step, which is equivalent to our mapping

T (i) as argued by our discussion in Section 3. It has been shown in [12] that any accumulation

point of the sequence generated by Algorithm 2 is a d-stationary point.
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Algorithm 2 ε-DCA for computing a d-stationary point

Require: A triplet (H,X, {gi}mi=1) satisfying Assumption 1 with strong convexity modulus σ;

Initialization: Choose x0 ∈ X and ε > 0;

for k = 0, 1, 2, ... do

for i ∈Mε(xk) do

xk,i ← T (i)(xk) (26)

end for

Let

ik ← argmin
i∈Mε(xk)

{
F (xk,i) +

σ

2
‖xk,i − xk‖2

}
; (27)

Set xk+1 ← xk,ik .

end for

5.1 A Sharper Characterization of the Limit Set of Algorithm 2

Before we get into the convergence rate analysis of Algorithm 2, we digress to derive a sharper

characterization of the point that Algorithm 2 converges to. By examining the algorithm, it is

intuitive that for any fixed ε > 0, there are some d-stationary points where Algorithm 2 cannot

converge to. For each x of those d-stationary points, one could find an index i ∈ Mε(x) \M(x)

such that Ti(x) would significantly reduce the objective function value in (1). We illustrate this

by the following simple one-dimensional example. We apply Algorithm 2 to solve it with σ = 1:

F (x) = −max(0, x) = x2/2︸︷︷︸
:=H(x)

−max(g1(x), g2(x))︸ ︷︷ ︸
:=G(x)

, where g1(x) = x2/2, g2(x) = x+ x2/2.

Apparently, F (x) is unbounded below. However, every point in ]−∞, 0[ is a local optimal solution

(hence a d-stationary point). Suppose that x0 ∈] max(−0.5,−ε), 0[ (let 0 < ε < 0.5). With some

elementary calculations, it can be shown that Algorithm 2 cannot converge to the point in the

range of ] max(−0.5,−ε), 0[ while every point in this range is a d-stationary point.

Next, we will provide a stronger optimality condition, which we call it Aε′ -stationarity, that

holds at all accumulation points of Algorithm 2 with 0 < ε′ < ε. This optimality condition has

some “global” flavor. In the literature, d-stationarity is sometimes considered as the sharpest

kind of stationary point for nonsmooth DC programs [12], while being “sharpest” is under the

implicit stipulation that only local first-order information is considered. However, note that every

step of Algorithm 2 exploits the “global” information of the convex part H(·). It is meaningful

to consider optimality conditions much stronger than d-stationarity. Furthermore, by using the

notion of approximate subdifferentials, in a stylish manner, we show that our proposed optimality
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condition connects to the sufficient and necessary condition for global optimality for DC programs.

The global optimality was proposed by J. B. Hiriart-Urruty in 1989 [15], and further studied in [8].

Therefore, our approach sheds some new lights in understanding the gap between the computed

solutions by Algorithm 2 and the global optimal solutions of (1).

During the last stage of preparation of this paper, we were brought some attention to a recent

manuscript [16]. In this paper, a concept called “(α, η)-D-stationary” was proposed. We will show

that Aε-stationarity is essentially equivalent to this concept. However, our interpretation by using

approximate subdifferentials is novelty.

Recall that at every point x̄ ∈ X and for any i ∈ {1, . . . ,m}, the convex surrogate function

H(·)−∇gi(x̄)>(· − x̄)− gi(x̄)

is a global over-estimator of F (·) at x̄. If x̄ was a global optimal solution of (1), minimizing

this convex function over X would not yield a value better than F (x̄). In fact, this is similar to

the motivation for defining “(α, η)-D-stationarity” in [16]. The following proposition provides a

concise characterization of this condition with approximate subdifferentials.

Proposition 5.1 Let x̄ ∈ X, then for a fixed i ∈ {1, ...,m},

F (x̄) ≤ min
x∈X

{
H(x)−∇gi(x̄)>(x− x̄)− gi(x̄)

}
(28)

if and only if ∇gi(x̄) ∈ ∂G(x̄)−gi(x̄)(H + ιX)(x̄).

Proof By the definition of ε-subgradients and x̄ ∈ X, ∇gi(x̄) ∈ ∂G(x̄)−gi(x̄)(H + ιX)(x̄) is equiv-

alent to

(H + ιX)∗(∇gi(x̄)) +H(x̄)− x̄>∇gi(x̄) ≤ G(x̄)− gi(x̄)

⇐⇒ H(x̄)−G(x̄) ≤ inf
x∈X

{
H(x)− x>∇gi(x̄)

}
+ x̄>∇gi(x̄)− gi(x̄).

which is the same as (28). ut

Therefore, a necessary condition for x̄ to be optimal to (1) is:

x̄ ∈ X and ∇gi(x̄) ∈ ∂G(x̄)−gi(x̄)(H + ιX)(x̄), ∀i = 1, ...,m. (29)

It is easy to see that x̄ is a d-stationary point to (1) if and only if the following weaker condition

holds:

x̄ ∈ X and ∇gi(x̄) ∈ ∂(H + ιX)(x̄), ∀i ∈M(x̄). (30)
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For ε > 0, an optimality condition between (29) and d-stationarity is:

x̄ ∈ X and ∇gi(x̄) ∈ ∂G(x̄)−gi(x̄)(H + ιX)(x̄), ∀i ∈Mε(x̄). (31)

We call x̄ to be A-stationary if it satisfies (29), and Aε-stationary if it satisfies (31). It is interesting

to compare these optimality conditions with the necessary and sufficient condition for global

optimality in 1989 [15].

Theorem 5.1 (Theorem 4.4, [15]) Let f(x) = h(x)− g(x) be a difference-of-convex function

for x ∈ Rn, where h and g are proper closed convex functions. x̄ ∈ Rn is a global minimizer of

f(·) if and only if ∂αg(x̄) ⊆ ∂αh(x̄), ∀α ≥ 0.

Applying this theorem to (1), x̄ is a global optimal solution to (1) if and only if

x̄ ∈ X, ∂αG(x̄) ⊆ ∂α(H + ιX)(x̄), ∀α ≥ 0. (32)

A full characterization of ∂αG(x̄) is rather complicated, we refer the readers to [28, Theorem

3.5.1] for a calculus rule for approximate subdifferentials of the max of finitely many convex

functions, while only pointing out the following fact that [28, Page 124] for any x ∈ X and α ≥ 0,

{
∇gi(x) : i ∈Mα(x)

}
⊆ ∂αG(x).

It is easy to verify this inclusion from definitions (although equality does not hold in general).

Therefore, a condition weaker than (32) is

x̄ ∈ X and ∇gi(x̄) ∈ ∂α(H + ιX)(x̄), ∀i ∈Mα(x̄), ∀α ≥ 0. (33)

Note that i ∈ Mα(x̄) is the same as α ≥ G(x̄)− gi(x̄). By monotonicity of approximate subdif-

ferentials it suffices to enforce ∇gi(x̄) ∈ ∂G(x̄)−gi(x̄)(H + ιX)(x̄) for all i. In other words, (33) is

equivalent to A-stationarity defined in (29). For structured nonsmooth DC program (1), the rela-

tions between these conditions, strong criticality and criticality are summarized in the diagram in

Fig. 1. By virtue of [11, Theorem 3.1], d-stationarity implies strong criticality under Assumption

1.

Global optim.

(32)

A-stat.

(33) ⇔ (29)

Aε-stat.

(31)

d-stat.

(30)

strong crit.

(4)

crit.

(3)

(Assumption 1)

Fig. 1: Relations among different types of optimality conditions
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Counterexample. We make several remarks with regard to the above string of implications:

(i) In general, a A-stationary point of (1) is not necessarily a global minimizer. A counterexample

is provided by the univariate example:

min
x
F1(x) = 2 + ι[−

√
2,
√

2](x)︸ ︷︷ ︸
:=H(x)

−max(g1(x), g2(x))︸ ︷︷ ︸
:=G(x)

, where g1(x) = 1, g2(x) = x2.

Obviously, x = 0 is a A-stationary point, but it is not a global minimizer.

(ii) Second, a d-stationary point is not necessarily Aε-stationary. We consider the univariate

example:

min
x
F2(x) = x2/2︸︷︷︸

:=H(x)

−max(g1(x), g2(x))︸ ︷︷ ︸
:=G(x)

, where g1(x) = x2/2, g2(x) = x+ x2/2.

Let 0 < ν < 0.5, then every point in the range of (−ν, 0) is a local minimizer, and thus is

a d-stationary point. However, every point in the range of (−ν, 0) is not Aε-stationary with

ε ≥ ν.

(iii) Third, an Aε-stationary point is not necessarily A-stationary. We consider the univariate

example:

min
x
F3(x) = x2 + x/2︸ ︷︷ ︸

:=H(x)

−max(g1(x), g2(x))︸ ︷︷ ︸
:=G(x)

, where g1(x) = x/2, g2(x) = 12x− 1.

Obviously, x = 0 is Aε-stationarity with 0 < ε < 1 and it is not a A-stationary point.

Remark 5.1 (Equivalence to (α, η)-D-stationarity in [16]) Let (Ĥ,X, {ĝi}mi=1) be a triplet satis-

fying Assumption 1 except for strong convexity. Let F := Ĥ−max1≤i≤m ĝi. Then, by [16], x̄ ∈ X
is called (α, η)-D-stationary with (α, η) = (σ−1, ε) if

F (x̄) ≤ min
x∈X

{
Ĥ(x)−∇ĝi(x̄)>(x− x̄)− ĝi(x̄) +

σ

2
‖x− x̄‖2

}
, ∀i ∈Mε(x̄). (34)

Note that if we define H := Ĥ + σ‖ · ‖2/2 and gi := ĝi + σ‖ · ‖2/2 for all i, then

Ĥ(x)−∇ĝi(x̄)>(x− x̄)− ĝi(x̄) +
σ

2
‖x− x̄‖2 = H(x)−∇gi(x̄)>(x− x̄)− gi(x̄).

Then, by Proposition 5.1, (34) is equivalent to the Aε-stationarity of x̄ for minimizing F (x) over

X.

Note that (29) and (30) can be understood as the limit cases of (31) by letting ε ↑ +∞ and

ε ↓ 0+, respectively. We will show that for the fixed ε > 0 chosen in Algorithm 2, any limit
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point of the sequence generated by Algorithm 2 is Aε′ -stationary 2 for any ε′ ∈]0, ε[. Although

this has essentially been proved in [16] by the equivalence shown in Remark 5.1, we find it easier

for presentation and completeness purposes to provide a concise proof using our notation and

construction. The following results are also in parallel to Lemma 4.2 and Theorem 4.1.

Proposition 5.2 Let the sequence {xk} be generated by Algorithm 2. Then, for all k,

F (xk+1) +
σ

2
‖xk+1 − xk‖2 ≤ F (xk).

Proof By choosing i ∈ M(xk) ⊆ Mε(x
k), we apply Lemma 3.3 with setting (f, x, y, T ) as(

H − gi, xk, xk, TH+ιX ,gi
)
. The remaining proof is similar to Lemma 4.2, thus we omit here. ut

Theorem 5.2 Let the sequence {xk} be generated by Algorithm 2. Then, the following properties

hold:

(i) The sequence {F (xk)} is convergent;

(ii) The sequence of {xk} is bounded;

(iii)
∑∞
k=1 ‖xk − xk+1‖2 < +∞;

(iv) Any accumulation point of {xk} has the same objective value, i.e.,

F̄ ∗ := lim
k→+∞

F (xk);

(v) Any accumulation point of {xk} is an Aε′-stationary point, for any ε′ ∈]0, ε[;

(vi) Suppose that one of the elements in the accumulation set of {xk} is isolated. Then, the whole

sequence {xk} converges to an Aε′-stationary point for any ε′ ∈]0, ε[.

Proof The proof for the first four properties are identical to that of Theorem 4.1 by using Proposi-

tion 5.2. Now, we prove (v). Let x∞ be an accumulation point of {xk}, and {xkj}j is a subsequence

converging to it. By the assertion (iii), {xkj+1}j also converges to x∞. For any i ∈Mε′(x
∞) where

ε′ ∈]0, ε[, we have i ∈Mε(x
kj ) for all sufficiently large j. Therefore, for all i ∈Mε′(x

∞),

F (xkj+1) ≤ F (xkj ,i) +
σ

2
‖xkj ,i − xkj‖2 ≤ H(xkj ,i)− gi(xkj ,i) +

σ

2
‖xkj ,i − xkj‖2

≤ H(xkj ,i)− gi(xkj )−∇gi(xkj )>(xkj ,i − xkj ) ≤ H(y)− gi(xkj )−∇gi(xkj )>(y − xkj ), ∀y ∈ X.

The first inequality is due to (27), the last is due to the update rule (26), respectively. Now,

taking j → +∞ on both sides, we obtain

F (x∞) ≤ min
y∈X

{
H(x)− gi(x∞)−∇gi(x∞)>(x− x∞)

}
, ∀i ∈Mε′(x

∞).

By Proposition 5.1, we have ∇gi(x∞) ∈ ∂G(x∞)−gi(x∞)(H + ιX)(x∞) for any i ∈ Mε′(x
∞), i.e.,

x∞ is Aε′ -stationary for any ε′ ∈]0, ε[. For the assertion (vi), it follows directly from the assertion

(iii) and Proposition 8.3.10 in [33]. ut

2 Note the discrepancy between ε and ε′. This is consistent with the observation in [12] that if we take ε = 0 in

Algorithm 2, a limit point is not necessarily d-stationary.
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5.2 Convergence Rate Analysis

Finally, we prove the linear convergence of Algorithm 2 under Assumption 2. Our proof is some-

what parallel to the proofs in Section 4. However, there are important differences between them.

The main difference is the way we define the projected auxiliary points. In fact, we introduce

{yk,i}k,i for all i ∈M(xk) while we only define one projection vector with the index ik chosen at

k-step of Algorithm 1 (see the definition (21)). More especially, we define

yk,i ∈ arg min
y

{
‖y − xk‖ : y ∈ Ω(i) ∩ D(i)

}
. (35)

We will show in the following lemma that for all k sufficiently large and i ∈ M(xk), yk,i is

properly defined (i.e., Ω(i) ∩ D(i) is nonempty). For a sequence {xk} generated by Algorithm 2,

let us define the following index set

I∞ :=
{
i ∈ {1, ...,m} : i ∈M(xk) for infinitely many k

}
. (36)

Lemma 5.1 Let {xk} be the sequence generated by Algorithm 2, and I∞ defined in (36). Then,

(i) there exists K sufficiently large such that for all k ≥ K, M(xk) ⊆ I∞. (ii) L∩Ω(i) ∩D(i) 6= ∅
for all i ∈ I∞.

Proof (i) We use contradiction to prove it. If it does not hold, it means that there exists a infinite

index sequence kj → +∞ such that ∃ ikj ∈ M(xkj ) and ikj 6∈ I
∞. Note that {1, . . . ,m} is a

finite set. Invoking the Pigeonhole Principle, and by restricting the subsequence on hand, we have

ikj ≡ ī when j ∈ κ where κ represents the subsequence. Then, we have ī 6∈ I∞ due to ikj 6∈ I
∞.

However, it contradicts to ī ∈ I∞ due to ī ∈ M(xkj ) for infinitely many kj . In other words,

M(xk) ⊆ I∞ for all k ≥ K. (ii) We show that L∩Ω(i) ∩ D(i) 6= ∅ for all i ∈ I∞. Take any

ī ∈ I∞. Suppose {xkj}j is a subsequence of {xk} such that ī ∈ M(xkj ) for all j and xkj → x∞

as j → +∞. We show that x∞ ∈ L∩D(̄i) ∩Ω (̄i). Apparently, we have x∞ ∈ L and x∞ ∈ D(̄i) (by

continuity of {gi}mi=1) and x∞ ∈ Ω (̄i) (as x∞ is d-stationary by Theorem 5.2). ut

Next, we will prove an analogous version of Lemma 4.5.

Lemma 5.2 Let {xk} be the sequence generated by Algorithm 2. Then

lim
k→+∞

max
i∈M(xk)

{
dist(xk,L∩Ω(i) ∩ D(i))

}
= 0. (37)

Moreover, if Assumption 2(B) holds, then for all k sufficiently large and i ∈M(xk), F (yk,i) = F̄ ∗.

Proof Suppose the first argument (37) is not true. Then, there exists a ε > 0 and a subsequence

{xkj} such that ikj ∈M(xkj ) and dist(xkj ,L∩Ω(ikj ) ∩D(ikj )) ≥ ε for all j. Since the number of

the index set {1, . . . ,m} is finite, there is one index appears infinite numbers in the sequence {ikj}.
Thus, there is a subsequence {xkj}j∈κ converges to x∞ ∈ L and ikj ≡ ī for j ∈ κ. Furthermore,
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by Theorem 5.2 and invoking the fact that x∞ is d-stationary, one has x∞ ∈ L∩Ω (̄i) ∩D(̄i). This

contradicts with our assumption that dist(xkj ,L∩Ω (̄i) ∩D(̄i)) ≥ ε. Therefore, we must have (37)

holds.

Next, we further assume Assumption 2(B). For all k sufficiently large, we have

dist(xk,L∩Ω(i) ∩ D(i)) < µ/2, ∀ i ∈M(xk),

where µ is defined in Assumption 2(B). By definition of yk,i defined in (35), we have for all

i ∈ M(xk), ‖xk − yk,i‖ = dist(xk, Ω(i) ∩ D(i)) ≤ dist(xk,L∩Ω(i) ∩ D(i)) < µ/2. Therefore, by

triangle inequality, there exists x̂k ∈ L∩Ω(i) ∩ D(i) such that

‖x̂k − yk,i‖ ≤ ‖xk − x̂k‖+ ‖xk − yk,i‖ < µ/2 + µ/2 = µ.

Then, Assumption 2(B) implies that F (yk,i) = F̄ ∗ for all i ∈M(xk) and k sufficiently large. ut

Now, we are ready to prove the linear convergence of Algorithm 2 under Assumption 2. In

fact, since all accumulation points of the sequence generated by Algorithm 2 are Aε′ -stationary

for all ε′ ∈]0, ε[, Assumption 2(C) can be replaced by the following weaker version:

Assumption 3 Suppose that ε is used in Algorithm 2. For each i ∈ I, the intersection Ω(i)∩D(i)

satisfies the LLR condition at every Aε′-stationary point of (1) where 0 < ε′ < ε.

Our proof is again different from that of Theorem 4.2. Here, we need to consider the quantity

Q(xk, xk−1) := F (xk) + σ
2 ‖x

k−xk−1‖2, and first show that {Q(xk, xk−1)} is linearly convergent.

Note that by Theorem 5.2, limk→+∞Q(xk, xk−1) = F̄ ∗.

Theorem 5.3 Suppose Assumption 2(A), 2(B) and Assumption 3 hold, and let {xk} be the

sequence generated by Algorithm 2. Then, the following properties hold:

(i) the sequence {Q(xk, xk−1)− F̄ ∗} converges to zero Q-linearly;

(ii) {F (xk)− F̄ ∗} converges to zero R-linearly;

(iii) {xk} converges to an Aε′-stationary point R-linearly, where ε′ is an arbitrary value in ]0, ε[.

Proof (i) We apply Lemma 3.3 with (f, x, y, T ) = (H − gi, xk, xk, TH+ιX ,gi) for any i ∈Mε(x
k):

Fi(x
k) ≥ Fi(xk,i) +

σ

2
‖xk,i − xk‖2 +

σ

2
‖xk,i − xk‖2

≥ Q(xk+1, xk) +
σ

2
‖xk,i − xk‖2, ∀i ∈Mε(x

k).

The second inequality is due to the definition of Q(xk+1, xk) and (27). Take i ∈ M(xk). Then

Fi(x
k) = F (xk) = Q(xk, xk−1)− σ

2 ‖x
k − xk−1‖2. Then, it yields that

Q(xk+1, xk)−Q(xk, xk−1) ≤ −σ
2
‖xk−1 − xk‖2 − σ

2
‖xk,i − xk‖2 ≤ −σ

2
‖xk,i − xk‖2.

Recalling Lemma 5.1, yk,i is properly defined for all k sufficiently large and all i ∈ M(xk). We

have the following inequality for such k and i ∈M(xk):

Q(xk+1, xk) ≤ Fi(xk,i) +
σ

2
‖xk,i − xk‖2 ≤ Fi(yk,i) +

L̂

2
‖xk − yk,i‖2 = F̄ ∗ +

L̂

2
‖xk − yk,i‖2.
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The first inequality is due to Q(xk+1, xk) and the update rule (27). The second inequality is

obtained by applying Lemma 3.3 by setting (f, x, y, T ) = (H − gi, xk, yk,i, TH+ιX ,gi). The last

equality is due to Lemma 5.2. The remaining proof is similar to the assertion (i) of Theorem 4.2,

thus is omiited.

For the assertions (ii) and (iii), it follows from the fact that Q(xk, xk−1)− F̄ ∗ = F (xk)− F̄ ∗+
σ
2 ‖x

k − xk−1‖2. ut

6 Discussions on the Key Assumptions

In this final section, we focus on the key assumptions used to prove linear convergence of two

algorithms in Sections 4 and 5. We discuss conditions under which these assumptions hold.

Firstly, consider the error bound condition, i.e., Assumption 2(A). We show a general result

that this condition is equivalent to subregularity, an important concept in variational analysis,

of a related subdifferential mapping. This result is inspired by a result in [26, Section 8], where

a slightly different definition of error bound is used. This equivalence implies that Assumption

2(A) in fact does not depend on specific DC decompositions.

A set-valued mapping (or a multi-function) M : Rn ⇒ Rm is said to be subregular at (x̄, ȳ)

with parameter ` > 0 if ȳ ∈M(x̄) and there exists a neighborhood of x̄, denoted by O, such that

dist(x,M−1(ȳ)) ≤ ` · dist(ȳ,M(x)), ∀x ∈ O .

For the sake of completeness, we first prove the following lemma which is an adapted version of

a result in [26, Section 8] to our setting.

Proposition 6.1 Let the triplet (H,X, g) satisfy Assumption 1 with parameters (σ, L). The sub-

differential ∂(H + ιX − g)(x) and the stationary set Ω are defined as in (7). Suppose that Ω 6= ∅
and x̄ ∈ Ω, consider the following two conditions:

(i) The multi-function ∂(H + ιX − g)(·) is subregular at (x̄, 0);

(ii) dist(x,Ω) ≤ ˆ̀‖x− T (x)‖ for all x ∈ X ∩ O, where O is an open neighborhood of x̄.

If condition (i) holds with constant `, then condition (ii) holds with constant ˆ̀ = 1 + `L; if

condition (ii) holds with ˆ̀, then condition (i) holds with ` = 2ˆ̀/σ.

Proof For (ii)⇒(i), suppose that condition (ii) holds with constant ˆ̀ and neighborhood O of x̄.

We show that in the open neighborhood O, dist(x,Ω) ≤ 2ˆ̀σ−1 dist(0, ∂(H + ιX − g)(x)). For

any x /∈ X, ∂(H + ιX − g)(x) = ∅ [29, Proposition 23.4] and this inequality holds trivially. Now

consider x ∈ X ∩O. Let ν be a vector in ∂(H + ιX − g)(x) and ν = ω+h−∇g(x) for ω ∈ ∂H(x)

and h ∈ NX(x). By convexity of (H + ιX) and the definition of normal cone, for any x ∈ X ∩O,

ν>(x− T (x)) ≥ H(x)−
(
H(T (x)−∇g(x)>(T (x)− x)

)
≥ σ

2
‖x− T (x)‖2,
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where the second inequality is due to inequality (15) with y = x. Thus,

‖ν‖ · ‖T (x)− x‖ ≥ σ

2
‖x− T (x)‖2 ⇒ ‖x− T (x)‖ ≤ 2σ−1‖ν‖.

Therefore, dist(x,Ω) ≤ ˆ̀‖x− T (x)‖ ≤ 2ˆ̀σ−1‖ν‖, for all x ∈ O . Since ν ∈ ∂(H + ιX − g)(x),

condition (i) holds with factor ` = 2ˆ̀σ−1.

To prove the converse, suppose condition (i) holds with constant ` and neighborhood O, we

show that condition (ii) holds ˆ̀= 1 + `L. Firstly, note that x̄ ∈ Ω ⇒ T (x̄) = x̄, by the Lipschitz

continuity of T , i.e., inequality (12), there exists a neighborhood Õ of x̄ such that for all x ∈ Õ,

T (x) ∈ O. Then, we claim that for all x ∈ Õ,

dist(x,Ω) ≤ dist(T (x), Ω) + ‖x− T (x)‖ ≤ ` dist(0, ∂(H + ιX − g)(T (x))) + ‖x− T (x)‖

≤ [1 + `L] ‖x− T (x)‖.

The first inequality is the triangle inequality. The second is by applying condition (i) to T (x),

and the third inequality is because of the optimality condition of T (x):

∇g(x) ∈ ∂H(T (x)) +NX(T (x))⇐⇒ ∇g(x)−∇g(T (x)) ∈ ∂H(T (x)) +NX(T (x))−∇g(T (x)),

which implies that dist(0, ∂(H + ιX − g)(T (x))) ≤ ‖ −∇g(T (x)) +∇g(x)‖ ≤ L‖x− T (x)‖. This

concludes our proof. ut

Note that the second condition in the previous proposition is not exactly the error bound we

use. The following proposition fills this gap and shows that Assumption 2(A) is equivalent to

subregularity of subdifferential mappings.

Proposition 6.2 Let (H,X, {gi}mi=1) be a triplet satisfying Assumption 1 with scalars
(
σ, {Li}mi=1

)
.

Suppose that for any i ∈ I defined in (22) and x̄ ∈ Ω(i) ∩D(i), the multifunction ∂(H + ιX − gi)
is subregular at (x̄, 0) if and only if Assumption 2(A) holds.

Proof We first show that if for all i ∈ I defined in (22) and ∂(H + ιX − gi) is subregular at (x̄, 0)

for all x̄ ∈ Ω(i) ∩ D(i), then the following holds:

– For any ζ ≥ infx∈X F (x), there exists ρ, τ > 0 such that for any i ∈ I,

(EBN) dist(x,Ω(i)) ≤ τ‖x− T (i)(x)‖, for all x ∈ X, F (x) ≤ ζ, dist(x,Ω(i) ∩ D(i)) ≤ ρ.
(38)

Since {x : F (x) ≤ ζ} is compact, so is Ω(i) ∩ D(i) ∩{x : F (x) ≤ ζ}. By Proposition 6.1, for

any x̄ ∈ Ω(i) ∩ D(i) there exists τ̂ := τ̂(x̄) such that dist(x,Ω(i)) ≤ τ̂‖x − T (i)(x)‖ in an open

neighborhood of x̄ in X. Such open neighborhoods form an open cover of

Ω(i) ∩ D(i) ∩{x : F (x) ≤ ζ},

hence there exists a finite sub-cover. Let τ be the largest τ̂ among all x̄ associated to this

finite sub-cover, and O be the union of such finite open neighborhoods, then (38) holds with

the quantifier “dist(x,Ω(i) ∩ D(i)) ≤ ρ” replaced by “x ∈ O”. The existence of ρ can then be

proved by applying the Weierstrass Theorem to the continuous function dist(·,Oc) defined on

the compact set Ω(i) ∩ D(i) ∩{x : F (x) ≤ ζ}.
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Now, we show that (38) implies Assumption 2(A). It suffices to show that for any

ζ ≥ infx∈X F (x), and the associated ρ in (38), there exists ε > 0 such that

x ∈ D(i), F (x) ≤ ζ, ‖x− T (i)(x)‖ ≤ ε⇒ x ∈ X, F (x) ≤ ζ, dist(x,Ω(i) ∩ D(i)) ≤ ρ.

Since x ∈ X and F (x) ≤ ζ are trivial consequences of conditions on the left, we focus on the last

condition dist(x,Ω(i) ∩ D(i)) ≤ ρ. Suppose otherwise, then there exists ζ̄ ≥ infx∈X F (x) and a

sequence εk ↓ 0 and a sequence {x(k)}k ⊆ D(i) such that for all k that

F (x(k)) ≤ ζ̄, ‖x(k) − T (i)(x(k))‖ ≤ εk and dist(x(k), Ω(i) ∩ D(i)) > ρ.

Since F is level-bounded, let x∞ be a limit point of {x(k)}. By the Lipschitz condition of T (i), we

have x∞ = T (i)(x∞). In other words, x∞ ∈ Ω(i) ∩D(i). This is contradictory to the presumption

dist(x(k), Ω(i) ∩ D(i)) > ρ for all k.

Now, suppose Assumption 2(A) holds, we prove the subregularity of ∂(H + ιX − gi) at any

x̄ ∈ Ω(i)∩D(i). Firstly, by choosing ζ such that F (x̄) < ζ and using continuity, we have F (x) < ζ

and x ∈ D(i) for all x ∈ X in an open neighborhood of x̄. Consequently, there exists an open

neighborhood O of x̄ such that

dist(x,Ω(i)) ≤ τ‖x− T (i)(x)‖, for all x ∈ X ∩ O .

Then, Proposition 6.1 implies the multifunction ∂(H + ιX − gi) is subregular at (x̄, 0) for any

x̄ ∈ Ω(i) ∩ D(i). ut

Furthermore, existing results on types of functions satisfying error bound conditions (e.g.,

see [13, 21–24, 27, 34, 35] ) can be used to check Assumption 2(A) in a piecewise manner. For

example, by exploiting the following theorem in [24].

Proposition 6.3 [24]We consider the following minimization problem:

min
x∈Rn

f(x) := H(x) + g(x), (39)

where H is a proper closed convex function and g is a function (not necessarily concave nor

convex) that has a Lipschitz continuous gradient. Suppose that the objective function f of (39) is

level-bounded and the stationary point set of (39), denoted by Ω̄, is nonempty. Further, assume

that H and g satisfied with one of the following conditions:

(i) g(x) = q(Ax) for all x ∈ Rn, where A ∈ Rm×n and q is a strongly convex differentiable

function with ∇q Lipschitz continuous on any compact convex set and H is polyhedral;

(ii) g is a quadratic function (possibly nonconvex), and H is a polyhedral function.

Then, for any ζ ≥ infx∈Rn f(x), there exist τ, ε > 0 such that

dist(x,Ω) ≤ τ‖x− T (x)‖, whenever f(x) ≤ ζ, ‖x− T (x)‖ ≤ ε.

Proposition 6.4 Let
(
H,Rn, {gi}mi=1

)
be a triplet satisfying Assumption 1 with parameters

(σ, {Li}mi=1). Let Fi = H − gi for all i. If Fi satisfies the assumptions in Proposition 6.3 for

all i ∈ I, then Assumption 2(A) holds.
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Proof Since F = H −maxi gi, then F = mini Fi. For any ζ ≥ infx F (x), we denote the index set

I∗ξ :=
{
i : {x : ζ ≥ inf

x
Fi(x)} 6= φ

}
∩ I.

By assumption, dist(x,Ω(i)) ≤ τi‖x−T (i)(x)‖, for all Fi(x) ≤ ζ, ‖x−T (i)(x)‖ ≤ εi. By setting

τ := maxi∈I∗ξ τi and ε := mini∈I∗ξ εi in Assumption 2(A), it holds directly. ut

Next, we show that with the level boundedness assumption in Assumption 1, Assumption

2(B) holds whenever Fi takes only finitely many different values on Ω(i) ∩ D(i).

Proposition 6.5 Let
(
H,X, {gi}mi=1

)
be a triplet satisfying Assumption 1. Assumption 2(B)

holds if for all i ∈ I defined in (22), Fi(:= H − gi) takes only finitely many distinct values on

Ω(i) ∩ D(i).

Proof Assume otherwise, there exists two sequences {xn}n, {yn}n both in Ω(i) ∩ D(i) such that

Fi(xn) 6= Fi(yn) for all n and ‖xn − yn‖ → 0 as n → +∞. Note that as F (xn) = Fi(xn) and

F (yn) = Fi(yn) for all n, both sequences belong to the compact set {x ∈ X | F (x) ≤M} where

M is the largest value of Fi on Ω(i) ∩ D(i). Let x∗ be a accumulation point of {xn}n. Since

‖xn − yn‖ → 0, x∗ is also a accumulation point of {yn}n. Therefore |Fi(xn) − Fi(yn)| can be

arbitrarily small as n→ +∞. This contradicts with the assumption that Fi(xn) 6= Fi(yn) and Fi

takes only finitely many distinct values on Ω(i) ∩ D(i). ut

Apparently, this condition holds if each Fi is convex while F = mini Fi is nonconvex. Another

classical example is when X is polyhedral, and each Fi is the summation of a nonconvex quadratic

function and a convex polyhedral function [34, Lemma 3.1].

Finally, we consider Assumption 2(C) and Assumption 3, i.e., the locally linear regularity

(LLR) of the intersection Ω(i) and D(i) at relevant points. Note that LLR is an nonconvex

counterpart of the (bounded) linear regularity for convex sets. The following proposition is a

direct application of [36, Corollary 3].

Proposition 6.6 LLR holds if Ω(i) and D(i) are convex, and ri(Ω(i)) ∩ ri(D(i)) 6= ∅; if Ω(i) is

polyhedral, then ri(Ω(i)) can be replaced by Ω(i), and similarly for D(i).

This result implies if both Ω(i) and D(i) are polyhedral for all i such that Ω(i) ∩ D(i) 6= ∅, then

Assumption 2(C) and Assumption 3 hold. This is true when X is polyhedral, each Fi is convex

or (nonconvex) quadratic, and {gi}mi=1 only differ from each other with an affine function.

6.1 Discussions on Regularized Statistical Learning Models

Taking the following optimization problem for regularized linear regression:

min
x∈Rn

1

2
‖Ax− b‖2 + P (x;λ), (40)
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where A ∈ Rm×n, b ∈ Rn and λ is a positive tuning parameter. The regularization function P

usually takes a separable form:

P (x;λ) =

n∑
i=1

ρi(xi;λ). (41)

Example 6.1 For the least squares problems (40) with capped-`1 [37] regularization, each regu-

larizer ρi takes the form with an additional tuning parameter θ > 0:

ρ(t;λ) =

λ|t|/θ, if |t| ≤ θ,

λ, otherwise.

Note that ρ(t;λ) can be decomposed as λ|t|/θ−λmax(0, t/θ−1,−t/θ−1), the optimization (40)

can be formulated as our model (1) with triplet (H,X, {gi}i) being

H(x) =
1

2
‖Ax− b‖2 + λ

‖x‖1
θ

, X = Rn,

and each gi being an affine function. By Proposition 6.3, Assumption 2(A) holds. Assumption

2(B) holds because of Proposition 6.5 and that each H − gi is convex (hence taking a fixed value

at stationarity). Moreover, Assumption 2(C) (and hence the weaker Assumption 3) holds because

of Proposition 6.6 (noting that both Ω(i) and D(i) are convex polyhedral).

Example 6.2 For the least squares problem (40) with MCP [38] regularization, the corresponding

function ρ in (41) is defined as:

ρMCP(t;λ) =

{
λ|t| − t2

2θ , if |t| ≤ θλ,
θλ2

2 , if |t| > θλ,
with λ > 0, θ > 0.

It is not difficult to see that problem (40) with MCP [38] regularization is a special case of our

model (1) with m = 1, where

H(x) =
1

2
‖Ax− b‖2 + λ‖x‖1, X = Rn, g(x) = λ

n∑
i=1

∫ |xi|
0

min{1, x
θλ
}dx.

In the case of m = 1, d-stationarity coincides the weaker condition of criticality, and the linear

convergence of DCA-type algorithms have been solved by proving the Kurdyka- Lojasiewicz ex-

ponent of the MCP regularizer model is 1
2 [39]. It is not necessary to invoke our theory which

deals with the case of general m and d-stationarity.

7 Conclusions

In this paper, we consider a class of structured nonsmooth DC minimization. Both of convex

functions in the DC decomposition of the objective function are not necessarily smooth, and the

second is with a finite max structure. We are the first to establish the linear convergence of these

algorithms that compute a (weak or standard) d-stationary point under some error bound based

assumptions. Furthermore, we discuss some sufficient conditions to ensure these key assumptions.
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