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Abstract

We propose a family of optimization methods that achieve linear convergence using first-
order gradient information and constant step sizes on a class of convex functions much larger
than the smooth and strongly convex ones. This larger class includes functions whose second
derivatives may be singular or unbounded at their minima. Our methods are discretizations of
conformal Hamiltonian dynamics, which generalize the classical momentum method to model
the motion of a particle with non-standard kinetic energy exposed to a dissipative force and the
gradient field of the function of interest. They are first-order in the sense that they require only
gradient computation. Yet, crucially the kinetic gradient map can be designed to incorporate
information about the convex conjugate in a fashion that allows for linear convergence on
convex functions that may be non-smooth or non-strongly convex. We study in detail one
implicit and two explicit methods. For one explicit method, we provide conditions under which
it converges to stationary points of non-convex functions. For all, we provide conditions on the
convex function and kinetic energy pair that guarantee linear convergence, and show that these
conditions can be satisfied by functions with power growth. In sum, these methods expand the
class of convex functions on which linear convergence is possible with first-order computation.

1 Introduction

We consider the problem of unconstrained minimization of a differentiable function f : Rd → R,

min
x∈Rd

f(x), (1)

by iterative methods that require only the partial derivatives ∇ f(x) = (∂f(x)/∂x(n)) ∈ Rd of
f , known also as first-order methods [38, 45, 41]. These methods produce a sequence of iterates
xi ∈ Rd, and our emphasis is on those that achieve linear convergence, i.e., as a function of the
iteration i they satisfy f(xi)−f(x?) = O(λ−i) for some rate λ > 1 and x? ∈ Rd a global minimizer.
We briefly consider non-convex differentiable f , but the bulk of our analysis focuses on the case of
convex differentiable f . Our results will also occasionally require twice differentiability of f .
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Figure 1: Optimizing f(x) = [x(1) +x(2)]4 +[x(1)/2−x(2)/2]4 with three methods: gradient descent
with fixed step size equal to 1/L0 where L0 = λmax(∇2f(x0)) is the maximum eigenvalue of the
Hessian ∇2f at x0; classical momentum, which is a particular case of our first explicit method with
k(p) = [(p(1))2 + (p(2))2]/2 and fixed step size equal to 1/L0; and Hamiltonian descent, which is our
first explicit method with k(p) = (3/4)[(p(1))4/3 + (p(2))4/3] and a fixed step size.

The convergence rates of first-order methods on convex functions can be broadly separated by
the properties of strong convexity and Lipschitz smoothness. Taken together these properties for
convex f are equivalent to the conditions that the following left hand bound (strong convexity) and
right hand bound (smoothness) hold for some µ,L ∈ (0,∞) and all x, y ∈ Rd,

µ

2
‖x− y‖22 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L

2
‖x− y‖22 , (2)

where 〈x, y〉 =
∑d
n=1 x

(n)y(n) is the standard inner product and ‖x‖2 =
√
〈x, x〉 is the Euclidean

norm. For twice differentiable f , these properties are equivalent to the conditions that eigenvalues
of the matrix of second-order partial derivatives ∇2f(x) = (∂2f(x)/∂x(n)∂x(m)) ∈ Rd×d are every-
where lower bounded by µ and upper bounded by L, respectively. Thus, functions whose second
derivatives are continuously unbounded or approaching 0, cannot be both strongly convex and
smooth. Both bounds play an important role in the performance of first-order methods. On the one
hand, for smooth and strongly convex f , the iterates of many first-order methods converge linearly.
On the other hand, for any first-order method, there exist smooth convex functions and non-smooth
strongly convex functions on which its convergence is sub-linear, i.e., f(xi) − f(x?) ≥ O(i−2) for
any first-order method on smooth convex functions. See [38, 45, 41] for these classical results and
[25] for other more exotic scenarios. Moreover, for a given method it can sometimes be very easy
to find examples on which its convergence is slow; see Figure 1, in which gradient descent with a
fixed step size converges slowly on f(x) = [x(1) + x(2)]4 + [x(1)/2 − x(2)/2]4, which is not strongly
convex as its Hessian is singular at (0, 0).

The central assumption in the worst case analyses of first-order methods is that information
about f is restricted to black box evaluations of f and ∇f locally at points x ∈ Rd, see [38, 41]. In
this paper we assume additional access to first-order information of a second differentiable function
k : Rd → R and show how ∇k can be designed to incorporate information about f to yield practical
methods that converge linearly on convex functions. These methods are derived by discretizing
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Figure 2: Convergence Regions for Power Functions. Shown are regions of distinct convergence types
for Hamiltonian descent systems with f(x) = |x|b/b, k(p) = |p|a/a for x, p ∈ R and a, b ∈ (1,∞).
We show in Section 2 convergence is linear in continuous time iff 1/a + 1/b ≥ 1. In Section 4 we
show that the assumptions of the explicit discretizations can be satisfied if 1/a + 1/b = 1, leaving
this as the only suitable pairing for linear convergence. Light dotted line is the line occupied by
classical momentum with k(p) = p2/2.

the conformal Hamiltonian system [33]. These systems are parameterized by f, k : Rd → R and
γ ∈ (0,∞) with solutions (xt, pt) ∈ R2d,

x′t = ∇k(pt)

p′t = −∇f(xt)− γpt.
(3)

From a physical perspective, these systems model the dynamics of a single particle located at xt
with momentum pt and kinetic energy k(pt) being exposed to a force field∇f and a dissipative force.
For this reason we refer to k as, the kinetic energy, and ∇k, the kinetic map. When the kinetic map
∇k is the identity, ∇k(p) = p, these dynamics are the continuous time analog of Polyak’s heavy
ball method [44]. Let fc(x) = f(x + x?) − f(x?) denote the centered version of f , which takes its
minimum at 0, with minimum value 0. Our key observation in this regard is that when f is convex,
and k is chosen as k(p) = (f∗c (p) + f∗c (−p))/2 (where f∗c (p) = sup{〈x, p〉 − fc(x) : x ∈ Rd} is the
convex conjugate of fc), these dynamics have linear convergence with rate independent of f . In
other words, this choice of k acts as a preconditioner, a generalization of using k(p) =

〈
p,A−1p

〉
/2

for f(x) = 〈x,Ax〉 /2. Thus ∇k can exploit global information provided by the conjugate f∗c to
condition convergence for generic convex functions.

To preview the flavor of our results in detail, consider the special case of optimizing the power
function f(x) = |x|b/b for x ∈ R and b ∈ (1,∞) initialized at x0 > 0 using system (3) (or
discretizations of it) with k(p) = |p|a/a for p ∈ R and a ∈ (1,∞). FOr this choice of f , it can be
shown that f∗c (p) = f∗c (−p) = k(p) when a = b/(b− 1). In line with this, in Section 2 we show that
(3) exhibits linear convergence in continuous time if and only if 1/a + 1/b ≥ 1. In Section 3 we
propose two explicit discretizations with fixed step sizes; in Section 4 we show that the first explicit
discretization converges if 1/a + 1/b = 1 and b ≥ 2, and the second converges if 1/a + 1/b = 1
and 1 < b ≤ 2. This means that the only suitable pairing corresponds in this case to the choice
k(p) ∝ f∗c (p)+f∗c (−p). Figure 2 summarizes this discussion. Returning to Figure 1, we can compare
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the use of the kinetic energy of Polyak’s heavy ball with a kinetic energy that relates appropriately
to the convex conjugate of f(x) = [x(1) + x(2)]4 + [x(1)/2− x(2)/2]4.

Most convex functions are not simple power functions, and computing f∗c (p) + f∗c (−p) exactly
is rarely feasible. To make our observations useful for numerical optimization, we show that linear
convergence is still achievable in continuous time even if k(p) ≥ αmax{f∗c (p), f∗c (−p)} for some
0 < α ≤ 1 within a region defined by x0. We study three discretizations of (3), one implicit
method and two explicit ones (which are suitable for functions that grow asymptotically fast or slow,
respectively). We prove linear convergence rates for these under appropriate additional assumptions.
We introduce a family of kinetic energies that generalize the power functions to capture distinct
power growth near zero and asymptotically far from zero. We show that the additional assumptions
of discretization can be satisfied for this family of k. We derive conditions on f that guarantee the
linear convergence of our methods when paired with a specific choice of k from this family. These
conditions generalize the quadratic growth implied by smoothness and strong convexity, extending
it to general power growth that may be distinct near the minimum and asymptotically far from
the minimum, which we refer to as tail and body behavior, respectively. Step sizes can be fixed
independently of the initial position (and often dimension), and do not require adaptation, which
often leads to convergence problems, see [57]. Indeed, we analyze a kinetic map ∇k that resembles
the iterate updates of some popular adaptive gradient methods [13, 59, 18, 27], and show that it
conditions the optimization of strongly convex functions with very fast growing tails (non-smooth).
Thus, our methods provide a framework optimizing potentially non-smooth or non-strongly convex
functions with linear rates using first-order computation.

The organization of the paper is as follows. In the rest of this section, we cover notation, review
a few results from convex analysis, and give an overview of the related literature. In Section 2, we
show the linear convergence of (3) under conditions on the relation between the kinetic energy k
and f . We show a partial converse that in some settings our conditions are necessary. In Section 3,
we present the three discretizations of the continuous dynamics and study the assumptions under
which linear rates can be guaranteed for convex functions. For one of the discretizations, we also
provide conditions under which it converges to stationary points of non-convex functions. In Section
4, we study a family of kinetic energies suitable for functions with power growth. We describe the
class of functions for which the assumptions of the discretizations can be satisfied when using these
kinetic energies.

1.1 Notation and Convex Analysis Review

We let 〈x, y〉 =
∑d
n=1 x

(n)y(n) denote the standard inner product for x, y ∈ Rd and ‖x‖2 =√
〈x, x〉 the Euclidean norm. For a differentiable function f : Rd → R, the gradient ∇f(x) =

(∂f(x)/∂x(n)) ∈ Rd is the vector of partial derivatives at x. For twice-differentiable f , the Hessian
∇2h(x) = (∂2f(x)/∂x(n)∂x(m)) ∈ Rd×d is the matrix of second-order partial derivatives at x. The
notation xt denotes the solution xt : [0,∞) → Rd to a differential equation with derivative in t
denoted x′t. xi denotes the iterates xi : {0, 1, . . .} → Rd of a discrete system.

Consider a convex function h : C → R that is defined on a convex domain C ⊆ Rd and
differentiable on the interior int(C). The convex conjugate h∗ : Rd → R is defined as

h∗(p) = sup{〈x, p〉 − h(x) : x ∈ C} (4)

and it is itself convex. It is easy to show from the definition that if g : C → R is another convex
function such that g(x) ≤ h(x) for all x ∈ C, then h∗(p) ≤ g∗(p) for all p ∈ Rd. Because we make
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such extensive use of it, we remind readers of the Fenchel-Young inequality: for x ∈ C and p ∈ Rd,

〈x, p〉 ≤ h(x) + h∗(p), (5)

which is easily derived from the definition of h∗, or see Section 12 of [47]. For x ∈ int(C) by
Theorem 26.4 of [47],

〈x,∇h(x)〉 = h(x) + h∗(∇h(x)). (6)

Let y ∈ Rd, c ∈ R \ {0}. If g(x) = h(x+ y)− c, then g∗(p) = h∗(p)− 〈p, y〉+ c (Theorem 12.3 [47]).
If h(x) = |x|b/b for x ∈ R and b ∈ (1,∞), then h∗(p) = |p|a/a where a = b/(b − 1) (page 106 of
[47]). If g(x) = ch(x), then g∗(p) = ch∗(p/c) (Table 3.2 [6]). For these and more on h∗, we refer
readers to [47, 8, 6].

1.2 Related Literature

Standard references on convex optimization and the convergence analysis of first-order methods
include [38, 45, 3, 8, 41, 9].

The heavy ball method was introduced by Polyak in his seminal paper [44]. In this paper, local
convergence with linear rate was shown (i.e., when the initial position is sufficiently close to the local
minimum). For quadratic functions, it can be shown that the convergence rate for optimally chosen
step sizes is proportional to the square root of the conditional number of the Hessian, similarly to
conjugate gradient descent (see e.g., [46]). As far as we know, global convergence of the heavy ball
method for non-quadratic functions was only recently established in [19] and [30], see [22] for an
extension to stochastic average gradients. The heavy ball method forms the basis of the some of
the most successful optimization methods for deep learning, see e.g., [54, 27], and the recent review
[7]. Hereafter, classical momentum refers to any first-order discretization of the continuous analog
of Polyak’s heavy ball (with possibly suboptimal step sizes).

Nesterov obtained upper and lower bounds of matching order for first-order methods for smooth
convex functions and smooth strongly convex functions, see [41]. In Necoara et al. [36], the
assumption of strong convexity was relaxed, and under a weaker quadratic growth condition, linear
rates were obtained by several well known optimization methods. Several other authors obtained
linear rates for various classes of non-strongly convex or non-uniformly smooth functions, see e.g.,
[37, 26, 11, 58, 14, 48].

In recent years, there has been interest in the optimization community in looking at the continu-
ous time ODE limit of optimization methods, when the step size tends to zero. Su et al. [52, 53] have
found the continuous time limit of Nesterov’s accelerated gradient descent. This result improves the
intuition about Nesterov’s method, as the proofs of convergence rates in continuous time are rather
elegant and clear, while the previous proofs in discrete time are not as transparent. Follow-ups
have studied the continuous time counterparts to accelerated mirror descent [28] as well as higher
order discretizations of such systems [55, 56]. Studying continuous time systems for optimization
can separate the concerns of designing an optimizer from the difficulties of discretization. This
perspective has resulted in numerous other recent works that propose new optimization methods,
and study existing ones via their continuous time limit, see e.g., [4, 1, 15, 24, 10, 16, 17].

Conformal Hamiltonian systems (3) are studied in geometry [33, 5], because their solutions
preserve symplectic area up to a constant; when γ = 0 symplectic area is exactly preserved, when
γ > 0 symplectic area dissipates uniformly at an exponential rate [33]. In classical mechanics,
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Hamiltonian dynamics (system (3) with γ = 0) are used to describe the motion of a particle
exposed to the force field ∇f . Here, the most common form for k is k(p) = 〈p, p〉 /2m, where
m is the mass, or in relativistic mechanics, k(p) = c

√
〈p, p〉+m2c2 where c is the speed of light,

see [21]. In the Markov Chain Monte Carlo literature, where (discretized) Hamiltonian dynamics
(again γ = 0) are used to propose moves in a Metropolis–Hastings algorithm [34, 23, 12, 35], k is
viewed as a degree of freedom that can be used to improve the mixing properties of the Markov
chain [20, 31]. Stochastic differential equations similar to (3) with γ > 0 have been studied from
the perspective of designing k [32, 51].

2 Continuous Dynamics

In this section, we motivate the discrete optimization algorithms by introducing their continuous
time counterparts. These systems are differential equations described by a Hamiltonian vector field
plus a dissipation field. Thus, we briefly review Hamiltonian dynamics, the continuous dynamics
of Hamiltonian descent, and derive convergence rates for convex f in continuous time.

2.1 Hamiltonian Systems

In the Hamiltonian formulation of mechanics, the evolution of a particle exposed to a force field
∇f is described by its location xt : [0,∞) → Rd and momentum pt : [0,∞) → Rd as functions of
time. The system is characterized by the total energy, or Hamiltonian,

H(x, p) = k(p) + f(x)− f(x?), (7)

where x? is one of the global minimizers of f and k : Rd → R is called the kinetic energy. Through-
out, we consider kinetic energies k that are a strictly convex functions with minimum at k(0) = 0.
The Hamiltonian H defines the trajectory of a particle xt and its momentum pt via the ordinary
differential equation,

x′t = ∇pH(xt, pt) = ∇k(pt)

p′t = −∇xH(xt, pt) = −∇f(xt).
(8)

For any solution of this system, the value of the total energy over time Ht = H(xt, pt) is conserved
as H′t = 〈∇k(pt), p

′
t〉 + 〈∇f(xt), x

′
t〉 = 0. Thus, the solutions of the Hamiltonian field oscillate,

exchanging energy from x to p and back again.

2.2 Continuously Descending the Hamiltonian

The solutions of a Hamiltonian system remain in the level set {(xt, pt) : Ht = H0}. To drive such a
system towards stationary points, the total energy must reduce over time. Consider as a motivating
example the continuous system x′′t = −∇f(xt)−γx′t, which describes Polyak’s heavy ball algorithm
in continuous time [44]. Letting x′t = pt, the heavy ball system can be rewritten as

x′t = pt

p′t = −∇f(xt)− γpt.
(9)

Note that this system can be viewed as a combination of a Hamiltonian field with k(p) = 〈p, p〉 /2
and a dissipation field, i.e., (x′t, p

′
t) = F (xt, pt) + G(xt, pt) where F (xt, pt) = (pt,−∇f(xt)) and
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Figure 3: A visualization of a conformal Hamiltonian system.

G(xt, pt) = (0,−γpt), see Figure 3 for a visualization. This is naturally extended to define the more
general conformal Hamiltonian system [33],

x′t = ∇k(pt)

p′t = −∇f(xt)− γpt.
(3 revisited)

with γ ∈ (0,∞). When k is convex with a minimum k(0) = 0, these systems descend the level
sets of the Hamiltonian. We can see this by showing that the total energy Ht is reduced along the
trajectory (xt, pt),

H′t = 〈∇k(pt), p
′
t〉+ 〈∇f(xt), x

′
t〉 = −γ 〈∇k(pt), pt〉 ≤ −γk(pt) ≤ 0, (10)

where we have used the convexity of k, and the fact that it is minimised at k(0) = 0.
The following proposition shows some existence and uniqueness results for the dynamics (3).

We say that H is radially unbounded if H(x, p) → ∞ when ‖(x, p)‖2 → ∞, e.g., this would be
implied if f and k were strictly convex with unique minima.

Proposition 2.1 (Existence and uniqueness). If ∇f and ∇k are continuous, k is convex with a
minimum k(0) = 0, and H is radially unbounded, then for every x, p ∈ Rd, there exists a solution
(xt, pt) of (3) defined for every t ≥ 0 with (x0, p0) = (x, p). If in addition, ∇ f and ∇ k are
continuously differentiable, then this solution is unique.

Proof. First, only assuming continuity, it follows from Peano’s existence theorem [42] that there
exists a local solution on an interval t ∈ [−a, a] for some a > 0. Let [0, A) denote the right maximal
interval where a solution of (3) satisfying that x0 = x and p0 = p exist. From (10), it follows that
H′t ≤ 0, and hence Ht ≤ H0 for every t ∈ [0, A). Now by the radial unboundedness of H, and
the fact that Ht ≤ H0, it follows that the compact set {(x, p) : H(x, p) ≤ H0} is never left by the
dynamics, and hence by Theorem 3 of [43] (page 91), we must have A =∞. The uniqueness under
continuous differentiability follows from the Fundamental Existence–Uniqueness Theorem on page
74 of [43].

As shown in the next proposition, (10) implies that conformal Hamiltonian systems approach
stationary points of f .
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Proposition 2.2 (Convergence to a stationary point). Let (xt, pt) be a solution to the system (3)
with initial conditions (x0, p0) = (x, p) ∈ R2d, f continuously differentiable, and k continuously
differentiable, strictly convex with minimum at 0 and k(0) = 0. If f is bounded below and H is
radially unbounded, then ‖∇f(xt)‖2 → 0.

Proof. Since f is bounded below, Ht ≥ 0. Since H is radially unbounded, the set B := {(x, p) ∈
R2d : H(x, p) ≤ H(x0, p0) + 1} is a compact set that contains (x0, p0) in its interior. Moreover, by
(10), we also have (xt, pt) ∈ B for all t > 0. Consider the set M = {(xt, pt) : H′t = 0} ∩ B. Since
k is strictly convex, this set is equivalent to {(xt, pt) : ‖pt‖2 = 0} ∩ B. The largest invariant set
of the dynamics (3) inside M is I = {(x, p) ∈ R2d : ‖p‖2 = 0, ‖∇f(x)‖2 = 0} ∩ B. By LaSalle’s
principle [29], all trajectories started from B must approach I. Since f is a continuous bounded
function on the compact set B, there is a point x∗ ∈ B such that f(x∗) ≤ f(x) for every x ∈ B
(i.e. the minimum is attained in B) by the extreme value theorem (see [49]). Moreover, due to the
definition of B, x∗ is in its interior, hence ‖∇f(x∗)‖2 = 0 and therefore (x∗, 0) ∈ I. Thus the set I
is non-empty (note that I might contain other local minima as well).

Remark 1. This construction can be generalized by modifying the −γpt component of (3) to a
more general dissipation field −γD(pt). If the dissipation field is everywhere aligned with the kinetic
map, 〈∇k(p), D(p)〉 ≥ 0, then these systems dissipate energy. We have not found alternatives to
D(p) = γp that result in linear convergence in general.

2.3 Continuous Hamiltonian Descent on Convex Functions

In this section we study how k can be designed to condition the system (3) for linear convergence
in log(f(xt) − f(x?)). Although the solutions xt, pt of (3) approach stationary points under weak
conditions, to derive rates we consider the case when f is convex. To motivate our choice of k,
consider the quadratic function f(x) = 〈x,Ax〉 /2 with k(p) =

〈
p,A−1p

〉
/2 for positive definite

symmetric A ∈ Rd×d. Now (3) becomes,

x′t = A−1pt

p′t = −Axt − γpt.
(11)

By the change of variables vt = A−1pt, this is equivalent to

x′t = vt

v′t = −xt − γvt,
(12)

which is a universal equation and hence the convergence rate of (11) is independent of A. Although
this kinetic energy implements a constant preconditioner for any f , for this specific f k is its convex
conjugate f∗. This suggests the core idea of this paper: taking k related in some sense to f∗ for
more general convex functions may condition the convergence of (3). Indeed, we show in this section
that, if the kinetic energy k(p) upper bounds a centered version of f∗(p), then the convergence of
(3) is linear.

More precisely, define the following centered function fc : Rd → R,

fc(x) = f(x+ x?)− f(x?). (13)

The convex conjugate of fc is given by f∗c (p) = f∗(p)−〈x?, p〉+f(x?) and is minimized at f∗c (0) = 0.
Importantly, as we will show in the final lemma of this section, taking a kinetic energy such that
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k(p) ≥ αmax(f∗c (p), f∗c (−p)) for some α ∈ (0, 1] suffices to achieve linear rates on any differentiable
convex f in continuous time. The constant α is included to capture the fact that k may under
estimate f∗c by some constant factor, so long as it is positive. If α does not depend in any fashion
on f , then the convergence rate of (3) is independent of f . In Section 2.4 we also show a partial
converse — for some simple problems taking a k not satisfying those assumptions results in sub-
linear convergence for almost every path (except for one unique curve and its mirror).

Remark 2. There is an interesting connection to duality theory for a specific choice of k. In a
slight abuse of representation, consider rewriting the original problem as

min
x∈Rd

f(x) = min
x∈Rd

1

2
(f(x) + f(x)).

The Fenchel dual of this problem is equivalent to the following problem after a small reparameter-
ization of p (see Chapter 31 of [47]),

max
p∈Rd

1

2
(−f∗(p)− f∗(−p)).

The Fenchel duality theorem guarantees that for a given pair of primal-dual variables (x, p) ∈ Rd,
the duality gap between the primal objective f(x) and the dual objective (−f∗(p) − f∗(−p))/2 is
positive. Thus,

f(x)− (−f∗(p)− f∗(−p))/2 = f(x)− f(x?) + (f∗(p) + f∗(−p))/2 + f(x?)

= f(x)− f(x?) + (f∗c (p) + f∗c (−p))/2 ≥ 0.

Thus, for the choice k(p) = (f∗c (p) + f∗c (−p))/2, which as we will show implies linear convergence
of (3), the Hamiltonian H(x, p) is exactly the duality gap between the primal and dual objectives.

Linear rates in continuous time can be derived by a Lyapunov function V : Rd×d → [0,∞)
that summarizes the total energy of the system, contracts exponentially (or linearly in log-space),
and is positive unless (xt, pt) = (x?, 0). Ultimately we are trying to prove a result of the form
V ′t ≤ −λVt for some rate λ > 0. As the energy Ht is decreasing, it suggests using Ht as a
Lyapunov function. Unfortunately, this will not suffice, as Ht plateaus instantaneously (H′t = 0)
at points on the trajectory where pt = 0 despite xt possibly being far from x?. However, when
pt = 0, the momentum field reduces to the term −∇f(xt) and the derivative of 〈xt − x?, pt〉 in t
is instantaneously strictly negative −〈xt − x?,∇f(xt)〉 < 0 for convex f (unless we are at (x?, 0)).
This suggests the family of Lyapunov functions that we study in this paper,

V(x, p) = H(x, p) + β 〈x− x?, p〉 , (14)

where β ∈ (0, γ) (see the next lemma for conditions that guarantee that it is non-negative). As
with H, Vt is used to indicate V(xt, pt) at time t along a solution to (3). Before moving on to the
final lemma of the section, we prove two technical lemmas that will give us useful control over V
throughout the paper.

The first lemma describes how β must be constrained for V to be positive and to track H closely,
so that it is useful for the analysis of the convergence of H and ultimately f .
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Lemma 2.3 (Bounding the ratio of H and V). Let x ∈ Rd, f : Rd → R convex with unique
minimum x?, k : Rd → R strictly convex with minimum k(0) = 0, α ∈ (0, 1] and β ∈ (0, α].
If p ∈ Rd is such that k(p) ≥ αf∗c (−p), then

〈x− x?, p〉 ≥ − (k(p)/α+ f(x)− f(x?)) ≥ −
H(x, p)

α
, (15)

α−β
α H(x, p) ≤ V(x, p). (16)

If p ∈ Rd is such that k(p) ≥ αf∗c (p), then

〈x− x?, p〉 ≤ k(p)/α+ f(x)− f(x?) ≤
H(x, p)

α
, (17)

V(x, p) ≤ α+β
α H(x, p). (18)

Proof. Assuming that k(p) ≥ αf∗c (−p), we have

k(p)/α+ fc(x− x?) ≥ f∗c (−p) + fc(x− x?)
≥ 〈x− x?,−p〉 − fc(x− x?) + fc(x− x?)
= −〈x− x?, p〉 ,

hence we have (15). (16) follows by rearrangement. The proof of (17) and (18) is similar.

Lemma 2.3 constrains β in terms of α. For a result like V ′t ≤ −λVt , we will need to control β in
terms of the magnitude γ of the dissipation field. The following lemma provides constraints on β
and, under those constraints, the optimal β. The proof can be found in Section A of the Appendix.

Lemma 2.4 (Convergence rates in continuous time for fixed α). Given γ ∈ (0, 1), f : Rd → R
differentiable and convex with unique minimum x?, k : Rd → R differentiable and strictly convex
with minimum k(0) = 0. Let xt, pt ∈ Rd be the value at time t of a solution to the system (3) such
that there exists α ∈ (0, 1] where k(pt) ≥ αf∗c (−pt). Define

λ(α, β, γ) = min

(
αγ − αβ − βγ

α− β ,
β(1− γ)

1− β

)
. (19)

If β ∈ (0,min(α, γ)], then
V ′t ≤ −λ(α, β, γ)Vt.

Finally,

1. The optimal β ∈ (0,min(α, γ)], β? = arg maxβ λ(α, β, γ) and λ? = λ(α, β?, γ) are given by,

β? = 1
1+α

(
α+ γ

2 −
√

(1− γ)α2 + γ2

4

)
, (20)

λ? =

 1
1−α

(
(1− γ)α+ γ

2 −
√

(1− γ)α2 + γ2

4

)
for 0 < α < 1,

γ(1−γ)
2−γ for α = 1,

(21)
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2. If β ∈ (0, αγ/2], then

λ(α, β, γ) =
β(1− γ)

1− β , and (22)

−
(
γ − β − γ2(1− γ)/4

)
k(pt)− βγ 〈xt − x?, pt〉 − β 〈xt − x?,∇f(xt)〉

≤ −β(1− γ)(k(pt) + f(xt)− f(x?) + β 〈xt − x?, pt〉). (23)

These two lemmas are sufficient to prove the linear contraction of V and the contraction f(xt)−
f(x?) ≤ α

α−β?H0 exp(−λ?t) under the assumption of constant α and β. Still, the constant α, which
controls our approximation of f∗c may be quite pessimistic if it must hold globally along xt, pt as the
system converges to its minimum. Instead, in the final lemma that collects the convergence result
for this section, we consider the case where α may increase as convergence proceeds. To support an
improving α, our constant β will now have to vary with time and we will be forced to take slightly
suboptimal β and λ given by (22) of Lemma 2.4. Still, the improving α will be important in future
sections for ensuring that we are able to achieve position independent step sizes.

We are now ready to present the central result of this section. Under Assumptions A we show
linear convergence of (3). In general, the dependence of the rate of linear convergence on f is via
the function α and the constant Cα,γ in our analysis.

Assumptions A.

A.1 f : Rd → R differentiable and convex with unique minimum x?.

A.2 k : Rd → R differentiable and strictly convex with minimum k(0) = 0.

A.3 γ ∈ (0, 1).

A.4 There exists some differentiable non-increasing convex function α : [0,∞) → (0, 1]
and constant Cα,γ ∈ (0, γ ] such that for every p ∈ Rd,

k(p) ≥ α(k(p)) max(f∗c (p), f∗c (−p)) (24)

and that for every y ∈ [0,∞)

−Cα,γα′(y)y < α(y). (25)

In particular, if k(p) ≥ α? max(f∗c (p), f∗c (−p)) for a constant α? ∈ (0, 1], then the
constant function α(y) = α? serves as a valid, but pessimistic choice.

Remark 3. Assumption A.4 can be satisfied if a symmetric lower bound on f is known. For
example, strong convexity implies

f(x+ x?)− f(x?) ≥
µ

2
‖x‖22 .

This in turn implies f∗c (p) ≤ ‖p‖22 /(2µ). Because k(p) = ‖p‖22 /(2µ) is symmetric, it satisfies A.4
which explains why conditions relating to strong convexity are necessary for linear convergence of
Polyak’s heavy ball.

11



Theorem 2.5 (Convergence bound in continuous time with general α). Given f , k, γ, α, Cα,γ
satisfying Assumptions A. Let (xt, pt) be a solution to the system (3) with initial states (x0, p0) =

(x, 0) where x ∈ Rd. Let α? = α(3H0), λ =
(1−γ)Cα,γ

4 , and W : [0,∞)→ [0,∞) be the solution of

W ′t = −λ · α(2Wt)Wt,

with W0 := H0 = f(x0)− f(x?). Then for every t ∈ [0,∞), we have

f(xt)− f(x?) ≤ 2H0 exp

(
−λ
∫ t

0

α(2Wt)

)
≤ 2H0 exp (−λα?t) . (26)

Proof. By (24) in assumption A.4, the conditions of Lemma 2.3 hold, and by (15) and (17) we have

| 〈xt − x?, pt〉 | ≤ k(pt)/α(k(pt)) + f(xt)− f(x?) ≤
Ht

α(k(pt))
. (27)

Instead of defining the Lyapunov function Vt exactly as in (14) we take a time-dependent βt.
Specifically, for every t ≥ 0 let Vt be the unique solution v of the equation

v = Ht +
Cα,γα(2v)

2
〈xt − x?, pt〉 (28)

in the interval v ∈ [Ht/2, 3Ht/2]. To see why this equation has a unique solution in v ∈ [Ht/2, 3Ht/2],
note that from (27) it follows that

|α (2v) 〈xt − x?, pt〉 | ≤ Ht for every v ≥ Ht
2
,

and hence for any such v, we have

Ht
2
≤ Ht +

Cα,γα(2v)

2
〈xt − x?, pt〉 ≤

3

2
Ht. (29)

This means that for v = Ht
2 , the left hand side of (28) is smaller than the right hand side, while for

v = 3Ht
2 , it is the other way around. Now using (25) in assumption A.4 and (27), we have

|Cα,γα′ (2Vt) 〈xt − x?, pt〉| ≤
∣∣∣∣Cα,γ α′(2Vt)2Vtα(2Vt)

∣∣∣∣ < 1, (30)

Thus, by differentiation, we can see that (30) implies that

∂

∂v

(
v −Ht − Cα,γ

2 α(2v) 〈xt − x?, pt〉
)
> 0,

which implies that (28) has a unique solution Vt in [H2 ,
3Ht

2 ]. Let αt = α(2Vt) and βt =
Cα,γ

2 α (2Vt).
By the implicit function theorem, it follows that Vt is differentiable in t. Morover, since

Vt = Ht +
Cα,γα(2Vt)

2
〈xt − x?, pt〉 (31)

for every t ≥ 0, by differentiating both sides, we obtain that

V ′t = −(γ − βt) 〈∇k(pt), pt〉 − βtγ 〈xt − x?, pt〉 − βt 〈xt − x?,∇f(xt)〉+ β′t 〈xt − x?, pt〉

12
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Figure 4: Importance of Assumptions A. Solutions xt and iterates xi of our first explicit method
on f(x) = x4/4 with two different choices of k. Notice that f∗c (p) = 3p4/3/4 and thus k(p) = p2/2
cannot be made to satisfy assumption A.4.

The first three terms are equivalent to the temporal derivative of Vt with constant β = βt. Since
αt ≤ α(k(pt)) and βt ≤ γ, the assumptions of Lemma 2.4 are satisfied locally for αt, βt and we get

V ′t ≤ −λ(αt, βt, γ)Vt + β′t 〈xt − x?, pt〉 = −λ(αt, βt, γ)Vt + Cα,γα
′
t 〈xt − x?, pt〉 V ′t.

Using (22) of Lemma 2.4 for αt, βt, we have λ(αt, βt, γ) = βt(1−γ)
1−βt ≥ βt(1− γ) and

V ′t ≤ −βt(1− γ)Vt + Cα,γα
′
t 〈xt − x?, pt〉 V ′t.

Using (30) we have V ′t ≤ −βt(1−γ)
2 Vt. Notice that V0 = H0 since we have assumed that p0 = 0, and

the claim of the lemma follows by Grönwall’s inequality. The final inequality (26) follows from the
fact that α(2Vt) ≥ α(3H0) = α?.

2.4 Partial Lower Bounds

In this section we consider a partial converse of Proposition 2.5, showing in a simple setting that
if the assumption k(p) ≥ αmax(f∗c (p), f∗c (−p)) of A.4 is violated, then the ODE (3) contracts sub-
linearly. Figure 4 considers the example f(x) = x4/4. If k(p) = |p|a/a, then assumptions A cannot
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Figure 5: Solutions to the Hamiltonian descent system with f(x) = x4/4 and k(p) = x2/2. The

right plots show a numerical approximation of (x
(η)
t , p

(η)
t ) and (−x(η)

t ,−p(η)
t ). The left plots show a

numerical approximation of (x
(θ)
t , p

(θ)
t ) and (−x(θ)

t ,−p(θ)
t ) for θ = η+δ ∈ R, which represent typical

paths.

be satisfied for small p unless b ≥ 4/3. Figure 4 shows that an inappropriate choice of k(p) = p2/2
leads to sub-linear convergence both in continuous time and for one of the discretizations of Section
3. In contrast, the choice of k(p) = 3p4/3/4 results in linear convergence, as expected.

Let b, a > 1 and γ > 0. For d = 1 dimension, with the choice f(x) := |x|b/b and k(p) := |p|a/a,
(3) takes the following form,

x′t = |pt|a−1 sign(pt),

p′t = −|xt|b−1 sign(xt)− γpt.
(32)

Since f(x) takes its minimum at 0, (xt, pt) are expected to converge to (0, 0) as t→∞. There
is a trivial solution: xt = pt = 0 for every t ∈ R. The following Lemma shows an existence and
uniqueness result for this equation. The proof is included in Section B of the Appendix.

Lemma 2.6 (Existence and uniqueness of solutions of the ODE). Let a, b, γ ∈ (0,∞). For every
t0 ∈ R and (x, p) ∈ R2, there is a unique solution (xt, pt)t∈R of the ODE (32) with xt0 = x, pt0 = p.
Either xt = pt = 0 for every t ∈ R, or (xt, pt) 6= (0, 0) for every t ∈ R.

14



Note that if (xt, pt) is a solution, and ∆ ∈ R, then (xt+∆, pt+∆) is also a solution (time trans-
lation), and (−xt,−pt) is also a solution (central symmetry).

Note also that f∗(p) = f∗(−p) = |p|b∗/b∗ for b∗ := (1− 1
b )−1. Hence if a ≤ b∗, or equivalently,

if 1
b + 1

a ≥ 1, the conditions of Proposition 2.5 are satisfied for some α > 0 (in particular, if a = b∗,
then α = 1 independently of x0, p0). Hence in such cases, the speed of convergence is linear. For

a > b∗, limp→0
K(p)
f∗(p) = 0, so the conditions of Proposition 2.5 are violated.

Now we are ready to state the main result in this section, a theorem characterizing the con-
vergence speeds of (xt, pt) to (0, 0) in this situation. The proof is included in Section B of the
Appendix.

Proposition 2.7 (Lower bounds on the convergence rate in continuous time). Suppose that 1
b + 1

a <

1. For any θ ∈ R, we denote by (x
(θ)
t , p

(θ)
t ) the unique solution of (32) with x0 = θ, p0 = 0. Then

there exists a constant η ∈ (0,∞) depending on a and b such that the path (x
(η)
t , p

(η)
t ) and its

mirrored version (x
(−η)
t , p

(−η)
t ) satisfy that

|x(−η)
t | = |x(η)

t | ≤ O(exp(−αt)) for every α < γ(a− 1) as t→∞.

For any path (xt, pt) that is not a time translation of (x
(η)
t , p

(η)
t ) or (x

(−η)
t , p

(−η)
t ), we have∣∣x−1

t

∣∣ = O(t
1

ba−b−a ) as t→∞,

so the speed of convergence is sub-linear and not linearly fast.

Figure 5 illustrates the two paths where the convergence is linearly fast for a = 2, b = 4. The
main idea in the proof of Proposition 2.7 is that we establish the existence of a class of trapping
sets, i.e. once the path of the ODE enters one of them, it never escapes. Convergence rates within
such sets can be shown to be logarithmic, and it is established that only two paths (which are
symmetric with respect to the origin) avoid each one of the trapping sets, and they have linear
convergence rate.

3 Optimization Algorithms

In this section we consider three discretizations of the continuous system (3), one implicit and two
explicit. For these discretizations we must assume more about the relationship between f and k.
The implicit method defines the iterates as solution of a local subproblem. The first and second
explicit methods are fully explicit, and we must again make stronger assumptions on f and k. The
proofs of all of the results in this section are given in Section C of the Appendix.

3.1 Implicit Method

Consider the following discrete approximation (xi, pi) to the continuous system, making the fixed
ε > 0 finite difference approximation, xi+1−xi

ε = x′t and pi+1−pi
ε = p′t, which approximates the field

at the forward points.
xi+1 − xi

ε
= ∇k(pi+1)

pi+1 − pi
ε

= −γpi+1 −∇f(xi+1).
(33)
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Since ∇k∗(∇k(p)) = p, this system of equations corresponds to the stationary condition of the
following subproblem iteration, which we introduce as our implicit method.

Implicit Method. Given f, k : Rd → R, ε, γ ∈ (0,∞), x0, p0 ∈ Rd.
Let δ = (1 + γε)−1 and

xi+1 = arg min
x∈Rd

{
εk∗(x−xiε ) + εδf(x)− δ 〈pi, x〉

}
pi+1 = δpi − εδ∇f(xi+1).

(34)

The following lemma shows that the formulation (34) is well defined. The proof is included in
Section C of the Appendix.

Lemma 3.1 (Well-definedness of the implicit scheme). Suppose that f and k satisfy assumptions
A.1 and A.2, and ε, γ ∈ (0,∞). Then (34) has a unique solution for every xi, pi ∈ Rd, and this
solution also satisfies (33).

As this discretization involves solving a potentially costly subproblem at each iteration, it re-
quires a relatively light assumption on the compatibility of f and k.

Assumptions B.

B.1 There exists Cf,k ∈ (0,∞) such that for all x, p ∈ Rd,

| 〈∇f(x),∇k(p)〉 | ≤ Cf,kH(x, p). (35)

Remark 4. Smoothness of f implies 1
2 ‖∇f(x)‖22 ≤ L(f(x)− f(x?)) (see (2.1.7) of Theorem 2.1.5

of [41]). Thus, if f is smooth and k(p) = 1
2 ‖p‖

2
2, then the assumption B.1 can be satisfied by

Cf,k = max{1, L}, since

| 〈∇f(x),∇k(p)〉 | ≤ 1
2 ‖∇f(x)‖22 + 1

2 ‖∇k(p)‖22 ≤ L(f(x)− f(x?)) + k(p).

The following proposition shows a convergence result for the implicit scheme.

Proposition 3.2 (Convergence bound for the implicit scheme). Given f , k, γ, α, Cα,γ , and
Cf,k satisfying assumptions A and B. Suppose that ε < 1−γ

2 max(Cf,k,1) . Let α? = α(3H0), and let

W0 = f(x0)− f(x?) and for i ≥ 0,

Wi+1 =Wi [1 + εCα,γ(1− γ − 2Cf,kε)α(2Wi)/4]
−1
.

Then for any (x0, p0) with p0 = 0, the iterates of (33) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0[1 + εCα,γ(1− γ − 2Cf,kε)α?/4]−i.

Remark 5. Proposition 3.2 means that we can fix any step size 0 < ε < 1−γ
2 max(Cf,k,1) independently

of the initial point, and have linear convergence with contraction rate that is proportional to α(3H0)
initially and possibly increasing as we get closer to the optimum. In Section 4 we introduce kinetic
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energies k(p) that behave like ‖p‖a2 near 0 and ‖p‖A2 in the tails. We will show that for functions

f(x) that behave like ‖x− x?‖b2 near their minima and ‖x− x?‖B2 in the tails the conditions of
assumptions B are satisfied as long as 1

a + 1
b = 1 and 1

A + 1
B ≥ 1. In particular, if we choose

k(p) =
√
‖p‖22 + 1 − 1 (relativistic kinetic energy), then a = 2 and A = 1, and assumptions B can

be shown to hold for every f that has quadratic behavior near its minimum and no faster than
exponential growth in the tails.

3.2 First Explicit Method, with Analysis via the Hessian of f

The following discrete approximation (xi, pi) to the continuous system makes a similar finite dif-
ference approximation, xi+1−xi

ε = x′t and pi+1−pi
ε = p′t for ε > 0. In contrast to the implicit

method, it approximates the field at the point (xi, pi+1), making it fully explicit without any costly
subproblem,

xi+1 − xi
ε

= ∇k(pi+1)

pi+1 − pi
ε

= −γpi+1 −∇f(xi).

This method can be rewritten as our first explicit method.

First Explicit Method. Given f, k : Rd → R, ε, γ ∈ (0,∞), x0, p0 ∈ Rd.
Let δ = (1 + γε)−1 and

pi+1 = δpi − εδ∇f(xi)

xi+1 = xi + ε∇k(pi+1).
(36)

This discretization exploits the convexity of k by approximating the continuous dynamics at the
forward point pi+1, but is made explicit by approximating at the backward point xi. Because
this method approximates the field at the backward point xi it requires a kind of smoothness
assumption to prevent f from changing too rapidly between iterates. This assumption is in the
form of a condition on the Hessian of f , and thus we require twice differentiability of f for the
first explicit method. Because the accumulation of gradients of f in the form of pi are modulated
by k, this condition in fact expresses a requirement on the interaction between ∇k and ∇2f , see
assumption C.3.

Assumptions C.

C.1 There exists Ck ∈ (0,∞) such that for every p ∈ Rd,

〈∇k(p), p〉 ≤ Ckk(p). (37)

C.2 f : Rd → R convex with a unique minimum at x? and twice continuously differen-
tiable for every x ∈ Rd \ {x?}.

C.3 There exists Df,k ∈ (0,∞) such that for every p ∈ Rd, x ∈ Rd \ {x?},〈
∇k(p),∇2f(x)∇k(p)

〉
≤ Df,kα(3H(x, p))H(x, p). (38)
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Remark 6. If f smooth and twice differentiable then
〈
v,∇2f(x)v

〉
is everywhere bounded by L

for v ∈ Rd such that ‖v‖2 = 1 (see Theorem 2.1.6 of [41]). Thus, using k(p) = 1
2 ‖p‖

2
2, this allows

us to satisfy assumption C.3 with Df,k = max{1, 2L}, since〈
∇k(p),∇2f(x)∇k(p)

〉
≤ L ‖∇k(p)‖22 = 2Lk(p) ≤ f(x)− f(x?) + 2Lk(p).

Assumption C.1 is clearly satisfied in this case by Ck = 2.

The following lemma shows a convergence result for this discretization.

Proposition 3.3 (Convergence bound for the first explicit scheme). Given f , k, γ, α, Cα,γ , Cf,k,

Ck, Df,k satisfying assumptions A, B, and C, and that 0 < ε < min
(

1−γ
2 max(Cf,k+6Df,k/Cα,γ ,1) ,

Cα,γ
10Cf,k+5γCk

)
.

Let α? = α(3H0), W0 := f(x0)− f(x?), and for i ≥ 0, let

Wi+1 =Wi

(
1 +

εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α(2Wi)

)−1

.

Then for any (x0, p0) with p0 = 0, the iterates (36) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0

(
1 +

εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α?

)−i
.

Remark 7. Similar to Remark 5, Proposition 3.3 implies that, under suitable assumptions and
position independent step sizes, the first explicit method can achieve linear convergence with con-
traction rate that is proportional to α(3H0) initially and possibly increasing as we get closer to the

optimum. In particular, again as remarked in Remark 5, for f(x) that behave like ‖x− x?‖b2 near

their minima and ‖x− x?‖B2 in the tails the conditions of assumptions C can be satisfied for kinetic

energies that grow like ‖p‖a2 in the body and ‖p‖A2 in the tails as long as 1
a + 1

b = 1, 1
A + 1

B ≥ 1.
The distinction here is that for the first explicit method we will require b, B ≥ 2.

3.3 Second Explicit Method, with Analysis via the Hessian of k

Our second explicit method inverts relationship between f and k from the first. Again, it makes a
fixed ε step approximation xi+1−xi

ε = x′t and pi+1−pi
ε = p′t. In contrast to the implicit (33) and first

explicit (36) methods, it approximates the field at the point (xi+1, pi).

Second Explicit Method. Given f, k : Rd → R, ε, γ ∈ (0,∞), x0, p0 ∈ Rd. Let,

xi+1 = xi + ε∇k(pi)

pi+1 = (1− εγ)pi − ε∇f(xi+1).
(39)

This discretization exploits the convexity of f by approximating the continuous dynamics at
the forward point xi+1, but is made explicit by approximating at the backward point pi. As with
the other explicit method, it requires a smoothness assumption to prevent k from changing too
rapidly between iterates, which is expressed as a requirement on the interaction between ∇f and
∇2k, see assumption D.5. These assumptions can be satisfied for k that have quadratic or higher
power growth and are suitable for f that may have unbounded second derivatives at their minima
(for such f , Assumptions C can not hold).
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Assumptions D.

D.1 k : Rd → R strictly convex with minimum k(0) = 0 and twice continuously differ-
entiable for every p ∈ Rd \ {0}.

D.2 There exists Ck ∈ (0,∞) such that for every p ∈ Rd,

〈∇k(p), p〉 ≤ Ckk(p). (40)

D.3 There exists Dk ∈ (0,∞) such that for every p ∈ Rd \ {0},〈
p,∇2k(p)p

〉
≤ Dkk(p). (41)

D.4 There exists Ek, Fk ∈ (0,∞) such that for every p, q ∈ Rd,

k(p)− k(q) ≤ Ekk(q) + Fk 〈∇k(p)−∇k(q), p− q〉 . (42)

D.5 There exists Df,k ∈ (0,∞) such that for every x ∈ Rd, p ∈ Rd \ {0},〈
∇f(x),∇2k(p)∇f(x)

〉
≤ Df,kα(3H(x, p))H(x, p). (43)

Remark 8. Smoothness of f implies 1
2 ‖∇f(x)‖22 ≤ L(f(x)− f(x?)) (see (2.1.7) of Theorem 2.1.5

of [41]). Thus, if f is smooth and k(p) = 1
2 ‖p‖

2
2, then the assumption D.5 can be satisfied by

Df,k = max{1, 2L}, since ∇2k(p) = I and〈
∇f(x),∇2k(p)∇f(x)

〉
= ‖∇f(x)‖22 ≤ 2L(f(x)− f(x?)) ≤ 2L(f(x)− f(x?)) + k(p).

The k-specific assumptions D.2 and D.3 can clearly be satisfied with Ck = Dk = 2 in this case. We
show that D.4 can be satisfied in Section 4.

Proposition 3.4 (Convergence bound for the second explicit scheme). Given f , k, γ, α, Cα,γ ,
Cf,k, Ck, Dk, Df,k, Ek, Fk satisfying assumptions A, B, and D, and that

0 < ε < min

(
1− γ

2(Cf,k + 6Df,k/Cα,γ)
,

1− γ
8Dk(1 + Ek)

,
Cα,γ

6(5Cf,k + 2γCk) + 12γCα,γ
,

√
1

6γ2DkFk

)
.

Let α? = α(3H0), W0 := f(x0)− f(x?), and for i ≥ 0, let

Wi+1 =Wi

(
1− εCα,γ

4
[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α(2Wi)

)
.

Then for any (x0, p0) with p0 = 0, the iterates (39) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0 ·
(

1− εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α?

)i
.
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Figure 6: Importance of discretization assumptions. Solutions xt and iterates xi of our first explicit
method on f(x) = x4/4. With an inappropriate choice of kinetic energy, k(p) = p8/77/8, the
continuous solution converges at a linear rate but the iterates do not.

Remark 9. Similar to Remark 5, Proposition 3.4 implies that, under suitable assumptions and
for a fixed step size independent of the initial point, the second explicit method can achieve linear
convergence with contraction rate that is proportional to α(3H0) initially and possibly increasing as
we get closer to the optimum. In particular, again as remarked in Remark 5, for f(x) that behave

like ‖x− x?‖b2 near their minima and ‖x− x?‖B2 in the tails the conditions of assumptions D can

be satisfied for kinetic energies that grow like ‖p‖a2 in the body and ‖p‖A2 in the tails as long as
1
a + 1

b = 1, 1
A + 1

B ≥ 1. The distinction here is that for the second explicit method we will require
b, B ≤ 2.

To conclude the analysis of our methods on convex functions, consider the example f(x) = x4/4
from Figure 4. If we take k(p) = |p|a/a, then assumption A.4 requires that a ≤ 4/3. Assumptions
B and C cannot be satisfied as long as a < 4/3, which suggests that k(p) = f∗(p) is the only
suitable choice in this case. Indeed, in Figure 6, we see that the choice of k(p) = p8/77/8 results
in a system whose continuous dynamics converge at a linear rate and whose discrete dynamics
fail to converge. Note that as the continuous systems converge the oscillation frequency increases
dramatically, making it difficult for a fixed step size scheme to approximate.

3.4 First Explicit Method on Non-Convex f

We close this section with a brief analysis of the convergence of the first explicit method on non-
convex f . A traditional requirement of discretizations is some degree of smoothness to prevent the
function changing too rapidly between points of approximation. The notion of Lipschitz smoothness
is the standard one, but the use of the kinetic map ∇k to select iterates allows Hamiltonian descent
methods to consider the broader definition of uniform smoothness, as discussed in [60, 2, 61] but
specialized here for our purposes.

Uniform smoothness is defined by a norm ‖·‖ and a convex non-decreasing function σ : [0,∞)→
[0,∞] such that σ(0) = 0. A function f : Rd → R is σ-uniformly smooth, if for all x, y ∈ Rd,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ σ(‖y − x‖). (44)
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Lipschitz smoothness corresponds to σ(t) = 1
2 t

2, and generally speaking there exist non-trivial
uniformly smooth functions for σ(t) = 1

b t
b for 1 < b ≤ 2, see, e.g., [40, 60, 2, 61].

Assumptions E.

E.1 f : Rd → R differentiable.

E.2 γ ∈ (0,∞).

E.3 There exists a norm ‖·‖ on Rd, b ∈ (1,∞), Dk ∈ (0,∞), Df ∈ (0,∞), σ : [0,∞)→
[0,∞] non-decreasing convex such that σ(0) = 0 and σ(ct) ≤ cbσ(t) for c, t ∈ (0,∞);
for all p ∈ Rd,

σ(‖∇k(p)‖) ≤ Dkk(p); (45)

and for all x, y ∈ Rd,

f(y) ≤ f(y) + 〈∇f(x), y − x〉+Dfσ(‖y − x‖). (46)

Lemma 3.5 (Convergence of the first explicit scheme without convexity). Given ‖·‖, f , k, γ, b,
Dk, Df , σ satisfying assumptions E and A.2. If ε ∈ (0, b−1

√
γ/DfDk], then the iterates (36) of the

first explicit method satisfy

Hi+1 −Hi ≤ (εbDfDk − εγ)k(pi+1) ≤ 0, (47)

and ‖∇f(xi)‖2 → 0.

Remark 10. L-Lipschitz continuity of the gradients ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 for L > 0

with Euclidean norm ‖·‖2 implies both f(y) ≤ f(y)+〈∇f(x), y − x〉+ L
2 ‖y − x‖

2
2 and 1

2 ‖∇f(x)‖22 ≤
L(f(x)− f(x?)). Thus, if f, k are Lf , Lk smooth, respectively, then the condition for convergence
simplifies to ε ≤ γ/LfLk.

4 Kinetic Maps for Functions with Power Behavior

In this section we design a family of kinetic maps ∇k suitable for a class of functions f that exhibit
power growth, which we will describe precisely as a set of assumptions. This class includes strongly
convex and smooth functions. However, it is much broader, including functions with possibly non-
quadratic power behavior and singular or unbounded Hessians. First, we show that this family of
kinetic energies satisfies the k-specific assumptions of Section 3. Then we use the generic analysis
of Section 3 to provide a specific set of assumptions on fs and their match to the choice of k.
As a consequence, this analysis greatly extends the class of functions for which linear convergence
is possible with fixed step size first order computation. Still, this analysis is not meant to be an
exhaustive catalogue of possible kinetic energies for Hamiltonian descent. Instead, it serves as an
example of how known properties of f can be used to design k. Note that, with a few exceptions,
the proofs of all of our results in this section are deferred to Section D of the Appendix.
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Figure 7: Power kinetic energies in one dimension.

4.1 Power Kinetic Energies

We assume a given norm ‖x‖ and its dual ‖p‖∗ = sup{〈x, p〉 : ‖x‖ ≤ 1} for x, p ∈ Rd. Define the
family of power kinetic energies k,

k(p) = ϕAa (‖p‖∗) where ϕAa (t) = 1
A (ta + 1)

A
a − 1

A for t ∈ [0,∞) and a,A ∈ [1,∞). (48)

For a = A we recover the standard power functions, ϕaa(t) = ta/a. For distinct a 6= A, we have

(ϕAa )′(t) ∼ tA−1 for large t and (ϕAa )′(t) ∼ ta−1 for small t. Thus, k(p) ∼ ‖p‖A∗ /A as ‖p‖∗ ↑ ∞ and
k(p) ∼ ‖p‖a∗ /a as ‖p‖∗ ↓ 0. See Figure 7 for examples from this family in one dimension.

Broadly speaking, this family of kinetic energies must be matched in a conjugate fashion to the
body and tail behavior of f . Informally, for this choice of k we will require conditions on f that
correspond to requiring that it grows like ‖x− x?‖b in the body (as ‖x− x?‖ → 0) and ‖x− x?‖B in
the tails (as ‖x− x?‖ → ∞) for some b, B ∈ (1,∞). In particular, our growth conditions in the case

of f “growing like” ‖x‖22 = 〈x, x〉 everywhere will be necessary conditions of strong convexity and
smoothness. More generally, a,A, b, B will be well-matched if 1/a+1/b = 1/A+1/B = 1, but other
scenarios are possible. Of these, the conjugate relationship between a and b is the most critical;
it captures the asymptotic match between f and k as (xi, pi) → (x?, 0), and our analysis requires
that 1/a+ 1/b = 1. The match between A and B is less critical. In the ideal case, B is known and
A = B/(B − 1). In this case, the discretizations will converge at a constant fast linear rate. If B is
not known, it suffices for 1/A+ 1/B ≥ 1. The consequence of underestimating A < B/(B − 1) will
be reflected in a linear, but non-constant, rate of convergence (via α of Assumption A.4), which
depends on the initial x0 and slowly improves towards a fast rate as the system converges and the
regime switches. We present a complete analysis and set of conditions on f for two of the most
useful scenarios. In Proposition 4.4 we consider the case that f grows like ϕBb (‖x− x?‖) where
b, B > 1 are exactly known. In this case convergence proceeds at a fast constant linear rate when
matched with k(p) = ϕAa (‖p‖∗) where a = b/(b − 1) and A = B/(B − 1). In Proposition 4.5 we
consider the case that f grows like ϕB2 (‖x− x?‖) where B ≥ 2 is unknown. Here, the convergence is
linear with a non-constant rate when matched with the relativistic kinetic energy k(p) = ϕ1

2(‖p‖∗).
The case covered by relativistic kinetic ∇k is particularly valuable, as it covers a large class of
globally non-smooth, but strongly convex functions. Table 1 summarizes this, and throughout the
remaining subsections we flesh out the details of these claims.
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f(x) grows like ϕBb (‖x‖) appropriate k(p) = ϕAa (‖p‖∗)

method powers known? body power b tail power B body power a tail power A

implicit known b > 1 B > 1 a = b/(b− 1) A = B/(B − 1)

unknown b = 2 B ≥ 2 a = 2 A = 1

1st explicit known b ≥ 2 B ≥ 2 a = b/(b− 1) A = B/(B − 1)

unknown b = 2 B ≥ 2 a = 2 A = 1

2nd explicit known 1 < b ≤ 2 1 < B ≤ 2 a = b/(b− 1) A = B/(B − 1)

Table 1: A summary of the conditions on f and power kinetic k considered in this section that
satisfy the assumptions of Section 3. Here “grows like” is an imprecise term meaning that fs
growth can be bounded in an appropriate way by ϕBb (‖x‖) (ϕBb is defined in (48)). The full precise
assumptions on f are laid out in Propositions 4.4 and 4.5. In particular, b = B = 2 corresponds to
assumptions similar in spirit to strong convexity and smoothness. Other combinations of b, B and
a,A are possible.

For these kinetic energies to be suitable in our analysis, they must at minimum satisfy assump-
tions A.2, C.1, D.1, D.3, and D.4. Assumptions C.1 and D.3 are clearly satisfied by k(p) = |p|a/a
for p ∈ R with constants Ck = a and Dk = a(a−1). In the remainder of this subsection, we provide
conditions on the norms and a,A under which assumptions like these hold for ϕAa with multiple
power behavior in any finite dimension.

In general, the problematic terms of ∇k(p) and ∇2k(p) that arise in high dimensions involve the
gradient and Hessian of the norm. The gradient of norm can be dealt with cleanly, but our analysis
requires additional control on the Hessian of the norm. To control terms involving ∇2 ‖p‖∗ we

define a generalization of the maximum eigenvalue induced by the norm ‖·‖. Let λ
‖·‖
max : Rd×d → R

be the function defined by

λ‖·‖max(M) = sup{〈v,Mv〉 : v ∈ Rd, ‖v‖ = 1}. (49)

For symmetric M ∈ Rd×d and Euclidean ‖·‖ this is exactly the maximum eigenvalue of M . Now
we are able to state our lemma analyzing power kinetic energies.

Lemma 4.1 (Verifying assumptions on k). Given a norm ‖p‖∗ on p ∈ Rd, a,A ∈ [1,∞), and ϕAa
in (48). Define the constant,

Ca,A =

(
1−

(
a−1
A−1

) a−1
A−a

+
(
a−1
A−1

)A−1
A−a

)B−b
b

. (50)

k(p) = ϕAa (‖p‖∗) satisfies the following.

1. Convexity. If a > 1 or A > 1, then k is strictly convex with a unique minimum at 0 ∈ Rd.

2. Conjugate. For all x ∈ Rd, k∗(x) = (ϕAa )∗(‖x‖).
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3. Gradient. If ‖p‖∗ is differentiable at p ∈ Rd \ {0} and a > 1, then k is differentiable for all
p ∈ Rd, and for all p ∈ Rd,

〈∇k(p), p〉 ≤ max{a,A}k(p), (51)

(ϕAa )∗(‖∇k(p)‖) ≤ (max{a,A} − 1)k(p). (52)

Additionally, if a,A > 1, define B = A/(A− 1), b = a/(a− 1), and then

ϕBb (‖∇k(p)‖) ≤ Ca,A(max{a,A} − 1)k(p). (53)

Additionally, if a,A ≥ 2, then for all p, q ∈ Rd,

k(p) ≤ 〈∇k(q), q〉+ 〈∇k(p)−∇k(q), p− q〉 . (54)

4. Hessian. If ‖p‖∗ is twice continuously differentiable at p ∈ Rd \ {0}, then k is twice continu-
ously differentiable for all p ∈ Rd \ {0}, and for all p ∈ Rd \ {0},〈

p,∇2k(p)p
〉
≤ max{a,A}(max{a,A} − 1)k(p). (55)

Additionally, if a,A ≥ 2 and there exists N ∈ [0,∞) such that ‖p‖∗ λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
≤ N for

p ∈ Rd \ {0}, then for all p ∈ Rd \ {0}

(ϕ
A/2
a/2 )∗

(
λ
‖·‖∗
max

(
∇2k(p)

)
max{a,A} − 1 +N

)
≤ (max{a,A} − 2)k(p). (56)

Remark 11. (51), (54), and (55) together directly confirm that these k satisfy C.1, D.3, and D.4
with constants Ck = max{a,A}, Dk = max{a,A}(max{a,A}−1), Ek = max{a,A}−1, and Fk = 1.
The other results (52), (53), and (56) will be used in subsequent lemmas along with assumptions
on f to satisfy the remaining assumptions of discretization.

The assumption that ‖p‖∗ λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
≤ N in Lemma 4.1 is satisfied by b-norms for b ∈

[2,∞), as the following lemma confirms. It implies that if ‖p‖∗ = ‖p‖b for b ≥ 2, we can take
N = b− 1 in (56).

Lemma 4.2 (Bounds on λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
for b-norms). Given b ∈ [2,∞), let ‖x‖b =

(∑d
n=1 |x(n)|b

)1/b

for x ∈ Rd. Then for x ∈ Rd \ {0},

‖x‖b λ
‖·‖b
max

(
∇2 ‖x‖b

)
≤ (b− 1).

The remaining assumptions B.1, C.3, and D.5 involve inner products between derivatives of f
and k. To control these terms we will use the Fenchel-Young inequality. To this end, the conjugates
of ϕAa will be a crucial component of our analysis.

Lemma 4.3 (Convex conjugates of ϕAa ). Given a,A ∈ (1,∞) and ϕAa in (48). Define B =
A/(A− 1), b = a/(a− 1). The following hold.

1. Near Conjugate. ϕBb upper bounds the conjugate (ϕAa )∗ for all t ∈ [0,∞),

(ϕAa )∗(t) ≤ ϕBb (t). (57)
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2. Conjugate. For all t ∈ [0,∞),

(ϕaa)∗(t) = ϕbb(t). (58)

(ϕA1 )∗(t) =

{
0 t ∈ [0, 1]
1
B t

B − t+ 1
A t ∈ (1,∞)

. (59)

(ϕ1
a)∗(t) =

{
1− (1− tb)

1
b t ∈ [0, 1]

∞ t ∈ (1,∞)
. (60)

(ϕ1
1)∗(t) =

{
0 t ∈ [0, 1]

∞ t ∈ (1,∞)
. (61)

4.2 Matching power kinetic ∇k with assumptions on f

In this subsection and the next we study assumptions on f that imply the suitability of k(p) =
ϕAa (‖p‖∗) with the discretizations of Section 3. The preceding subsection is an analysis that verifies
that such k satisfy the k-specific assumptions A, C, and D. We now consider the remaining assump-
tions of A, B, C, and D, which require an appropriate match between f and k. This includes the
derivation of α and control of terms of the form 〈∇f(x),∇k(p)〉 and

〈
∇k(p),∇2f(x)∇k(p)

〉
by the

total energy H(x, p). Here we consider the case that f exhibits power behavior with known, but
possibly distinct, powers in the body and the tails.

To see a complete example of this type of analysis, take the case f(x) = |x|b/b and k(p) = |p|a/a
with x, p ∈ R, b > 2, a < 2, and 1/a+ 1/b = 1. For α the strategy will be to find a lower bound on
f that is symmetric about f ’s minimum. The conjugate of the centered lower bound can be used to
construct an upper bound on f∗c with which the gap between k and f∗c can be studied. In this case
it is simple, as we have f∗c (p) = k(p) and α = 1. The strategy for terms of the form 〈∇f(x),∇k(p)〉
and

〈
∇k(p),∇2f(x)∇k(p)

〉
will be a careful application of the Fenchel-Young inequality. Using

a− 1 = a/b, the conjugacy of b and b/(b− 1), and the Fenchel-Young inequality,

| 〈∇f(x),∇k(p)〉 | = |x|b−1|p|a/b ≤ b−1
b (|x|b−1)

b
b−1 + 1

b (|p|a/b)b = (b− 1)f(x) + (a− 1)k(p)

≤ (max{a, b} − 1)H(x, p).

Finally, using the conjugacy of b/2 and b/(b− 2) and again the Fenchel-Young inequality,〈
∇k(p),∇2f(x)∇k(p)

〉
= (b− 1)|x|b−2|p|2a/b ≤ (b−1)(b−2)

b (|x|b−2)
b
b−2 + (b−1)2

b (|p|2a/b) b2
= (b− 1)(b− 2)f(x) + 2(b− 1)(a− 1)k(p)

≤ (b− 1) max{b− 2, 2(a− 1)}H(x, p).

Along with Lemma 4.1, this covers Assumptions A, B, and C. Thus, we can justify the use of the
first explicit method for this f, k. All of the analyses of this section essentially follow this outline.

Remark 12. These strategies apply naturally when f is twice differentiable and smooth. In this

case, we have 1
2 ‖∇f(x)‖22 ≤ L(f(x)− f(x?)) and λ

‖·‖2
max

(
∇2f(x)

)
≤ L. Thus, using k(p) = 1

2 ‖p‖
2
2 is

appropriate and 〈∇f(x),∇k(p)〉 ≤ max{L, 1}H(x, p) and
〈
∇k(p),∇2f(x)∇k(p)

〉
≤ 2Lk(p).

We are now ready to consider the case of f growing like ϕBb (‖x− x?‖) matched with k(p) =
ϕAa (‖p‖∗) for 1/a+ 1/b = 1/A+ 1/B = 1. Assumptions F, below, will be used in different combin-
ations to confirm that the assumptions of the different discretizations are satisfied. Assumptions
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Figure 8: Optimizing f(x) = ϕ2
8/7(x) with three different methods with fixed step size: gradient

descent, classical momentum, and our second explicit method. Because the second derivative of f
is infinite at its minimum, only second explicit method with k(p) = ϕ2

8(p) is able to converge with
a fixed step size.

F.1, F.2, F.3, and F.4 are required for all methods. The explicit methods each require an additional
assumption: F.5 for the first explicit method and F.6 for the second. Thus, for f : Rd → R and
k(p) = ϕ1

2(‖p‖∗), Proposition 4.4 can be summarised as

F.1 ∧ F.2 ∧ F.3 ∧ F.4⇒ A ∧ B,

F.1 ∧ F.2 ∧ F.3 ∧ F.4 ∧ F.5⇒ A ∧ B ∧ C,

F.1 ∧ F.2 ∧ F.3 ∧ F.4 ∧ F.6⇒ A ∧ B ∧D.

Note, that Lemma 4.1 implies that the power kinetic energies are themselves examples of functions
satisfying Assumptions F. Figure 8 illustrates a consequence of this proposition; f(x) = ϕ2

8/7(x)
for x ∈ R is a difficult function to optimize with a first order method using a fixed step size; the
second derivative grows without bound as x→ 0. As shown, Hamiltonian descent with the matched
k(p) = ϕ2

8(p) converges, while gradient descent and classical momentum do not.
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Assumptions F.

F.1 f : Rd → R differentiable and convex with unique minimum x?.

F.2 ‖p‖∗ is differentiable at p ∈ Rd \ {0} with dual norm ‖x‖ = sup{〈x, p〉 : ‖p‖∗ = 1}.

F.3 B = A/(A− 1), and b = a/(a− 1).

F.4 There exist µ,L ∈ (0,∞) such that for all x ∈ Rd

f(x)− f(x?) ≥ µϕBb (‖x− x?‖)
ϕAa (‖∇f(x)‖∗) ≤ L(f(x)− f(x?)).

(62)

F.5 b ≥ 2 and B ≥ 2. f : Rd → R is twice continuously differentiable for all x ∈ Rd\{x?}
and there exists Lf , Df ∈ (0,∞) such that for all x ∈ Rd \ {x?}

(
ϕ
B/2
b/2

)∗(λ‖·‖max

(
∇2f(x)

)
Lf

)
≤ Df (f(x)− f(x?)). (63)

F.6 b ≤ 2 and B ≤ 2. ‖p‖∗ is twice continuously differentiable at p ∈ Rd \ {0}, and

there exists N ∈ (0,∞) such that λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
≤ N ‖p‖−1

∗ for all p ∈ Rd \ {0}.

Remark 13. Assumption F.4 can be read as the requirement that f is bounded above and below
by ϕBb , and in the b = B = 2 case it is a necessary condition of strong convexity and smoothness.

Remark 14. Assumption F.5 generalizes a sufficient condition for smoothness. Consider for simpli-
city the Euclidean norm case ‖·‖ = ‖·‖2 and let λmax(M) be the maximum eigenvalue of M ∈ Rd×d.
If b = B = 2, then (ϕ

B/2
b/2 )∗ is finite only on [0, 1] where it is zero. Moreover, F.5 simplifies to there

existing Lf ∈ (0,∞) such that λmax(∇2f(x)) ≤ Lf everywhere, the standard smoothness condi-

tion. When b > 2, B = 2, (ϕ
B/2
b/2 )∗ is finite on [0, 1] where it behaves like a power b/(b− 2) function

for small arguments. Thus, F.5 can be satisfied in the Euclidean norm case by a function whose
maximum eigenvalue is shrinking like ‖x− x?‖b−2

2 as x → x?; the balance of where the behavior
switches can be controlled by Lf . When b = 2, B > 2, the role is switched and F.5 can be satisfied

by a function whose maximum eigenvalue is bounded near the minimum and grows like ‖x− x?‖B−2
2

as ‖x− x?‖2 →∞. When b, B > 2, this can be satisfied by a function whose maximum eigenvalue

shrinks like ‖x− x?‖b−2
2 in the body and grows like ‖x− x?‖B−2

2 in the tail.

Proposition 4.4 (Verifying assumptions for f with known power behavior and appropriate k).
Given a norm ‖·‖∗ satisfying F.2 and a,A ∈ (1,∞), take

k(p) = ϕAa (‖p‖∗).
with ϕAa defined in (48). The following cases hold with this choice of k on f : Rd → R convex.

1. For the implicit method (33), assumptions A, B hold with constants

α = min{µa−1, µA−1, 1} Cα,γ = γ Cf,k = max{a− 1, A− 1, L}, (64)
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Gradient descent convergences linearly with rate λ = 3/(3 − 1/
√
d) while Hamiltonian descent

converges with dimension-free linear rates.

if f, a,A, µ, L, ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4.

2. For the first explicit method (36), assumptions A, B, and C hold with constants (64) and

Ck = max{a,A} Df,k = Lfα
−1 max {Df , 2Ca,A(max{a,A} − 1)} , (65)

if f, a,A, µ, L, Lf , Df , ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4, and F.5.

3. For the second explicit method (39), assumptions A, B, and D hold with constants (64) and

Ck = max{a,A} Dk = max{a,A}(max{a,A} − 1)

Ek = max{a,A} − 1 Fk = 1

Df,k = α−1(max{a,A} − 1 +N) max {2L, a− 2, A− 2} ,
(66)

if f, a,A, µ, L,N, ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4, and F.6.

We highlight an interesting consequence of Proposition 4.4 for high dimensional problems. For
many first-order methods using standard gradients on smooth f , linear convergence can be guar-
anteed by the Polyak- Lojasiewicz (PL) inequality, ‖∇f(x)‖22 /2 ≥ µ(f(x) − f(x?)), see e.g., [26].
The rates of convergence generally depend on µ and the smoothness constant L. Unfortunately,
for some functions the constant L or the constant µ may depend on the dimensionality of the
space. Although smoothness and the PL inequality can be defined with respect to non-Euclidean
norms, this does not generally overcome the issue of dimension dependence if standard gradients
are used, see [25, 39] for a discussion and methods using non-standard gradients. The situation
is distinct for Hamiltonian descent. If f is smooth with respect to a non-Euclidean norm ‖·‖,
then, by taking k(p) = ‖p‖2∗ /2, Proposition 4.4 may guarantee, under appropriate assumptions,
dimension independent rates when using standard gradients (dependence on the dimensionality is

mediated by the constant N). For example, consider f(x) = ‖x‖24 /2 = (
∑d
n=1(x(n))4)1/2/2 defined
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for d-dimensional vectors x ∈ Rd. It is possible to show that f is smooth with respect to ‖·‖2 with
constant L = 3 (our Lemma 4.2 together with an analysis analogous to Lemma 14 in Appendix A
of [50] and the fact that ‖x‖4 ≤ ‖x‖2) and that f satisfies the PL inequality with µ = 1/

√
d (the

fact that ‖x‖24/3 ≤
√
d ‖x‖22 and Lemma 4.1). The iterates of a gradient descent algorithm with

fixed step size 1/L on this f will therefore satisfy the following,

f(xi+1)− f(xi) ≤ −
1

6
‖∇f(xi)‖22 ≤ −

1

3
√
d
f(xi).

From which we conclude that gradient descent converges linearly with rate λ = 3/(3 − 1/
√
d),

worsening as d → ∞. Figure 9 illustrates this, along with a comparison to Hamiltonian descent
with k(p) = ‖p‖24/3, which enjoys dimension independence as N = 3.

4.3 Matching relativistic kinetic ∇k with assumptions on f

The strongest assumption of Proposition 4.4 is that the power behaviour of f captured in the
constant b is exactly known. This is generally not the case and usually hard to determine. The
only possible exception is b = 2, which can be guaranteed by lower bounding the eigenvalues of
the Hessian. In our second analysis, we consider a kinetic energy generically suitable for such
strongly convex functions that may not be smooth. Crucially, less information needs to be known
about f for this kinetic energy to be applicable. The cost imposed by this lack of knowledge is a
non-constant rate of linear convergence, which begins slowly and improves towards a faster rate as
(xi, pi)→ (x?, 0).

In particular, we consider the use of the relativistic kinetic energy,

k(p) = ϕ1
2(‖p‖∗) =

√
‖p‖2∗ + 1− 1,

which was studied by Lu et al. [32] and Livingstone et al. [31] in the context of Hamiltonian Monte
Carlo. Consider for the moment the Euclidean norm case. In this case, we have

∇k(p) =
p√

‖p‖22 + 1
.

As noted by Lu et al. [32], this kinetic map resembles the iterate updates of popular adaptive
gradient methods [13, 59, 18, 27]. Because the iterate updates xi+1 − xi of Hamiltonian descent
are proportional to ∇k(p) from some p ∈ Rd, this suggests that the relativistic map may have

favorable properties. Notice that ‖∇k(p)‖22 = ‖p‖22 /(‖p‖
2
2 + 1) < 1, implying that ‖xi+1 − xi‖2 < ε

uniformly and regardless of the magnitudes of ∇f . The fact that the magnitude of iterate updates
is uniformly bounded makes the relativistic map suitable for functions with very fast growing tails,
even if the rate of growth is not exactly known.

More precisely, we consider the case of f growing like ϕB2 (‖x− x?‖) matched with k(p) =
ϕ1

2(‖p‖∗) for B ≥ 2. Assumptions G, below, will be used in different combinations to confirm that
the assumptions of the different discretizations are satisfied. Assumptions G.1, G.2, G.3, and G.4
are required for all methods. The first explicit method requires additional assumptions G.5 for
B > 2 and G.6 for B = 2. We do not include an analysis for the second explicit method. Thus, for
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Figure 10: f(x) = ϕ8
2(x) with three different methods: gradient descent with the optimal fixed step

size, Hamiltonian descent with relativistic kinetic energy, and Hamiltonian descent with the near
dual kinetic energy.

f : Rd → R and k(p) = ϕ1
2(‖p‖∗), Proposition 4.5 can be summarised as

G.1 ∧G.2 ∧G.3 ∧G.4⇒ A ∧ B

G.1 ∧G.2 ∧G.3 ∧G.4 ∧G.5⇒ A ∧ B ∧ C

G.1 ∧G.2 ∧G.3 ∧G.4 ∧G.6⇒ A ∧ B ∧ C

Figure 10 illustrates a consequence of this proposition; f(x) = ϕ2
8(x) for x ∈ R is a difficult function

to optimize with a first order method using a fixed step size; the second derivative grows without
bound as |x| → ∞. Thus if the initial point is taken to be very large, gradient descent must
take a very conservative choice of step size. As shown, Hamiltonian descent with the matched
k(p) = ϕ2

8/7(p) converges quickly and uniformly, while gradient descent with a fixed step size suffers

a very slow rate for |x0| � 0. In the middle panel, the relativistic choice converges slowly at first,
but speeds up as convergence proceeds, making it a suitable agnostic choice in cases such as this.
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Assumptions G.

G.1 f : Rd → R differentiable and convex with unique minimum x?.

G.2 ‖p‖∗ is differentiable at p ∈ Rd \ {0} with dual norm ‖x‖ = sup{〈x, p〉 : ‖p‖∗ = 1}.

G.3 B ∈ [2,∞) and A = B/(B − 1).

G.4 There exist µ,L ∈ (0,∞) such that for all x ∈ Rd

f(x)− f(x?) ≥ µϕB2 (‖x− x?‖)
ϕ1

2(‖∇f(x)‖∗) ≤ L(f(x)− f(x?)).
(67)

G.5 B > 2. Define

ψ(t) =

{
0 0 ≤ t < 1

t− 3t
1
3 + 2 1 ≤ t

. (68)

f : Rd → R is twice continuously differentiable for all x ∈ Rd \{x?} and there exists
Lf ∈ (0,∞) such that for all x ∈ Rd \ {x?}

ψ

(
B−1
B−2ϕ

B−1
B−2
1

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

))
≤ 3(f(x)− f(x?)). (69)

G.6 B = 2. f : Rd → R is twice continuously differentiable for all x ∈ Rd \ {x?} and
there exists Lf ∈ (0,∞) such that for all x ∈ Rd \ {x?}

λ‖·‖max

(
∇2f(x)

)
≤ Lf . (70)

Remark 15. Assumptions G hold in general for convex functions f that grow quadratically at
their minimum, and as power B in the tails, for some B ≥ 2.

We include the proof of this proposition below, as it highlights every aspect of our analysis,
including non-constant α.

Proposition 4.5 (Verifying assumptions for f with unknown power behavior and relativistic k).
Given a norm ‖·‖∗ satisfying G.2, take

k(p) = ϕ1
2(‖p‖∗)

with ϕAa in (48). The following cases hold with this choice of kinetic energy k on f : Rd → R
convex.

1. For the implicit method (33), assumptions A, B hold with constants

Cα,γ = γ Cf,k = max{1, L}, (71)

and α non-constant, equal to

α(y) = min{µA−1, µ, 1}(y + 1)1−A, (72)

if f,B, µ, L, ‖·‖∗ satisfy assumptions G.1, G.2, G.3, G.4.
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2. For the first explicit method (36), assumptions A, B, and C hold with constants (71), α equal
to (72), and

Ck = 2 Df,k =
3Lf

min{µA−1, µ, 1} , (73)

if f,B, µ, L, Lf , ‖·‖∗ satisfy assumptions G.1, G.2, G.3, G.4, and G.5.

3. For the first explicit method (36), assumptions A,B, and C hold with constants (71), α equal
to (72), and

Ck = 2 Df,k =
6Lf

min{µ, 1} , (74)

if f,B, µ, L, Lf , ‖·‖∗ satisfy assumptions G.1,G.2, G.3, G.4, and G.6.

Proof of Proposition 4.5. First, by Lemma 4.1, this choice of k satisfies assumptions A.2 and C.1
with constant Ck = 2. We consider the remaining assumptions of A, B, and C.

1. Our first goal is to derive α. By assumption G.4, we have µϕBb (‖x‖) ≤ fc(x). Lemma D.2 in
Appendix D implies that ϕA2 (µ−1t) ≤ max{µ−2, µ−A}ϕA2 (t) for t ≥ 0. Since (µϕBb (‖·‖))∗ =
µ(ϕBb )∗(µ−1 ‖·‖∗) by Lemma 4.1 and the results discussed in the review of convex analysis,
we have by assumption G.3 and Lemma 4.3,

f∗c (p) ≤ µ(ϕB2 )∗
(
µ−1 ‖p‖∗

)
≤ µϕA2

(
µ−1 ‖p‖∗

)
≤ max{µ−1, µ1−A}ϕA2 (‖p‖∗).

Since ϕA2 (0) = ϕ1
2(0), any α satisfies (24) for p = 0. Assume p 6= 0. First, for y ∈ [0,∞), we

have by rearrangement and convexity,

ϕA2 ((ϕ1
2)−1(y)) = 1

A (y + 1)A − 1
A ≤ y(y + 1)A−1.

Thus,

k(p)

ϕA2 (‖p‖∗)
=

k(p)

ϕA2 ((ϕ1
2)−1(k(p)))

=
Ak(p)

(k(p) + 1)A − 1
≥ (k(p) + 1)1−A.

From this we conclude

k(p) ≥ (k(p) + 1)1−AϕA2 (‖p‖∗) ≥ α(k(p))f∗c (p).

Since k is symmetric, we have (24) of assumption A.4. To see that α satisfies the remaining
conditions of assumption A.4, note that (y + 1)1−A is convex and decreasing for A > 1;
(y + 1)1−A is non-negative and α(0) = min{µA−1, µ, 1} ≤ 1. Finally, G.3 implies 1 < A ≤ 2,
for which,

−α′(y)y = min{µA−1, µ, 1}(A− 1)(y + 1)−Ay < (A− 1)α(y) ≤ α(y). (75)

So we can take Cα,γ = γ and α satisfies assumptions A. This implies that k satisfies assump-
tions A. Assumption G.1 is the same as assumption A.1, therefore f and k satisfy assumptions
A.

Now by Fenchel-Young, the symmetry of norms, Lemma 4.1, and assumption G.4,

| 〈∇k(p),∇f(x)〉 | ≤ (ϕ1
2)∗(‖∇k(p)‖) + ϕ1

2(‖∇f(x)‖∗) ≤ Cf,kH(x, p),

where Cf,k = max{1, L} for assumptions B.
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2. Assume B > 2, so that A < 2. The analysis of case 1. follows and therefore assumptions A
and B hold along with the constants just derived. (75) implies

[α(y)y]′ = α′(y)y + α(y) = α′(y)y + (2−A)α(y) + (A− 1)α(y) ≥ (2−A)α(y).

Thus, ((y+ 1)2−A− 1) ≤ α(y)y. Since 2−A = B−2
B−1 and B−1

B−2ϕ
B−1
B−2
1 (y) is the inverse function

of (y + 1)2−A − 1, it would be enough to show for p ∈ Rd and x ∈ Rd \ {x?} that

B−1
B−2ϕ

B−1
B−2
1

(
‖∇k(p)‖2 λ‖·‖max

(
∇2f(x)

)
Lf

)
≤ 3H(x, p),

for assumptions C to hold with constant Df,k = 3Lf/min{µA−1, µ, 1}. First, for ψ in 68 note
that for t ∈ [0, 1),

ψ∗(t) = 2(1− t)−
1
2 − 2, (76)

and that ψ∗((ϕ1
2)′(t)2) = 2ϕ1

2(t). Furthermore, by Lemma D.1 of Appendix D, we have that

‖∇k(p)‖ = (ϕ1
2)′(‖p‖∗) < 1. Lemma D.2 in Appendix D implies that ϕ

B−1
B−2
1 (εt) ≤ εϕ

B−1
B−2
1 (t)

for ε < 1 and t ≥ 0. All together this implies,

B−1
B−2ϕ

B−1
B−2
1

(
‖∇k(p)‖2 λ‖·‖max

(
∇2f(x)

)
Lf

)
≤ ‖∇k(p)‖2 B−1

B−2ϕ
B−1
B−2
1

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

)

≤ ψ∗(‖∇k(p)‖2) + ψ

(
B−1
B−2ϕ

B−1
B−2
1

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

))

≤ 2k(p) + ψ

(
B−1
B−2ϕ

B−1
B−2
1

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

))
≤ 3H(x, p).

3. For B = 2, the analysis of case 1. follows and therefore assumptions A and B hold along with
the constants just derived.. Here α is equal to

α(y) =
min(µ, 1)

y + 1
. (77)

Considering that z/(1−z) is the inverse function of y/(y+1) for z ∈ [0, 1), it would be enough
to show for p ∈ Rd and x ∈ Rd \ {x?} that

‖∇k(p)‖2 λ‖·‖max

(
∇2f(x)

)
2Lf − ‖∇k(p)‖2 λ‖·‖max(∇2f(x))

≤ 3H(x, p),

for assumptions C to hold with constant Df,k = 6Lf/min{µ, 1}. Indeed, taking ψ,ψ∗ from
(68) and (76), we have again ψ∗((ϕ1

2)′(t)2) = 2ϕ1
2(t). Again, by Lemma D.1 of Appendix D,
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we have that ‖∇k(p)‖ = (ϕ1
2)′(‖p‖∗) < 1. Moreover z/(2L− z) ≤ 1 for z ≤ L. All together,

‖∇k(p)‖2 λ‖·‖max

(
∇2f(x)

)
2Lf − ‖∇k(p)‖2 λ‖·‖max(∇2f(x))

≤ ‖∇k(p)‖2 λ
‖·‖
max

(
∇2f(x)

)
2Lf − λ‖·‖max(∇2f(x))

≤ ψ∗(‖∇k(p)‖2) + ψ

(
λ
‖·‖
max

(
∇2f(x)

)
2Lf − λ‖·‖max(∇2f(x))

)
≤ 2k(p) ≤ 3H(x, p).

5 Conclusion

The conditions of strong convexity and smoothness guarantee the linear convergence of most first-
order methods. For a convex function f these conditions are essentially quadratic growth conditions.
In this work, we introduced a family of methods, which require only first-order computation, yet
extend the class of functions on which linear convergence is achievable. This class of functions
is broad enough to capture non-quadratic power growth, and, in particular, functions f whose
Hessians may be singular or unbounded. Although our analysis provides ranges for the step size
and other parameters sufficient for linear convergence, it does not necessarily provide the optimal
choices. It is a valuable open question to identify those choices.

The insight motivating these methods is that the first-order information of a second function,
the kinetic energy k, can be used to incorporate global bounds on the convex conjugate f∗ in a
manner that achieves linear convergence on f . This opens a series of theoretical questions about
the computational complexity of optimization. Can meaningful lower bounds be derived when we
assume access to the first order information of two functions f and k? Clearly, any meaningful
answer would restrict k—otherwise the problem of minimizing f could be solved instantly by as-
suming first-order access to k = f∗ and evaluating ∇k(0) = ∇f∗(0) = x?. Exactly what that
restriction would be is unclear, but a satisfactory answer would open yet more questions: is there a
meaningful hierarchy of lower bounds when access is given to the first-order information of N > 2
functions? When access is given to the second-order information of N > 1 functions?

From an applied perspective, first-order methods are playing an increasingly important role
in the era of large datasets and high-dimensional non-convex problems. In these contexts, it is
often impractical for methods to require exact first-order information. Instead, it is frequently
assumed that access is limited to unbiased estimators of derivative information. It is thus important
to investigate the properties of the Hamiltonian descent methods described in this paper under
such stochastic assumptions. For non-convex functions, the success of adaptive gradient methods,
which bear a resemblance to our methods using a relativistic kinetic energy, suggests there may be
gains from an exploration of other kinetic energies. Can kinetic energies be designed to condition
Hamiltonian descent methods when the Hessian of f is not positive semi-definite everywhere and to
encourage iterates to escape saddle points? Finally, the main limitation of the work presented herein
is the requirement that a practitioner have knowledge about the behavior of f near its minimum.
Therefore, it would be valuable to investigate adaptive methods that do not require such knowledge,
but instead estimate it on-the-fly.
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[1] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated coordin-
ate descent using non-uniform sampling. In International Conference on Machine Learning,
pages 1110–1119, 2016.
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Arbeiten zur Analysis und zur mathematischen Logik, pages 76–126. Springer, 1990.

[43] Lawrence Perko. Differential Equations and Dynamical Systems, volume 7. Springer Science
& Business Media, 2013.

37



[44] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[45] Boris T Polyak. Introduction to Optimization. 1987.

[46] Benjamin Recht. CS726 - Lyapunov analysis and the heavy ball method. Lecture notes, 2012.

[47] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[48] Vincent Roulet and Alexandre d’Aspremont. Sharpness, restart and acceleration. In Advances
in Neural Information Processing Systems, pages 1119–1129, 2017.

[49] Walter Rudin. Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition,
1987.

[50] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and applications.
2007.

[51] Gabriel Stoltz and Zofia Trstanova. Langevin dynamics with general kinetic energies. Multiscale
Modeling & Simulation, 16(2):777–806, 2018.

[52] Weijie Su, Stephen Boyd, and Emmanuel Candès. A differential equation for modeling Nes-
terov’s accelerated gradient method: Theory and insights. In Advances in Neural Information
Processing Systems, pages 2510–2518, 2014.

[53] Weijie Su, Stephen Boyd, and Emmanuel J Candès. A differential equation for modeling
Nesterov’s accelerated gradient method: theory and insights. Journal of Machine Learning
Research, 17(1):5312–5354, 2016.

[54] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International Conference on Machine Learning,
pages 1139–1147, 2013.

[55] Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on
accelerated methods in optimization. Proceedings of the National Academy of Sciences,
113(47):E7351–E7358, 2016.

[56] Ashia C Wilson, Benjamin Recht, and Michael I Jordan. A Lyapunov analysis of momentum
methods in optimization. arXiv preprint arXiv:1611.02635, 2016.

[57] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4148–4158, 2017.

[58] Tianbao Yang and Qihang Lin. Rsg: Beating subgradient method without smoothness and
strong convexity. Journal of Machine Learning Research, 19(1):1–33, 2018.

[59] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.
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A Proofs for convergence of continuous systems

Lemma 2.4 (Convergence rates in continuous time for fixed α). Given γ ∈ (0, 1), f : Rd → R
differentiable and convex with unique minimum x?, k : Rd → R differentiable and strictly convex
with minimum k(0) = 0. Let xt, pt ∈ Rd be the value at time t of a solution to the system (3) such
that there exists α ∈ (0, 1] where k(pt) ≥ αf∗c (−pt). Define

λ(α, β, γ) = min

(
αγ − αβ − βγ

α− β ,
β(1− γ)

1− β

)
. (19)

If β ∈ (0,min(α, γ)], then
V ′t ≤ −λ(α, β, γ)Vt.

Finally,

1. The optimal β ∈ (0,min(α, γ)], β? = arg maxβ λ(α, β, γ) and λ? = λ(α, β?, γ) are given by,

β? = 1
1+α

(
α+ γ

2 −
√

(1− γ)α2 + γ2

4

)
, (20)

λ? =

 1
1−α

(
(1− γ)α+ γ

2 −
√

(1− γ)α2 + γ2

4

)
for 0 < α < 1,

γ(1−γ)
2−γ for α = 1,

(21)

2. If β ∈ (0, αγ/2], then

λ(α, β, γ) =
β(1− γ)

1− β , and (22)

−
(
γ − β − γ2(1− γ)/4

)
k(pt)− βγ 〈xt − x?, pt〉 − β 〈xt − x?,∇f(xt)〉

≤ −β(1− γ)(k(pt) + f(xt)− f(x?) + β 〈xt − x?, pt〉). (23)

Proof.

Vt′ = −γ 〈∇k(pt), pt〉+ β 〈∇k(pt), pt〉 − βγ 〈xt − x?, pt〉 − β 〈xt − x?,∇f(xt)〉
= −(γ − β) 〈∇k(pt), pt〉 − βγ 〈xt − x?, pt〉 − β 〈xt − x?,∇f(xt)〉
≤ −(γ − β)k(pt)− βγ 〈xt − x?, pt〉 − β(f(xt)− f(x?))

by convexity and β ≤ γ. Our goal is to show that Vt′ ≤ −λVt for some λ > 0, which would hold if

− (γ − β)k(pt)− βγ 〈xt − x?, pt〉 − β(f(xt)− f(x?)) ≤ −λ(k(pt) + f(xt)− f(x?) + β 〈xt − x?, pt〉)

which is equivalent by rearrangement to

− β(γ − λ) 〈xt − x?, pt〉 ≤ (γ − β − λ)k(pt) + (β − λ)(f(xt)− f(x?)). (78)

Assume that λ ≤ γ. By assumption on f , k, and α we have (15), which implies by rearrangement
that k(pt) ≥ −α 〈xt − x?, pt〉 − α(f(xt)− f(x?)), so

−β(γ − λ) 〈xt − x?, pt〉 ≤
β

α
(γ − λ)(k(pt) + α(f(xt)− f(x?))), (79)
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and k(pt) ≥ 0 and f(xt) − f(x?) ≥ 0, hence it is enough to have β
α (γ − λ) ≤ γ − β − λ and

β(γ−λ) ≤ β−λ for showing (78). Thus we need λ ≤ min(γ, αγ−αβ−βγα−β , β(1−γ)
1−β ). Here β

1−β (1−γ) ≤ γ
for 0 < β ≤ γ < 1, therefore Vt′ ≤ −λ(α, β, γ)Vt for

λ(α, β, γ) = min

(
αγ − αβ − βγ

α− β ,
β(1− γ)

1− β

)
.

In order to obtain the optimal contraction rate, we need to maximize λ(α, β, γ) in β. Without
loss of generality, we can assume that 0 < β < αγ

α+γ , and it is easy to see that on this interval,
αγ−αβ−βγ

α−β is strictly monotone decreasing, while β(1−γ)
1−β is strictly monotone increasing. Therefore,

the maximum will be taken when the two terms are equal. This leads to a quadratic equation with
two solutions

β± =
1

1 + α

(
α+

γ

2
±
√

(1− γ)α2 +
γ2

4

)
.

One can check that β+ > αγ
α+γ , while 0 < β− <

αγ
α+γ , hence

max
β∈[0,α]

λ(α, β, γ) = λ(α, β−, γ) =
1

1− α

(
(1− γ)α+

γ

2
−
√

(1− γ)α2 +
γ2

4

)

for α < 1. For α = 1, we obtain that β? = β− = γ
2 , and λ? = γ(1−γ)

2−γ .

Now assume β ∈ (0, αγ/2]. Since we have shown that λ(α, γ, β) = β(1−γ)
1−β for β < β− it is

enough to show that β− > αγ/2 to get our result. Notice that β− as a function of γ, β−(γ), is
strictly concave with β−(0) = 0, and β−(1) = α

1+α , thus

β− = β−(γ) > γβ−(1) =
γα

1 + α
≥ αγ

2
≥ β.

Finally, the proof of (23) is equivalent by rearrangement to showing that for λ = (1− γ)β,

−β(γ − λ) 〈xt − x?, pt〉 ≤ (γ − β − γ2(1− γ)/4− λ)k(pt) + (β − λ)(f(xt)− f(x?)), (80)

hence by (79) it suffices to show that we have β
α (γ−λ) ≤ γ−γ2(1−γ)/4−β−λ and β(γ−λ) ≤ β−λ.

The latter one was already verified in the previous section, and the first one is equivalent to

γ − β − λ− β

α
(γ − λ) ≥ γ2(1− γ)/4 for every 0 < γ < 1, 0 < α ≤ 1, 0 < β ≤ αγ/2.

It is easy to see that we only need to check this for β = αγ/2, and in this case by minimizing the
left hand side for 0 ≤ α ≤ 1 and using the fact that λ = (1− γ)β, we obtain the claimed result.

B Proofs for partial lower bounds

In this section, we present the proofs of the lower bounds. First, we show the existence and
uniqueness of solutions.

Lemma 2.6 (Existence and uniqueness of solutions of the ODE). Let a, b, γ ∈ (0,∞). For every
t0 ∈ R and (x, p) ∈ R2, there is a unique solution (xt, pt)t∈R of the ODE (32) with xt0 = x, pt0 = p.
Either xt = pt = 0 for every t ∈ R, or (xt, pt) 6= (0, 0) for every t ∈ R.
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Proof. Let Ht := |xt|b
b + |pt|a

a , then Ht ≥ 0 and

H′t = |xt|b−1 sign(xt)x
′
t + |pt|a−1 sign(p)p′t = −γ|pt|a,

so 0 ≥ H′t ≥ −γaHt. By Grönwall’s inequality, this implies that for any solution of (3),

Ht ≤ H0 for t ≥ 0, and (81)

Ht ≤ H0 exp(−γat) for t < 0. (82)

The derivatives x′, p′ are continuous functions of (x, p), and these functions are locally Lipschitz
if x 6= 0 and p 6= 0. So by the Picard-Lindelöf theorem, if xt0 6= 0, pt0 6= 0, then there exists a
unique solution in the interval (t0 − ε, t0 + ε) for some ε > 0.

Now we will prove local existence and uniqueness for (xt0 , pt0) = (x0, 0) with x0 6= 0, and for
(xt0 , pt0) = (0, p0) with p0 6= 0. Because of the central symmetry, we may assume that x0 > 0 and
p0 > 0, and we may also assume that t0 = 0.

First let x0 = 0 and p0 > 0. We take t close enough to 0 so that pt > 0. Then x′t = pa−1
t > 0

and p′t = −|xt|b−1 sign(xt) − γpt. Then pt = φ(xt) for some function φ : (−ε, ε) → R>0, where t is
close enough to 0. Here φ(0) = p0 and p′t = φ′(xt)x

′
t, so

φ′(xt) =
p′t
x′t

= −(|xt|b−1 sign(xt) + γpt)p
1−a
t

= −(|xt|b−1 sign(xt) + γφ(xt))φ(xt)
1−a,

and hence
φ′(u) = −(|u|b−1 sign(u) + γφ(u))φ(u)1−a and φ(0) = p0.

This ODE satisfies the conditions of the Picard-Lindelöf theorem, so φ exists and is unique in a
neighborhood of 0. Then x0 = 0 and x′t = φ(xt)

a−1, so for the Picard-Lindelöf theorem we just
need to check that u 7→ φ(u)a−1 is Lipschitz in a neighborhood of 0. This is true, because φ is C1

in a neighborhood of 0. So xt exists and is unique when t is near 0, hence pt = φ(xt) also exists
and is unique there.

Now let x0 = x0 > 0 and p0 = 0. We take t close enough to 0 so that xt > 0. Then
x′t = |pt|a−1 sign(pt) and p′t = −xb−1

t − γpt < 0 for t close enough to 0. Then xt = ψ(pt) for some
function ψ : (−ε, ε)→ R>0, where t is close enough to 0. Here ψ(0) = x0 and x′t = φ′(pt)p

′
t, so

ψ′(pt) =
x′t
p′t

= −|pt|
a−1 sign(pt)

xb−1
t + γpt

= −|pt|
a−1 sign(pt)

ψ(pt)b−1 + γpt
,

and thus

ψ′(u) = −|u|
a−1 sign(u)

ψ(u)b−1 + γu
and ψ(0) = x0.

This ODE satisfies the conditions of the Picard-Lindelöf theorem, so ψ exists and is unique in a
neighborhood of 0. Then p0 = 0 and p′t = −ψ(pt)

b−1 − γpt, so for the Picard-Lindelöf theorem we
just need to check that u 7→ −ψ(u)b−1−γu is Lipschitz in a neighborhood of 0. This is true, because
ψ is C1 in a neighborhood of 0. So pt exists and is unique when t is near 0, hence xt = ψ(pt) also
exists and is unique there.

Let [0, tmax) and (−tmin, 0] be the longest intervals where the solution exists and unique. If
tmax <∞ or tmin <∞, then by Theorem 3 of [43], page 91, the solution would have to be able to
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leave any compact set K in the interval [0, tmax) or (−tmax, 0], respectively. However, due to the
(81) and (82), the energy function Ht cannot converge to infinity in finite amount of time, so this
is not possible. Hence, the existence and uniqueness for every t ∈ R follows.

Before proving Theorem 2.7, we need to show a few preliminary results.

Lemma B.1. If (x, p) is not constant zero, then limt→−∞Ht =∞ and limt→∞Ht = limt→∞ xt =
limt→∞ pt = 0.

Proof. The limits of H exist, because H′t = −γ|pt|a ≤ 0. First suppose that limt→−∞Ht = M <∞.
Then Ht ≤M for every t, so x and p are bounded functions, therefore x′ and p′ are also bounded by
the differential equation. Then H′′t = −γa|pt|a−1 sign(pt)p

′
t is also bounded, so H′ is Lipschitz. This

together with limt→−∞Ht = M ∈ R implies that limt→−∞H′t = 0. So limt→−∞ pt = 0. Then we
must have limt→−∞ xt = x0 for some x0 ∈ R \ {0}. But then limt→−∞ p′t = −|x0|b−1 sign(x0) 6= 0,
which contradicts limt→−∞ pt = 0. So indeed limt→−∞Ht =∞.

Now suppose that limt→∞Ht > 0. For t ∈ [0,∞) we have Ht ≤ H0, so for t ≥ 0 the functions
x and p are bounded, hence also x′, p′, H′, H′′ are bounded there. So limt→∞Ht ∈ R, and
H ′ is Lipschitz for t ≥ 0, therefore limt→∞H′t = 0, thus limt→∞ pt = 0. Then we must have
limt→∞ xt = x0 for some x0 ∈ R \ {0}. But then limt→∞ p′t = −|x0|b−1 sign(x0) 6= 0, which
contradicts limt→∞ pt = 0. So indeed limt→∞Ht = 0, thus limt→∞ xt = limt→∞ pt = 0.

From now on we assume that 1
a + 1

b < 1.

Lemma B.2. If (xt, pt) is a solution, then for every t0 ∈ R there is a t ≤ t0 such that pt = 0.

Proof. The statement is trivial for the constant zero solution, so assume that (x, p) is not con-
stant zero. Then limt→−∞Ht = ∞. Suppose indirectly that pt < 0 for every t ≤ t0. Then
x′t = −|pt|a−1 < 0 for t ≤ t0. If limt→−∞ xt = x−∞ < ∞, then limt→−∞ pt = −∞, because
limt→−∞Ht = ∞. Then x → x−∞ ∈ R and x′ = −|p|a−1 → −∞ when t → −∞, which is im-
possible. So limt→−∞ xt =∞, hence there is a t1 ≤ t0 such that pt < 0 < xt for every t ≤ t1. Let

Gt := |pt|a−1

a−1 − γxt, then for t ≤ t1 we have

G′t = −|pt|a−2p′t − γx′t = |pt|a−2(xb−1
t − γ|pt|) + γ|pt|a−1 = |pt|a−2xb−1

t > 0.

So Gt ≤ G(t1) for every t ≤ t1. Thus

|pt| ≤ ((a− 1)(γxt +G(t1)))
1
a−1 = (Axt +B)

1
a−1 ,

for t ≤ t1, where A > 0. For big enough x we have (Ax + B)
1
a−1 < 1

γx
b−1, because 1

a−1 < b − 1,

since ba > b + a. So there is a t2 ≤ t1 such that pt < 0 < xt and |pt| ≤ 1
γx

b−1
t for every

t ≤ t2. Then p′t = −xb−1
t − γpt ≤ 0, so pt < 0 is monotone decreasing for t ∈ (−∞, t2], hence

p−∞ = limt→−∞ pt ∈ R. But then p′t = −xb−1
t − γpt → −∞ when t → −∞, which together with

p−∞ ∈ R is impossible. This contradiction shows that indeed there is a t ≤ t0 such that pt ≥ 0.
Applying this for (−x,−p), we get that there is a t ≤ t0 such that pt ≤ 0. So by continuity, there
is a t ≤ t0 such that pt = 0.

For A > 1
γ let ξ(A) := ( γA−1

(b−1)Aa )
1

ba−b−a and

RA := {(x, p) ∈ R2; 0 < x < ξ(A), −Axb−1 < p < 0}, (83)
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Lemma B.3. Let A > 1
γ . If (x, p) is a solution, t0 ∈ R and (xt0 , pt0) ∈ RA, then (xt, pt) ∈ RA for

every t ≥ t0.

Proof. Suppose indirectly that there is a t > t0 such that (xt, pt) /∈ RA. Let T be the infimum
of these t’s. Then T > t0, and (x(T ), p(T )) is on the boundary of the region RA. We cannot
have (x(T ), p(T )) = (0, 0), because (0, 0) is unreachable in finite time. Since x′t = −|pt|a−1 ≤ 0
for t ∈ [t0, T ), we have x(T ) ≤ xt0 < ξ(A). So we have 0 < x(T ) < ξ(A) and either p(T ) = 0 or
p(T ) = −Ax(T )b−1.

Suppose that p(T ) = 0. Then p′(T ) = −x(T )b−1 < 0, so if t ∈ (t0, T ) is close enough to T ,
then pt > 0, which contradicts (xt, pt) ∈ RA. So p(T ) = −Ax(T )b−1. Let Ut := pt + Axb−1

t . Then
U(T ) = 0, and by the definition of T , we must have U ′(T ) ≤ 0. Using |p(T )| = Ax(T )b−1 we get

0 ≥ U ′(T ) = p′(T ) + (b− 1)Ax(T )b−2x′(T )

= γ|p(T )| − x(T )b−1 − (b− 1)Ax(T )b−2|p(T )|a−1

= x(T )b−1(γA− 1− (b− 1)Aax(T )ba−b−a),

so ξ(T ) = ( γA−1
(b−1)Aa )

1
ba−b−a ≤ x(T ) < ξ(T ). This contradiction proves that (xt, pt) ∈ RA for every

t ≥ t0.

The following lemma characterises the paths of every solution of the ODE in terms of single
parameter θ.

Lemma B.4. There is a constant η > 0 such that every solution (xt, pt) which is not constant zero

is of the form (x
(θ)
t+∆, p

(θ)
t+∆) for exactly one θ ∈ [−η, η] \ {0} and ∆ ∈ R.

Proof. For u > 0 let us take the solution (xt, pt) with (xt0 , pt0) = (−u, 0) for some t0 ∈ R. Then
p′t0 = ub−1 > 0, so pt0 < 0 if t < t0 is close enough to t0. By Lemma B.2, there is a smallest T (u) ∈
R>0 such that p(t0 − T (u)) = 0. We may take t0 = T (u), and call this solution (X(u)(t), P (u)(t)).

Then X
(u)
T (u) = −u, P

(u)
T (u) = P

(u)
0 = 0, and P

(u)
t < 0 for t ∈ (0, T (u)). Let g(u) = X

(u)
0 . Here

g(u) 6= 0, because we cannot reach (0, 0) in finite time due to (81)-(82). We cannot have g(u) < 0,
because then P ′u(0) = −|g(u)|b−1 sign(g(u)) > 0. So g(u) > 0, thus we have defined a function
g : R>0 → R>0. For u > 0 let us take the continuous path

Cu := {(X(u)
t , P

(u)
t ); t ∈ [0, T (u)]}.

Note that this path is below the x-axis except for the two endpoints, which are on the x-axis. If
0 < u < v, then Cu ∩ Cv = ∅, so we must have g(u) < g(v) (otherwise the two paths would have to
cross). So g is strictly increasing. Let

η := lim
u→0

g(u) ∈ R≥0.

If 0 < u < v and z ∈ (g(u), g(v)), then going forward in time after the point (z, 0), the solution
must intersect the x-axis first somewhere between the points (−v, 0) and (−u, 0), thus z is in the
image of η. So η : R>0 → (η,∞) is a strictly increasing bijective function. We have g(u) > u for

every u > 0, because if g(u) ≤ u, then for the solution (X
(u)
t , P

(u)
t ) we have H0 ≤ H(T (u)) and

H′t = −γ|P (u)
t |a < 0 for t ∈ (0, T (u)), which is impossible.
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Let A > 1
γ and 0 < z < ξ(A), and take the solution (xt, pt) with (x0, p0) = (z, 0). Then p′0 < 0,

so (xt, pt) ∈ RA for t > 0 close enough to 0, and then by Lemma B.3, (xt, pt) ∈ RA for every t > 0.
So z is not in the image of η, hence η ≥ ξ(A) > 0.

Let (xt, pt) be a solution, which is not constant zero. Let S = {t ∈ R; pt = 0}. This is a closed,
nonempty subset of R. Suppose that sup(S) =∞. Since limt→∞ xt = 0, this means that there are
infinitely many t ∈ R such that pt = 0 and |xt| ∈ (0, η). This is impossible, since there can be only
one such t. So sup(S) = max(S) = T ∈ R. We may translate time so that T = 0. Then p0 = 0
and pt 6= 0 for every t > 0. If |x0| > η, then later we again intersect the x-axis, so we must have
0 < |x0| ≤ η. So the not constant zero solutions can be described by their last intersection with
the x-axis, and this intersection has its x-coordinate in [−η, η] \ {0}.

By symmetry, we have x
(−θ)
t = −x(θ)

t and p
(−θ)
t = −p(θ)

t . We now study the solutions (x
(θ)
t , p

(θ)
t )

for 0 < θ ≤ η and t ≥ 0. Then p
(θ)
t < 0 < x

(θ)
t for t ≥ 0 and (x(θ))′t < 0 and limt→∞ x

(θ)
t = 0,

so x
(θ)
t ∈ (0, θ) for t > 0. So we can write p

(θ)
t = −φ(θ)(x

(θ)
t ), where φ(θ) : (0, θ) → R>0 and

limz→0 φ
(θ)(z) = limz→θ φ

(θ)(z) = 0. Let

Θ :=

{
θ ∈ (0, η]; (z,−φ(θ)(z)) ∈ RA for some A >

1

γ
and z ∈ (0, θ)

}
.

The following lemmas characterize this set.

Lemma B.5. If θ ∈ (0, η] \Θ, then

lim
z→0

φ(θ)(z)

(γ(a− 1)z)
1
a−1

= 1.

Proof. By the definition of φ(θ),

−(x
(θ)
t )b−1 + γφ(θ)(x

(θ)
t ) = (p

(θ)
t )′ = (φ(θ))′(x

(θ)
t )φ(θ)(x

(θ)
t )a−1, so

(φ(θ))′(z) = φ(θ)(z)1−a(γφ(θ)(z)− zb−1).

Because the orbits are disjoint for different θ’s, we have φ(θ1)(z) < φ(θ2)(z) for 0 < θ1 < θ2 ≤ η and
z ∈ (0, θ1). If (z0,−φ(θ)(z0)) ∈ RA for some z0 ∈ (0, θ), then by Lemma B.3, (z,−φ(θ)(z)) ∈ RA
for every z ∈ (0, z0]. So

Θ =
{
θ ∈ (0, η]; lim inf

z→0
z1−bφ(θ)(z) <∞

}
.

If 0 < θ1 < θ2 and θ2 ∈ Θ, then θ1 ∈ Θ too, since φ(θ1)(z) < φ(θ2)(z) for z ∈ (0, θ1). If A > 1
γ and

θ < ξ(A), then (x
(θ)
t , p

(θ)
t ) ∈ RA for t > 0, so (z,−φ(θ)(z)) ∈ RA for z ∈ (0, θ). So (0, ξ(A)) ⊆ Θ

for every A > 1
γ . Let

F (z) := γ−1(a− 1)−1φ(θ)(z)a−1 − z,
then limz→0 F (z) = 0, and

F ′(z) =
(φ(θ))′(z)

γφ(θ)(z)2−a − 1 = −γ−1(z1−bφ(θ)(z))−1,

so limz→0 F
′(z) = 0, because limz→0 z

1−bφ(θ)(z) =∞, since θ /∈ Θ. Then for every ε > 0 there is a

δ > 0 such that F is ε-Lipschitz in (0, δ), and then |F (z)| ≤ εz for z ∈ (0, δ). So limz→0
F (z)
z = 0.
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Lemma B.6. Θ = (0, η).

Proof. Suppose indirectly that η ∈ Θ. Then there is an A > 1
γ and a z ∈ (0, η) such that

(z,−φη(z)) ∈ RA. Then for ε > 0 small enough we have (z,−φη(z) − ε) ∈ RA too. Let (x, p)
be the solution with (x0, p0) = (z,−φη(z) − ε). By Lemma B.2, there is a T < 0 such that
p(T ) = 0 and pt < 0 for t ∈ (T, 0]. Then x′t < 0 for t ∈ (T, 0]. Since this orbit cannot cross
{(u,−φ(θ)(u)); u ∈ (0, η)}, we must have x(T ) > η. However (x0, p0) ∈ RA, so (xt, pt) ∈ RA for
every t ≥ 0 by Lemma B.3. So (x(T ), 0) is the last intersection of the solution (x, p) with the x-axis,
hence x(T ) is not in the image of η, so η < x(T ) ≤ η. This contradiction proves that η /∈ Θ.

Now suppose indirectly that there is a θ ∈ (0, η) \ Θ. Let us write φ = φη and ψ = φ(θ) for
simplicity. We have

ψ′(z) = ψ(z)1−a(γψ(z)− zb−1) > 0

for z > 0 close enough to 0, because limz→0
ψ(z)
zb−1 = ∞, since η /∈ Θ. So ψ has an inverse function

ψ−1 near 0. So we can define a function G(z) := ψ−1(φ(z)) for z ∈ (0, c), for some c > 0. We have
ψ(z) < φ(z) for every z ∈ (0, θ), so G(z) > z for z ∈ (0, c). Then

G′(z) = ψ′(G(z))−1φ′(z) =
φ(z)1−a(γφ(z)− zb−1)

ψ(G(z))1−a(γψ(G(z))−G(z)b−1)

=
γφ(z)− zb−1

γφ(z)−G(z)b−1
.

Let h(z) = G(z)− z for z ∈ (0, c), then h(z) > 0, limz→0 h(z) = 0, and

h′(z) =
(z + h(z))b−1 − zb−1

γφ(z)−G(z)b−1
= zb−1 (1 + h(z)

z )b−1 − 1

γφ(z)−G(z)b−1
.

If z → 0, then φ(z)a−1 ∼ ψ(z)a−1 ∼ γ(a − 1)z by Lemma B.5. Since G(z) → 0, we also have

γ(a− 1)z ∼ φ(z)a−1 = ψ(G(z))a−1 ∼ γ(a− 1)G(z). So limz→0
G(z)
z = 1 and limz→0

h(z)
z = 0. Then

φ(z)/G(z)b−1 ∼ (γ(a − 1))
1
a−1 z

1
a−1−(b−1), so limz→0 γφ(z)/G(z)b−1 = ∞, because 1

a−1 < b − 1.
Therefore

h′(z) ∼ zb−1 (1 + h(z)
z )b−1 − 1

γφ(z)
∼ zb−1(b− 1)γ−1h(z)

z

1

(γ(a− 1)z)
1
a−1

= Czλ−1h(z),

where C = (b− 1)γ−1(γ(a− 1))−
1
a−1 > 0 and λ = b− 1− 1

a−1 > 0 are constants.

We know that φ(z) ∼ (γ(a−1))
1
a−1 z

1
a−1 = 1. Note that 1

a−1 < b−1, so limz→0 γφ(z)/G(z)b−1 =

∞. We also have limz→0
h(z)
z = 0 and (1+h(z)

z )b−1−1 ∼ (b−1)h(z)
z . So h′(z) ∼ γ−1(b−1)

(γ(a−1))
1
a−1

zb−2− 1
a−1h(z).

Thus h′(z) ∼ Czλ−1h(z), where C > 0 and λ = b − 2 − 1
a−1 + 1 > 0, because ba − b − a > 0. So

log(h(z))′ = h′(z)
h(z) ∼ Czλ−1 = (Cλ z

λ)′. Applying L’Hôspital’s rule, we get

1 = lim
z→0

log(h(z))′

(Cλ z
λ)′

= lim
z→0

log(h(z))
C
λ z

λ
= −∞.

This contradiction proves that Θ = (0, η).
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Now we are ready to prove our lower bound.

Proposition 2.7 (Lower bounds on the convergence rate in continuous time). Suppose that 1
b + 1

a <

1. For any θ ∈ R, we denote by (x
(θ)
t , p

(θ)
t ) the unique solution of (32) with x0 = θ, p0 = 0. Then

there exists a constant η ∈ (0,∞) depending on a and b such that the path (x
(η)
t , p

(η)
t ) and its

mirrored version (x
(−η)
t , p

(−η)
t ) satisfy that

|x(−η)
t | = |x(η)

t | ≤ O(exp(−αt)) for every α < γ(a− 1) as t→∞.

For any path (xt, pt) that is not a time translation of (x
(η)
t , p

(η)
t ) or (x

(−η)
t , p

(−η)
t ), we have∣∣x−1

t

∣∣ = O(t
1

ba−b−a ) as t→∞,

so the speed of convergence is sub-linear and not linearly fast.

Proof. First let θ ∈ (0, η). Then θ ∈ Θ by Lemma B.6, so there is an A > 1
γ and a t0 ∈ R such

that (x
(θ)
t , p

(θ)
t ) ∈ RA for t ≥ t0. Then x

(θ)
t > 0 and (x

(θ)
t )′ = −|p(θ)

t |a−1 ≥ −Aa−1(x
(θ)
t )(b−1)(a−1)

for t ≥ t0. Here (b− 1)(a− 1) > 1, so

((x
(θ)
t )−(ba−b−a))′ = −(ba− b− a)(x

(θ)
t )−(b−1)(a−1)(x

(θ)
t )′ ≤ (ba− b− a)Aa−1

for t ≥ t0. Let K := (ba− b− a)Aa−1, then (x
(θ)
t )−(ba−b−a) ≤ Kt+ L for t ≥ t0 and some L ∈ R.

So (x
(θ)
t )−1 = O(t

1
ba−b−a ) when t→∞, therefore the convergence is not linear.

By Lemma B.5, we have p
(η)
t ∼ −(γ(a − 1)x

(η)
t )

1
a−1 when t → ∞. So (x(η))′t = −|p(η)

t |a−1 ∼
−γ(a − 1)x

(η)
t , hence (log(x

(η)
t ))′ ∼ −γ(a − 1) = (−γ(a − 1)t)′, when t → ∞. So by L’Hôspital’s

rule, log(x
(η)
t ) ∼ −γ(a− 1)t, thus |x(η)

t | = O(e−αt) when t→∞, for every α < γ(a− 1). Then also

|p(η)
t | = O(e−βt) when t→∞, for every β < γ. So the convergence is linear.

So up to time translation there are only two solutions, (x(η), p(η)) and (−x(η),−p(η)), where the
convergence to (0, 0) is linear.

C Proofs of convergence for discrete systems

C.1 Implicit Method

Firstly, we show the well-definedness of the implicit scheme.

Lemma 3.1 (Well-definedness of the implicit scheme). Suppose that f and k satisfy assumptions
A.1 and A.2, and ε, γ ∈ (0,∞). Then (34) has a unique solution for every xi, pi ∈ Rd, and this
solution also satisfies (33).

Proof. The proof is based on Theorem 26.3 of [47]. We start by introducing some concepts from
[47] that are useful for dealing with convex functions on Rn taking values in [−∞,∞]. We say
that g : Rn → [−∞,∞] is convex if the epigraph of g, {(x, µ) : µ ≥ g(x), x ∈ Rn, µ ∈ [−∞,∞]}
is convex. A convex function g : Rn → [−∞,∞] is called proper convex if g(x) 6= −∞ for every
x ∈ Rn, and there is at least one x ∈ Rn where g(x) < ∞. We say that g : Rn → [−∞,∞] is
lower-semicontinuous if limxi→x g(xi) ≥ g(x) for every sequence xi → x such that limxi→x g(xi)
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exists. The relative interior of a set S ⊂ Rn, denoted by riS, is the interior of the set within its
affine closure. We define the essential domain of a function g : Rn → [−∞,∞], denoted by dom g,
as the set of points x ∈ Rn where g(x) is finite. We call a proper convex function g : Rn → [−∞,∞]
essentially smooth if it satisfies the following 3 conditions for C = int(dom g):

(a) C is non-empty

(b) g is differentiable throughout C

(c) limi→∞ ‖∇g(xi)‖ = +∞ whenever x1, x2, . . . is a sequence in C converging to a boundary
point of C.

Let ∂g(x) denote the subdifferential of g at x (which is the set of subgradients of g at x), and denote
dom ∂g := {x|∂g(x) 6= ∅}. We say that a proper convex function g : Rn → [−∞,∞] is essentially
strictly convex if g is strictly convex for every convex subset of dom ∂g.

By assumption A.2, k is differentiable everywhere, and it is strictly convex, hence it is both
essentially smooth and essentially strictly convex (since its domain is dom k = Rn). Moreover,
since k is a proper convex function, and it is lower semicontinuous everywhere (hence closed, see
page 52 of [47]), it follows from Theorem 12.2 of [47] that (k∗)∗ = k. Therefore, by Theorem 26.3 of
[47], it follows that k∗ is both essentially strictly convex and essentially smooth. Since f is convex
and differentiable everywhere in Rn, based on the definitions and the assumption ε, γ ∈ (0,∞), it
is straightforward to show that

F (x) := εk∗(x−xiε ) + εδf(x)− δ 〈pi, x〉

is also essentially strictly convex and essentially smooth. Now we are going to show that its
infimum is reached at a unique point in Rn. First, using the convexity of f , it follows that f(x) ≥
f(xi) + 〈∇f(xi), x− xi〉, hence

F (x) ≥ εk∗(x−xiε ) + εδ 〈∇f(xi), x− xi〉 − δ 〈pi, x− xi〉 − δ 〈pi, xi〉+ εδf(xi)

using the definition (4) of the convex conjugate k∗

≥ 〈p, x− xi〉 − k(p) + εδ 〈∇f(xi), x− xi〉 − δ 〈pi, x− xi〉 − δ 〈pi, xi〉+ εδf(xi)

= 〈p+ εδ∇f(xi)− δpi, x− xi〉 − k(p)− δ 〈pi, xi〉+ εδf(xi),

for any p ∈ Rn. By setting p = x−xi
‖x−xi‖−(εδ∇f(xi)− δpi) for ‖x−xi‖ > 0, and p = − (εδ∇f(xi)− δpi)

for ‖x−xi‖ = 0, using the continuity and finiteness of k, it follows that F (x) ≥ ‖x−xi‖−c for some
c <∞ depending only on ε, δ, xi and pi. Together with the lower semicontinuity of F , this implies
that there exists at least one y ∈ Rn such that F (y) = infx∈Rn F (x), and −∞ < infx∈Rn F (x) <∞.

It remains to show that this y is unique. First, we are going to show that it falls within the
interior of the domain of F . Let C := int(domF ), then using the essential smoothness of F , it
follows that C ⊆ domF ⊆ clC is a non-empty convex set (cl refers to closure). If y would fall
on the boundary of C, then by Lemma 26.2 of [47], F (y) could not be equal to the infimum of
F . Hence every such y falls within C. By Theorem 23.4 of [47], ri(domF ) ⊆ dom ∂F ⊆ domF .
Since C is a non-empty open convex set, C = int domF = ri(domF ), therefore from the definition
of essential strict convexity, it follows that F is strictly convex on C. This means that there the
infimum infx∈Rn F (x) is achieved at a unique y ∈ Rn, thus (34) is well-defined.
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Finally, we show the equivalence with (33). First, note that using the fact that k is essentially
smooth and essentially convex, it follows from Theorem 26.5 of [47] that ∇(k∗)(x) = (∇k)−1(x) for
every x ∈ int(dom k∗). Since F is differentiable in the open set C = int(domF ), and the infimum
of F is taken at some y ∈ C, it follows that ∇F (y) = 0. From the fact that f(x) and 〈pi, x〉 are
differentiable for every x ∈ Rn, it follows that for every point z ∈ C, z−xi

ε ∈ int(dom k∗). Thus in
particular, using the definition xi+1 = y, we have

∇(k∗)

(
xi+1 − xi

ε

)
+ εδ∇f(xi+1)− δpi = 0,

which can be rewritten equivalently using the second line of (34) as

∇(k∗)

(
xi+1 − xi

ε

)
= pi+1.

Using the expression ∇ (k∗)(x) = (∇ k)−1(x) for x = xi+1−xi
ε ∈ int(dom k∗), we obtain that

(∇k)−1
(
xi+1−xi

ε

)
= pi+1, and hence the first line of (33) follows by applying ∇k on both sides.

The second line follows by rearrangement of the second line of (34).

The following two lemmas are preliminary results that will be used in deriving convergence
results for both this scheme and the two explicit schemes in the next sections.

Lemma C.1. Given f , k, γ, α, Cα,γ , and Cf,k satisfying Assumptions A and B, and a sequence
of points xi, pi ∈ Rd for i ≥ 0, we define Hi := f(xi)− f(x?) + k(pi) . Then the equation

v = Hi +
Cα,γ

2
α(2v) 〈xi − x?, pi〉 . (84)

has a unique solution in the interval v ∈ [Hi/2, 3Hi/2], which we denote by Vi. In addition, let

βi :=
Cα,γ

2
α(2Vi), (85)

then Vi = Hi + βi 〈xi − x?, pi〉 and the differences Vi+1 − Vi can be expressed as

Vi+1 − Vi = Hi+1 −Hi + βi+1 〈xi+1 − x?, pi+1〉 − βi 〈xi − x?, pi〉 (86)

= Hi+1 −Hi + βi(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 (87)

= Hi+1 −Hi + βi+1(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi − x?, pi〉 . (88)

Proof. Similarly to (27), we have by Lemma 2.3,

| 〈xi − x?, pi〉 | ≤ k(pi)/α(k(pi)) + f(xi)− f(x?) ≤
Hi

α(k(pi))
. (89)

For every i ≥ 0, we define Vi as the unique solution v ∈ [Hi/2, 3Hi/2] of the equation

v = Hi +
Cα,γ

2
α(2v) 〈xi − x?, pi〉 . (90)

The existence and uniqueness of this solution was shown in the proof of Theorem 2.5. The fact
that Vi = Hi + βi 〈xi − x?, pi〉 immediately follows from equation (90), and (87)-(88) follow by
rearrangement.
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Lemma C.2. Under the same assumptions and definitions as in Lemma C.1, if in addition we
assume that for some constants C1, C2 ≥ 0, for every i ≥ 0,

Vi+1 − Vi ≤ −ε(γ − βi+1 − C1ε)k(pi+1)− εγβi+1 〈xi+1 − x?, pi+1〉 − εβi+1(f(xi+1)− f(x?))

+ C2ε
2βi+1Vi+1 + (βi+1 − βi) 〈xi − x?, pi〉 , and (91)

Vi+1 − Vi ≤ −ε(γ − βi − C1ε)k(pi+1)− εγβi 〈xi+1 − x?, pi+1〉 − εβi(f(xi+1)− f(x?))

+ C2ε
2βiVi+1 + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 , (92)

then for every 0 < ε ≤ min
(

1−γ
C2

, γ
2(1−γ)
4C1

)
, for every i ≥ 0, we have

Vi+1 ≤ [1 + εβi(1− γ − εC2)/2]
−1 Vi. (93)

Similarly, if in addition to the assumptions of Lemma C.1, we assume that for some constants
C1, C2 ≥ 0, for every i ≥ 0,

Vi+1 − Vi ≤ −ε(γ − βi+1 − C1ε)k(pi)− εγβi+1 〈xi − x?, pi〉 − εβi+1(f(xi)− f(x?))

+ C2ε
2βi+1Vi + (βi+1 − βi) 〈xi − x?, pi〉 , and (94)

Vi+1 − Vi ≤ −ε(γ − βi − C1ε)k(pi)− εγβi 〈xi − x?, pi〉 − εβi(f(xi)− f(x?))

+ C2ε
2βiVi + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 , (95)

then for every 0 < ε ≤ min
(

1−γ
C2

, γ
2(1−γ)
4C1

)
, we have

Vi+1 ≤ [1− εβi(1− γ − εC2)/2]Vi. (96)

Proof. First suppose that assumptions (91) and (92) hold. Using (23) of Lemma 2.4 with α =

α(2Vi+1) and β = βi+1, it follows that for ε ≤ γ2(1−γ)
4C1

,

− ε(γ − βi+1 − C1ε)k(pi+1)− εβi+1(f(xi+1)− f(x?))− εβi+1γ 〈xi+1 − x?, pi+1〉
≤ −εβi+1(1− γ)Vi+1,

and by combining the terms in (91), we have

Vi+1 − Vi ≤ −εβi+1[1− γ − εC2]Vi+1 + (βi+1 − βi) 〈xi − x?, pi〉 . (97)

Now we are going to prove that Vi+1 ≤ Vi under the assumptions of the lemma. We argue by
contradiction, suppose that Vi+1 > Vi. Then by the non-increasing property of α, and the definition

βi =
Cα,γ

2 α(2Vi), we have βi+1 ≤ βi. Using the convexity of α, we have α(y)−α(x) ≤ α′(y)(y− x)
for any x, y ≥ 0, hence we obtain that

|βi+1 − βi| = βi − βi+1 =
Cα,γ

2
(α(2Vi)− α(2Vi+1)) ≤ Cα,γ(Vi+1 − Vi)(−α′(2Vi)),

and by (89) and assumption A.4 we have

|βi+1 − βi| |〈xi − x?, pi〉| ≤ Cα,γ(Vi+1 − Vi)(−α′(2Vi))
2Vi

α(2Vi)
< Vi+1 − Vi.
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Combining this with (99) we obtain that Vi+1 − Vi < Vi+1 − Vi, which is a contradiction. Hence
we have shown that Vi+1 ≤ Vi, which implies that βi+1 ≥ βi.

Using (23) of Lemma 2.4 with α = α(2Vi) and β = βi, it follows that for 0 < ε ≤ γ2(1−γ)
4C1

,

− ε(γ − βi − C1ε)k(pi+1)− εβi(f(xi+1)− f(x?))− εβiγ 〈xi+1 − x?, pi+1〉
≤ −εβi(1− γ)Vi+1,

and hence by substituting this to (91), it follows that

Vi+1 − Vi ≤ −εβi[1− γ − εC2]Vi+1 + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 . (98)

Now using the convexity of α, and the fact that βi+1 ≥ βi, we have

|βi+1 − βi| = βi+1 − βi =
Cα,γ

2
(α(2Vi+1)− α(2Vi)) ≤ Cα,γ(Vi − Vi+1)(−α′(2Vi+1)),

and by (89) and assumption A.4 we have

|βi+1 − βi| |〈xi+1 − x?, pi+1〉| ≤ Cα,γ(Vi − Vi+1)(−α′(2Vi+1))
2Vi+1

α(2Vi+1)
< Vi − Vi+1.

By combining this with (88), we obtain that

Vi+1 − Vi ≤ −
εβi
2

[1− γ − εC2]Vi+1,

and the first claim of the lemma follows by rearrangement and monotonicity.
The proof of the second claim based on assumptions (94) and (95) is as follows. As previously,

in the first step, we show that Vi+1 ≤ Vi by contradiction. Suppose that Vi+1 > Vi, then βi+1 ≤ βi.
Using (23) of Lemma 2.4 with α = α(2Vi) and β = βi+1 ≤ βi ≤ αγ

2 , it follows that for ε ≤ γ2(1−γ)
4C1

,

− ε(γ − βi+1 − C1ε)k(pi+1)− εβi+1(f(xi+1)− f(x?))− εβi+1γ 〈xi+1 − x?, pi+1〉
≤ −εβi+1(1− γ)Vi+1,

and by combining the terms in (94), we have

Vi+1 − Vi ≤ −εβi+1[1− γ − εC2]Vi + (βi+1 − βi) 〈xi − x?, pi〉 . (99)

The rest of the proof follows the same steps as for assumptions (91) and (92), hence it is omitted.

Now we are ready to prove the main result of this section.

Proposition 3.2 (Convergence bound for the implicit scheme). Given f , k, γ, α, Cα,γ , and
Cf,k satisfying assumptions A and B. Suppose that ε < 1−γ

2 max(Cf,k,1) . Let α? = α(3H0), and let

W0 = f(x0)− f(x?) and for i ≥ 0,

Wi+1 =Wi [1 + εCα,γ(1− γ − 2Cf,kε)α(2Wi)/4]
−1
.

Then for any (x0, p0) with p0 = 0, the iterates of (33) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0[1 + εCα,γ(1− γ − 2Cf,kε)α?/4]−i.
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Proof. We follow the notations of Lemma C.1, and the proof is based on Lemma C.2. By rearrange-
ment of the (33), we have

xi+1 − xi = ε∇k(pi+1)

pi+1 − pi = −γεpi+1 − ε∇f(xi+1)
(100)

For the Hamiltonian terms, by the convexity of f and k, we have

Hi+1 −Hi ≤ 〈∇k(pi+1), pi+1 − pi〉+ 〈∇f(xi+1), xi+1 − xi〉
= 〈∇k(pi+1),−γεpi+1 − ε∇f(xi+1)〉+ ε 〈∇f(xi+1),∇k(pi+1)〉 (101)

= −γε 〈∇k(pi+1), pi+1〉 (102)

For the inner product terms, we have

〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉 = 〈xi+1 − x?, pi+1〉 − 〈xi+1 − x? − (xi+1 − xi), pi+1 − (pi+1 − pi)〉
= 〈xi+1 − x?, pi+1〉 − 〈xi+1 − x? − ε∇k(pi+1), pi+1 + εγpi+1 + ε∇f(xi+1)〉
= (ε+ γε2) 〈pi+1,∇k(pi+1)〉 − ε 〈xi+1 − x?,∇f(xi+1)〉 − εγ 〈xi+1 − x?, pi+1〉+ ε2 〈∇k(pi+1),∇f(xi+1)〉 ,

and by assumption B.1 we have

〈∇k(pi+1),∇f(xi+1)〉 ≤ Cf,kHi+1 ≤ 2Cf,kVi+1, (103)

and hence

〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉 ≤ (ε+ γε2) 〈pi+1,∇k(pi+1)〉 − ε 〈xi+1 − x?,∇f(xi+1)〉 (104)

− εγ 〈xi+1 − x?, pi+1〉+ 2ε2Cf,kVi+1.

By assumption A.4 on Cα,γ we have βi+1 ≤ γ
2 , and using the condition ε < 1−γ

2(Cf,k+γ) of the lemma,

we have

γ − βi+1 − εγβi+1 ≥ γ −
γ

2
− (1− γ)

2γ
γ
γ

2
> 0. (105)

By (88), (102), (104), we have

Vi+1 − Vi ≤ −ε(γ − βi+1 − εγβi+1) 〈∇k(pi+1), pi+1〉 − εβi+1 〈xi+1 − x?,∇f(xi+1)〉
− εγβi+1 〈xi+1 − x?, pi+1〉+ 2ε2Cf,kβi+1Vi+1 + (βi+1 − βi) 〈xi − x?, pi〉

using the convexity of f and k, and inequality (105)

≤ −ε(γ − βi+1 − εγβi+1)k(pi+1)− εβi+1(f(xi+1)− f(x?))− εγβi+1 〈xi+1 − x?, pi+1〉
+ 2ε2Cf,kβi+1Vi+1 + (βi+1 − βi) 〈xi − x?, pi〉 .

Using the fact that βi+1 ≤ Cα,γ
2 ≤ γ

2 , it follows that (91) holds with C1 = γ2

2 and C2 = 2Cf,k.
By (87), (102), (104), it follows that

Vi+1 − Vi ≤ Hi+1 −Hi + βi(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi+1 − x?, pi+1〉
≤ −γε 〈∇k(pi+1), pi+1〉+ βi(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi+1 − x?, pi+1〉
≤ −γε 〈∇k(pi+1), pi+1〉+ (βi+1 − βi) 〈xi+1 − x?, pi+1〉+ (βiε+ βiγε

2) 〈pi+1,∇k(pi+1)〉
− βiε 〈xi+1 − x?,∇f(xi+1)〉 − βiεγ 〈xi+1 − x?, pi+1〉+ 2βiε

2Cf,kVi+1
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using the convexity of f and k, and inequality (105)

≤ −ε(γ − βi − εγβi)k(pi+1)− εβiγ 〈xi+1 − x?, pi+1〉 − εβi(f(xi+1)− f(x?))

+ 2ε2Cf,kβiVi+1 + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 ,

implying that (92) holds with C1 = γ2

2 and C2 = 2Cf,k. The claim of the Lemma now follows from
Lemma C.2.

C.2 First Explicit Method

The following lemma is a preliminary result that will be useful for proving our convergence bounds
for this discretization.

Lemma C.3. Given f , k, γ, α, Cα,γ , Cf,k, Ck, Df,k satisfying assumptions A, B, and C, and

0 < ε ≤ Cα,γ
10Cf,k+5γCk

, the iterates (36) satisfy that for every i ≥ 0,

〈∇f(xi+1)−∇f(xi), xi+1 − xi〉 ≤ 3ε2Df,k min(α(3Hi), α(3Hi+1))Hi+1. (106)

Proof. Let x
(t)
i+1 := xi+1 − tε∇k(pi+1) and H(t)

i+1 := H(x
(t)
i+1, pi+1). Using the assumptions that f is

2 times continuously differentiable, and assumption C.3, we have

〈∇f(xi+1)−∇f(xi), xi+1 − xi〉 =

∫ 1

t=0

〈
xi+1 − xi,∇2f(xi+1 − t(xi+1 − xi))(xi+1 − xi)

〉
dt

= ε2
∫ 1

t=0

〈
∇k(pi+1),∇2f(x

(t)
i+1)∇k(pi+1)

〉
dt ≤ ε2Df,k

∫ 1

t=0

α(3H(t)
i+1)H(t)

i+1dt, (107)

where in the last step we have used the fundamental theorem of calculus, which is applicable since〈
∇k(pi+1),∇2f(x

(t)
i+1)∇k(pi+1)

〉
is piecewise continuous by assumption C.2. We are going to show

the following inequalities based on the assumptions of the Lemma,

H(t)
i+1 ≤

1

1− εCf,k
Hi+1, (108)

α(3H(t)
i+1) ≤ α(3Hi+1) · 1− εCf,k

1− εCf,k(1 + 1/Cα,γ)
, (109)

α(3H(t)
i+1) ≤ α(3Hi) ·

1− ε(2Cf,k + γCk)

1− ε[Cf,k(2 + 3/Cα,γ) + γCk(1 + 1/Cα,γ)]
. (110)

The claim of the lemma follows directly by combining these 3 inequalities with (107) and using the
assumptions on ε.

First, by convexity and assumption B.1, we have

H(t)
i+1 −Hi+1 = f(x

(t)
i+1)− f(xi+1) ≤ −

〈
∇f(x

(t)
i+1), tε∇k(pi+1)

〉
≤ tεCf,kH(t)

i+1,

and (108) follows by rearrangement. In the other direction, by convexity and assumption B.1, we
have

Hi+1 −H(t)
i+1 = f(xi+1)− f(x

(t)
i+1) ≤ 〈∇f(xi+1), tε∇k(pi+1)〉 ≤ tεCf,kHi+1,
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so by rearrangement, it follows that

Hi+1 −H(t)
i+1 ≤

tεCf,k
1− tεCf,k

H(t)
i+1.

Using this, and the convexity of α, and Assumption A.4, we have

α(3H(t)
i+1)− α(3Hi+1) ≤ −3α′(3H(t)

i+1)(Hi+1 −H(t)
i+1) ≤ −α′(3H(t)

i+1)3H(t)
i+1

tεCf,k
1− tεCf,k

≤ 1

Cα,γ

tεCf,k
1− tεCf,k

α(3H(t)
i+1),

and (109) follows by rearrangement. Finally, using the convexity of f and k, we have

Hi −H(t)
i+1 = k(pi)− k(pi+1) + f(xi)− f(xi+1)

≤
〈
∇k(pi),

γε

1 + γε
pi +

ε

1 + γε
f(xi)

〉
+ 〈∇f(xi),−ε(1− t)∇k(pi+1)〉

using Assumptions B.1 and C.1

≤ γεCkk(pi) + εCf,kHi + εCf,k(k(pi+1) + f(xi)− f(x?))

≤ ε[(2Cf,k + γCk)Hi + Cf,kH(t)
i+1].

By rearrangement, this implies that

Hi −H(t)
i+1 ≤

ε(3Cf,k + γCk)

1− (2Cf,k + γCk)ε
· H(t)

i+1.

Using this, the convexity of α, and Assumption A.4, we have

α(3H(t)
i+1)− α(3Hi) ≤ −3α′(3H(t)

i+1)(Hi −H(t)
i+1) ≤ −α′(3H(t)

i+1)3H(t)
i+1 ·

ε(3Cf,k + γCk)

1− (2Cf,k + γCk)ε

≤ 1

Cα,γ
· ε(3Cf,k + γCk)

1− (2Cf,k + γCk)ε
· α(3H(t)

i+1),

and (110) follows by rearrangement.

Now we are ready to prove our convergence bound for this discretization.

Proposition 3.3 (Convergence bound for the first explicit scheme). Given f , k, γ, α, Cα,γ , Cf,k,

Ck, Df,k satisfying assumptions A, B, and C, and that 0 < ε < min
(

1−γ
2 max(Cf,k+6Df,k/Cα,γ ,1) ,

Cα,γ
10Cf,k+5γCk

)
.

Let α? = α(3H0), W0 := f(x0)− f(x?), and for i ≥ 0, let

Wi+1 =Wi

(
1 +

εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α(2Wi)

)−1

.

Then for any (x0, p0) with p0 = 0, the iterates (36) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0

(
1 +

εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α?

)−i
.
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Proof. We follow the notations of Lemma C.1, and the proof is based on Lemma C.2. For the
Hamiltonian terms, by the convexity of f and k, we have

Hi+1 −Hi = f(xi+1)− f(xi) + k(pi+1)− k(pi)

≤ 〈∇f(xi+1), xi+1 − xi〉+ 〈∇k(pi+1), pi+1 − pi〉
= 〈∇f(xi), xi+1 − xi〉+ 〈∇k(pi+1), pi+1 − pi〉+ 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉
= ε 〈∇f(xi),∇k(pi+1)〉 − ε 〈∇k(pi+1),∇f(xi) + γpi+1〉+ 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉
= −γε 〈∇k(pi+1), pi+1〉+ 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉 (111)

for any ε > 0. Note that by convexity and assumption B.1, we have

−f(xi) = −f(xi+1) + f(xi+1)− f(xi) ≤ −f(xi+1) + ε 〈∇f(xi+1),∇k(pi+1)〉
≤ −f(xi+1) + εCf,kHi+1 ≤ −f(xi+1) + 2εCf,kVi+1.

For the inner product terms, using the above inequality and convexity, we have

〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉
= 〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi+1〉+ 〈xi − x?, pi+1〉 − 〈xi − x?, pi〉
= ε 〈∇k(pi+1), pi+1〉 − ε 〈xi − x?,∇f(xi)〉 − γε 〈xi − x?, pi+1〉 pi+1

= (ε+ γε2) 〈∇k(pi+1), pi+1〉 − ε 〈xi − x?,∇f(xi)〉 − γε 〈xi+1, pi+1〉
≤ (ε+ γε2) 〈∇k(pi+1), pi+1〉 − ε(f(xi)− f(x?))− γε 〈xi+1, pi+1〉
≤ (ε+ γε2) 〈∇k(pi+1), pi+1〉 − ε(f(xi+1)− f(x?))− γε 〈xi+1, pi+1〉+ 2ε2Cf,kVi+1. (112)

Since Cα,γ ≤ γ, it follows that βi+1 =
Cα,γ

2 α(2Vi+1) ≤ γ
2 , and using the assumption on ε, we have

γ − βi+1 − εγβi+1 ≥ γ −
γ

2
− 1− γ

2γ
γ
γ

2
> 0. (113)

By (88), (111), and (112), it follows that

Vi+1 − Vi = Hi+1 −Hi + βi+1(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi − x?, pi〉
≤ −γε 〈∇k(pi+1), pi+1〉+ 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉+ (βi+1 − βi) 〈xi − x?, pi〉
+ βi+1

(
(ε+ γε2) 〈∇k(pi+1), pi+1〉 − ε(f(xi+1)− f(x?))− γε 〈xi+1, pi+1〉+ 2ε2Cf,kVi+1

)
≤ −ε(γ − βi+1 − εγβi+1) 〈∇k(pi+1), pi+1〉 − εβi+1f(xi+1)− εγβi+1 〈xi+1 − x?, pi+1〉
+ 2ε2βi+1Cf,kVi+1 + 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉+ (βi+1 − βi) 〈xi − x?, pi〉

which can be further bounded using (113), the convexity of k, and Lemma C.3 as

≤ −ε(γ − βi+1 − ε
γ2

2
)k(pi+1)− εβi+1γ 〈xi+1 − x?, pi+1〉 − εβi+1(f(xi+1)− f(x?))

+ 2ε2(Cf,k + 6Df,k/Cα,γ)βi+1Vi+1 + (βi+1 − βi) 〈xi − x?, pi〉 ,

implying that (91) holds with C1 = γ2

2 and C2 = 2(Cf,k + 6Df,k/Cα,γ).
Since 2Vi ≤ 3Hi, and by applying Lemma C.3 it follows that

〈∇f(xi+1)−∇f(xi), xi+1 − xi〉 ≤ 6ε2Df,k
βi
Cα,γ

Hi+1 ≤ 12ε2
Df,k

Cα,γ
βiVi+1. (114)
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By (87), (111), (112), and assumption B.1, we have

Vi+1 − Vi = Hi+1 −Hi + βi(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi+1 − x?, pi+1〉
≤ −γε 〈∇k(pi+1), pi+1〉+ 〈∇f(xi+1)−∇f(xi), xi+1 − xi〉+ (βi+1 − βi) 〈xi+1 − x?, pi+1〉
+ (βiε+ γβiε

2) 〈∇k(pi+1), pi+1〉 − βiε(f(xi+1)− f(x?))− γβiε 〈xi+1, pi+1〉+ 2ε2βiCf,kVi+1

using (114) and the convexity of f and k

≤ −ε
(
γ − βi − ε

γ2

2

)
k(pi+1)− εβiγ 〈xi+1 − x?, pi+1〉 − εβi(f(xi+1)− f(x?))

+ 2ε2(Cf,k + 6Df,k/Cα,γ)βiVi+1 + (βi+1 − βi) 〈xi+1 − x?, pi+1〉 ,

implying that (92) holds with C1 = γ2

2 and C2 = 2(Cf,k + 6Df,k/Cα,γ). The claim of the lemma
now follows by Lemma C.2.

C.3 Second Explicit Method

The following preliminary result will be used in the proof of the convergence bound.

Lemma C.4. Given f , k, γ, α, Cα,γ , Cf,k, Ck, Df,k satisfying assumptions A, B, and D, and

0 < ε ≤ min
(

Cα,γ
6(5Cf,k+2γCk)+12γCα,γ

,
√

1
6γ2DkFk

)
, the iterates (39) satisfy that for every i ≥ 0,

〈∇k(pi+1)−∇k(pi), pi+1 − pi〉 ≤ ε2C min(α(3Hi), α(3Hi+1))Hi + ε2Dk(pi), (115)

where
C = 3Df,k, D = 2γ2Dk(1 + Ek). (116)

Proof. For 0 ≤ t ≤ 1, let

p
(t)
i := pi + t(pi+1 − pi) = (1− εγt)pi − εt∇f(xi+1), (117)

H(t)
i := H

(
xi+1, p

(t)
i

)
= f(xi+1)− f(x?) + k

(
p

(t)
i

)
, (118)

Pi,i+1 := 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉 . (119)

Note that by rearrangement we have pi =
(
p

(t)
i + εt∇f(xi+1)

)
/(1− εγt), and hence

pi+1 − pi =
p

(t)
i − pi
t

=
−εγp(t)

i − ε∇f(xi+1)

1− εγt . (120)

Using assumption D.1, it follows that
〈
pi+1 − pi,∇2k

(
p

(t)
i

)
(pi+1 − pi)

〉
is piecewise continuous,

hence by the fundamental theorem of calculus, we have

Pi,i+1 =

∫ 1

t=0

〈
pi+1 − pi,∇2k

(
p

(t)
i

)
(pi+1 − pi)

〉
dt

=
1

(1− εγt)2

∫ 1

t=0

〈
εγp

(t)
i + ε∇f(xi+1),∇2k

(
p

(t)
i

)
(εγp

(t)
i + ε∇f(xi+1)

〉
dt

≤ 2ε2γ2

(1− εγ)2

∫ 1

t=0

〈
p

(t)
i ,∇2k

(
p

(t)
i

)
p

(t)
i

〉
+

2ε2

(1− εγ)2

∫ 1

t=0

〈
∇f(xi+1),∇2k

(
p

(t)
i

)
∇f(xi+1)

〉
dt

(121)
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For the first integral, using Assumptions D.3, the convexity of k, and then D.4, we have∫ 1

t=0

〈
p

(t)
i ,∇2k

(
p

(t)
i

)
p

(t)
i

〉
dt ≤ Dk

∫ 1

t=0

k
(
p

(t)
i

)
dt ≤ Dk

2
(k(pi) + k(pi+1))

≤ Dk

2
((1 + Ek)k(pi) + FkPi,i+1) (122)

For the second integral, using Assumption D.5, we have∫ 1

t=0

〈
∇f(xi+1),∇2k

(
p

(t)
i

)
∇f(xi+1)

〉
dt ≤ Df,k

∫ 1

t=0

H(t)
i α(3H(t)

i )dt. (123)

We are going to show the following 3 inequalities based on the assumptions of the Lemma.

H(t)
i ≤

1− εγ
1− ε(γ + 2Cf,k)

· Hi, (124)

α(3H(t)
i ) ≤ α(3Hi+1) · 1− (Cf,k + γ)ε

1− (Cf,k + γ + Cf,k/Cα,γ)ε
, (125)

α(3H(t)
i ) ≤ α(3Hi) ·

1− ε(2Cf,k + γCk)

1− ε[Cf,k(2 + 3/Cα,γ) + γCk(1 + 1/Cα,γ)]
. (126)

The claim of the lemma follows from substituting these bounds into (123), and then substituting
the bounds (122) and (123) into (121) and rearranging.

First, by the convexity of f and Assumption B.1, we have

f(xi+1)− f(xi) ≤ ε 〈∇f(xi+1),∇k(pi)〉 ≤ εCf,k(f(xi+1)− f(x?) + k(pi))

= εCf,k((f(xi+1 − f(xi)) +Hi)

so by rearrangement it follows that

f(xi+1)− f(xi) ≤
εCf,k

1− εCf,k
· Hi, (127)

and similiarly

f(xi)− f(xi+1) ≤ −ε 〈∇f(xi),∇k(pi)〉 ≤ εCf,kHi. (128)

Using (127), and the convexity of k, we have

H(t)
i −Hi = f(xi+1)− f(xi) + k

(
p

(t)
i

)
− k(pi)

≤ εCf,k
1− εCf,k

· Hi +
〈
∇k
(
p

(t)
i

)
, t(pi+1 − pi)

〉
now using (120), and then Assumption B.1,

≤ εCf,k
1− εCf,k

· Hi − εt
〈
∇k
(
p

(t)
i

)
,
γp

(t)
i +∇f(xi+1)

1− εγt

〉

≤ εCf,k
1− εCf,k

· Hi +
εCf,k
1− εγH

(t)
i ,
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and inequality (124) follows by rearrangement.
By the convexity of k, and using (120) for t = 1, we have

Hi+1 −H(t)
i = k(pi+1)− k

(
p

(t)
i

)
≤
〈
∇k(pi+1), pi+1 − p(t)

i

〉
= 〈∇k(pi+1), (1− t)(pi+1 − pi)〉 = −(1− t)

〈
∇k(pi+1),

εγ

1− εγ pi+1 +
ε

1− εγ∇f(xi+1)

〉
using Assumption B.1,

≤ εCf,k
1− γε · Hi+1,

so by rearrangement,

Hi+1 −H(t)
i ≤

εCf,k
1− (Cf,k + γ)ε

H(t)
i . (129)

Using this, the convexity of α, and Assumption A.4, we have

α(3H(t)
i )− α(3Hi+1) ≤ −3α′(3H(t)

i )(Hi+1 −H(t)
i ) ≤ −α′(3H(t)

i )3H(t)
i ·

εCf,k
1− (Cf,k + γ)ε

≤ 1

Cα,γ
· εCf,k

1− (Cf,k + γ)ε
· α(3H(t)

i ),

and (125) follows by rearrangement. Finally, using inequality (128), we have

Hi −H(t)
i = f(xi)− f(xi+1) + k(pi)− k

(
p

(t)
i

)
≤ εCf,kHi + 〈∇k(pi),−t(pi+1 − pi)〉
≤ εCf,kHi + εt 〈∇k(pi), γpi +∇f(xi+1)〉

now using Assumptions B.1 and D.2,

≤ ε(Cf,kHi + γCkk(pi) + Cf,kk(pi) + Cf,k(f(xi+1)− f(x?))

≤ ε((2Cf,k + γCk)Hi + Cf,kH(t)
i ),

and by rearrangement this implies that

Hi −H(t)
i ≤

(3Cf,k + γCk)ε

1− (2Cf,k + γCk)ε
· H(t)

i . (130)

Using this, the convexity of α, and Assumption A.4, we have

α(3H(t)
i )− α(3Hi) ≤ −3α′(3H(t)

i )(Hi −H(t)
i ) ≤ −α′(3H(t)

i )3H(t)
i ·

ε(3Cf,k + γCk)

1− (2Cf,k + γCk)ε

≤ 1

Cα,γ
· ε(3Cf,k + γCk)

1− (2Cf,k + γCk)ε
· α(3H(t)

i ),

and (126) follows by rearrangement.
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Now we are ready to prove the convergence bound.

Proposition 3.4 (Convergence bound for the second explicit scheme). Given f , k, γ, α, Cα,γ ,
Cf,k, Ck, Dk, Df,k, Ek, Fk satisfying assumptions A, B, and D, and that

0 < ε < min

(
1− γ

2(Cf,k + 6Df,k/Cα,γ)
,

1− γ
8Dk(1 + Ek)

,
Cα,γ

6(5Cf,k + 2γCk) + 12γCα,γ
,

√
1

6γ2DkFk

)
.

Let α? = α(3H0), W0 := f(x0)− f(x?), and for i ≥ 0, let

Wi+1 =Wi

(
1− εCα,γ

4
[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α(2Wi)

)
.

Then for any (x0, p0) with p0 = 0, the iterates (39) satisfy for every i ≥ 0,

f(xi)− f(x?) ≤ 2Wi ≤ 2W0 ·
(

1− εCα,γ
4

[1− γ − 2ε(Cf,k + 6Df,k/Cα,γ)]α?

)i
.

Proof. We follow the notations of Lemma C.1, and the proof is based on Lemma C.2. For the
Hamiltonian terms, by the convexity of f and k, we have

Hi+1 −Hi = f(xi+1)− f(xi) + k(pi+1)− k(pi)

≤ 〈∇f(xi+1), xi+1 − xi〉+ 〈∇k(pi+1), pi+1 − pi〉
= 〈∇f(xi+1), xi+1 − xi〉+ 〈∇k(pi), pi+1 − pi〉+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉
= ε 〈∇f(xi+1),∇k(pi)〉 − ε 〈∇k(pi),∇f(xi+1) + γpi〉+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉
= −γε 〈∇k(pi), pi〉+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉 (131)

for any ε > 0. For the inner product terms, we have

〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉
= 〈xi+1 − x?, pi+1〉 − 〈xi+1 − x?, pi〉+ 〈xi+1 − x?, pi〉 − 〈xi − x?, pi〉
= 〈xi+1 − x?,−εγpi − ε∇f(xi+1)〉+ 〈xi+1 − xi, pi〉
= −ε 〈∇f(xi+1), xi+1 − x?〉 − εγ 〈xi+1 − x? − (xi+1 − xi), pi〉+ (1− εγ) 〈xi+1 − xi, pi〉
= −ε 〈∇f(xi+1), xi+1 − x?〉+ ε(1− εγ) 〈∇k(pi), pi〉 − εγ 〈xi − x?, pi〉 . (132)

Note that from assumption B.1 and the convexity of f it follows that

− (f(xi+1)− f(x?)) ≤ −(f(xi)− f(x?)) + f(xi)− f(xi+1)

≤ −(f(xi)− f(x?)) + 〈∇f(xi),−ε∇k(pi)〉 ≤ −(f(xi)− f(x?)) + εCf,KHi. (133)

By combining (88), (131), and (132), it follows that

Vi+1 − Vi = Hi+1 −Hi + βi+1(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi − x?, pi〉
≤ −γε 〈∇k(pi), pi〉+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉+ (βi+1 − βi) 〈xi − x?, pi〉
+ εβi+1 (−〈∇f(xi+1), xi+1 − x?〉+ (1− εγ) 〈∇k(pi), pi〉 − γ 〈xi − x?, pi〉)
≤ −ε(γ − βi+1) 〈∇k(pi), pi〉 − εβi+1 〈∇f(xi+1), xi+1 − x?〉 − εγβi+1 〈xi − x?, pi〉
+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉+ (βi+1 − βi) 〈xi − x?, pi〉
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which can be further bounded using βi+1 ≤ γ
2 , the convexity of k and f , and Lemma C.4 as

≤ −ε(γ − βi+1 − εD)k(pi)− εβi+1(f(xi+1)− f(x?))− εγβi+1 〈xi − x?, pi〉
+ 2ε2βi+1 · C/Cα,γ · Hi + (βi+1 − βi) 〈xi − x?, pi〉

and now using (133) and Hi ≤ 2Vi leads to

≤ −ε(γ − βi+1 − εD)k(pi)− εβi+1(f(xi)− f(x?))− εγβi+1 〈xi − x?, pi〉
+ ε2βi+1 · (4C/Cα,γ + 2Cf,k) · Vi + (βi+1 − βi) 〈xi − x?, pi〉 ,

implying that (94) holds with C1 = D and C2 = 4C/Cα,γ + 2Cf,k.
By combining (87), (131), and (132), it follows that

Vi+1 − Vi = Hi+1 −Hi + βi(〈xi+1 − x?, pi+1〉 − 〈xi − x?, pi〉) + (βi+1 − βi) 〈xi+1 − x?, pi+1〉
≤ −γε 〈∇k(pi), pi〉+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉+ (βi+1 − βi) 〈xi+1 − x?, pi+1〉
+ εβi (−〈∇f(xi+1), xi+1 − x?〉+ (1− εγ) 〈∇k(pi), pi〉 − γ 〈xi − x?, pi〉)
≤ −ε(γ − βi) 〈∇k(pi), pi〉 − εβi 〈∇f(xi+1), xi+1 − x?〉 − εγβi 〈xi − x?, pi〉
+ 〈∇k(pi+1)−∇k(pi), pi+1 − pi〉+ (βi+1 − βi) 〈xi+1 − x?, pi+1〉

which can be further bounded using βi ≤ γ
2 , the convexity of k and f , and Lemma C.4 as

≤ −ε(γ − βi − εD)k(pi)− εβi(f(xi+1)− f(x?))− εγβi 〈xi − x?, pi〉
+ 2ε2βi · C/Cα,γ · Hi + (βi+1 − βi) 〈xi+1 − x?, pi+1〉

and now using (133) and Hi ≤ 2Vi leads to

≤ −ε(γ − βi − εD)k(pi)− εβi(f(xi)− f(x?))− εγβi 〈xi − x?, pi〉
+ ε2βi · (4C/Cα,γ + 2Cf,k) · Vi + (βi+1 − βi) 〈xi+1 − x?, pi+1〉

implying that (95) holds with C1 = D and C2 = 4C/Cα,γ + 2Cf,k (see (116) for the definition of C
and D). The claim of the lemma now follows by Lemma C.2.

C.4 Explicit Method on Non-Convex f

Lemma 3.5 (Convergence of the first explicit scheme without convexity). Given ‖·‖, f , k, γ, b,
Dk, Df , σ satisfying assumptions E and A.2. If ε ∈ (0, b−1

√
γ/DfDk], then the iterates (36) of the

first explicit method satisfy

Hi+1 −Hi ≤ (εbDfDk − εγ)k(pi+1) ≤ 0, (47)

and ‖∇f(xi)‖2 → 0.

Proof. By assumption E.3

Hi+1 −Hi ≤ k(pi+1)− k(pi) + ε 〈∇f(xi),∇k(pi+1)〉+Dfσ(ε ‖∇k(pi+1)‖)
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now with convexity of k

≤ −εγ 〈∇k(pi+1), pi+1〉+Dfσ(ε ‖∇k(pi+1)‖)
≤ −εγk(pi+1) +Dfσ(ε ‖∇k(pi+1)‖)

we have σ(εt) ≤ εbσ(t) and σ(‖∇k(p)‖) ≤ Dkk(p) by assumption E.3

≤ (εbDfDk − εγ)k(pi+1)

If ε ≤ b−1
√
γ/DfDk, thenHi+1 ≤ Hi. IfH is bounded below we get that xi, pi is such that k(pi)→ 0

and thus pi → 0. Since ‖pi+1‖2 + δ ‖pi‖2 ≥ εδ ‖∇f(xi)‖2, we get ‖∇f(xi)‖ → 0.

D Proofs for power kinetic energies

The proofs of the results in this section will be based on the following three preliminary lemmas.

Lemma D.1. Let ‖·‖ be a norm on Rd and x ∈ Rd \ {0}. If ‖x‖ is differentiable, then

‖∇‖x‖‖∗ = 1 〈∇‖x‖ , x〉 = ‖x‖ , (134)

and if ‖x‖ is twice differentiable, then

(∇2 ‖x‖)x = 0. (135)

Proof. Let x ∈ Rd \ {0}. By the convexity of the norm we have

〈∇‖x‖ , y〉 − ‖y‖ ≤ 〈∇‖x‖ , x〉 − ‖x‖

for all y ∈ Rd. Thus

sup
y∈Rd
{〈∇‖x‖ , y〉 − ‖y‖} ≤ 〈∇‖x‖ , x〉 − ‖x‖

Because the right hand side is finite, we must have ‖∇‖x‖‖∗ ≤ 1 and the left hand side equal to 0.

0 ≤ 〈∇‖x‖ , x〉 − ‖x‖ ≤ ‖∇‖x‖‖∗ ‖x‖ − ‖x‖ ≤ 0

forces ‖∇‖x‖‖∗ = 1 and 〈∇‖x‖ , x〉 = ‖x‖. In fact, this argument goes through for non-differentiable
‖·‖, by definition of the subderivative. For twice differentiable norms, take the derivative of
〈∇‖x‖ , x〉 = ‖x‖ to get

(∇2 ‖x‖)x+∇‖x‖ = ∇‖x‖

and our result follows.

Lemma D.2. Given a ∈ [1,∞), A ∈ [1,∞), and ϕAa in (48). Define B = A/(A−1), b = a/(a−1).
For convenience, define

ϕ(t) = ϕAa (t) φ(t) = ϕBb (t). (136)

The following hold.
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1. Monotonicity. For t ∈ (0,∞), ϕ′(t) > 0. If a = A = 1, then for t ∈ (0,∞), ϕ′′(t) = 0,
otherwise ϕ′′(t) > 0. This implies that ϕ is strictly increasing on [0,∞).

2. Subhomogeneity. For all t, ε ∈ [0,∞),

ϕ(εt) ≤ max{εa, εA}ϕ(t) (137)

with equality iff a = A or t = 0 or ε = 0 or ε = 1.

3. Strict Convexity. If a > 1 or A > 1, then ϕ(t) is strictly convex on [0,∞) with a unique
minimum at 0.

4. Derivatives. For all t ∈ (0,∞),

min{a,A}ϕ(t) ≤ tϕ′(t) ≤ max{a,A}ϕ(t), (138)

(min{a,A} − 1)ϕ′(t) ≤ tϕ′′(t) ≤ (max{a,A} − 1)ϕ′(t). (139)

If a,A ≥ 2, then for all t, s ∈ (0,∞),

ϕ(t) ≤ sϕ′(s) + (ϕ′(t)− ϕ′(s))(t− s) (140)

Proof. First, for t ∈ (0,∞), the following identities can be easily verified.

tϕ′(t) = (ta + 1)
A−a
a ta (141)

tϕ′′(t) = ϕ′(t)
(
a− 1 + (A− a) ta

ta+1

)
(142)

1. Monotonicity. First, for t > 0 we have,

ϕ′(t) = (ta + 1)
A−a
a ta−1 > 0 (143)

For ϕ′(t) for t > 0, we have the following with equality iff a = A = 1

ϕ′′(t) = t−1ϕ′(t)
(
a− 1 + (A− a) ta

ta+1

)
≥ 0. (144)

Finally, ϕ(t) is continuous at 0, which gives our result.

2. Subhomogeneity. If a = A or t = 0 or ε = 0 or ε = 1, then equality clearly holds. Assume

a 6= A, t, ε > 0, and ε 6= 1. Assuming A > a, t
A−a
a is strictly increasing. If ε < 1, then

εϕ′(εt) = εa(εata + 1)
A−a
a ta−1 < εa(ta + 1)

A−a
a ta−1.

If ε > 1, then

εϕ′(εt) = εA(ta + ε−a)
A−a
a ta−1 < εA(ta + 1)

A−a
a ta−1.

Integrating both sides gives ϕ(εt) < max{εa, εA}ϕ(t). The case A < a follows similarly, using

the fact that t
A−a
a is strictly decreasing.
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3. Strict convexity. First, since ϕ is strictly increasing we get ϕ(t) > ϕ(0) = 0, which proves
that 0 is the unique minimizer. Our goal is to prove that for t, s ∈ [0,∞) and ε ∈ (0, 1) such
that t 6= s,

ϕ(εt+ (1− ε)s) < εϕ(t) + (1− ε)ϕ(s)

First, for t = 0 or s = 0, this reduces to a condition of the form ϕ(εt) < εϕ(t) for all t ∈ [0,∞)
and ε ∈ (0, 1). Considering separately the cases A = 1, a > 1 and a = 1, A > 1 and a,A > 1,
it is easy to see that this follows from the subhomogeneity result (137). For s, t > 0, our result
follows from the positivity of ϕ′′, (144).

4. Derivatives. Since,

min{a,A} − 1 ≤ a− 1 + (A− a)
ta

ta + 1
≤ max{a,A} − 1,

we get the second derivative bound (139) from identity (158). The first derivative bound
(138) follows from (139), since

tϕ′(t) =

∫ t

0

ϕ′(t) + tϕ′′(t) dt.

Our goal is now to prove the uniform gradient bound (140) for a,A ≥ 2. In the case that
0 < t < s, the bound reduces to (ϕ′(t)− ϕ′(s))(t− s) ≥ 0, which follows from convexity. The
remaining case is 0 < s ≤ t. Notice that for the case 0 < s < t, convexity implies

ϕ′(s) ≤ ϕ(t)− ϕ(s)

t− s ≤ ϕ′(t) (145)

Notice that in the case s = 0 for (145) we get the inequality ϕ(t) ≤ tϕ′(t), again a condition
of convexity. On the other hand, we have just shown that for our ϕ the stronger inequality
min{a,A}ϕ(t) ≤ tϕ′(t) holds. This motivates a strategy of searching for a stronger bound of
form (145), and using this to derive the uniform gradient bound (140). Indeed, let λ = t/s > 1,
then we will show

σ(λ)ϕ′(s) ≤ ϕ(λs)− ϕ(s)

λs− s ≤ ϕ′(λs)τ(λ) (146)

where

σ(λ) =

{
λa−1
a(λ−1) A ≥ a
λA−1
A(λ−1) A ≤ a τ(λ) =

{
λ(1−λ−a)
a(λ−1) A ≥ a
λ(1−λ−A)
A(λ−1) A ≤ a

(147)

First, assume A ≥ a. We need to prove

λa − 1

a
sϕ′(s) ≤ ϕ(λs)− ϕ(s) ≤ 1− λ−a

a
λsϕ′(λs)

We fix s > 0, and take F1(λ) := ϕ(λs) − ϕ(s) − λa−1
a sϕ′(s) and F2(λ) := 1−λ−a

a λsϕ′(λs) −
ϕ(λs) + ϕ(s). We need to prove that F1(λ) ≥ 0 and F2(λ) ≥ 0 for λ ≥ 1. We have
F1(1) = F2(1) = 0,

F ′1(λ) =
(λs)a

λ
(((λs)a + 1)

A−a
a − (sa + 1)

A−a
a ) ≥ 0
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and

F ′2(λ) =
(1− λ−a)s

a
(ϕ′(λs) + λsϕ′′(λs)− aϕ′(λs))

=
(1− λ−a)s

a
ϕ′(λs)(A− a)

(λs)a

(λs)a + 1
≥ 0,

so indeed F1(λ) ≥ 0 and F2(λ) ≥ 0 for every λ > 1.

Now let A ≤ a. Then we need to prove that

λA − 1

A
sϕ′(s) ≤ ϕ(λs)− ϕ(s) ≤ 1− λ−A

A
λsϕ′(λs).

We fix s > 0, and take F3(λ) := ϕ(λs) − ϕ(s) − λA−1
A sϕ′(s) and F4(λ) := 1−λ−A

A λsϕ′(λs) −
ϕ(λs) + ϕ(s). We need to prove that F3(λ) ≥ 0 and F4(λ) ≥ 0 for λ ≥ 1. We have
F3(1) = F4(1) = 0,

F ′3(λ) =
(λs)a

λ
(((λs)a + 1)−

a−A
a − ((λs)a + λa)−

a−A
a ) ≥ 0

and

F ′4(λ) =
(1− λ−A)s

A
(ϕ′(λs) + λsϕ′′(λs)−Aϕ′(λs))

=
(1− λ−A)s

A
ϕ′(λs)

(
a−A+ (A− a)

(λs)a

(λs)a + 1

)
≥ 0,

so indeed F3(λ) ≥ 0 and F4(λ) ≥ 0 for every λ > 1.

Now, we can prove (140). We have so far proven the following inequalities in ϕ(t), ϕ(s), ϕ′(t), ϕ′(s):

ϕ(s) ≥ 0, sϕ′(s)−min(a,A)ϕ(s) ≥ 0,

ϕ(t)− ϕ(s)− (λ− 1)φ(λ)sϕ′(s) ≥ 0, (λ− 1)τ(λ)sϕ′(t)− ϕ(t) + ϕ(s) ≥ 0.

We try to express the inequality sϕ′(s)+(t−s)(ϕ′(t)−ϕ′(s))−ϕ(t) ≥ 0 as a linear combination
of the above four inequalities with non-negative coefficients:

sϕ′(s) + (t− s)(ϕ′(t)− ϕ′(s))− ϕ(t) = c1ϕ(s) + c2(sϕ′(s)−min(a,A)ϕ(s))

+ c3(ϕ(t)− ϕ(s)− (λ− 1)σ(λ)sϕ′(s)) + c4((λ− 1)τ(λ)sϕ′(t)− ϕ(t) + ϕ(s)).

Comparing the coefficients of ϕ(s), ϕ(t), ϕ′(s), ϕ′(t), we get the following equations:

c1 −min(a,A)c2 − c3 + c4 = 0,

c3 − c4 = −1,

c2 − (λ− 1)σ(λ)c3 = 2− λ,
(λ− 1)τ(λ)c4 = λ− 1.

This system of equations has a unique solution: c4 = 1
τ(λ) , c3 = 1

τ(λ) − 1, c2 = 2 − λ + (λ −
1)σ(λ)( 1

τ(λ)−1) and c1 = min(a,A)c2−1. We will prove that c1, c2, c3, c4 ≥ 0. Clearly τ(λ) >
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0. We claim that τ(λ) ≤ 1. For this it is enough to check that λ(1−λ−α) ≤ α(λ−1) for every
λ > 1 and α ≥ 2. After reordering the terms, we get 1+(1−α)(λ−1) ≤ λ1−α = (1+(λ−1))1−α,
which follows from the generalized Bernoulli inequality. So 0 < σ(λ) ≤ 1, therefore c3, c4 ≥ 0.
We just need to prove now that min(a,A)c2 ≥ 1, because then c1, c2 ≥ 0. If a ≤ A, then

c1 = min(a,A)c2−1 = a(2−λ+λa−λa−1− λa

a ). If a ≥ A, then c1 = A(2−λ+λA−λA−1− λA

A ).
So the only remaining thing to show is

2α− αλ+ αλα − αλα−1 − λα ≥ 0

for every λ > 1 and α ≥ 2. Letting ε = 1/λ, this is equivalent to showing

2αεα − αεα−1 + α− αε− 1 ≥ 0

for ε ∈ (0, 1). Let π(ε) = 2αεα − αεα−1 + α− αε− 1. To see that π(ε) ≥ 0, note

π′(ε) = αεα−2(2αε− α+ 1)− α

from which π′(ε) < π′(1/2) ≤ 0 for ε < 1/2 and π′(ε) > π′((α− 1)/α) ≥ 0 for ε > α/(α− 1).
This implies that π is minimized on [1/2, (α − 1)/α]. Our result follows then from the fact
that for ε ∈ [1/2, (α− 1)/α],

π(ε) ≥ α− αε− 1 ≥ 0

Lemma D.3. Given a ∈ [1,∞), A ∈ [1,∞), and ϕAa in (48). Define B = A/(A−1), b = a/(a−1).
For convenience, define

ϕ(t) = ϕAa (t) φ(t) = ϕBb (t). (148)

For t ∈ [0,∞) define the function

ρ(t) =

(
ta

ta + 1
+ (ta + 1)

−A−1
a−1

) a−A
a(A−1)

, (149)

and for a 6= A define the constant

Ca,A =

(
1−

(
a−1
A−1

) a−1
A−a

+
(
a−1
A−1

)A−1
A−a

)B−b
b

. (150)

We have the following results. For all t ∈ (0,∞),

φ′(ϕ′(t)) = ρ(t)t, (151)

which means that ρ captures the relative error between (ϕ∗)′ and φ′, because (ϕ∗)′(t) = (ϕ′)−1(t).
Finally, ρ is bounded for all t ∈ (0,∞) between the constants,

1 ≤ ρ(t) ≤ Ca,A (152)
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Proof. We will show the results backwards, starting with (152). By rearrangement,

ρ(t) = ( ta

ta+1 + (ta + 1)−1(ta + 1)
a−A
a−1 )

a−A
a(A−1) .

If a ≥ A we have (ta + 1)
a−A
a−1 ≥ 1 and t

a−A
a(A−1) is increasing, so ρ(t) ≥ 1. If a < A we have

(ta + 1)
a−A
a−1 ≤ 1 and t

a−A
a(A−1) is decreasing, so again ρ(t) ≥ 1. This proves the left hand inequality

of (152). Now, assume that A 6= a. Looking at ta

ta+1 + (ta + 1)
−A−1
a−1 we have[

ta

ta+1 + (ta + 1)
−A−1
a−1

]′
= ata−1

(ta+1)2 − A−1
a−1 (ta + 1)

−A−1
a−1 −1

ata−1

Since t 6= 0 we see that it has a stationary point at

(ta + 1)−1 − A−1
a−1 (ta + 1)

−A−1
a−1 = 0,

which is equivalent to (ta + 1) =
(
A−1
a−1

) a−1
A−a

. This is also a stationary point of ρ(t). Since

ρ(0) = ρ(∞) = 1 and ρ(t) ≥ 1 this stationary point must be a maximum. Thus

ρ(t) =

(
1− (ta + 1)−1 + (ta + 1)

−A−1
a−1

)B−b
b

≤
(

1−
(
a−1
A−1

) a−1
A−a

+
(
a−1
A−1

)A−1
A−a

)B−b
b

This proves the right hand inequality of (152). For (151), since (b− 1)(a− 1) = ab− a− b+ 1 = 1,
we have,

φ′(ϕ′(t)) = ([(ta + 1)
A−a
a ta−1]b + 1)

B−b
b [(ta + 1)

A−a
a ta−1]b−1

= ((ta + 1)
A−a
a−1 ta + 1)

B−b
b (ta + 1)

A−a
a(a−1) t

we have B−b
b = A(a−1)−a(A−1)

(a−1)(A−1)b = a−A
a(A−1) and thus

= ((ta + 1)
A−a
a−1 ta + 1)

a−A
a(A−1) (ta + 1)

A−a
a(a−1) t

= ρ(t)t

Now we are ready to prove the key results in this section.

Lemma 4.1 (Verifying assumptions on k). Given a norm ‖p‖∗ on p ∈ Rd, a,A ∈ [1,∞), and ϕAa
in (48). Define the constant,

Ca,A =

(
1−

(
a−1
A−1

) a−1
A−a

+
(
a−1
A−1

)A−1
A−a

)B−b
b

. (50)

k(p) = ϕAa (‖p‖∗) satisfies the following.
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1. Convexity. If a > 1 or A > 1, then k is strictly convex with a unique minimum at 0 ∈ Rd.

2. Conjugate. For all x ∈ Rd, k∗(x) = (ϕAa )∗(‖x‖).

3. Gradient. If ‖p‖∗ is differentiable at p ∈ Rd \ {0} and a > 1, then k is differentiable for all
p ∈ Rd, and for all p ∈ Rd,

〈∇k(p), p〉 ≤ max{a,A}k(p), (51)

(ϕAa )∗(‖∇k(p)‖) ≤ (max{a,A} − 1)k(p). (52)

Additionally, if a,A > 1, define B = A/(A− 1), b = a/(a− 1), and then

ϕBb (‖∇k(p)‖) ≤ Ca,A(max{a,A} − 1)k(p). (53)

Additionally, if a,A ≥ 2, then for all p, q ∈ Rd,

k(p) ≤ 〈∇k(q), q〉+ 〈∇k(p)−∇k(q), p− q〉 . (54)

4. Hessian. If ‖p‖∗ is twice continuously differentiable at p ∈ Rd \ {0}, then k is twice continu-
ously differentiable for all p ∈ Rd \ {0}, and for all p ∈ Rd \ {0},〈

p,∇2k(p)p
〉
≤ max{a,A}(max{a,A} − 1)k(p). (55)

Additionally, if a,A ≥ 2 and there exists N ∈ [0,∞) such that ‖p‖∗ λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
≤ N for

p ∈ Rd \ {0}, then for all p ∈ Rd \ {0}

(ϕ
A/2
a/2 )∗

(
λ
‖·‖∗
max

(
∇2k(p)

)
max{a,A} − 1 +N

)
≤ (max{a,A} − 2)k(p). (56)

Proof. Again, for the purposes of this proof, let ϕ(t) = ϕAa (t) and φ(t) = ϕBb (t) for t ∈ [0,∞).

1. Convexity. First, since norms are positive definite and ϕ uniquely minimized at 0 ∈ R by
Lemma D.2, this proves that 0 ∈ Rd is a unique minimizer of k. Let ε ∈ (0, 1) and p, q ∈ Rd
such that p 6= q. By the monotonicity proved in Lemma D.2 and the triangle inequality

k(εp+ (1− ε)q) = ϕ(‖εp+ (1− ε)q‖∗)
≤ ϕ(ε ‖p‖∗ + (1− ε) ‖q‖∗)

and finally, by the strict convexity proved in Lemma D.2

< εk(p) + (1− ε)k(q).

2. Conjugate. Let x ∈ Rd. First, by definition of the convex conjugate and the dual norm,

k∗(x) = sup
p∈Rd
{〈x, p〉 − k(p)} = sup

p∈Rd
{〈x, p〉 − ϕ(‖p‖∗)}

= sup
t≥0

sup
‖p‖∗=t

{〈x, p〉 − ϕ(t)} = sup
t≥0
{t ‖x‖ − ϕ(t)} = ϕ∗(‖x‖)
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3. Gradient. First we argue for differentiability. For p = 0 (or q = 0 in the case of (54)), we
have by the equivalence of the norms that there exists c > 0 such that ‖p‖∗ < c ‖p‖2. Thus,

lim‖p‖2→0 k(p) ‖p‖−1
2 ≤ lim‖p‖2→0 ϕ(c ‖p‖2) ‖p‖−1

= c limt→0 ϕ(t)t−1 = 0, and thus we have
∇k(0) = 0. Now for p 6= 0, we have ‖p‖∗ 6= 0. Since ϕ(t) is differentiable for t > 0 and ‖p‖∗
at p 6= 0, we have by the chain rule ∇k(p) = ϕ′(‖p‖∗)∇‖p‖∗.
All four results follow trivially when p = 0. In particular, (54) reduces to k(p) ≤ 〈∇k(p), p〉
for q = 0 and 0 ≤ 〈∇k(q), q〉 for p = 0; both follow from convexity.

Now, assume p 6= 0. For (51), (52), and (53) we have, by Lemma D.1, 〈∇k(p), p〉 =
‖p‖∗ ϕ′(‖p‖∗) and ϕ∗(‖∇k(p)‖) = ϕ∗(ϕ′(‖p‖∗)) and φ(‖∇k(p)‖) = φ(ϕ′(‖p‖∗)). Letting
t = ‖p‖∗ > 0, (51) follows directly from (138) of Lemma D.2. For (52), we have from
convex analysis (6) that

ϕ∗(ϕ′(t)) = tϕ′(t)− ϕ(t). (153)

This implies that ϕ∗(ϕ′(t)) ≤ (max{a,A} − 1)ϕ(t), again by (138) of Lemma D.2. For (53)
assume a,A > 1 and consider that by (139) of Lemma D.2 and (152) of Lemma D.3,

[φ(ϕ′(t))]′ = φ′(ϕ′(t))ϕ′′(t) = ρ(t)tϕ′′(t) ≤ ϕ′(t)Ca,A(max{a,A} − 1)

Integrating both sides of this inequality gives φ(ϕ′(t)) ≤ Ca,A(max{a,A} − 1)ϕ(t).

Finally, for the uniform gradient bound (54), assume p 6= 0 and q 6= 0. Lemma D.1 implies
by Cauchy-Schwartz that −〈∇‖p‖∗ , q〉 ≥ −‖q‖ for any p, q ∈ Rd \ {0}. Thus by Lemma D.1,

〈∇k(q), q〉+ 〈∇k(p)−∇k(q), p− q〉 ≥ ϕ′(‖q‖∗) ‖q‖∗ + (ϕ′(‖p‖∗)− ϕ′(‖q‖∗))(‖p‖∗ − ‖q‖∗)
and our result is implied by the one dimensional result (140) of Lemma D.2.

4. Hessian. Throughout, assume p ∈ Rd \ {0}. First we argue for twice differentiability. We
have ∇k(p) = ϕ′(‖p‖∗)∇‖p‖∗, which for p 6= 0 is a product of a differentiable function and a
composition of differentiable functions. Thus, we have differentiability, and by the chain rule,

∇2k(p) = ϕ′′(‖p‖∗)∇‖p‖∗∇‖p‖
T
∗ + ϕ′(‖p‖∗)∇2 ‖p‖∗ (154)

All of these terms are continuous at p 6= 0 by assumption or inspection of (158).

We study (154). For (55), we have by Lemma D.1 and (138),(139) of Lemma D.2,〈
p,∇2k(p)p

〉
= ϕ′′(‖p‖∗)

〈
p,∇‖p‖∗∇‖p‖

T
∗ p
〉

+ ϕ′(‖p‖∗)
〈
p,∇2 ‖p‖∗ p

〉
= ϕ′′(‖p‖∗) ‖p‖

2
∗

≤ max{a,A}(max{a,A} − 1)ϕ(‖p‖∗).
For (56) first note, by Lemma D.1〈

v,∇‖p‖∗∇‖p‖
T
∗ v
〉

= (〈v,∇‖p‖∗〉)2 ≤ ‖v‖2∗

and further
〈
p,∇‖p‖∗∇‖p‖

T
∗ p
〉

= ‖p‖2∗. Thus λ
‖·‖∗
max

(
∇‖p‖∗∇‖p‖

T
∗

)
= 1. Together, along

with our assumption on the Hessian of ‖p‖∗, we have

λ
‖·‖∗
max

(
∇2k(p)

)
≤ ϕ′′(‖p‖∗)λ

‖·‖∗
max

(
∇‖p‖∗∇‖p‖

T
∗

)
+ ϕ′(‖p‖∗)λ

‖·‖∗
max

(
∇2 ‖p‖∗

)
≤ ϕ′′(‖p‖∗) +Nϕ′(‖p‖∗) ‖p‖

−1
∗

67



and by (139) of Lemma D.2

≤ ϕ′(‖p‖∗) ‖p‖
−1
∗ (max{a,A} − 1 +N)

On the other hand, by Lemma D.1 and the monotonicity of Lemma D.2,

λ
‖·‖∗
max

(
∇2k(p)

)
≥ ϕ′′(‖p‖∗)

〈
p

‖p‖∗
,∇‖p‖∗∇‖p‖

T
∗

p

‖p‖∗

〉
+ ϕ′(‖p‖∗)

〈
p

‖p‖∗
,∇2 ‖p‖∗

p

‖p‖∗

〉
= ϕ′′(‖p‖∗) > 0

Taken together, we have

0 <
λ
‖·‖∗
max

(
∇2k(p)

)
max{a,A} − 1 +N

≤ ϕ′(‖p‖∗) ‖p‖
−1
∗

Now, assume a,A ≥ 2 and let t = ‖p‖∗ > 0 and χ(t) = ϕ
A/2
a/2 (t). Our goal is to show that

χ∗

(
λ
‖·‖∗
max

(
∇2k(p)

)
max{a,A} − 1 +N

)
≤ (max{a,A} − 2)ϕ(‖p‖∗)

To do this we argue that χ∗(t) is an non-decreasing function on (0,∞) and χ∗(ϕ′(t)t−1) ≤
(max{a,A} − 2)ϕ(t), from which our result would follow. First, we have for r ∈ [0,∞) and
s ∈ (0,∞) such that for t ≥ s,

χ∗(t) ≥ tr − χ(r) ≥ sr − χ(r)

Taking the supremum in r returns the result that χ∗ is non-decreasing. Otherwise it can be
verified directly from (57) – (61). Thus, what remains to show is χ∗(ϕ′(t)t−1) ≤ (max{a,A}−
2)ϕ(t). Note that χ(t2) = 2ϕ(t) and χ′(t2)t = ϕ′(t). Using (6) of convex analysis and (138)
of Lemma D.2,

χ∗(ϕ(t)t−1) = χ∗(χ′(t2)) = t2χ′(t2)− χ(t2) ≤ (max{a2 , A2 } − 1)χ(t2) = (max{a,A} − 2)ϕ(t)

from which our result follows.

Lemma 4.2 (Bounds on λ
‖·‖∗
max

(
∇2 ‖p‖∗

)
for b-norms). Given b ∈ [2,∞), let ‖x‖b =

(∑d
n=1 |x(n)|b

)1/b

for x ∈ Rd. Then for x ∈ Rd \ {0},

‖x‖b λ
‖·‖b
max

(
∇2 ‖x‖b

)
≤ (b− 1).

Proof. A short calculation reveals that

∇2 ‖x‖b =
(b− 1)

‖x‖b

(
diag

(
|x(n)|b−2

‖x‖b−2
b

)
−∇‖x‖b∇‖x‖

T
b

)
(155)
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Thus, since
〈
b, aaT b

〉
= 〈a, b〉2 ≥ 0 for any a, b ∈ Rd, we have λ

‖·‖b
max

(
(1− b)∇‖x‖b∇‖x‖

T
b

)
≤ 0 and

‖x‖b λ
‖·‖b
max

(
∇2 ‖x‖b

)
≤ (b− 1)λ

‖·‖b
max

(
diag

(
|x(n)|b−2 ‖x‖2−bb

))
.

First, consider the case b > 2. Given v ∈ Rd such that ‖v‖b = 1, we have by the Hölder’s inequality
along with the conjugacy of b/2 and b/(b− 2),

〈
v,diag

(
|x(n)|b−2 ‖x‖2−bb

)
v
〉
≤
(

d∑
n=1

|x(n)|b
‖x‖bb

) b−2
b
(

d∑
n=1

|v(n)|b
) 2
b

= 1

Now, for the case b = 2 we get diag
(
|x(n)|b−2 ‖x‖2−b2

)
= I and λ

‖·‖2
max(I) = 1. Our result follows.

Lemma 4.3 (Convex conjugates of ϕAa ). Given a,A ∈ (1,∞) and ϕAa in (48). Define B =
A/(A− 1), b = a/(a− 1). The following hold.

1. Near Conjugate. ϕBb upper bounds the conjugate (ϕAa )∗ for all t ∈ [0,∞),

(ϕAa )∗(t) ≤ ϕBb (t). (57)

2. Conjugate. For all t ∈ [0,∞),

(ϕaa)∗(t) = ϕbb(t). (58)

(ϕA1 )∗(t) =

{
0 t ∈ [0, 1]
1
B t

B − t+ 1
A t ∈ (1,∞)

. (59)

(ϕ1
a)∗(t) =

{
1− (1− tb)

1
b t ∈ [0, 1]

∞ t ∈ (1,∞)
. (60)

(ϕ1
1)∗(t) =

{
0 t ∈ [0, 1]

∞ t ∈ (1,∞)
. (61)

Proof. For convenience, define

ϕ(t) = ϕAa (t) φ(t) = ϕBb (t). (156)

As a reminder, for t ∈ (0,∞), the following identities can be easily verified.

ϕ′(t) = (ta + 1)
A−a
a ta−1 (157)

ϕ′′(t) = t−1ϕ′(t)
(
a− 1 + (A− a) ta

ta+1

)
(158)

1. Near Conjugate. As a reminder ϕ∗(t) = sups≥0{ts−ϕ(s)}. First, since ϕ∗(0) = − infs≥0{ϕ(s)}
= 0, this result holds for t = 0. Assume t > 0. Our strategy will be to show that for s ∈ [0,∞)
we have st− ϕ(s) ≤ φ(t). This is true for s = 0 by the monotonicity of φ in Lemma D.2, so
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assume s > 0. Now, consider s = φ′(ϕ′(r)) for some r ∈ (0,∞). To see that this is a valid
parametrization for s, notice that limr→0 φ

′(ϕ′(r)) = 0 and

[φ′(ϕ′(r))]′ = φ′′(ϕ′(r))ϕ′′(r) > 0

Thus s(r) = φ′(ϕ′(r)) is one-to-one and onto (0,∞). Further we have by Lemma D.3 that

t ≤ ρ(t)t = φ′(ϕ′(t)) (159)

and thus (φ′)−1(t) ≤ ϕ′(t), since φ′′(t) > 0. All together, using convexity we have

φ(t) ≥ φ(ϕ′(r)) + φ′(ϕ′(r))(t− ϕ′(r)) = st+ φ((φ′)−1(s))− s(φ′)−1(s)

taking the derivative of φ((φ′)−1(s)) − s(φ′)−1(s) we get −(φ′)−1(s). Since −(φ′)−1(s) ≥
−ϕ′(s), we finally get

≥ st− ϕ(s).

Taking the supremum in s gives us our result.

2. Conjugate. As a reminder ϕ∗(t) = sups≥0{ts − ϕ(s)}. Since ϕ∗(0) = − infs≥0{ϕ(s)} = 0,

these results all hold when t = 0. (58) is a standard result, since ϕaa(t) = 1
a t
a. (61) is a

standard result, since ϕ1
1(s) = s. Thus, we assume a,A > 1 and t > 0 for the remainder. For

(60), assume just A = 1. The stationary condition of the supremum of ts− ϕ(s) in s is

t = (sa + 1)−
1
b sa−1

Raising both sides to b we get tb = sa

sa+1 , whose solution for t ∈ [0, 1] is s =
(

tb

1−tb

) 1
a

. Thus,

ϕ∗(t) = t

(
tb

1− tb
) 1
a

−
(

1

1− tb
) 1
a

+ 1

=
tb

(1− tb)
1
a

− 1

(1− tb)
1
a

+ 1

= 1− (1− tb)1− 1
a

When t > 1, ts dominates ϕ(s) and the supremum is infinite. Now for (59), assume just
a = 1. We have the stationary condition of the conjugate equal to t = (s + 1)A−1, which
corresponds to

s = max{t
1

A−1 − 1, 0}

Thus, when t > 1 we have

ϕ∗(t) = t(t
1

A−1 − 1)− 1
A t

B + 1
A

= 1
B t

B − t+ 1
A

otherwise ϕ∗(s) = 0.
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Proposition 4.4 (Verifying assumptions for f with known power behavior and appropriate k).
Given a norm ‖·‖∗ satisfying F.2 and a,A ∈ (1,∞), take

k(p) = ϕAa (‖p‖∗).

with ϕAa defined in (48). The following cases hold with this choice of k on f : Rd → R convex.

1. For the implicit method (33), assumptions A, B hold with constants

α = min{µa−1, µA−1, 1} Cα,γ = γ Cf,k = max{a− 1, A− 1, L}, (64)

if f, a,A, µ, L, ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4.

2. For the first explicit method (36), assumptions A, B, and C hold with constants (64) and

Ck = max{a,A} Df,k = Lfα
−1 max {Df , 2Ca,A(max{a,A} − 1)} , (65)

if f, a,A, µ, L, Lf , Df , ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4, and F.5.

3. For the second explicit method (39), assumptions A, B, and D hold with constants (64) and

Ck = max{a,A} Dk = max{a,A}(max{a,A} − 1)

Ek = max{a,A} − 1 Fk = 1

Df,k = α−1(max{a,A} − 1 +N) max {2L, a− 2, A− 2} ,
(66)

if f, a,A, µ, L,N, ‖·‖∗ satisfy assumptions F.1, F.2, F.3, F.4, and F.6.

Proof. First, by Lemma 4.1, this choice of k satisfies assumptions A.2 and C.1 / D.2 with constant
Ck = max{a,A}. We consider the remaining assumptions of A, B, C, and D..

1. Our first goal is to derive α. By assumption F.4, we have µϕBb (‖x‖) ≤ fc(x). Since
(µϕBb (‖·‖))∗ = µ(ϕBb )∗(µ−1 ‖·‖∗) by Lemma 4.1 and the results discussed in the review of
convex analysis, we have by assumption F.3,

f∗c (p) ≤ µ(ϕBb )∗
(
µ−1 ‖p‖∗

)
≤ max{µ1−a, µ1−A}k(p)

Thus, we have α = min{µa−1, µA−1, 1} constant. Moreover, we can take Cα,γ = γ. This
along with F.1 implies that f and k satisfy assumptions A

By Lemma 4.1 and assumption F.4 we have

ϕAa (‖∇f(x)‖∗) ≤ L(f(x)− f(x?)),

(ϕAa )∗(‖∇k(p)‖) = (max{a,A} − 1)k(p),

By Fenchel-Young and the symmetry of norms, we have | 〈∇f(x),∇k(p)〉 | ≤ max{max{a,A}−
1, L}H(x, p), from which we derive Df,k and the fact that f, k satisfy assumptions B.
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2. The analysis of 1. holds for assumptions A and B. Now, to derive the conditions for assump-
tions C consider

‖∇k(p)‖2 = [(ϕAa )′(‖p‖∗)]2

Note that,

ϕ
B/2
b/2 ([(ϕAa )′(t)]2) = 2ϕBb ((ϕAa )′(t))

Thus ϕ
B/2
b/2 (‖∇k(p)‖2) ≤ 2Ca,A(max{a,A} − 1)k(p) for all p ∈ Rd, by Lemma 4.1. Now

all together, by the Fenchel-Young inequality and assumption F.5, we have for p ∈ Rd and
x ∈ Rd \ {x?}〈
∇k(p),∇2f(x)∇k(p)

〉
≤ ‖∇k(p)‖2 λ‖·‖max

(
∇2f(x)

)
≤ LfϕB/2b/2 (‖∇k(p)‖2) + Lf (ϕ

B/2
b/2 )∗

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

)

≤ Lf2Ca,A(max{a,A} − 1)k(p) + Lf (ϕ
B/2
b/2 )∗

(
λ
‖·‖
max

(
∇2f(x)

)
Lf

)
≤ Df,kαH(x, p).

This gives us assumptions C.

3. The analysis of 1. holds again for assumptions A and B. Now, for assumptions D, we first note
that Lemma 4.1 gives us constants Dk = max{a,A}(max{a,A}−1), Ek = max{a,A}−1, Fk =
1.

For the remaining constant Df,k we follow a similar path as 2. First, note that since b, B ≤ 2
we have that a,A ≥ 2. This, along with assumption F.6, let’s us use (56) of Lemma 4.1 for
p ∈ Rd \ {0}. Now, letting M = (max{a,A} − 1 +N) and applying (56) of Lemma 4.1 along
with the Fenchel-Young inequality, we have for p ∈ Rd \ {0} and x ∈ Rd〈

∇f(x),∇2k(p)∇f(x)
〉
≤ ‖∇f(x)‖2∗ λ

‖·‖∗
max

(
∇2k(p)

)
≤Mϕ

A/2
a/2 (‖∇f(x)‖2∗) +M(ϕ

A/2
a/2 )∗

(
λ
‖·‖∗
max

(
∇2k(p)

)
M

)
≤ 2LM(f(x)− f(x?)) +M(max{a,A} − 2)k(p)

≤ Df,kαH(x, p).

This gives us assumptions D.
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