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Abstract

The Douglas-Rachford algorithm is a classical and successful method
for solving feasibility problems. Here, we provide a region for global
convergence of the algorithm for feasibility problems involving a disc
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1 Introduction

Douglas-Rachford algorithm (DRA) is a successful operator splitting tech-
nique used in Partial differential equations and optimization problems. This
algorithm is also applied successfully in solving convex feasibility problems,
i.e., to find a point of intersection of two or more nonempty convex closed
subsets in a Hilbert space.

The method was introduced by Douglas and Rachford [2] to find nu-
merical solution of partial differential equations arising in parabolic heat
conduction problems. Lions and Mercier [3] extended this method to find a
solution of the sum of maximally monotone operators.

Recent computational experiments have demonstrated the surprising
ability of DRA method in handling non-convex optimization problems. In
the nonconvex setting, it has been successfully used to solve problems related
to combinatorial optimization [4, 5, 6], low-rank matrix reconstruction [7],
sphere packing [9, 4], matrix completion [6] and image reconstruction [10].
Intriguingly, in non-convex setting, the success is not uniform [5], and also
the convergence theory is not fully understood. One approach for proving
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the convergence is to replace the convexity with some regularity properties
which are not as convincing as convexity. Also, this type of regularity prop-
erties is satisfied locally. Therefore, the results one gets through this type
of regularity properties give only the local solutions. Another approach is
to investigate the convergence properties for the specific kind of nonconvex
problems like nonconvex feasibility problems.

In this direction, the first attempt was made by Borwein and Sims [1].
They have investigated a specific type of nonconvex feasibility problems, i.e.,
finding intersection points of a sphere and a line in the Euclidean plane. In
this sequel, they also investigated the feasibility point problems involving a
half space and the finite number of points [11].

In this paper, we analyze the convergence of the DRA method for the

feasibility problem involving a circle and a disc in the Euclidean plane. In

Section 2, we describe the required notions and available results. In Section

3, we explain the vital points of the algorithm. In Section 4 and appendix,

we prove our main results.

2 Preliminaries and Notations

Here, we assume that X is a Euclidean space of dimension two with the
Euclidean norm. Also, we consider the feasibility problem as

Find (x, y) ∈ (A ∩B), (2.1)

where A ⊂ X is a unit circle centered at the origin and B ⊂ X is a closed
unit disc centered at (1, 0). One may note that A is a nonconvex set. It is
convenient to represent A and B in the following form

A := {(x, y)|x2 + y2 = 1} and B := {(x, y)|(x− 1)2 + y2 ≤ 1}. (2.2)

For a closed subset C of X, the mapping PC : DC ( X → C is a closest
point projection of DC onto C if C ⊂ DC , P

2
C = PC and

∥ (x, y)− PC(x, y) ∥= dist((x, y), C) = inf {∥ (x, y)− (a, b) ∥: (a, b) ∈ C} ,
(2.3)

for all (x, y) ∈ DC . For a convex set, the closest point projection is unique.
For the given PC , we define the reflector of (x, y) corresponding to C as

RC := 2PC − Id, (2.4)
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where Id denotes the identity mapping. Here, closest point projection of
(x, y) ( ̸= (0, 0)) ∈ X onto A is calculated as PA(x, y) = (x,y)

∥(x,y)∥ . Similarly,

closest point projection of (x, y) onto B [13] is

PB(x, y) = (1, 0) +
(x− 1, y)

max{∥(x− 1, y)∥, 1}
. (2.5)

Notice that in our case, A is nonconvex and for all (x, y) ( ̸= (0, 0)) ∈ X, PA

is single-valued and

TA,B(x, y) = {Id+RARB

2
}(x, y) = {Id− PA + PBRA}(x, y)

= (1− 1

ρ
)(x, y) + PB{(

2

ρ
− 1)(x, y)}

= (1− 1

ρ
)(x, y) + (1, 0) +

(2ρ − 1)(x, y)− (1, 0)

max{∥(2ρ − 1)(x, y)− (1, 0)∥, 1}
.

It implies that

TA,B(x, y) =

{
(xρ ,

y
ρ) γ ≤ 1,

(1− 1
ρ + 2

ργ − 1
γ )(x, y) + (1− 1

γ , 0) γ > 1,
(2.6)

where ρ := ∥(x, y)∥ =
√

x2 + y2 and γ := ∥(2ρ − 1)(x, y)− (1, 0)∥. Here, we

will generate sequence of points (xn+1, yn+1)n∈N by (xn+1, yn+1) = TA,B(xn, yn)

for all n ∈ N and (x0, y0)( ̸= (0, 0)) ∈ X. For the rest of the paper, we denote

TA,B by T .

3 Algorithm

The iteration scheme suggests that we will generate a sequence of points
(xn) through (xn+1, yn+1) = T (xn, yn). However, one may observe that the
projection operator for origin does not map to a unique point. For avoiding
this embarrassing situation, we have the following assumption.

Assumption 3.1. For the iteration scheme, the starting point (x0, y0) sat-
isfies that (x0, y0) ∈ R2 − Λ, where Λ = {(x, 0)|x ∈ (−∞,−1] ∪ {0}}.
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In the appendix, we have shown that no points other than the points in
Λ iterate to Λ. As our starting point, i.e., x0 is outside Λ, no points for the
subsequent iterations will map to Λ. One may note that if all the points
are outside (A∪B), then the iterations will converge as a convex feasibility
problem [7]. Therefore, it remains to study in the (A ∪B) region only.

Figure 1: Regions within the circle and the disc.

R1 := {(x, y) ∈ R2|x2 + y2 ≤ 1 and x ≤ 0},
R2 := {(x, y) ∈ R2|x2 + y2 ≤ 1 and 0 < x < 1

2},
R3 := {(x, y) ∈ R2|x2 + y2 ≤ 1 and 1

2 ≤ x ≤ 1} and
R4 := {(x, y) ∈ R2|(x− 1)2 + y2 ≤ 1 and x2 + y2 > 1}.

In the beginning, we will discuss the following four regions and in the ap-

pendix, we will discuss the iterations lie outside separately.

4 Main Results

4.1 Convergence of the points lying in R3 and R4

In this section, we prove that if any iteration lies in (R3 ∪ R4) then the
next iteration lies in the intersection of A and B. Here in the figure 2 and
figure 3, we have shown the convergence of the points in R3 and R4 respec-
tively. Also, the same iterations are mentioned in tabular form in the Table
1.
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Figure 2: DRA convergence with an initial guess in R4.

Figure 3: DRA convergence with an initial guess in R3.

Proposition 4.1. If xn ≥ 1
2 and ρn ≤ 2, then ( 2

ρn
− 1)(xn, yn) ∈ B.

Proof. From the assumption of the proposition, we get

1− 2xn − (ρn − 1)2 ≤ 0.

Further simplifying and using the fact that ( 2
ρn

− 1) ≥ 0 we get

(
2

ρn
− 1){( 2

ρn
− 1)ρ2n − 2xn} ≤ 0.

Appealing to the fact ρ2n = (x2n + y2n), we get

{( 2

ρn
− 1)xn − 1}2 + {( 2

ρn
− 1)yn}2 ≤ 1. (4.1)

which implies that ( 2
ρn

− 1)(xn, yn) ∈ B. � �

Proposition 4.2. If any iteration (xn, yn) ∈ (R3 ∪R4), then the next iter-
ation (xn+1, yn+1) ∈ (A ∩B).
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Proof. From the definition of Douglas-Rachford operator, we have

(xn+1, yn+1) = T (xn, yn) = (Id− PA + PBRA)(xn, yn).

Using the definition of Reflector operator, we get

(xn+1, yn+1) = (1− 1

ρn
)(xn, yn) + PB((

2

ρn
− 1)(xn, yn)).

As (xn, yn) ∈ R3 ∪ R4, we have xn ≥ 1
2 and ρn ≤ 2, appealing to the result

from the Proposition 4.1, we get

(xn+1, yn+1) = (1− 1

ρn
)(xn, yn) + (

2

ρn
− 1)(xn, yn).

On further simplification, we get

(xn+1, yn+1) = (
xn
ρn

,
yn
ρn

). (4.2)

Using the fact ρ2n = (x2n + y2n), we get

x2n+1 + y2n+1 =
x2n + y2n

ρ2n
= 1.

Or,
(xn+1, yn+1) ∈ A. (4.3)

In order to prove that (xn+1, yn+1) ∈ B. We need to show that (xn+1−1)2+
y2n+1 ≤ 1. Inserting the values of xn+1 and yn+1 and using Equation (4.2),
we get

(xn+1 − 1)2 + y2n+1 = (
xn
ρn

− 1)2 + (
yn
ρn

)2.

Applying the fact ρ2n = (x2n + y2n) and xn ≥ 1
2 , we get

(xn+1 − 1)2 + y2n+1 = 2− 2xn
ρn

≤ 2− 1

ρn
.

For (xn, yn) in R3, by employing ρn ≤ 1, we get

(xn+1 − 1)2 + y2n+1 ≤ 1.
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For (xn, yn) in R4, we have ρn > 1. Applying triangle’s inequality and using
the fact that (xn, yn) ∈ B, we get

∥(xn+1, yn+1)− (1, 0)∥ ≤ 1

ρn
{∥(xn − 1, yn)∥+ ∥(1− ρn, 0)∥}

≤ 1

ρn
{1 + ρn − 1} = 1.

Or,
(xn+1, yn+1) ∈ B. (4.4)

From equations (4.3) and (4.4), we have

(xn+1, yn+1) ∈ (A ∩B).

� �

4.2 Convergence of R1 and R2 assuming γn ≤ 1

In this section, we prove that if any iteration lies in (R1 ∪ R2) and γn ≤ 1
then the next iteration lies in the intersection of A and B. Here, in Figure
4 and Figure 5, we have shown the convergence of points lying in R1 and
R2 respectively. Also same iterations are mentioned in tabular form in the
Table 1.

Proposition 4.3. If γn ≤ 1 and ρn ≤ 1 hold for any iteration (xn, yn) ∈
(R1 ∪R2), then the next iteration (xn+1, yn+1) ∈ (A ∩B).

Proof. Using the definition of T when γn ≤ 1 and ρn from the Equation
(2.6), one can easily see that it (xn+1, yn+1) ∈ A. Now, it remains to show
that (xn+1, yn+1) ∈ B. From the assumption, we have

γ2n ≤ 1.

Substituting the value of γn from Equation (2.6), we get

(
2

ρn
− 1){( 2

ρn
− 1)ρ2n − 2xn} ≤ 0.

Using the fact that ( 2
ρn

− 1) > 0, we get

(
2

ρn
− 1)ρ2n − 2xn ≤ 0.
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On further simplification, we have

ρn − 2 ≥ −2xn
ρn

. (4.5)

From the definition of T and Equation (2.6,4.5), it follows

(xn+1 − 1)2 + y2n+1 = (
xn
ρn

− 1)2 + (
yn
ρn

)2

=
x2n + y2n

ρ2n
+ 1− 2xn

ρn

≤ ρn ≤ 1.

Hence,
(xn+1, yn+1) ∈ A ∩B.

� �

In the next section, we prove that if for any (xn, yn) ∈ (R1 ∪ R2), then the
subsequent iterations will lie in (A ∩ B) eventually. Therefore, from now
onwards assume that γn > 1. Before moving further in order to simplify the
notations, we assume

kn := 1− 1

ρn
+

2

ρnγn
− 1

γn
. (4.6)

4.3 Convergence of R1 and R2 assuming γn > 1

4.3.1 Convergence of points in R2 assuming γn > 1

In this subsection, we prove that if for any (xn, yn) ∈ R2, then the subsequent
iterations lie (R3 ∪ R4) eventually. Before proceeding further, we will find
an upper bound for γn.
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Figure 4: DRA convergence with an initial guess in R2.

Lemma 4.1. If γn > 1, ρn ≤ 1 and xn > 0, then γn <
√
5.

Proof. We know that

γn := ∥( 2

ρn
− 1)(xn, yn)− (1, 0)∥.

Squaring both the sides and using ρ2n = x2n + y2n, we get

γ2n = (
2

ρn
− 1)2ρ2n + 1− 2(

2

ρn
− 1)xn.

Or,

γ2n − 1 = (2− ρn)
2 − 2(

2

ρn
− 1)xn ≤ (2− ρn)

2 ≤ 4.

Thus
γn <

√
5.

� �

One may note that the bound is not sharp. But
√
5 is just an upper

bound for γn.

Lemma 4.2. If 0.3 ≤ xn and ρn ≤ 1 then γn < 2.

Proof. Suppose that

2− ρn − 3

5ρn
≥ 3

2
.

Using the fact that ρn ≥ 0, we get

2− 3

5ρn
≥ 3

2
.
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On simplification, we have

ρn ≥ 6

5
.

That is not possible as ρn ≤ 1. Thus

2− ρn − 3

5ρn
<

3

2
. (4.7)

We know that

γn := ∥( 2

ρn
− 1)(xn, yn)− (1, 0)∥.

Squaring both the sides, we get

γn
2 = (2− ρn)

2 + 1− 2(2− ρn)
xn
ρn

.

Applying xn ≥ 0.3, we get

γn
2 ≤ 1 + (2− ρn)(2− ρn − 3

5ρn
).

Using Equation (4.7), we have

γn
2 ≤ 1 + (2− ρn)

3

2
< 4.

Or,
γn < 2.

� �

Lemma 4.3. If γn ≥ 2 and ρn ≤ 1, then xn+1 > 0.3.

Proof. As 0 < xn
ρn

≤ 1 and 0 < xn < 1
2 . From Equation (2.6), we get

xn+1 = { 2

ρnγn
− 1

ρn
− 1

γn
+ 1}xn + 1− 1

γn

= (
2

γn
− 1)

xn
ρn

+ (xn + 1){1− 1

γn
}

>
2

γn
− 1 +

1

2

≥ 2

γn
− 1

2
>

2√
5
− 1

2
> 0.3.

� �
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Lemma 4.4. If (xn, yn) ∈ R2 and γn > 1, then either x2n+1 + y2n+1 ≤ 1 or
(xn+1 − 1)2 + y2n+1 ≤ 1.

Proof. In order to prove this lemma, we divide it into two cases.
Case 1 kn < 0.
In this case, we show that (xn+1, yn+1) ∈ B. From Equation (2.6), we get

(xn+1 − 1)2 + y2n+1 = (knxn − 1/γn)
2 + (knyn)

2.

Using the fact that xn ≤ ρn and kn < 0, we have

(xn+1 − 1)2 + y2n+1 ≤ (−knρn + 1/γn)
2.

Substituting the value of kn and appealing to the fact that ρn ≤ 1 and
γn > 1, we get

(xn+1 − 1)2 + y2n+1 ≤ (1− ρn)
2(1− 1/γn)

2 ≤ 1.

Case 2 kn ≥ 0.
Here, we require to show that x2n+1 + y2n+1 ≤ 1. Since

x2n+1 + y2n+1 = (knxn + 1− 1/γn)
2 + (knyn)

2.

Adding and subtracting the term 2knxn(1 − 1/γn) to the right side of the
equation, we get

x2n+1 + y2n+1 = (knρn + 1− 1/γn)
2 + 2kn(xn − ρn)(1− 1/γn).

Using the fact that (xn − ρn) ≤ 0 and substituting the value of kn, we get

ρn
2 ≤ (ρn + 1/γn − ρn

γn
)2.

Now, we show that ρn + 1/γn − ρn
γn

≤ 1. Assume on the contrary that

ρn + 1/γn − ρn
γn

> 1.

Rearranging the terms, we have

(1− ρn)(1/γn − 1) > 0.

As ρn ≤ 1, it implies that 1
γn

− 1 > 0 or γn < 1. This is a contradiction to

the assumption. Hence x2n+1 + y2n+1 ≤ 1. Also

xn+1 = knxn + 1− 1/γn ≥ 0. (4.8)

Therefore, x2n+1 + y2n+1 ≤ 1 and xn+1 ≥ 0. � �
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Proposition 4.4. If (xn, yn) ∈ R2 and 1 < γn < 2, then the generated
sequence eventually lies in (R3 ∪R4).

Proof. Note that from Lemma 4.4, it is clear that (xn+1, yn+1) ∈ A ∪ B.
Since, (xn, yn) ∈ R2, we get 0 < xn < 1

2 . For proving points are eventually
in (R3∪R4), we require to show that for some k ∈ N, xn+k ≥ 1

2 . If ρn+k ≥ 1
for some k > 1, the point lies in (R3 ∪ R4). Therefore, on the contrary, we
assume ρn+k ≤ 1 for all k > 1. Also, assume that 0 < xn+k < 1

2 ∀ k ≥ 1.
We first show that xn+k is strictly increasing. It is sufficient to show that
xn+1 > xn or xn+1−xn > 0 (as it will follow by induction on n). Remember
ρn+k ≤ 1 ∀ k ≥ 1.

xn+1 − xn = (
2

ρnγn
− 1

γn
− 1

ρn
)xn + 1− 1

γn

= (1− 1

γn
)(1− xn

ρn
) +

1

γn
(
1

ρn
− 1)xn

> 0.

Hence, (xn+k)
∞
k=1 is a strictly increasing and bounded sequence of real num-

ber. Hence, the sequence converges. Also without loss of generality assume
that x, ρ, and γ is the limit of the sequence (xn+k)k≥1, (ρn+k)k≥1 and (γn+k)k≥1

respectively.

xn+1 = { 2

ρnγn
− 1

ρn
− 1

γn
+ 1}xn + 1− 1

γn
.

Applying the limits, we have

x = { 2

ργ
− 1

ρ
− 1

γ
+ 1}x+ 1− 1

γ

or
1

γ
− 1 = { 2

ργ
− 1

ρ
− 1

γ
}x ≥ (

1

γ
− 1

ρ
)x.

Using the fact that ρ ≤ 1 and γ < 2, we get

1

γ
− 1 ≥ {1

γ
− 1}x.

Using the fact that ( 1γ − 1) < 0, we get

x ≥ 1.

This is a contradiction to that assumption 0 < xn+k < 1
2 ∀ k ≥ 1. Thus

xn+k ≥ 1
2 . � �
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Remark 4.1. Observe that if γn ≥ 2 then xn+1 > 0.3 by Lemma 4.3 and
for 0.3 ≤ xn we have γn < 2 by Lemma 4.2. Therefore, by using proposition
4.4, we get that eventually points are in R3 ∪R4.

4.3.2 Convergence of points in R1 assuming γn > 1

In this subsection, we prove that if any iteration lies in R1 then the next
iterate lies in (R2 ∪R3).

Figure 5: DRA convergence with an initial guess in R1.

Lemma 4.5. If (xn, yn) ∈ R1, then
√
2 ≤ γn ≤ 3.

Proof. We prove this by contradiction. Assume that γn <
√
2. Squaring

both the sides and substituting the value of γn, we get

(2− ρn)
2 − 2(

2

ρn
− 1)xn + 1 < 2.

Using the fact that ρn ≤ 1 and xn < 0, we have

(2− ρn)
2 − 1 < 2(

2

ρn
− 1)xn < 0.

Taking square root both sides, we get

2− ρn < 1.

or,
1 < ρn.
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It is a contradiction. Now, we prove the other inequality. Note that

γn = ∥( 2

ρn
− 1)(xn, yn)− (1, 0)∥.

Applying Triangle inequality to the right side of the above equation, we get

γn ≤| ( 2

ρn
− 1) | ρn + 1 ≤ 3.

� �

Here we remind that inequalities in Lemma 4.5 are not sharp.

Lemma 4.6. If (xn, yn) ∈ R1 and kn < 0 then kn ≥ − 1
3ρn

. Moreover
(xn+1, yn+1) ∈ B.

Proof. We proceed this by contradiction. So assume that

kn < − 1

3ρn
.

Substituting the value of kn from Equation (4.6), we get

1− 1

ρn
+

2

ρnγn
− 1

γn
< − 1

3ρn
.

Adding −1
ρn

both sides and rearranging the terms on the left side of the
equation we get

(1− 1

γn
)(1− 2

ρn
) < − 4

3ρn
.

or,

(γn − 1)(2− ρn) >
4

3
γn. (4.9)

Also
2(γn − 1) > (γn − 1)(2− ρn). (4.10)

Using equations 4.9 and 4.10, we get γn > 3. This contradicts to Lemma
4.5. So kn ≥ − 1

3ρn
. Now

(xn+1 − 1)2 + y2n+1 = (knxn − 1

γn
)2 + k2ny

2
n

or,

(xn+1 − 1)2 + y2n+1 = k2nρ
2
n +

1

γ2n
− 2knxn

γn
.
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Using − 1
3ρn

≤ kn < 0 and knxn
γn

, we have

(xn+1 − 1)2 + y2n+1 <
1

9
+

1

γ2n
<

1

9
+

1

2
< 1.

Hence,
(xn+1, yn+1) ∈ B.

� �

Note that Lemma 4.6 implies that if (xn, yn) ∈ R1 and kn < 0, then
the next iteration (xn+1, yn+1) ∈ (R2 ∪ R3 ∪ R4) and for the above region
convergence is already proved. Now, we will study the case when kn ≥ 0.

Lemma 4.7. If (xn, yn) ∈ R1 and kn ≥ 0, then x2n+1 + y2n+1 < 1.

Proof. In order to prove that (xn, yn) ∈ B, we divide into two cases.
Case 1.γn > 2
Here, we will calculate the upper bound for kn. From the definition of kn,
we have

kn = 1− 1

ρn
+

1

γn
(
2

ρn
− 1).

Since ρn < 1 and 1
γn

< 1
2 , we get

kn ≤ 1− 1

ρn
+

1

2
(
2

ρn
− 1) =

1

2

or,

0 ≤ kn <
1

2
. (4.11)

Multiplying xn to Equation (4.11) and using −1 ≤ xn < 0, we get

−1

2
+

1

2
< knxn + 1− 1

γn
= xn+1 ≤ 1− 1

γn
.

Using γn < 3 and Lemma 4.5, we get

0 < xn+1 ≤
2

3
. (4.12)

Again using Equation (4.11) and −1 ≤ yn ≤ 1, we get

0 ≤ y2n+1 ≤
1

4
. (4.13)
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From the Equations (4.12 and 4.13), it follows that

x2n+1 + y2n+1+ ≤ 4

9
+

1

4
< 1.

Case 2.
√
2 ≤ γn ≤ 2

We first find out the bounds for kn. In order to find lower bound of kn, we
use ρn ≥ 1.

kn = 1− 1

γn
+

1

ρn
(
2

γn
− 1)

≥ 1− 1

γn
+

2

γn
− 1

≥ 1

2
.

For finding the upper bound of kn, we use the fact 1
γn

≤ 1√
2
.

kn = 1− 1

ρn
+

1

γn
(
2

ρn
− 1)

≤ 1− 1

ρn
+

1√
2
(
2

ρn
− 1)

≤ 1− 1√
2
+

√
2− 1

ρn
.

Thus, the bound to kn is

1

2
≤ kn ≤ 1− 1√

2
+

√
2− 1

ρn
.

Multiplying the above inequality by xn with remembering xn is negative,
we have

(1− 1√
2
)xn +

√
2− 1

ρn
xn ≤ knxn ≤ xn

2
.

Applying the bound of xn, we have

(1− 1√
2
)(−1) + (

√
2− 1)(−1) ≤ knxn ≤ 0.

Adding 1− 1
γn

to the above inequality and using the bound of γn, we have

−
√
2 + 1 ≤ xn+1 ≤

1

2
.
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Applying (
√
2− 1) < 1

2 , we get

(
√
2− 1)2 ≤ x2n+1 <

1

4
.

Following the similar arguments and −1 ≤ yn ≤ 1, we get

y2n+1 ≤
1

2
.

Using the previous two inequalities, we will get

x2n+1 + y2n+1 ≤
1

4
+

1

2
< 1. (4.14)

� �

Lemma 4.8. If (xn, yn) ∈ R1 and kn ≥ 0, then (xn+1 − 1)2 + y2n+1 ≤ 4
γ2
n
.

Proof. Putting the values of xn+1 and yn+1, we have

(xn+1 − 1)2 + y2n+1 = (knxn − 1

γn
)2 + (knyn)

2.

Using the fact that −xn ≤ ρn, we get

(xn+1 − 1)2 + y2n+1 ≤ (knρn)
2 +

1

γ2n
+

2knρn
γn

= (knρn +
1

γn
)2.

Now, estimating the bounds of knρn+
1
γn
, we get knρn+

1
γn

≥ 0. Calculating

the upper bound by using ρn ≤ 1 and γn ≥
√
2, we get

knρn +
1

γn
=

2

γn
− 1− ρn

γn
+ ρn +

1

γn

= (1− γn)(
1

γn
− 1)

≤ 2

γn
.

Or,

(xn+1 − 1)2 + y2n+1 ≤
4

γ2n
. (4.15)

� �
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Table 1: Table shows first four iterates of DRA with an initial guess T0

Initial guess Outside R4 R3 R2 R1

T0 (0.88, 2.52) (1.57, -0.69) (0.57, 0.12) (0.06, 0.11) (-0.57, -0.58)
T1 (0.6622, 1.1162) (0.9155, -0.4023) (0.9785, 0.2060) (0.5191, 0.2302) (0.2232, -0.2862)
T2 (0.5102, 0.8600) (0.9155, -0.4023) (0.9785, 0.2060) (0.9142, 0.4053) (0.6134, -0.4976)
T3 (0.5102, 0.8600) (0.9155, -0.4023) (0.9785, 0.2060) (0.9142, 0.4053) (0.7766, -0.6300)
T4 (0.5102, 0.8600) (0.9155, -0.4023) (0.9785, 0.2060) (0.9142, 0.4053) (0.7766, -0.6300)

Remark 4.2. For γn > 2 and kn ≥ 0, Using the case 1 of Lemmas 4.7
and 4.8, we conclude that (xn+1, yn+1) lies in the intersection of (xn+1 −
1)2 + y2n+1 ≤ 1 and x2n+1 + y2n+1 ≤ 1. It implies that (xn+1, yn+1) ∈ (R2 ∪
R3). However, for

√
2 ≤ γn ≤ 2, we get from Lemmas 4.7 and 4.8 that

(xn+1, yn+1) lies in the intersection of (xn+1 − 1)2 + y2n+1 ≤ 2 and x2n+1 +

y2n+1 ≤ 1, i.e., (xn+1, yn+1) ∈ R1 and xn+1 > 1−
√
2.

Proposition 4.5. If (xn, yn) ∈ R1 and
√
2 ≤ γn ≤ 2 and xn+1 > 1 −

√
2,

then (xn+1, yn+1) ∈ (R2 ∪R3).

Proof. It is sufficient to prove that xn+1 > 0. We prove this by contradiction.
Suppose

xn+1 ≤ 0.

Substituting the value of xn+1 and simplifying using 1
γn

≤ 1√
2
, we get

knxn ≤ 1

γn
− 1 ≤ 1√

2
− 1.

Appealing to the case 2 of Lemma 4.7 and 1
2 < kn, we get

xn ≤ { 1√
2
− 1} 1

kn
≤ { 1√

2
− 1}(2) =

√
2− 2.

But xn ≥ 1−
√
2, it is a contradiction. So xn+1 > 0. � �

From the remark after Lemma 4.8 and the above proposition 4.5, it is
clear that if (xn, yn) ∈ R1, then (xn+2, yn+2) ∈ (R2 ∪R3).

5 Appendix

Here, in Figure 6, we have shown the convergence of points lying outside
(A ∪B). Also, same iterations are mentioned in tabular form in Table 1.
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Figure 6: DRA convergence with an initial guess is outside (using Geogebra).

In this section, we want to find all those points for which the (n+1)th
iteration lies in the origin that is T (xn, yn) = (0, 0). It may be noted that
(xn, yn) ∈ R2 − Λ. we consider two cases γn ≤ 1 and γn > 1.
Case 1. γn ≤ 1

T (xn+1, yn+1) = (0, 0).

Substituting the value of T from Equation (2.6), we have

(
xn
ρn

,
yn
ρn

) = (0, 0).

This implies
xn = 0 and yn = 0.

Therefore, only the origin maps to the origin in this case.
Case 2. γn > 1

T (xn+1, yn+1) = (0, 0).

Substituting the value of T from Equation (2.6), we have

(knxn + 1− 1

γn
, knyn) = (0, 0).

Equating the terms component wise to zero, we get

knxn + 1− 1

γn
= 0 and knyn = 0.
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Suppose that kn = 0, then from the above equation, we get

γn = 1.

This contradicts the assumption of the case2. Therefore, we get yn = 0. In
the other words, only points on the X-axis will map to (0,0). Now, assume
kn ̸= 0. It implies yn = 0 (xn ̸= 0). Then γn = ∥( 2

∥(xn,0)∥−1)(xn, 0)−(1, 0)∥.
Assumexn > 0. Simplifying γn, we get γn = ∥(1− xn, 0)∥

γn =

{
1− xn for xn ≤ 1,
xn − 1 for xn > 1.

When 0 < xn ≤ 1 then γn ≤ 1. Thus it belongs to the case 1. Therefore,
assuming that xn > 1, from Equation (4.6), we get

(1− 1

γn
)(xn + 1) + (

2

ρnγn
− 1

ρn
)xn = 0.

Substituting the value of ρn = xn and γn = xn − 1, we get

(xn − 2)(xn + 1) + 2− (xn − 1) = 0.

or,
xn = 1.

This contradicts the assumption that xn > 1. In the other words no points
in positive X-axis will map to (0,0).

Remark 5.1. From the Proposition 3.7, we can conclude that the points
whose initial point lies in Λ = {(x, 0)|x ∈ (−∞,−1] ∪ {0}} may eventually
converge to (0, 0). Also note that no points other than the points in Λ iterate
to Λ.
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