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Abstract

The role of the steplength selection strategies in gradient methods has been widely in-
vestigated in the last decades. Starting from the work of Barzilai and Borwein (1988),
many efficient steplength rules have been designed, that contributed to make the gradient
approaches an effective tool for the large-scale optimization problems arising in important
real-world applications. Most of these steplength rules have been thought in unconstrained
optimization, with the aim of exploiting some second-order information for achieving a fast
annihilation of the gradient of the objective function. However, these rules are successfully
used also within gradient projection methods for constrained optimization, though, to our
knowledge, a detailed analysis of the effects of the constraints on the steplength selections
is still not available. In this work we investigate how the presence of the box constraints
affects the spectral properties of the Barzilai-Borwein rules in quadratic programming prob-
lems. The proposed analysis suggests the introduction of new steplength selection strategies
specifically designed for taking account of the active constraints at each iteration. The re-
sults of a set of numerical experiments show the effectiveness of the new rules with respect
to other state of the art steplength selections and their potential usefulness also in case of
box-constrained non-quadratic optimization problems.

Keywords: box-constrained optimization, gradient projection methods, steplength rules,
Hessian spectral properties.
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1. Introduction

Gradient methods are widely used for solving nonlinear optimization problems and, in
many large-scale applications, their simplicity and low memory requirements make them the
most convenient choice. In the last years, very efficient gradient-based approaches have been
designed for unconstrained and constrained problems arising in different areas, such as image
processing, compressive sensing and machine learning. The success of the gradient schemes
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in these applications is mainly due to the introduction of special strategies for accelerating
their convergence rate, such as the adaptive techniques for the steplength selection, the use
of extrapolation steps or the employment of scaled gradient directions.

This work deals with steplength selection rules, by investigating how popular techniques
designed in the context of unconstrained optimization can be adapted to gradient projection
methods for box-constrained quadratic programming problems. We focus on state of the
art steplength strategies designed by exploiting the well-known Barzilai-Borwein (BB) rules
[1]. These strategies have been originally developed in the unconstrained quadratic case,
by taking into account the importance of using steplengths approximating the inverse of
the eigenvalues of the Hessian matrix for achieving fast reductions of the eigencomponents
of the gradient. In [2] the spectral properties of both the standard BB rule and other
improved steplength techniques [3, 4, 5, 6] have been investigated. It has been shown that
the steplength rules specifically designed for an efficient approximation of the spectrum of
the Hessian generally outperform the standard BB rule and are preferable also when applied
for providing the tentative steplength of a line search procedure within gradient methods
for general non-quadratic unconstrained problems [7, 8, 9, 10, 11].

For what concerns the case of the constrained optimization problems, the role of the
steplength rules is not so deeply investigated. Many well-known gradient projection methods
for constrained optimization simply exploit the same steplength selections designed for the
unconstrained case in combination with some kind of line search strategy [12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22]. However, most of the steplength selections for unconstrained problems
are designed for achieving a fast annihilation of the gradient of the objective function, that
is not the main goal in constrained optimization. Thus, a better understanding of the role
of the steplength in gradient projection methods seems necessary and useful for improving
first-order approaches in constrained optimization.

In this paper, for the case of box-constrained quadratic programming problems, we an-
alyze how the two popular BB steplength rules behave within gradient projection methods
and how their spectral properties are affected by the presence of the constraints. In partic-
ular, on the basis of this spectral analysis, we design a new steplength rule that, by taking
into account the active constraints at each iteration, is able to achieve fast reductions of the
gradient components corresponding to the free variables at the solution. Numerical exper-
iments on different sets of randomly generated test problems are carried out for evaluating
the practical effectiveness of the gradient projection methods exploiting steplength selections
based on the proposed rule. Preliminary numerical results on box-constrained non-quadratic
problems are also discussed for showing the potential usefulness of the new steplength rule
in this more general framework.

The outline of the paper is the following. In Section 2, after briefly recalling the gradient
projection methods and the steplength rules we are interested to, we provide a spectral
analysis of the standard BB rules in the case of box-constrained quadratic programs and
introduce the new steplength selection; futhermore, alternation steplength strategies based
on the new rule are discussed. In Section 3 we report the results of the numerical experiments
and, finally, some conclusions are drawn in Section 4.
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Algorithm 1 GP method for box-constrained quadratic programs

Initialize: Choose x(0) ∈ Rn, ` ≤ x(0) ≤ u, δ, σ ∈ (0, 1), M ∈ N, 0 < αmin ≤ αmax,
α0 ∈ [αmin, αmax];

for k = 0, 1, . . .

d(k) = P`≤x≤u

(
x(k) − αkg(x(k))

)
− x(k); (gradient projection step)

νk = 1; fref = max{f(x(k−i)), 0 ≤ i ≤ min(k,M)};
while f(x(k) + νkd

(k)) > fref + σνkg(x(k))T d(k)

νk = δνk; (backtracking step)

end

x(k+1) = x(k) + νkd
(k);

define the steplength αk+1 ∈ [αmin, αmax]; (steplength updating rule)

end

2. Steplength rules in GP methods for box-constrained quadratic programs

We consider the following box-constrained Quadratic Programming (QP) problem

min
`≤x≤u

f(x) ≡ 1

2
xTAx− bTx+ c (1)

where A is an n×n symmetric positive definite matrix, b, `, u are vectors of Rn, with ` ≤ u,
and c is a scalar. Problem (1) has a unique solution x∗, satisfying the following first-order
optimality conditions  g(x∗)i = 0 for `i < x∗i < ui,

g(x∗)i ≤ 0 for x∗i = ui,
g(x∗)i ≥ 0 for x∗i = `i,

(2)

where g(x) denotes the gradient of the objective function at x: g(x) ≡ ∇f(x) = Ax− b.
In this work we are interested in solving problem (1) by means of the well-known Gra-

dient Projection (GP) method combined with a line search strategy along the feasible di-
rection. The main steps of the GP method are described in Algorithm 1. At each iteration,
the operator P`≤x≤u (·) is exploited for computing the Euclidean projection of the vector(
x(k) − αkg(x(k))

)
onto the feasible region given by the box constraints, in order to obtain

the direction d(k), which is a feasible descent direction for the objective function at x(k).
The new iterate is defined as

x(k+1) = x(k) + νkd
(k), (3)

where 0 < νk ≤ 1 is determined by a backtracking procedure implementing a standard
nonmonotone line search [23]. Finally, a steplength updating rule sets the parameter
αk+1 ∈ [αmin, αmax] for the next iteration. Our analysis focuses just on the steplength
updating strategies and their relationship with the special constraints of problem (1). Be-
fore deepening this topic, we recall in Proposition 1 the basic convergence results for the
sequence {x(k)} generated by Algorithm 1.

Proposition 1. Assume that the matrix A in problem (1) is symmetric and positive definite,
then the following properties hold for the sequence {x(k)} generated by Algorithm 1:

(i) the sequence {x(k)} converges R-linearly to the unique solution x∗ of problem (1);
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(ii) the sequence {f(x(k))} has O
(
1
k

)
convergence rate.

The proof of Proposition 1 can be derived from the analysis developed in [24] for the case in
which the GP method is applied to the minimization of general strongly convex functions.
For basic properties of the method we refer, for instance, to [12, 25] and for a convergence
analysis of more general scaled GP methods to [13, 26, 27].

It is worth stressing that the convergence properties in Proposition 1 hold independently
of the choice of the steplength αk in the closed interval [αmin, αmax]. This is very impor-
tant from a practical point of view, since it allows one to make the updating rule of αk
oriented at optimizing the performance. Many evidences of the remarkable convergence
rate improvements achievable by means of suitable steplength updating rules are avail-
able in literature; in particular, promising results have been obtained, both on library test
problems and real-world applications, by exploiting the Barzilai-Borwein steplength rules
[12, 20, 26, 18, 14, 15, 17]. These rules, originally introduced for unconstrained minimiza-
tion problems [1], aim at capturing some second order information by forcing the matrix
(αkIn)−1 to approximate the Hessian of the objective function through one of the following
secant conditions:

αk = arg min
α

∥∥∥α−1s(k−1) − y(k−1)∥∥∥ (4)

or
αk = arg min

α

∥∥∥s(k−1) − αy(k−1)∥∥∥ , (5)

where s(k−1) = x(k) − x(k−1) and y(k−1) = g(k) − g(k−1), where the notation g(i) = g(x(i)) is
exploited. From (4) and (5) the steplength updating rules

αBB1
k =

‖s(k−1)‖2

(s(k−1))T y(k−1)
(6)

and

αBB2
k =

(s(k−1))T y(k−1)

‖y(k−1)‖2
(7)

are obtained, respectively. In the last years a lot of effort has been put into understanding
the reasons of the effectiveness of the BB rules and great attention has been devoted to their
ability in approximating the inverse of the eigenvalues of the objective Hessian. In fact,
in the case of the unconstrained minimization of the quadratic function in (1), a gradient
method is simply described by the iteration

x(k+1) = x(k) − αkg(k), (8)

and for the gradient g(k+1) we have

g(k+1) = g(k) − αkAg(k). (9)

By denoting with {λ1, λ2, . . . , λn} the eigenvalues of A and with {v1, v2, . . . , vn} a set of
associated orthonormal eigenvectors, the gradient g(k+1) can be expressed as

g(k+1) =

n∑
i=1

µ
(k+1)
i vi, (10)
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where µ
(k+1)
i ∈ R is called the i-th eigencomponent of g(k+1) and satisfies the following

recurrence formula:

µ
(k+1)
i = µ

(0)
i

k∏
j=0

(1− αjλi) = µ
(k)
i (1− αkλi). (11)

The previous recurrence highlights the crucial role of a steplength αk approximating an

inverse of an eigenvalue λi: it forces a remarkable reduction of |µ(k+1)
i | with respect to

|µ(k)
i |, even if it can amplify the absolute value of some other eigencomponents. Thus, the

behaviour of a steplength selection rule can be fruitfully studied in terms of its ability in
reducing all the gradient eigencomponents by means of an effective sweeping of the spectrum
of A−1. When the gradient iteration (8) is applied in unconstrained quadratic optimization,
the BB rules (6) and (7) can be written as

αBB1
k =

g(k−1)
T
g(k−1)

g(k−1)
T
Ag(k−1)

, (12)

αBB2
k =

g(k−1)
T
Ag(k−1)

g(k−1)
T
A2g(k−1)

. (13)

These steplength rules are suitable for providing approximations of the eigenvalues of A−1,
since they satisfy

1

λmax(A)
≤ αBB2

k ≤ αBB1
k ≤ 1

λmin(A)
, (14)

where λmin(A) and λmax(A) denote the minimum and the maximum eigenvalues of A, re-
spectively. In [2], a spectral analysis of popular steplength selections shows that the BB
rule (12) produces steplengths within the spectrum of A−1 in an almost random way, while
other techniques, which are aimed at exploiting groups of small steplengths followed by
some large steplengths [3, 4, 5, 28, 29], seem to better adapt to the spectrum of A−1, thanks
to their skill in catching the eigenvalues in a suitable order. In particular, very promising
convergence rate improvements with respect to the standard BB rules have been provided
by the Adaptive Barzilai-Borwein (ABB) strategy [3] and its modification ABBmin [4], that
are defined by

αABB
k =

 αBB2
k if

αBB2
k

αBB1
k

< τ

αBB1
k otherwise

(15)

and

αABBmin

k =

 min
{
αBB2
j : j = max{1, k −ma}, . . . , k

}
if

αBB2
k

αBB1
k

< τ

αBB1
k otherwise

(16)

respectively, where τ ∈ (0, 1) and ma is a nonnegative integer.
The BB rules (6), (7) and their adaptive alternations (15) and (16) can be exploited also

in gradient methods for general nonlinear optimization problems; in these cases, they show
a behaviour very similar to that observed for quadratic problems, although the recurrence
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relation (9) does not hold. In particular, in [2] it is shown that the adaptive alternation (16)
appears more efficient than the rule (6) in fast approximating the spectrum of the Hessian
matrices of the objective function and, consequently, shows a better convergence rate.

Even if all these BB-based steplength rules have been designed in the framework of uncon-
strained optimization, they are widely used in gradient projection methods for constrained
minimization problems, still providing interesting performances [12, 26, 14, 16, 19, 15]. Here,
we investigate how the spectral analysis proposed in [2] can be generalized to the GP method
for problem (1), with the aim to provide some explanations of the BB effectiveness in this
special constrained optimization setting. We observe that, in this case, neither the recur-
rence formula (9) nor the equation (11) hold, and the optimality conditions (2) require that
only some gradient components annihilate at the solution. These remarkable differences
with respect to the unconstrained case are at the basis of the study developed in the next
subsection.

2.1. BB-like rules for box-constrained quadratic programs

In order to understand the spectral properties of the BB rules (6) and (7) when they
are exploited within the GP method for solving problem (1), we need to investigate how the
gradient projection step influences their definitions. We first study the BB1 rule and then,
by proceeding in a similar way, we develop the analysis for the BB2 selection. If, at the

(k− 1)-th iteration, we suppose that the j-th component of x(k−1) is active, x
(k−1)
j = `j (or

x
(k−1)
j = uj), and the corresponding gradient component is non-negative (or non-positive),

then we have d
(k−1)
j = 0, so that x

(k)
j = x

(k−1)
j . As a consequence, the corresponding entry

of the vector s(k−1) used in the steplength definition (6) is equal to zero: s
(k−1)
j = 0. By

using the notation

Jk−1 = {i : (x
(k−1)
i = `i ∧ g

(k−1)
i ≥ 0) ∨ (x

(k−1)
i = ui ∧ g

(k−1)
i ≤ 0)} (17)

and Ik−1 = {1, ..., n} \ Jk−1, we can write

αBB1
k =

‖s(k−1)‖2

(s(k−1))T y(k−1)
=

‖s(k−1)Ik−1
‖2(

s
(k−1)
Ik−1

)T
y
(k−1)
Ik−1

. (18)

This means that when the updating rule (6) is used in Algorithm 1 and αBB1
k ∈ [αmin, αmax],

the steplength αk satisfies the secant condition

αk = arg min
α

∥∥∥α−1s(k−1)Ik−1
− y(k−1)Ik−1

∥∥∥2 , (19)

that is, it is defined by forcing the matrix (αkI)−1 to approximate the submatrix AIk−1,Ik−1

of A defined by the intersection of the rows and the columns with indices in Ik−1. We call
this submatrix the reduced Hessian matrix at the (k − 1)-th iteration.

In particular, in the following theorem we prove that the inverse of αBB1
k belongs to the

spectrum of AIk−1,Ik−1
.

Theorem 1. If A in (1) is a symmetric positive definite matrix, we have

λmin(AIk−1,Ik−1
) ≤ 1

αBB1
k

≤ λmax(AIk−1,Ik−1
) , (20)
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where λmin(AIk−1,Ik−1
) and λmax(AIk−1,Ik−1

) are the minimum and the maximum eigen-
values of AIk−1,Ik−1

, respectively.

Proof: We assume that at the iteration (k − 1) the rows/columns of A and the entries of
any vector are reordered so that Ik−1 is related to the first indices and Jk−1 contains the
last indices; by dropping for simplicity the iteration counter k − 1 from Ik−1 and Jk−1, we
can write

x(k−1) =

(
x
(k−1)
I

x
(k−1)
J

)
, A =

(
AI,I AI,J

ATI,J AJ ,J

)
. (21)

In view of the GP iteration, we have that the entries of the iterate x(k) are

x
(k)
i =

{
x
(k−1)
i + νk−1(p

(k−1)
i − x(k−1)i ) for i ∈ I

x
(k−1)
i for i ∈ J

(22)

where p
(k−1)
i = max(`i,min(x

(k−1)
i − αk−1g(k−1)i , ui)), i ∈ I. By denoting with p(k−1) the

vector of length ]I with entries p
(k−1)
i , i ∈ I, the vector s(k−1) can be partitioned into two

sub-vectors given by

s(k−1) =

(
s
(k−1)
I

s
(k−1)
J

)
=

(
νk−1(p(k−1) − x(k−1)I )

0

)
. (23)

Any entry g
(k)
i , i = 1, . . . , n, of the gradient g(k) has the following expression:

g
(k)
i =

n∑
j=1

aijx
(k)
j − bi

=
∑
j∈I

aij(x
(k−1)
j + νk−1(p

(k−1)
j − x(k−1)j )) +

∑
j∈J

aijx
(k−1)
j − bi

= g
(k−1)
i + νk−1

∑
j∈I

aij(p
(k−1)
j − x(k−1)j ).

Consequently, from (23), we can write

y(k−1) =

(
y
(k−1)
I

y
(k−1)
J

)
= g(k) − g(k−1) =

(
AI,Is

(k−1)
I

AJ ,Is
(k−1)
I

)
. (24)

From the definition (18), the value of αBB1
k can be written as

αBB1
k =

(s
(k−1)
I )T s

(k−1)
I

(s
(k−1)
I )TAI,Is

(k−1)
I

, (25)

or, in other words, αBB1
k is the reciprocal of a Rayleigh quotient of the submatrix AI,I . �

Theorem 1 highlights that the use of the BB1 rule in Algorithm 1 leads to capture
spectral properties of the matrix AIk−1,Ik−1

instead of the whole matrix A, as done in the
unconstrained quadratic case. Thus, we may argue that now the BB1 rule plays a role in
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reducing the gradient components with indices belonging to Ik−1. This can be observed in

the special case in which Ik = Ik−1 and p
(k)
i = (x

(k)
i − αkg

(k)
i ), i ∈ Ik. In fact, under these

assumptions we have

g
(k+1)
Ik = g

(k)
Ik +AIk,Iks

(k)
Ik = g

(k)
Ik − νkαkAIk,Ikg

(k)
Ik .

By denoting with γ1, . . . , γr and u1, . . . , ur the eigenvalues and the associated orthonormal

eigenvectors of AIk,Ik , respectively, where r = ]Ik, and by writing g
(k+1)
Ik =

∑r
i=1 µ̄

(k+1)
i ui

and g
(k)
Ik =

∑r
i=1 µ̄

(k)
i ui, we obtain the following recurrence formula for the eigencomponents:

µ̄
(k+1)
i = µ̄

(k)
i (1− νkαkγi).

This means that if the selection rule (25) provides a good approximation of 1
γi

, a useful

reduction of |µ̄(k+1)
i | can be achieved.

With regard to the second BB rule, using the above notation for the (k− 1)-th iteration
of GP, we obtain that the steplength (7) can be written as

αBB2
k =

(s
(k−1)
Ik−1

)T y
(k−1)
Ik−1

‖y(k−1)Ik−1
‖2 + ‖y(k−1)Jk−1

‖2
. (26)

In view of (24), we have

αBB2
k =

(s
(k−1)
Ik−1

)TAIk−1,Ik−1
s
(k−1)
Ik−1

(s
(k−1)
Ik−1

)TA2
Ik−1,Ik−1

s
(k−1)
Ik−1

+ (s
(k−1)
Ik−1

)TATJk−1,Ik−1
AJk−1,Ik−1

s
(k−1)
Ik−1

(27)

and, consequently, 1/αBB2
k might be outside of the spectrum of the current reduced Hessian

at x(k−1). A simple way to correct (26) is to redefine this value as

αBoxBB2
k =

(s
(k−1)
Ik−1

)T y
(k−1)
Ik−1

‖y(k−1)Ik−1
‖2

, (28)

so that the following result holds.

Theorem 2. If A in (1) is a symmetric positive definite matrix, we have

λmin(AIk−1,Ik−1
) ≤ 1

αBoxBB2
k

≤ λmax(AIk−1,Ik−1
). (29)

The proof of Theorem 2 follows immediately by using the definition (24) of y
(k−1)
Ik−1

.

From the comparison between (27) and (28) we have that αBB2
k ≤ αBoxBB2

k ; furthermore,
in analogy with the inequalities (14), for the rules αBB1

k and αBoxBB2
k we have:

1

λmax(AIk−1Ik−1
)
≤ αBoxBB2

k ≤ αBB1
k ≤ 1

λmin(AIk−1Ik−1
)
. (30)

In view of these inequalities, the modified BB2 rule (28) can be exploited within the adaptive
strategies (15) and (16) that use the BB steplengths in an alternate way, for an effective com-
bination of short and long steps also in the framework of gradient methods for constrained

8



optimization. In the following, we denote by BoxABBmin the modified ABBmin selection in
which the BB2 rule is substituted by the BoxBB2 defined in (28):

αBoxABBmin

k =

 min
{
αBoxBB2
j : j = max{1, k −ma}, . . . , k

}
if

αBoxBB2
k

αBB1
k

< τ

αBB1
k otherwise

(31)

where τ ∈ (0, 1) and ma is a nonnegative integer; furthermore, we denote by BoxVABBmin

the BoxABBmin variant in which a variable setting of the parameter τ is exploited, as
suggested in [26]:

τk+1 =

 τk/ϑ if
αBoxBB2
k

αBB1
k

< τk

τk · ϑ otherwise

(32)

with ϑ > 1. A typical value for ϑ is 1.1. It is worthwhile observing that this variable setting
makes the efficiency of the steplength strategy less dependent on the value of τ provided by
the user and in several applications it allowed remarkable performance improvements with
respect to the standard ABBmin strategy [26, 19, 30, 31].

In the next section, we will evaluate on box-constrained test problems the behaviour of
the proposed modified steplengths within the GP method. In particular, we will focus on the
ability of these steplength rules to capture the spectral properties of the reduced Hessian,
recovering in this way the benefits usually exhibited by the standard BB rules in case of
unconstrained problems.

3. Numerical Experiments

In order to highlight the effectiveness of the modified versions of the BB rules for box-
constrained QP problems, we perform two numerical investigations: in the former we analyze
the spectral behaviour of the different steplength rules on some toy problems, in the latter we
evaluate the rules on a set of large-scale benchmark test problems. Finally, in order to have
some hints about the behaviour of the modified BB rules for box-constrained non-quadratic
minimization problems, we report the numerical results obtained by the GP method com-
bined with these rules on some well-known general test problems.
All the numerical experiments are carried out on a workstation equipped with an Intel
Xeon QuadCore E5620 processor at 2,40 GHz and 18 Gb of RAM, by implementing the GP
methods in the Matlab R2016a environment.

3.1. Numerical results on some special box-constrained QP problems

In this subsection we study the distribution of the steplengths generated by the considered
rules with respect to the eigenvalues of the reduced Hessian matrices obtained during the GP
iterative process. To this end, we randomly generated QP problems subject to lower bounds
in which the solution, the number of active constraints at the solution and the distribution of
the eigenvalues of the dense symmetric positive definite Hessian of the objective function are
prefixed. The main features of the three test problems used for this analysis are described in
Table 1, where na is the number of active lower constraints at the solution and I∗ denotes
the set of the indices of the inactive constraints at the solution, so that AI∗,I∗ is the reduced
Hessian matrix at the solution. The GP variants exploiting the different steplength rules are
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Table 1: Main features of three QP test problems subject to lower bounds

n = 1000 na = 400
λmin(A) λmax(A) distribution of the eigenvalues of A λmin(AI∗,I∗ ) λmax(AI∗,I∗ )

TP1 1 1000 λi(A) =
1
2

(
λ+ λ+ (λ− λ)cos

(
π(i−1)
n−1

))
λ = 1 λ = 1000

41.78 957.19

TP2 1 1000 log-spaced 3.08 753.26
TP3 9.40 1013.95 log-spaced 10 1000

distinguished by means of the rule’s name (BB1, BB2, BoxBB2, BoxABBmin, BoxVABBmin)
and share the same stopping criterion:

‖ϕ(x(k))‖ ≤ tol‖g(x(0))‖, (33)

where ϕ(x(k)) is the vector with entries ϕ
(k)
i , i = 1 . . . , n, defined as

ϕ
(k)
i =


g
(k)
i for `i < x

(k)
i < ui,

max{0, g(k)i } for x
(k)
i = ui,

min{0, g(k)i } for x
(k)
i = `i.

(34)

In the methods the following parameter setting is used: tol = 10−8, M = 9, σ = 10−4,

δ = 0.5, αmin = 10−10, αmax = 106, α0 = (g(0)
T
g(0))/(g(0)

T
Ag(0)); furthermore, τ = τ1 =

0.5 and mα = 2 are set in BoxABBmin and BoxVABBmin. The feasible initial point x(0) is
randomly generated such that its entries are inactive.

Figures 1-3 enable to show the behaviour of the BB1, BB2, BoxBB2 and BoxABBmin

rules on the three test problems. In the top and middle panels of the Figures, at the k-th
iteration, the black dots denote 20 eigenvalues of the reduced Hessian matrix AIk−1Ik−1

,
with linearly spaced indices (included the maximum and the minimum eigenvalues), and
the red cross corresponds to the inverse of the steplength αk. The blue lines show the
maximum and the minimum eigenvalues of the whole Hessian matrix and the blue symbols
“o” are used to denote 20 eigenvalues of the reduced Hessian at the prefixed solution x∗,
with linearly spaced indices (included the maximum and the minimum eigenvalues). In the
bottom panels, the errors ‖x(k) − x∗‖/‖x∗‖ (left panel) and f(x(k)) − f(x∗) (right panel)
corresponding to the different steplength rules are shown. The plots in Figures 1-3 confirm
the ability of the BB1 and BoxBB2 rules to produce steplengths αk whose inverse belong
to the spectrum of the reduced Hessian AIk−1Ik−1

. Furthermore, in the last iterations the
eigenvalues of the reduced Hessian matrices tend to stabilize and to well approximate the
eigenvalues of AI∗I∗ . This means that the two rules play a role in reducing the gradient
components with indices belonging to I∗, that are just the gradient components annihilated
at the solution. On the other hand, the inverses of the BB2 steplengths seem unable to
effectively sweep the spectrum of the reduced Hessian matrices with dangerous effects on
the performance. The behaviour of the BoxABBmin rule suggests that the benefits exhibited
by the special adaptive alternation of small and large steplengths introduced by ABBmin for
the unconstrained case, can be a useful strategy also in the box-constrained case, provided
that the BoxBB2 selection is exploited in place of the standard BB2 rule.
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3.2. Numerical results on large-scale box-constrained QP problems

In order to verify the above conclusions on a more exhaustive set of large-scale problems,
we used the software package downloadable at
http://www.dimat.unina2.it/diserafino/dds sw.htm for randomly generating
box-constrained quadratic problems. Following the procedure proposed in [32, 33], the
software allows to generate test problems with different size, spectral properties and num-
ber of active constraints at the solution. We generated a dataset of 108 strictly convex
QP problems with nondegenerate solutions, splitted into three groups of increasing size:
n = 15000, 20000, 25000; for each group, 36 problems are generated by considering three
values for the number na of active constraints at the solution, na ≈ 0.1 · n, 0.5 · n, 0.9 · n,
three values for the condition number κ(A) of the Hessian matrix A, κ(A) = 104, 105, 106,
and four levels of near-degeneracy, obtained by setting the positive Lagrangian multipli-
ers β∗i , i = 1, . . . , na, equal to 10−ηindeg, where ηi ∈ (0, 1) is a random number and
ndeg = 1, 4, 7, 10. The solution x∗ of each problem is randomly chosen from a uniform
distribution in (−1, 1), the starting point x(0) is set equal to `+u

2 and the Hessian matrix is
defined as A = GDGT where G is the product of three Householder matrices associated to
randomly generated unit vectors and D is the diagonal matrix of the eigenvalues, which are
log-spaced between 1 and κ(A). Hence, the matrix A is not stored in memory but only the
operator for computing the matrix-vector products involving A is available. The parameter
setting of the methods is the same of the previous experiments. In particular, we remark
that we did not search for the optimal choice of the parameter mα in the steplength rule
(31), since we observed that, in these experiments, it slightly affects the performance of the
BoxABBmin based methods. The behaviour of the considered steplength rules on these test
problems is evaluated by using the performance profiles proposed in [34]. By denoting with
“solver” the GP method equipped with a generic steplength rule, we assume as performance
measure of interest the execution time required by each solver to satisfy the stopping cri-
terion defined by (33), with tol = 10−7. As in [34], given a set P of np problems, for each
problem p we consider the ratio rp,s of the computing time of a solver s versus the best time
of all the solvers (performance ratio) and, for each solver s and for θ ≥ 1 define

P (rp,s, θ) =

{
1 if rp,s ≤ θ,
0 otherwise.

The performance profile of a solver s is given by

ρs(θ) =

∑
p∈P P (rp,s, θ)

np
;

hence, ρs(θ) is the probability for solver s that rp,s ≤ θ. If the stopping criterion is not
fulfilled by a solver within the maximum number of 40000 iterations, the corresponding
performance ratio is set equal to a fixed value rM larger than any ratio rp,s. For the test
problems described above, the performance profiles of the different GP versions are reported
in Figure 4. The BoxBB2 steplength rule is compared with the standard BB2 and BB1 rules
in the top-left and top-right panels, respectively, while a comparison between the BoxBB2
and the BoxABBmin is provided in the bottom-left panel; a summarizing analysis including
also the BoxVABBmin is given in the bottom-right panel. Figure 4 shows that, on the
considered set of test problems, the proposed BoxBB2 steplength rule is generally preferable
to the standard BB2 and BB1 selections. Furthermore, the adaptive alternation of the BB1
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and BoxBB2 selections exploited in the BoxABBmin is convenient with respect to the use of
a single steplength rule. In particular, the version BoxVABBmin is able to further improve
the performance provided by the BoxABBmin thanks to the updating formula (32) for the
switching parameter τ .

All the above experiments highlight that the rationale behind the BoxBB2 design, aiming
at making the rule able to generate values sweeping the spectrum of the inverse of the
reduced Hessian matrices, has given rise to a steplength rule providing a promising practical
behaviour, both in comparison with the widely used BB1 rule and, in particular, within
efficient adaptive alternation strategies, like BoxABBmin and BoxVABBmin. Furthermore,
we used the same parameter setting to generate a second dataset of strictly convex QP
problems with degenerate solutions, where the fraction of active variables at the solution x∗

that are degenerate is approximately equal to 0.2 · na, for each problem. The results are
shown in Figure 5.

3.3. Beyond the quadratic case

In case of unconstrained optimization problems, the numerical behaviour exhibited by
the BB-like rules in the quadratic case is also observed in case of non-quadratic problems
[2]: the steplength selection strategies designed for efficiently adapting to the spectrum
of the Hessian matrices of the objective function generally provide the best performance
in terms of convergence rate of the gradient scheme. Then, it is natural to ask if in the
case of box-constrained non-quadratic problems the proposed BoxBB2 rule preserves the
benefits observed in the quadratic case and the adaptive alternations of the BB1 and BoxBB2
selections still outperform the other rules. In the following, we describe preliminary results
obtained on some box-constrained non-quadratic test problems, even if the general non-
quadratic case deserves a specific analysis and it is beyond the scope of this work.

The test problems are generated as follows. Starting from an unconstrained minimization
problem with a twice continuously differentiable objective function g(x),

min
x∈Rn

g(x), (35)

for which a local minimum point x∗ is known, the technique proposed in [35] is used to
generate a box-constrained problem of the form

min
`≤x≤u

f(x) = g(x) +
∑
i∈L

hi(xi)−
∑
i∈U

hi(xi) (36)

where L = {i |x∗i = `i}, U = {i |x∗i = ui} and hi : R→ R, i ∈ L ∪U , are twice continuously
differentiable non-decreasing functions. Due to the special definition of f(x), the point x∗ is
a solution of (36). For our tests we selected some well-known non-quadratic functions g(x),
described below.

(i) Trigonometric function [36]:

g(x) = ‖b− (Av(x) +Bu(x))‖2,

where v(x) = (sin(x1), ..., sin(xn))T , u(x) = (cos(x1), ..., cos(xn))T , and A and B
are square matrices of order n = 500 with entries generated as random integers in
(−100, 100). Given a vector x∗ ∈ Rn with entries randomly generated from a uniform
distribution in (−π, π), the vector b is defined so that g(x∗) = 0. The starting vector
is set as x(0) = min(u, (max(`, x∗ + 0.3 r))), where r ∈ Rn has random entries from a
uniform distribution in [−π, π].
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Figure 1: Behaviour of GP equipped with different steplength rules on TP1. Distribution of
1
αk

with respect to the iterations for the BB1, BB2 (top panels), BoxBB2 and BoxABBmin

(middle panels) rules; errors on x(k) and f(x(k)) for the different rules (bottom panels).
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Figure 4: Runtime performance profiles obtained by the GP method equipped with different
steplength rules on a set of box-constrained QP test problems with nondegenerate solutions.
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Figure 5: Runtime performance profiles obtained by the GP method equipped with different
steplength rules on a set of box-constrained QP test problems with degenerate solutions.
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(ii) Chained Rosenbrock function [37]:

g(x) =

n∑
i=2

(4ϕi(xi−1 − x2i )2 − (1− xi)2),

where n = 500, the values ϕi, i = 1, . . . , 50, are defined as in [37, Table 1] and
ϕi+50j = ϕi, i = 1, ..., 50, j = 1, . . . , 9. In this case, a solution of the problem (35)
is x∗ = (1, 1, ..., 1)T . The starting vector is set as x(0) = min(u, (max(`, x∗ + 0.8 r))),
where r ∈ Rn has random entries from a uniform distribution in [−1, 1].

(iii) Laplace2 function [10]:

g(x) =
1

2
xTAx− bTx+

1

4
h2
∑
i

x4i ,

where A is a square matrix of order n = N3, N = 100, arising from the discretization
of a 3D Laplacian on the unit box by a standard seven-point finite difference formula,
h = 1

N+1 and b is chosen so that

x∗i ≡ x(kh, rh, sh) = h3krs(kh−1)(rh−1)(sh−1)e−
1
2 ((kh−d1)2+(rh−d2)2+(sh−d3)2),

where the index i is associated with the mesh point (kh, rh, sh), k, r, s = 1, . . . , N .
Two different settings for the parameters d, d1, d2 and d3 are considered:

a) d = 20, d1 = d2 = d3 = 0.5,

b) d = 50, d1 = 0.4, d2 = 0.7, d3 = 0.5.

In both cases, the starting vector is x(0) = `+u
2 .

For each function g(x), we built the corresponding constrained versions with the following
choices for the functions hi(x), as suggested in [35]:

(1) βi (xi − x∗i ),

(2) αi (xi − x∗i )
3

+ βi (xi − x∗i ),

(3) αi (xi − x∗i )
7/3

+ βi (xi − x∗i ),

where αi are random numbers in (0.001, 0.011) and βi = 10−ηindeg, where ηi is a random
number in (0, 1) and ndeg = 1, 4, 10; we recall that βi are the Lagrangian multipliers asso-
ciated to the active constraints and then the value ndeg allows to control the degeneracy
of the problem at x∗. The vectors ` and u are set in such a way that the number of active
constraints at the solution is equal to a prefixed value na; the same number of lower and
upper active constraints is assumed and different problems are generated by considering
na ≈ 0.1 · n, 0.5 · n, 0.9 · n. The procedure just described led us to construct a total amount
of 108 box-constrained non-quadratic test problems. Similarly to the previous experiments,
Figure 6 shows the performance profiles obtained by solving the above set of non-quadratic
problems by the GP method with different steplength rules. All the parameters involved by
the GP scheme and by the steplength rules are set as in the quadratic case, except for the
initial steplength, that now is α0 = 1, and the maximum number of iteration, that is equal to
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Figure 6: Runtime performance profiles obtained by the GP method equipped with different
steplength rules on a set of box-constrained non-quadratic test problems.

4000. From Figure 6 we observe that the BoxBB2 rule confirms, also on these non-quadratic
test problems, its better behaviour in comparison to the standard BB2 selection and well
compares with the BB1 rule. Furthermore, the steplength strategies based on adaptive al-
ternation of BB1 and BoxBB2 still provide the best performance. Then, by recalling that
the proposed selections are designed essentially for achieving an effective approximation of
the spectrum of the reduced Hessian, we may conclude that the spectral properties exhibited
by the steplength rules play a crucial role for improving the gradient methods also in case
of general box-constrained non-quadratic optimization problems.

4. Conclusions

In this work we developed a spectral analysis of the Barzilai-Borwein steplength rules
in gradient projection methods for box-constrained QP problems and, as a consequence, we
proposed a steplength strategy suitable to exploit information on the active constraints at
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each iteration. In particular, the new rule provides steplengths able to capture spectral prop-
erties of the reduced Hessian matrices, i.e., the submatrices of the Hessian of the objective
function given by the intersection of the rows and the columns with indices corresponding
to the inactive constraints at the iterations of a gradient projection scheme. This steplength
selection seems very useful in achieving a fast annihilation of the gradient components that
must be zeroed at the solution and, consequently, it can be efficiently exploited in combi-
nation with the standard Barzilai-Borwein rule within state of the art adaptive alternation
steplength strategies. Preliminary numerical results suggest that the proposed rule shows
benefits also in gradient projection methods for general box-constrained non-quadratic opti-
mization problems. Future work will concern the generalization of this analysis to the cases
of more general constraints or more complex schemes like the scaled gradient projection
methods [26, 38, 22].
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