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Abstract. We consider distributed smooth nonconvex unconstrained optimization over net-4
works, modeled as a connected graph. We examine the behavior of distributed gradient-based5
algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed6
Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary7
(SoS) solution; and (ii) the more recent class of distributed algorithms based on gradient tracking–8
implementable also over digraphs–likely converges to exact SoS solutions, thus avoiding (strict)9
saddle-points. Furthermore, a convergence rate is provided for the latter class of algorithms.10
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1. Introduction. We consider smooth unconstrained nonconvex optimization13

over networks, in the following form:14

(P) min
θ∈Rm

F (θ) ,
n∑
i=1

fi(θ),15

where n is the number of agents in the network; and fi : Rm → R is the cost function16

of agent i, assumed to be smooth and known only to agent i. Agents are connected17

through a communication network, modeled as a (possibly directed, strongly) con-18

nected graph. No specific topology is assumed for the graph (such as star or hierar-19

chical structure). In this setting, agents seek to cooperatively solve Problem (P) by20

exchanging information with their immediate neighbors in the network.21

Distributed nonconvex optimization in the form (P) has found a wide range of ap-22

plications in several areas, including network information processing, machine learn-23

ing, communications, and multi-agent control; see, e.g., [27]. For instance, this is24

the typical scenario of in-network data-intensive (e.g., sensor-network) applications25

wherein data are scattered across the agents (e.g., sensors, clouds, robots), and the26

sheer volume and spatial/temporal disparity of data render centralized processing and27

storage infeasible or inefficient. Communication networks modeled as directed graphs28

capture simplex communications between adjacent nodes. This is the case, e.g., in29

several wireless (sensor) networks wherein nodes transmit at different power and/or30

communication channels are not symmetric.31

Main objective: We call θ a critical point of F if ∇F (θ) = 0; a critical point32

θ is a strict saddle of F if ∇2F (θ) has at least one negative eigenvalue; and it is33

a Second-order Stationary (SoS) solution if ∇2F (θ) is positive semidefinite. Critical34

points that are not minimizers are of little interest in the nonconvex setting. It is thus35

desirable to consider methods for (P) that are not attracted to such points. When36
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2 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

F has a favorable structure, stronger guarantees can be claimed. For instance, a37

wide range of salient objective functions arising from applications in machine learning38

and signal processing have been shown to enjoy the so-called strict saddle property:39

all the critical points of F are either strict saddles or local minimizers. Examples40

include principal component analysis and fourth order tensor factorization [8], low-41

rank matrix completion [9], and some instances of neural networks [13], just to name42

a few. In all these cases, converging to SoS solutions–and thus circumventing strict43

saddles–guarantees finding a local minimizer. The goal of this paper is to study44

second-order guarantees of existing decentralizations of the gradient algorithm for45

Problem (P) over undirected and directed graphs.46

Literature review. Second-order guarantees of centralized gradient-based meth-47

ods have been extensively studied in the literature, and briefly summarized next.48

Early works (e.g., [24]) showed that the gradient descent algorithm escapes strict sad-49

dle points, provided that the direction is perturbed by unbiased noise. More recently,50

[12] derived the convergence rate of the noisy gradient algorithm converging to SoS51

solutions. In [18], it was proved that running the gradient descent algorithm with a52

random initialization is sufficient to escape strict saddles. The elegant analysis of [18],53

based on tools from topology of dynamical systems, has been later extended in [17]54

to establish second-order guarantees of a variety of first-order methods. Finally, [23]55

studied the behavior of some momentum-based gradient methods near strict saddle56

points. However, all these schemes are centralized.57

A natural question is whether distributed instantiations of the gradient descent58

algorithm over (di-)graphs enjoy similar second-order guarantees. This paper provides59

a first answer to this open question. In fact, there is a rich convergence theory of60

distributed algorithms for convex optimization, but little is known in the nonconvex61

case, let alone second-order guarantees. The Distributed Gradient Descent (DGD)62

is among the first attempts to decentralize the gradient algorithm [21, 22]. Roughly63

speaking, in the DGD (and subsequent variants), the update of each agent i is a64

linear combination of two components: i) the gradient ∇fi evaluated at the latest65

agent’s iterate (recall that agents do not have access to the entire gradient ∇F ); and66

ii) a convex combination of the current iterates of the neighbors of agent i (including67

agent i itself). The latter term (a.k.a. consensus step) is instrumental to enforce68

asymptotically an agreement among the agents’ local variables. When (P) is convex,69

convergence of the DGD algorithm is fully understood. With a diminishing step-70

size, agents’ iterates converge to a consensual exact solution; if a constant step-size71

is used, convergence is generally faster but only to a neighborhood of the solution,72

and exact consensus is not achieved. When (P) is nonconvex, little is known about73

the convergence of the DGD algorithm. Specifically, [34] showed that, if a constant74

step-size is used, agents’ iterates converge to a critical point of an auxiliary function75

[the Lyapunov function used to prove convergence–see (4.1) in Sec. 4] while reaching76

approximate consensus (see Theorem 4.1 in Sec. 4.1 for a formal statement of these77

results). Exact consensus can be achieved using a diminishing step-size. However,78

nothing is known about the connection of the critical points of the aforementioned79

auxiliary function and the critical points of F , let alone second-order guarantees.80

The extension of the DGD algorithm to digraphs was proposed in [19] for con-81

vex unconstrained optimization, and later extended in [31] to nonconvex objectives.82

The algorithm, which combines a local gradient step with the push-sum scheme [5],83

converges to an exact stationary solution of (P), when a diminishing step-size is em-84

ployed; and its noisy perturbed version almost surely converges to local minimizers,85

provided that F does not have any saddle point [31].86
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To cope with the speed-accuracy dilemma of DGD, [6, 7] proposed a new class87

of distributed gradient-based methods that converge to an exact consensual solution88

of nonconvex (constrained) problems while using a fixed step-size. The algorithmic89

framework, termed NEXT, introduces the idea of gradient tracking to correct the90

DGD direction and cancel the steady state error in it while using a fixed step-size:91

each agent updates its own local variables along a surrogate direction that tracks92

the gradient ∇F of the entire objective (the same idea was proposed independently93

in [33] for convex unconstrained smooth problems). The generalization of NEXT94

to digraphs–the SONATA algorithm–was proposed in [30, 27, 26, 29], with [26, 29]95

proving convergence of the agents’ iterates to consensual stationary solutions of the96

nonconvex problem at a sublinear rate. Extensions of the SONATA family based on97

different choices of the weight matrices were later introduced in [32, 25] for convex98

smooth unconstrained problems. Since some schemes contain others as special cases99

(see, e.g., [26, Sec. 5]), hereafter we will refer collectively to this family of algorithms100

as Distributed Optimization with Gradient Tracking (DOGT) algorithms.101

Summary of the contributions: We study second-order guarantees of the102

available decentralizations of the plain gradient algorithm, namely: the DGD algo-103

rithm (over undirected graphs) and the DOGT schemes (over undirected and directed104

graphs). For DGD employing a constant step-size, we establish the following:105

(i) Convergence of the iterates to a neighborhood of critical points of F , for all106

initializations, is proved; this complements the convergence results in [34];107

(ii) For sufficiently small step-sizes, the critical points in (i) are almost surely SoS108

solutions of (P), where the probability is taken over the initialization.109

For the DOGT algorithms using a constant step-size, our results are the following:110

(i) Convergence to an exact stationary solution of (P) over digraphs at a sublin-111

ear rate is proved. The analysis is based on a Lyapunov-like function that112

properly combines average dynamics, consensus and tracking disagreements;113

(ii) If F is a Kurdyka- Lojasiewicz (K L) function [16, 15], global convergence is estab-114

lished (i.e., for an arbitrary starting point, the algorithm generates a sequence115

that converges to a critical point of F );116

(iii) Convergence to exact SoS solutions of (P) over undirected graphs and over di-117

graphs when m = 1 is proved, for almost all initializations, drawn from a118

suitably chosen subspace.119

To our knowledge these are the first guarantees proved for distributed gradient120

algorithms over (undirected and directed) graphs. We notice that, recently, [10] stud-121

ied second-order guarantees of a primal-dual method applied to linearly constrained122

nonconvex problems. The scheme can be customized to Problem (P) if the graph123

is undirected, and thus convergence to SoS solutions follows (under a suitably chosen124

initialization, not discussed in [10]). Results in [10] neither extend to the decentralized125

gradient algorithms studied in this paper nor to digraphs.126

1.1. Notation. All vectors are denoted by bold letters and assumed to be col-127

umn vectors; the tuple x = (xi)
n
i=1 = (x1, . . . ,xn) denotes a column vector whose i-th128

(column) block component is xi; Vx and B(x, r) denote a neighborhood of x and the129

closed ball of radius r > 0 centered at x, respectively; x is called stochastic if all its130

components are non-negative and sum to one; and 1 is the vector of all ones (we write131

1m for the m–dimensional vector, if the dimension is not clear from the context).132

Given X ⊆ Rm, X denotes the complement of X ; we use the shorthand [I] for the set133

{1, 2, . . . , I}. The set of nonnegative integers is denoted by N+. The Euclidean projec-134

tion of x ∈ Rm onto the convex closed set X ⊆ Rm is projX (x) , arg miny∈X ||x−y||.135

Matrices are denoted by capital bold letters; the (i, j)-th element of A is denoted136
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4 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

by Aij ; Mm(R) is the set of all m×m real matrices; I is the identity matrix (if the137

dimension is not clear from the context, we write Im for the m×m identity matrix);138

A ≥ 0 denotes a nonnegative matrix, that is, a matrix with all the entries being139

nonnegative numbers; and A ≥ B stands for A −B ≥ 0. The spectrum of a square140

real matrix M is denoted by spec(M); its spectral radius is spradii(M) , max{|λ| :141

λ ∈ spec(M)}; and its minimum singular value and minimum eigen value are denoted142

by σmin(M) and λmin(M), respectively. With a slight abuse of notation, we will use143

the same symbol || · || to denote vector norms in Rn and their induced matrix norms.144

1.2. Paper organization. The rest of the paper is organized as follows. The145

main assumptions on the optimization problem and network setting are introduced in146

Sec. 2 along with the description of the DGD algorithm (cf. Sec. 2.2) and DOGT algo-147

rithms (cf. Sec. 2.3). Convergence of DOGT algorithms is studied in Sec. 3 along the148

following steps: i) Sub-sequence convergence is proved in Sec. 3.1; Sec. 3.2 establishes149

global convergence under the K L property of F ; and Sec. 3.3 derives second-order150

guarantees over undirected and directed graphs. Sec. 4 studies guarantees of the DGD151

algorithm over undirected graphs, along the following steps: i) existing convergence152

results are discussed in Sec. 4.1; ii) Sec. 4.2 studies convergence to a neighborhood153

of a critical point of F ; and iii) Sec. 4.3 establishes second-order guarantees. Finally,154

Sec. 5 presents some preliminary numerical experiments.155

2. Problem/network setting and distributed algorithms.156

2.1. Problem/network setting. We study Problem (P) under the following157

blanket assumptions.158

Assumption 2.1 (On Problem P). Given Problem (P), suppose that159

(i) Each fi : Rm → R is r + 1 times continuously differentiable, for some integer160

r ≥ 1, and ∇fi is Li-Lipschitz continuous;161

(ii) F is bounded from below.162

We also tacitly assume that agent i knows only its own function fi. The set of critical163

(a.k.a. stationary) points of F is denoted by crit F , {θ : ∇F (θ) = 0}.164

Network model: The network of the n agents is modeled as a (possibly) directed165

graph G = (V, E), where the set of vertices V = [n] coincides with the set of agents,166

and the set of edges E represents the agents’ communication links: (i, j) ∈ E if and167

only if there is link directed from agent i to agent j. The in-neighborhood of agent168

i is defined as N in
i = {j|(j, i) ∈ E} ∪ {i} and represents the set of agents that can169

send information to agent i (including agent i itself, for notational simplicity). The170

out-neighborhood of agent i is similarly defined N out
i = {j|(i, j) ∈ E}∪{i}. When the171

graph is undirected, these two sets coincide and we use Ni to denote the neighborhood172

of agent i (with a slight abuse of notation, we use the same symbol G to denote either173

directed or undirected graphs). Given a nonnegative matrix A ∈ Rn×n, the directed174

graph induced by A is defined as GA = (VA, EA), where VA , [n] and (j, i) ∈ EA if and175

only if Aij > 0. The set of roots of all the directed spanning trees in GA is denoted176

by RA. We make the following blanket standard assumptions on G.177

Assumption 2.2 (On the network). The graph (resp. digraph) G is connected178

(resp. strongly connected).179

2.2. The DGD algorithm. Consider Problem (P) and assume that the network180

is modeled as an undirected graph G. The DGD algorithm is based on the following181

decentralization of the gradient algorithm. Each agent i holds a copy xi of the opti-182

mization variable θ, which is updated iteratively; its value at iteration ν is denoted by183
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xνi . All the local copies are stacked column-wise in the vector x , (xi)
n
i=1; similarly,184

we write xν , (xνi )ni=1. We define the aggregate function Fc(x) ,
∑n
i=1 fi(xi). The185

update of the DGD algorithm reads: given xν ,186

(2.1) xν+1 = WD xν − α∇Fc(xν),187

where α > 0 is a step-size; WD , D ⊗ Im, and D ∈ Mn(R) is a symmetric doubly-188

stochastic matrix compliant to the graph G, that is, Dij > 0 iff (j, i) ∈ E ; and Dij = 0,189

otherwise. Breaking (2.1) into per-agent steps gives some insight on agents’ updates:190

xν+1
i =

∑
j∈Ni Dij xνj−α∇fi(xνi ). Thus each agent is updating using only the gradient191

of its own local objective (linearly) combined with the mixing
∑
j∈Ni Dij xνj , which192

is necessary for reaching consensus across the xi’s.193

2.3. DOGT algorithms. In this class of algorithms, each agent i, in addition194

to its local optimization variable xi, also owns an auxiliary variable yi ∈ Rm that195

works as a local proxy of the sum-gradient
∑
i∇fi(xνi ), aiming thus at correcting the196

direction −∇fi(xνi ) (as used in the DGD algorithm). Let yνi be the value of yi at197

iteration ν. The DOGT update reads:198 
xν+1
i =

∑
j∈N in

i

Rijx
ν
j − αyνi ,

yν+1
i =

∑
j∈N in

i

Cijy
ν
j +∇fi

(
xν+1
i

)
−∇fi

(
xνi
)
, (Gradient Tracking)

199

for all i = 1, . . . , n, where each x0
i ∈ Rm is arbitrarily chosen and y0

i = ∇fi(x0
i );200

R , (Rij)
n
i,j=1 and C , (Cij)

n
i,j=1 are suitably chosen non-negative weight matrices201

(cf. Assumption 2.3 below); and α > 0 is the step-size. Note that the update of the202

y-variables along with the consensus mix
∑
j∈N in

i
Rijx

ν
j ensures the aforementioned203

distributed tracking of the sum-gradient ∇F .204

Denoting yν , (yνi )ni=1, WR , R⊗Im and WC , C⊗Im, and using xν , (xνi )ni=1205

and function Fc(x) =
∑n
i=1 fi(xi), the algorithm can be written in compact form as206

(2.2)

{
xν+1 = WR xν − αyν ,

yν+1 = WC yν +∇Fc
(
xν+1

)
−∇Fc

(
xν
)
.

207

Different choices for R and C are possible, resulting in different existing algo-208

rithms. For instance, if R = C ∈Mn(R) are doubly-stochastic matrices compliant to209

the graph G, (2.2) reduces to the NEXT algorithm [6, 7] (or the one in [33], when (P) is210

convex). If R and C are allowed to be time-varying (suitably chosen) (2.2) reduces to211

the SONATA algorithm applicable to (possibly time-varying) digraphs [30, 27, 26, 29]212

[or the one later proposed in [20] for strongly convex instances of (P)]. Finally, if R213

and C are chosen according to Assumption 2.3 below, the scheme (2.2) becomes the214

algorithm proposed independently in [25] and [32], for strongly convex objectives in215

(P), and implementable over fixed digraphs.216

Assumption 2.3. (On the matrices R and C) The weight matrices R,C ∈ Rn×n217

satisfy the following:218

(i) R is nonnegative row-stochastic and Rii > 0, for all i ∈ [n];219

(ii) C is nonnegative column-stochastic and Cii > 0, for all i ∈ [n];220

(iii) The graphs GR and GC> each contain at least one spanning tree; and RR ∩221

RC> 6= ∅.222
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6 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

It is not difficult to check that matrices R and C above exist if and only if the digraph223

G is strongly connected; however, GR and GC> need not be so. Several choices for224

such matrices are discussed in [25, 32]. Here, we only point out the following property225

of R and C, as a consequence of Assumption 2.3, which will be used in our analysis.226

Lemma 2.4 ([25]). Given R and C satisfying Assumption 2.3, there exist matrix227

norms ‖·‖R and ‖·‖C such that ρR , ‖R−1r>‖R < 1 and ρC , ‖C−c1>‖C = ρC < 1,228

where r (resp. c) is the stochastic left-eigenvector (resp. right-eigenvector) of R (resp.229

C) associated with the eigenvalue one. Furthermore, r>c > 0.230

Moreover, the matrix norms || · ||R and || · ||C have the following properties.231

Lemma 2.5. Given R and C satisfying Assumption 2.3, the vector norms induced232

by the matrix norms ||·||R and ||·||C in Lemma 2.4 can be written as ||x||R = ||HRx||2233

and ||x||C = ||HCx||2, respectively, where HR ∈ Mm(R) and HC ∈ Mm(R) are234

invertible matrices (dependent on R and C, respectively). Furthermore, the vector-235

norm functions || · ||2R and || · ||2C are real-analytic.236

Proof. See Appendix A.1.237

3. DOGT Algorithms: convergence and second-order guarantees. Con-238

vergence of DOGT algorithms in the form (2.2) (with R and C satisfying Assump-239

tion 2.3) has not been studied in the literature when F is nonconvex. In this section240

we fill this gap and provide a full characterization of the convergence behavior of241

DOGT including its second order guarantees.242

3.1. Subsequence convergence & rate analysis. We begin studying asymp-243

totic convergence; we assume m = 1 (scalar optimization variables); while this sim-244

plifies the notation, all the conclusions hold for the general case m > 1. As in [25],245

define the weighted sums246

(3.1) x̄ν , r>xν , ȳν , 1>yν , and ḡν , 1>∇Fc(xν),247

where we recall that r is the Perron vector associated with R (cf. Lemma 2.4). Define248

also Lmax , maxi Li, where Li is the Lipschitz constant of ∇fi.249

Using (2.2), it is not difficult to check that the following holds250

(3.2) x̄ν+1 = x̄ν − ζαȳν − αr> (yν − cȳν) and ȳν = ḡν ,251

where c is the Perron vector associated with C, and ζ , r>c > 0 (cf. Lemma 2.4).252

3.1.1. Descent on F . Using the descent lemma along with (3.2) yields253

F (x̄ν+1) = F
(
x̄ν − ζαȳν − αr> (yν − cȳν)

)
≤ F (x̄ν)− ζα 〈∇F (x̄ν), ȳν〉 − α

〈
∇F (x̄ν), r> (yν − cȳν)

〉
+
L

2

∥∥ζαȳν + αr> (yν − cȳν)
∥∥2
.

254

Adding/subtracting suitably chosen terms we obtain255

F (x̄ν+1) ≤F (x̄ν)− ζα 〈∇F (x̄ν)− ȳν , ȳν〉 − ζα|ȳν |2

− α
〈
∇F (x̄ν)− ȳν , r> (yν − cȳν)

〉
− α

〈
ȳν , r> (yν − cȳν)

〉
+ Lζ2α2|ȳν |2 + Lα2 ‖yν − cȳν‖2

256
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257

(3.3)

≤F (x̄ν) +
ζα

2ε1
|∇F (x̄ν)− ȳν |2 +

ζαε1
2
|ȳν |2 − ζα|ȳν |2

+
α

2
|∇F (x̄ν)− ȳν |2 +

α

2
‖yν − cȳν‖2 +

αε2
2
|ȳν |2 +

α

2ε2
‖yν − cȳν‖2

+ Lζ2α2|ȳν |2 + Lα2 ‖yν − cȳν‖2

=F (x̄ν) +

(
ζαε1

2
− ζα+

αε2
2

+ Lζ2α2

)
|ȳν |2

+

(
ζα

2ε1
+
α

2

)
|∇F (x̄ν)− ȳν |2 +

(
α

2
+

α

2ε2
+ Lα2

)
‖yν − cȳν‖2 ,

258

where ε1 and ε2 are some arbitrary positive quantities. Noting that∇Fc is Lc-Lipschitz259

continuous, with Lc , Lmax, and using ȳν = ḡν [cf. (3.2)], we can write260

(3.4) |∇F (x̄ν)− ȳν | =

∣∣∣∣∣
n∑
i=1

∇fi(xνi )−
n∑
i=1

∇fi(x̄ν)

∣∣∣∣∣ ≤ Lc ‖xν − 1x̄ν‖ .261

Combining (3.3) and (3.4) yields262

(3.5)

F (x̄ν+1) ≤F (x̄ν) +

(
ζαε1

2
− ζα+

αε2
2

+ Lζ2α2

)
|ȳν |2

+ L2
cK

2
||

(
ζα

2ε1
+
α

2

)
‖xν − 1x̄ν‖2R +K2

||

(
α

2
+

α

2ε2
+ Lα2

)
‖yν − cȳν‖2C ,

263

where K|| is a positive constant such that ‖z‖a ≤ K|| ‖z‖b, for all z ∈ Rn and a, b ∈264

{2, R, C}. Note that such a constant exists, due to the equivalence of the norms (we265

omit their specific expression).266

3.1.2. Bounding the consensus and gradient tracking errors. Let us267

bound first the consensus error ‖xν − 1x̄ν‖R. Using ‖z + w||2R ≤ (1 + ε) ‖x‖2R +268

(1 + 1/ε) ‖y‖2R, for arbitrary z,w ∈ Rm and ε > 0, along with Lemma 2.4, yields269

(3.6)∥∥xν+1 − 1x̄ν+1
∥∥2

R
=
∥∥(R− 1r>

)
(xν − 1x̄ν)− α

(
I− 1r>

)
(yν − 1ȳν)

∥∥2

R

≤ (1 + εx)
∥∥(R− 1r>

)
(xν − 1x̄ν)

∥∥2

R
+ α2

(
1 +

1

εx

)∥∥(I− 1r>
)

(yν − 1ȳν)
∥∥2

R

≤ ρ2
R(1 + εx) ‖xν − 1x̄ν‖2R + α2

(
1 +

1

εx

)
‖I− 1r>‖2R ‖yν − 1ȳν‖2R

≤ ρ2
R(1 + εx) ‖xν − 1x̄ν‖2R + 2α2K1

(
1 +

1

εx

)
‖yν − cȳν‖2R

+ 2α2K1(1 +
1

εx
) ‖(1− c)ȳν‖2R

≤ ρ2
R(1 + εx) ‖xν − 1x̄ν‖2R + α2K2 ‖yν − cȳν‖2C + α2K3|ȳν |22,

270

for some positive constants K1,K2,K3 (whose expression is omitted) and some εx > 0.271

Similarly, the tracking error can be bounded as272 ∥∥yν+1 − cȳν+1
∥∥2

C
=
∥∥(C− c1>

)
yν +

(
I− c1>

) (
∇Fc(xν+1)−∇Fc(xν)

)∥∥2

C
273

This manuscript is for review purposes only.
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274
(3.7)

≤ (1 + εy)
∥∥(C− c1>

)
(yν − cȳν)

∥∥2

C

+ (1 +
1

εy
)
∥∥(I− c1>

) (
∇Fc(xν+1)−∇Fc(xν)

)∥∥2

C

≤ ρ2
C(1 + εy) ‖yν − cȳν‖2C +

(
1 +

1

εy

)
‖I− c1>‖2C

∥∥(∇Fc(xν+1)−∇Fc(xν)
)∥∥2

C

≤
(
ρ2
C +

α2K4

εy

)
(1 + εy) ‖yν − cȳν‖2C + α2K5|ȳν |22 +K6

(
1 +

1

εy

)
‖xν − 1x̄ν‖2R ,

275

for some positive constantsK4,K5,K6 (whose expression is omitted) and some εy > 0.276

3.1.3. Lyapunov function. Let us introduce now the candidate Lyapunov277

function: denoting JR , 1r> and JC , c1>, let278

(3.8) L(x,y) , Fc(JRx) + ‖(I− JR)x‖2R + κ ‖(I− JC)y‖2C ,279

where κ > 0 is a positive constant (to be properly chosen). Combining (3.5), (3.6),280

and (3.7) leads to the following descent property for L:281

(3.9) L(xν+1,yν+1) ≤ L(xν ,yν)− (dν)
2
,282

where283

(3.10) dν ,
√

(1− ρ̃R) ‖xν − 1x̄ν‖2R + κ(1− ρ̃C) ‖yν − cȳν‖2C + Γ|ȳν |22,284

and285

ρ̃R ,ρ2
R(1 + εx) +

αL2
cK

2
||

2

(
1 +

ζ

ε1

)
+ κK6

(
1 +

1

εy

)
,

ρ̃C ,ρ2
C(1 + εy) +

αK2
||

2κ

(
1 +

1

ε2

)
+ α2

(
LK2
|| +K2

κ
+K4

(
1 +

1

εy

))
,

Γ ,

(
ζ − ε1ζ

2
− ε2

2

)
α−

(
Lζ2 +K3 +K5κ

)
α2.

286

To ensure ρ̃R < 1, ρ̃C < 1, and Γ > 0 in dν , we choose the free parameters εx, εy,287

ε1, ε2, and κ as follows:288

(3.11)

0 < εx <
1− ρ2

R

2ρ2
R

, 0 < εy <
1− ρ2

C

ρ2
C

,

ε1 = ε2 = ε, 0 < ε <
2ζ

1 + ζ
, 0 < κ ≤ ρ2

Rεx
K6(1 + 1/εy)

.

289

Finally, α > 0 satisfies290

(3.12)

α <
2

L2
cK

2
||

(
1 + ζ

ε

) (1− ρ2
R(1 + 2εx)

)
,

α <
1− ρ2

C(1 + εy)

1
2κK

2
||
(
1 + 1

ε + 2L
)

+ K2

κ +K4

(
1 + 1

εy

) ,
α <

ζ − ε
2 (ζ + 1)

Lζ2 +K3 +K5κ
.

291
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The descent property (3.9) readily implies the following convergence result for292

{L(xν ,yν)}ν and {dν}ν .293

Lemma 3.1. In the setting above, there hold:294

(i) The sequence {L(xν ,yν)}ν converges;295

(ii)
∑∞
ν=0(dν)2 <∞, and thus limν→∞ dν = 0.296

We end this subsection stating the following property of the Lyapunov function,297

which will be used later in our derivations.298

Lemma 3.2. Let ∇L(xν ,yν) , (∇xL(xν ,yν),∇yL(xν ,yν)), where ∇xL (resp.299

∇yL) are the gradient of L with respect to the first (resp. second) argument. In the300

setting above, there holds301

(3.13) ‖∇L(xν ,yν)‖ ≤Mdν , ν ≥ 0,302

for some finite M > 0.303

Proof. Using Lemma 2.5, we can write304

(3.14)

∇xL(xν ,yν) = J>R∇Fc(JRxν) + 2(I− JR)>H>RHR(I− JR)xν

= r ȳν + J>R (∇Fc(JRxν)−∇Fc(xν))

+ 2(I− JR)>H>RHR(xν − 1x̄ν),

∇yL(xν ,yν) = 2κ(I− JC)>H>CHC(I− JC)yν

= 2κ(I− JC)>H>CHC(yν − cȳν),

305

where HC and HR are invertible matrices. Eq. (3.13) follows readily from (3.14) and306

the Lipschitz continuity of ∇Fc .307

3.1.4. Main result. We can now state the main convergence result.308

Theorem 3.3. Consider Problem (P), and suppose that Assumptions 2.1 and 2.2309

are satisfied. Let {(xν ,yν)}ν be the sequence generated by the DOGT Algorithm (2.2),310

with R and C satisfying Assumption 2.3, and α chosen according to (3.12); let {x̄ν}ν311

and {ȳν}ν be defined in (3.1); and let {dν}ν be defined in (3.10). Given ε > 0, let312

Tε = min{ν ∈ N+ : dν ≤ ε}. Then, there hold313

(i) [consensus]: limν→∞ ‖xν − 1x̄ν‖ = 0 and limν→∞ ȳν = 0;314

(ii) [stationarity]: let x∞ be a limit point of {xν}ν ; then, x∞ = θ∞ 1, for some315

θ∞ ∈ crit F ;316

(iii) [sublinear rate]: Tε = O(1/ε2).317

Proof. (i) follows readily from Lemma 3.1(ii).318

We prove (ii). Let (x∞,y∞) be a limit point of {(xν ,yν)}ν . By (i), it must be319

(I−JR)x∞ = 0, implying x∞ = 1θ∞, for some θ∞ ∈ R. Also, limν→∞ 1>∇Fc(xν) =320

limν→∞ ḡν = limν→∞ ȳν = 0, which together with the continuity of ∇Fc, yields321

0 = 1>∇Fc(1θ∞) = ∇F (θ∞). Therefore, θ∞ ∈ crit F .322

Finally, (iii) follows readily from the inequality below, due to (3.9) and the defi-323

nition of Tε:324

Tε ε
2 ≤

Tε∑
t=0

(dt)2 ≤ l0 − lTε+1 <∞,325

where we used the shorthand lν , L(xν ,yν).326

Note that, as a direct consequence of Lemma 3.2, one can infer the following327

further property of the limit points (x∞,y∞) of the sequence {(xν ,yν)}ν : any such328

a (x∞,y∞) is a critical point of L [defined in (3.8)].329
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10 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

3.2. Global convergence under the K L property. We now strengthen the330

subsequence convergence result in Theorem 3.3, proving that the sequence {xν}ν is331

globally convergent to a critical point of F , under the additional assumption that F332

is a K L function [16, 15]. Our analysis blends the approach to centralized nonconvex333

optimization provided in [4] with the subsequence convergence analysis developed in334

the previous section. We begin introducing the definition of the K L property along335

with some basic facts (cf. Sec. 3.2.1); in Sec. 3.2.2, we then proceed to apply the336

K L property to obtain the global convergence result. Throughout the section we still337

assume m = 1, without loss of generality.338

3.2.1. Preliminaries: K L properties and basic facts. Let U : RN → R ∪339

{+∞} be a proper lower semicontinuous function; we set [a < U < b] , {z ∈ RN :340

a < U(z) < b}. The K L property is reviewed below [16, 15].341

Definition 3.4 (Kurdyka- Lojasiewicz property).342

(a) The function U : RN → R ∪ {+∞} is said to have the K L property at ź ∈343

dom ∂U if there exists η ∈ (0,+∞], a neighborhood Vź, and a continuous344

concave function φ : [0, η)→ R+ such that:345

(i) φ(0) = 0,346

(ii) φ is C1 on (0, η),347

(iii) for all s ∈ (0, η), φ′(s) > 0,348

(iv) for all z ∈ Vź ∩ [U(ź) < U < U(ź) + η], the K L inequality holds:349

(3.15) φ′ (U(z)− U(ź)) dist(0, ∂U(z)) ≥ 1.350

(b) Proper lower semicontinuous functions which satisfy the K L inequality at each351

point of dom ∂U are called K L functions.352

A lot of functions are known to satisfy the K L property; we refer the reader to the353

recent work [4] (and references therein) for many specific examples of such functions.354

To proceed, we make the following extra assumption on F in (P).355

Assumption 3.5. The objective function F is a K L function.356

Since the convergence analysis in Sec. 3.1 leverages the Lyapunov function L357

defined in (3.8), to build on the K L property, we need L to be a K L function. Lemma358

2.5 together with Assumption 3.5 ensure L to be so.359

3.2.2. Convergence analysis. We begin proving the following abstract inter-360

mediate result similar to [4], which is at the core of the subsequent analysis.361

Proposition 3.6. In the setting of Theorem 3.3, let L defined in (3.8) have362

the K L property at some ź , (x́, ý). Denote by Vź, η, and φ : [0, η) → R+ the363

objects appearing in Definition 3.4. Let ρ > 0 be such that B(ź, ρ) ⊆ Vź. Consider the364

sequence {zν , (xν ,yν)}ν generated by the DOGT Algorithm (2.2), with initialization365

z0 , (x0,y0); and define ĺ , L(ź) and lν , L(zν). Suppose that366

(3.16) ĺ < lν < ĺ + η, ∀ν ≥ 0,367

and368

(3.17) KM φ(l0 − ĺ) +
∥∥z0 − ź

∥∥ < ρ,369

where370

(3.18) K =
√

3(1 + Lc) max

(
4nK2

||

1− ρ̃R
,

K2
||

κ(1− ρ̃C)

(
α+

2
√
n

1 + Lc

)2

, α2/Γ

)1/2

,371

This manuscript is for review purposes only.



SECOND-ORDER GUARANTEES OF DISTRIBUTED GRADIENT ALGORITHMS 11

and M > 0 is defined in (3.13) (cf. Lemma 3.2).372

Then, {zν}ν satisfies:373

(i) zν ∈ B(ź, ρ), for all ν ≥ 0;374

(ii)
∑ν
t=k

∥∥zt+1 − zt
∥∥ ≤ KM (

φ(lk − ĺ)− φ(lν+1 − ĺ)
)

for all ν, k ≥ 0 and ν ≥ k;375

(iii) lν → ĺ, as ν →∞.376

Proof. Let dν > 0 for all integer ν ≥ 0; otherwise, {xν}ν converges in a finite377

number of steps, and its limit point is x∞ = 1θ∞, for some θ∞ ∈ crit F .378

We first bound the “length”
∑ν
t=k

∥∥zt+1 − zt
∥∥. By (2.2), there holds379

xν+1 − xν = (R− I) (xν − 1x̄ν)− α (yν − cȳν)− αcȳν ,

yν+1 − yν = (C− I) (yν − cȳν) +∇Fc(xν+1)−∇Fc(xν).
380

Using ||A||2 ≤
√
n||A||∞ and ||A||2 ≤

√
n||A||1, with A ∈Mn(R); and ||R−I||∞ ≤ 2381

and ||C− I||1 ≤ 2, we get382

ν∑
t=k

∥∥xt+1 − xt
∥∥ ≤ ν∑

t=k

2
√
n
∥∥xt − 1x̄t

∥∥+ α
∥∥yt − cȳt

∥∥+ α|ȳt|,

ν∑
t=k

∥∥yt+1 − yt
∥∥ ≤ ν∑

t=k

2
√
n
∥∥yt − cȳt

∥∥+ Lc

ν∑
t=k

∥∥xt+1 − xt
∥∥ ,383

where Lc is the Lipschitz constant of ∇Fc. The above inequalities imply384

(3.19)

ν∑
t=k

∥∥zt+1 − zt
∥∥

≤
ν∑
t=k

2(1 + Lc)
√
nK||

∥∥xt − 1x̄t
∥∥
R

+K||
(
α(1 + Lc) + 2

√
n
) ∥∥yt − cȳν

∥∥
C

+ α(1 + Lc)|ȳt| ≤ K
ν∑
t=k

dt,

385

where K is defined in (3.18).386

We prove now the proposition, starting from statement (ii). Multiplying both387

sides of (3.9) by φ′(lν−ĺ) and using φ′(lν−ĺ) > 0 [due to property (iii) in Definition 3.4388

and (3.16)] and the concavity of φ, yield389

(3.20) (dν)2 φ′(lν − ĺ) ≤ φ′(lν − ĺ)
(
lν − lν+1

)
≤ φ(lν − ĺ)− φ(lν+1 − ĺ).390

For all z ∈ Vź ∩ [ĺ < L < ĺ + η], the K L inequality (3.15) holds; hence, assuming391

zt ∈ B(ź, ρ) for all t = 0, . . . , ν, yields392

(3.21) φ′(lt − ĺ)||∇L(zt)|| ≥ 1, t = 0, . . . , ν,393

which together with (3.20) and (3.13) (cf. Lemma 3.2), gives394

M
(
φ(lt − ĺ)− φ(lt+1 − ĺ)

)
≥ dt, t = 0, . . . , ν,395

and thus396

(3.22) M
(
φ(lk − ĺ)− φ(lν+1 − ĺ)

)
≥

ν∑
t=k

dt.397
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Combining (3.22) with (3.19), we obtain398

(3.23)

ν∑
t=k

∥∥zt+1 − zt
∥∥ ≤ KM (

φ(lk − ĺ)− φ(lν+1 − ĺ)
)
.399

Ineq. (3.23) proves (ii) if zν ∈ B(ź, ρ) for all ν ≥ 0, which is shown next.400

Now let us prove statement (i). Letting k = 0 in (3.23), by (3.17), we obtain401 ∥∥zν+1 − ź
∥∥ ≤ KM (

φ(l0 − ĺ)− φ(lν+1 − ĺ)
)

+
∥∥z0 − ź

∥∥ < ρ.402

Therefore, zν ∈ B(ź, ρ), for all ν ≥ 0.403

We finally prove statement (iii). Inequalities (3.13) (cf. Lemma 3.2) and (3.21)404

imply405

(3.24) φ′(lν − ĺ) dν ≥ 1/M, ν ≥ 0.406

On the other hand, by Lemma 3.1-(i), as ν → ∞, we have lν → p, for some p ≥ ĺ.407

In fact, p = ĺ, otherwise p− ĺ > 0, which would contradict (3.24) (because dν → 0 as408

ν →∞ and φ′(p− ĺ) <∞).409

Roughly speaking, Proposition 3.6 states that, if the algorithm is initialized in410

a suitably chosen neighborhood of a point at which L satisfies the K L property,411

then it will converge to that point. Combining this property with the subsequence412

convergence proved in Theorem 3.7 we can obtain global convergence of the sequence413

to critical points of F , as stated next.414

Theorem 3.7. Consider the setting of Theorem 3.3, and further assume that415

Assumption 3.5 holds. Each bounded sequence {(xν ,yν)}ν generated by the DOGT416

Algorithm (2.2) converges to some (x∞,y∞) ∈ crit L. Furthermore, x∞ = 1θ∞, for417

some θ∞ ∈ crit F .418

Proof. Let z∞ , (x∞,y∞) be a limit point of {zν , (xν ,yν)}ν . Since {lν ,419

L(zν)}ν is convergent (cf. Lemma 3.1) and L is continuous, we deduce lν → l∞ ,420

L(z∞). The function L has the K L property at z∞; set ź = z∞ and ĺ = l∞;421

denote by Vź, η, and φ : [0, η) → R+ the objects appearing in Definition 3.4; and422

let ρ > 0 be such that B(ź, ρ) ⊆ Vź. By the continuity of φ and the properties423

above, we deduce that there exists an integer ν0 such that i) lν ∈ (ĺ, ĺ + η), for all424

ν ≥ ν0; and ii) K M φ(lν0 − ĺ) + ‖zν0 − ź‖ < ρ, with K and M defined in (3.18) and425

(3.13), respectively. Global convergence of the sequence {zν}ν follows by applying426

Proposition 3.6 to the sequence {zν+ν0}ν .427

Finally, by Lemma 3.1(ii), dν → 0 as ν →∞. Invoking the continuity of ∇L and428

Lemma 3.2, we have ∇L(x∞,y∞) = 0, thus (x∞,y∞) ∈ crit L. By Theorem 3.3(ii),429

x∞ = 1⊗ θ∞, with θ∞ ∈ crit F .430

In the following theorem, we provide some convergence rate estimates.431

Theorem 3.8. In the setting of Theorem 3.7, let L be a K L function with φ(s) =432

cs1−θ, for some constant c > 0 and θ ∈ [0, 1). Let {zν , (xν ,yν)}ν be a bounded433

sequence generated by the DOGT Algorithm (2.2). Then, there hold:434

(i) If θ = 0, {zν}ν converges to z∞ in a finite number of iterations;435

(ii) If θ ∈ (0, 1/2], then ||zν − z∞|| ≤ Cτν , for some τ ∈ [0, 1), C > 0, and all436

ν ≥ 0;437

(iii) If θ ∈ (1/2, 1), then ||zν − z∞|| ≤ Cν−
1−θ
2θ−1 , for some C > 0 and all ν ≥ 0.438
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Proof. Define Dν ,
∑∞
t=ν d

t. By (3.19), we have439

(3.25)
∥∥zν+1 − z∞

∥∥ ≤ ∞∑
t=ν

∥∥zt+1 − zt
∥∥≤KDν .440

It is then sufficient to establish the convergence rates for the sequence {Dν}ν .441

By K L inequality (3.15) and (3.13), we have442

(3.26) Mdνφ′(lν − l∞) ≥ 1 =⇒ M̃(dν)(1−θ)/θ ≥ (lν − l∞)1−θ,443

where M̃ = (Mc(1− θ))(1−θ)/θ
, lν , L(zν), and l∞ , L(z∞). In addition, by (3.22)444

(setting ĺ = l∞), we have Dν ≤Mφ(lν − l∞) = Mc(lν − l∞)1−θ, which together with445

(3.26), yields446

(3.27) Dν ≤ M̃Mc(dν)(1−θ)/θ = M̃Mc(Dν −Dν+1)(1−θ)/θ.447

The convergence rate estimates as stated in the theorem can be derived from (3.27),448

using the same line of analysis introduced in [3]. The remaining part of the proof is449

provided in Appendix A.2 for completeness.450

3.3. Second-order guarantees. We prove that the DOGT algorithm almost451

surely converges to SoS solutions of (P), under a suitably chosen initialization and452

some additional conditions on the weight matrices R and C. Following a path first453

established in [18] and further developed in [17], the key to our argument for the non-454

convergence to strict saddle points of F lies in formulating the DOGT algorithm as455

a dynamical system while leveraging an instantiation of the stable manifold theorem,456

as given in [17, Theorem 2]. Our analysis is organized in the following three steps:457

1) Sec. 3.3.1 introduces the preparatory background; 2) Sec. 3.3.2 tailors the results458

of Step 1 to the DOGT algorithm; and 3) finally, Sec. 3.3.3 states our main results459

about convergence of the DOGT algorithm to SoS solutions of (P).460

3.3.1. The stable manifold theorem and unstable fixed-points. Let g :461

S → S be a mapping from S to itself, where S is a manifold without boundary.462

Consider the dynamical system uν+1 = g(uν), with u0 ∈ S; we denote by gν the ν-463

fold composition of g. Our focus is on the analysis of the trajectories of the dynamical464

system around the fixed points of g; in particular we are interested in the set of465

unstable fixed points of g. We begin introducing the following definition.466

Definition 3.9 (Chapter 3 of [1]). The differential of the mapping g : S → S,467

denoted as Dg(u), is a linear operator from T (u)→ T (g(u)), where T (u) is the tan-468

gent space of S at u ∈ S. Given a curve γ in S with γ(0) = u and dγ
dt (0) = v ∈ T (u),469

the linear operator is defined as Dg(u)v = d(g◦γ)
dt (0) ∈ T (g(u)). The determinant of470

the linear operator det(Dg(u)) is the determinant of the matrix representing Dg(u)471

with respect to a standard basis.1472

We can now introduce the definition of the set of unstable fixed points of g.473

Definition 3.10 (Unstable fixed points). The set of unstable fixed points of g474

is defined as475

(3.28) Ag =
{

u : g(u) = u, spradii
(
Dg(u)

)
> 1
}
.476

1This determinant may not be uniquely defined, in the sense of being completely invariant to the
basis used for the geometry. In this work, we are interested in properties of the determinant that are
independent of scaling, and thus the potentially arbitrary choice of a standard basis does not affect
our conclusions.
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The theorem below, which is based on the stable manifold theorem [28, Theorem477

III.7], provides tools to let us connect Ag with the set of limit points which {uν}ν478

can escape from.479

Theorem 3.11 (Theorem 2 of [17]). Let g : S → S be a C1 mapping and480

det (Dg(u)) 6= 0, for all u ∈ S. Then, the set of initial points that converge to an481

unstable fixed point (termed stable set of Ag) is zero measure in S. Therefore,482

Pu0

(
lim
ν→∞

gν(u0) ∈ Ag
)

= 0,483

where the probability is taken over the starting point u0 ∈ S.484

3.3.2. DOGT as a dynamical system. Theorem 3.11 sets the path to the485

analysis of the convergence of the DOGT algorithm to SoS solutions of F : it is486

sufficient to describe the DOGT algorithm by a proper mapping g : S → S satisfying487

the assumptions in the theorem and such that the non-convergence of gν(u0), u0 ∈ S,488

to Ag implies the non-convergence of the DOGT algorithm to strict saddles of F .489

We begin rewriting the DOGT in an equivalent and more convenient form. Define490

hν , yν −∇Fc(xν); (2.2) can be rewritten as491

(3.29)

{
xν+1 = WRxν − α (hν +∇Fc(xν)) ;

hν+1 = WChν + (WC − I)∇Fc(xν),
492

with arbitrary x0 ∈ Rmn and h0 = 0. By Theorem 3.3, every limit point (x∞,h∞)493

of {(xν ,hν)}ν has the form x∞ = 1n ⊗ θ∞ and h∞ = −∇Fc(1n ⊗ θ∞), for some494

θ∞ ∈ crit F . We are interested in the non-convergence of (3.29) to such points495

whenever θ∞ ∈ crit F is a strict saddle of F . This motivates the following definition.496

Definition 3.12 (Consensual strict saddle points). Let Θ∗ss = {θ∗ ∈ crit F :497

λmin(∇2F (θ∗)) < 0} denote the set of strict saddles of F . The set of consensual498

strict saddle points is defined as499

(3.30) U∗ ,
{[

1n ⊗ θ∗

−∇Fc(1n ⊗ θ∗)

]
: θ? ∈ Θ∗ss

}
.500

Roughly speaking, U∗ represents the candidate set of “adversarial” limit points501

which any sequence generated by (3.29) should escape from. The next step is then502

to write (3.29) as a proper dynamical system whose mapping satisfies conditions in503

Theorem 3.11 and its set of unstable fixed points Ag is such that U∗ ⊆ Ag.504

Identification of g and S. Define u , (x,h), where x , (x1, . . . ,xn), h =505

(h1, . . . ,hn), and each xi,hi ∈ Rm; its value at iteration ν is denoted by uν , (xν ,hν).506

Consider the dynamical system507

(3.31) uν+1 = g(uν), with g (u) ,

[
WRx− α∇Fc (x)− αh

WCh + (WC − I)∇Fc (x)

]
,508

and u0 = (x0,0). Cleary (3.31) describes the trajectory generated by the DOGT509

algorithm (3.29). However, the initialization imposed by the DOGT scheme leads to510

a g that maps Rnm×{0} into Rnm×Rnm. We show next how to change the domain511

and codomain of g to a subspace S ⊆ Rnm ×Rnm, without affecting the convergence512

of (3.31) to critical points of F , and consequently that of the DOGT algorithm (2.2).513

Applying (3.29) telescopically to the update of the h-variables yields: hν =514

Wν
Ch0 + (WC − I) gνacc, for all ν ≥ 1, where gνacc ,

∑ν−1
t=0 Wt

C∇Fc
(
xν−t−1

)
. Denot-515

ing h̄ν , (1>n ⊗ Im)hν , we have516

(3.32) h̄ν = · · · = h̄0, and hν ∈Wν
Ch0 + span (WC − I) ∀ν ≥ 1.517
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The initialization h0 = 0 in (3.29) was meant to preserve the tracking property of the518

h-variables, namely h̄ν = 0, for all ν ≥ 1. This property still holds if we let instead519

h0 ∈ span (WC − I) (due to the column stochasticity of C). This naturally suggests520

the following (2n− 1)m-dimensional subspace as candidate set S:521

(3.33) S , Rnm × span (WC − I) .522

Such an S also ensures that g : S → S. In fact, by (3.32), hν ∈ span(WC − I), for all523

ν ≥ 1, provided that h0 ∈ span (WC − I). Therefore, {gν(u0)}ν ⊆ S, for all u0 ∈ S.524

Remark 3.13. The choice of the set S results in the new initialization of the525

DOGT iterate (3.29), that is u0 ∈ S. This however does not affect its convergence526

properties, and the conclusions in Theorem 3.7 (cf. Section 3) still hold. In fact, one527

can check that the proof of the theorem does not change, since the gradient tracking528

property, h̄0 = 0 for all ν ≥ 0 [which in (3.2) reads ḡν = ȳν for all ν ≥ 0], holds also529

under the new initialization. Note that such a new initialization can be enforced in530

a distributed way, with minimal coordination: first, agents choose independently a531

vector h−1
i ∈ Rm; then they run one step of consensus on h−1

i ’s with weights matrix532

C, and set h0
i =

∑
j∈N ini

Cijh
−1
j − h−1

i , resulting in h0 ∈ span(WC − I).533

Equipped with the mapping g in (3.31) and S defined in (3.33), we check next534

that the condition in Theorem 3.11 is satisfied; we then prove that U∗ ⊆ Ag.535

1) g is a diffeomorphism: To establish this property, we add the following536

extra assumption on the weight matrices R and C.537

Assumption 3.14. Matrices R ∈Mn(R) and C ∈Mn(R) are nonsingular.538

The above condition is not particularly restrictive and it is compatible with As-539

sumption 2.3. A rule of thumb is to choose R = (R̃+I)/2 and C = (C̃+I)/2, with R540

and C satisfying Assumption 2.3. The new matrices still satisfy Assumption 2.3 due541

to the following fact: given two nonnegative matrices A,B ∈ Mn(R), if the directed542

graph associated with matrix A has a spanning tree and B ≥ ρA, for some ρ > 0,543

then the directed graph associated with matrix B has a spanning tree as well.544

We build now the differential of g. Let g̃ be a smooth extension of (3.31) to545

Rmn × Rmn, that is g = g̃|S . The differential Dg̃(u) of g̃ at u ∈ S reads546

(3.34) Dg̃(u) =

[
WR − α∇2Fc(x) −αI

(WC − I)∇2Fc(x) WC

]
;547

Dg̃(u) is related to the differential of g by Dg(u) = Dg̃(u)PT (u) [2], where PT (u)548

is the orthogonal projector onto T (u). Using T (u) = S, for all u ∈ S (recall that549

S is a linear subspace) and denoting by Uh ∈ Rmn×m(n−1) an orthonormal basis of550

span(WC − I), Dg(u) reads551

(3.35) Dg(u) =

[
WR − α∇2Fc(x) −αI

(WC − I)∇2Fc(x) WC

]
UU>, with U ,

[
I 0
0 Uh

]
.552

Note that PS = UU>. We establish next the conditions for g to be a C1 diffeomor-553

phism, as stated in Theorem 3.11.554

Proposition 3.15. Consider the mapping g : S → S defined in (3.31), under555

Assumptions 2.1(i), 2.3, and 3.14, with S defined in (3.33). If the step-size is chosen556

according to557

(3.36) 0 < α <
σmin(CR)

Lc
,558

where Lc = Lmax, then det (Dg(u)) 6= 0, for all u ∈ S.559
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Proof. Since Dg(u) : S → S, it is sufficient to verify that Dg(u) is an invertible560

linear transformation for every u ∈ S. Using the definition of U, this is equivalent to561

show that UTDg(u)U is invertible, for all u ∈ S. Invoking (3.35), U>Dg(u)U reads562

(3.37) U>Dg(u)U =U>Dg̃(u)U =

[
WR − α∇2Fc(x) −αUh

U>h (WC − I)∇2Fc(x) UT
hWCUh

]
.563

Since U>hWCUh is non-singular, we can use the Schur complement of U>Dg(u)U564

with respect to U>hWCUh and write565

(3.38)

U>Dg(u)U = S1

[
WR − α∇2Fc(x) + αΦ (WC − I)∇2Fc(x) 0

0 U>hWCUh

]
S2,566

where Φ , Uh

(
U>hWCUh

)−1
U>h , and S1 and S2 are some nonsingular matrices.567

By (3.38), it is sufficient to show that568

(3.39)
S ,WR − α∇2Fc(x) + αΦ (WC − I)∇2Fc(x)

=WR − αW−1
C ∇

2Fc(x) + α
(
Φ−W−1

C

)
(WC − I)∇2Fc(x).

569

is non-singular. Using WC − I = Uh∆, for some ∆ ∈ Rm(n−1)×mn (recall that Uh is570

an orthonormal basis of span(WC − I)), we can write571

(3.40)

Φ = Uh

(
U>hWCUh

)−1
U>h = Uh (I + ∆Uh)

−1
U>h

(a)
= UhU

>
h −Uh∆ (I + Uh∆)

−1
UhU

>
h

= UhU
>
h − (WC − I) W−1

C UhU
>
h

= W−1
C UhU

>
h ,

572

where (a) we used the Woodbury identity of inverse matrices. Using (3.40) in (3.39),573

we obtain574

S = WR − αW−1
C ∇

2Fc(x)− αW−1
C

(
I−UhU

>
h

)
(WC − I)︸ ︷︷ ︸

=0

∇2Fc(x)
575

Therefore, if α < σmin(CR)
Lc

, S is invertible, and consequently, so is U>Dg(u)U.576

2) The consensual strict saddle points are unstable fixed points of g577

(U∗ ⊆ Ag): First of all, note that every limit point of the sequence generated by578

(3.29) is a fixed point of g on S; the converse might not be true. The next result579

establishes the desired connection between the set Ag of unstable fixed points of g580

(cf. Definition 3.10) and the set U∗ of consensual strict saddle points (cf. Definition581

3.12). This will let us infer the instability of U∗ from that of Ag.582

Proposition 3.16. Suppose that Assumption 2.3 holds along with one of the fol-583

lowing two conditions584

(i) The weight matrices R and C are symmetric;585

(ii) m = 1.586

Then, any consensual strict saddle point is an unstable fixed point of g, i.e.,587

(3.41) U∗ ⊆ Ag,588

with Ag and U∗ defined in (3.28) and (3.30), respectively.589
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Proof. Let u∗ ∈ U∗; u∗ is a fixed point of g defined in (3.31). It is thus sufficient590

to show that Dg(u∗) has an eigenvalue with magnitude greater than one.591

To do so, we begin showing that the differential Dg̃(u∗) of g̃ at u∗ has an eigenvalue592

greater than one. Using (3.34), Dg̃(u∗) reads593

(3.42) Dg̃(u∗) =

[
WR − α∇2F ∗c −αI

(WC − I)∇2F ?c WC

]
,594

where we defined the shorthand ∇2F ∗c , ∇2Fc (1⊗ θ∗), and θ∗ ∈ Θ∗ss. We need to595

prove596

(3.43) det (Dg̃(u∗)− λuI) = 0, for some |λu| > 1.597

If |λu| > 1, WC − λuI is nonsingular (since spradii(C) = 1). Using the Schur com-598

plement of Dg̃(u∗)− λuI with respect to WC − λuI, we have599

(3.44) Dg̃(u∗)− λuI = S̃1

[
(Dg̃(u∗)− λuI) / (WC − λuI) 0

0 WC − λuI

]
S̃2,600

for some S̃1, S̃2 ∈ M2mn(R), with det(S̃1) = det(S̃2) = 1. Given (3.44), (3.43) holds601

if and only if602

det

[
WR − λuI− α∇2F ?c + α (WC − λuI)

−1
(WC − I)∇2F ∗c 0

0 WC − λuI

]
= 0,603

or equivalently604

(3.45) det
(
WR − λuI− α∇2F ∗c + α (WC − λuI)

−1
(WC − I)∇2F ∗c

)
= 0.605

Multiplying both sides of (3.45) by det(WC − λuI) yields606

(3.46) Q(λu) , det

(
(WC − λuI) (WR − λuI) + α(λu − 1)∇2F ∗c︸ ︷︷ ︸

,T(λu)

)
= 0.607

Trivially Q(λu) > 0, if λu � 1. Therefore, to show that (3.43) holds, it is sufficient to608

prove that there exists some λu > 1 such that Q(λu) ≤ 0. Next, we prove this result609

under either condition (i) or (ii).610

Suppose (i) holds; R and C are symmetric. Define υ̃ , 1 ⊗ υ, where υ is611

the unitary eigenvector associated with a negative eigenvalue of ∇2F (θ∗), and let612

λmin(∇2F (θ∗)) = −δ; we can write613

(3.47) υ̃>T(λu)υ̃ = n(λu − 1) (λu − 1− αδ/n) < 0,614

for all 1 < λu < 1+αδ/n. By Rayleigh-Ritz theorem, T(λu) has a negative eigenvalue,615

implying that there exists some real value λ̄u > 1 such that Q(λ̄u) = 0.616

Suppose now that conditions (ii) holds; WR and WC reduce to R and C, respec-617

tively. Note that R and C are now not symmetric. Let λu = 1 + ε, and consider the618

Taylor expansion of619

(3.48) Q(1 + ε) = det

(
(C− I) (R− I) + ε

(
α∇2F ∗c + 2I−C−R

)
+ ε2I

)
,620

around ε = 0. Define M , (C− I) (R− I) and N , α∇2F ∗c + 2I−C−R. It is clear621

that Q(1) = 0; then, by the Jacobi’s formula, we have622
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(3.49) Q(1 + ε) = tr
(

adj (M) N
)
ε+O(ε2).623

Expanding (3.49) yields624

(3.50)
Q(1 + ε) =tr

(
adj (R− I) adj (C− I) N

)
ε+O(ε2)

=tr
(
1r̃>c̃1>N

)
ε+O(ε2) = (r̃>c̃)1>N1ε+O(ε2),

625

where r̃ and c̃ are the Perron vectors of R and C, respectively. The second equality626

in (3.50) is due to the following fact: a rank-(n − 1) matrix A ∈ Mn(R) has rank-1627

adjugate matrix adj (A) = ab>, where a and b are non-zero vectors belonging to the628

1-dimensional null space of A and A>, respectively [11, Sec. 0.8.2]. We also have629

ζ̃ , r̃>c̃ > 0, due to Lemma 2.4. Furthermore, since θ∗ ∈ Θ∗ss, 1>∇2F ∗c 1 ≤ −δ, for630

some δ > 0, and631

(3.51) Q(1 + ε) ≤ −δζ̃αε+O(ε2),632

which implies the existence of a sufficiently small ε > 0 such that Q(1 + ε) < 0.633

Consequently, there must exist some λ̄u > 1 such that (3.43) holds. Moreover, such634

λ̄u is a real eigenvalue of Dg̃(u∗).635

To summarize, we proved that there exists an eigenpair (λ̄u,vu) of Dg̃(u∗), with636

λ̄u > 1. Next we show that (λ̄u,vu) is also an eigenpair of Dg(u∗). Let us partition637

vu , (vxu,v
h
u) such that638

(3.52)

[
WR − α∇2Fc (x∗) −αI

(WC − I)∇2Fc (x∗) WC

] [
vxu
vhu

]
= λ̄u

[
vxu
vhu

]
.639

In particular, we have (WC − I)
(
∇2Fc (x∗) vxu + vhu

)
= (λ̄u − 1)vhu, which implies640

vhu ∈ span(WC − I), since λ̄u − 1 6= 0. Therefore, vu ∈ S.641

Now, let PS be the orthogonal projection matrix onto S. Since vu ∈ S, we have642

(3.53) Dg̃(u∗)vu = λ̄uvu =⇒ Dg̃(u∗)P>S vu = λ̄uvu
(a)
=⇒ Dg(u∗)vu = λ̄uvu,643

where (a) is due to Dg(u∗) = Dg̃(u∗)P>S [cf. (3.35)]. Hence (λ̄u,vu) is also an644

eigenpair of Dg(u∗), which completes the proof.645

Remark 3.17. Note that condition (i) in Proposition 3.16 implies that that GC646

and GR are undirected graphs. Condition (ii) relaxes this assumption to directed647

network topologies when m = 1.648

3.3.3. DOGT likely converges to SoS solutions of (P). Combining Theo-649

rem 3.11, Proposition 3.15, and Proposition 3.16, we can readily obtain the following650

second-order guarantees of the DOGT algorithms.651

Theorem 3.18. Consider Problem (P), under Assumptions 2.1 and 2.2; and let652

{uν , (xν ,hν)}ν be the sequence generated by the DOGT Algorithm (3.29) under the653

following tuning: i) the step-size α satisfies (3.12) and (3.36); the weight matrices C654

and R are chosen according to Assumptions 2.3 and 3.14; and the initialization is set655

to u0 ∈ S, with S defined in (3.33). Furthermore, suppose that either (i) or (ii) in656

Proposition 3.16 holds. Then, we have657

(3.54) Pu0

(
lim
ν→∞

uν ∈ U∗
)

= 0,658

where the probability is taken over u0 ∈ S.659

In addition, if F is a K L function, then {xν}ν converges almost surely to 1⊗ θ∞660

at a rate determined in Theorem 3.8, where θ∞ is a SoS solution of (P).661
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Note that (3.54) implies the desired second-order guarantees only when the se-662

quence {uν}ν convergences [i.e., the limit in (3.54) exists]; otherwise (3.54) is trivially663

satisfied, and some limit point of {uν}ν can belong to U∗ with non-zero probability.664

A sufficient condition for the required global convergence of {uν}ν is that F is a665

K L function, which is stated in the second part of the above theorem.666

4. The DGD Algorithm: Second-order guarantees. Consider the DGD667

algorithm in the setting of Sec. 2.2. The iterate (2.1) can be interpreted as an instance668

of the gradient descent (GD) algorithm applied to Lα : Rnm → R, defined as669

(4.1) Lα(x) , Fc(x) +
1

2α
x> (I−WD) x.670

Therefore, (2.1) can also be written as671

(4.2) xν+1 = xν − α∇Lα(xν).672

This connection has been extensively used in the literature to establish conver-673

gence of the DGD algorithm. The next section summarizes the existing results, which674

will be the starting point of our analysis on second-order guarantees.675

4.1. Existing convergence results. Convergence of the DGD algorithm ap-676

plied to the nonconvex problem (P) has been established [34], under the following677

assumption, which is slightly more restrictive than Assumption 2.1.678

Assumption 2.1’ (On Problem P). Given Problem (P), suppose that: (i) Assump-679

tion 2.1(i) is satisfied; and (ii) each fi is bounded from below.680

The convergence properties of the DGD algorithm are summarized below.681

Theorem 4.1 ([34]). Consider Problem (P), under Assumptions 2.1’, 2.2. Let682

{xν = (xνi )ni=1)}ν be a bounded sequence generated by the DGD algorithm (2.1) with683

0 < α < σmin(I + D)/Lc, and let x̄ν , (1/n)
∑n
i=1 xνi . Then, the following hold684

(i) [almost consensus]: for all i = 1, . . . , n and ν ∈ N+,685

‖xνi − x̄ν‖ ≤ αR

1− σ2
,686

where σ2 is the second largest singular value of D, and R is a universal bound687

of ||∇Fc(xν)||;688

(ii) [stationarity]: every limit point x∞ of {xν}ν is such that x∞ ∈ crit Lα.689

In addition, if Lα is a K L function, then {xν}ν is globally convergent to some690

x∞ ∈ crit Lα.691

Since (2.1) represents the gradient algorithm applied to Lα, non-convergence of692

the DGD algorithm to strict saddle points of Lα can be established by a direct ap-693

plication of [17, Corollary 2] to (4.2). The following extra assumption on the weight694

matrix D is needed, which is similar to Assumption 3.14 for the DOGT schemes.695

Assumption 4.2. The matrix D ∈Mn(R) is nonsingular.696

Theorem 4.3. Consider Problem (P), under Assumptions 2.1’, 2.2, and further697

assume that each fi is a K L function. Let {xν}ν be the sequence generated by the698

DGD algorithm with step-size 0 < α < σmin(D)
Lc

and weight matrix D satisfying As-699

sumption 4.2. Then, the stable set of strict saddle points of Lα is zero measure in700

Rnm. Therefore, {xν}ν convergences almost surely to a SoS solution of Lα, where the701

probability is taken over the random initialization x0 ∈ Rnm.702

Convergence results as stated in Theorems 4.1 and 4.3 are not fully satisfactory,703

as they do not provide any information on the behavior of DGD near critical points704
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of F (unless all the functions fi have the same unique minimizer), including the strict705

saddles of F . In the following, we fill this gap. Specifically, we first show that the706

DGD algorithm convergences to a(n arbitrarily small) neighborhood of the critical707

points of F , for sufficiently small α > 0 (cf. Section 4.2). Then, we prove that, under708

some further (mild) assumptions, such critical points are almost surely SoS solutions709

of (P), where the randomization is taken on the initial point (cf. Section 4.3).710

4.2. DGD converges to a neighborhood of critical points of F . We begin711

introducing the definition of ε-critical points of F .712

Definition 4.4. A point θ ∈ Rm such that ||∇F (θ)|| ≤ ε, with ε > 0, is called713

ε-critical point of F . Given ε > 0, the set of ε-critical points of F is denoted by critεF .714

We establish next a relation between the critical points of Lα and the ε-critical715

points of F .716

Lemma 4.5. Consider Problem (P), under Assumptions 2.1’ and 2.2. Every limit717

point x∞ = (x∞i )ni=1 of {xν}ν , generated by the DGD algorithm for 0 < α < σmin(I+718

D)/Lc, is such that x̄∞ ∈ critO(α)F , with x̄∞ , (1/n)
∑n
i=1 x∞i .719

Proof. By Theorem 4.1(ii), (1⊗ I)>∇Lα(x∞) = 0, which using (4.1) and the720

column stochasticity of D yields (1⊗ I)> ∇Fc(x∞) = 0. We can then write721

‖∇F (x̄∞)‖ =
∥∥(1⊗ I)> (∇Fc(1⊗ x̄∞)−∇Fc(x∞))

∥∥
≤Lc
√
n ‖x∞ − 1⊗ x̄∞‖

(a)

≤ α · n
√
nLcR

1− σ2
,

722

where in (a) we used Theorem 4.1(i). Therefore, x̄∞ ∈ critK′αF , with K ′ = n
√
nLcR/723

(1− σ2).724

Lemma 4.5 shows that x̄∞ ∈ critK′αF , for some K ′ > 0. A natural question is725

whether dist(x̄∞, crit F) can be made arbitrarily small by reducing α > 0; Lemma726

4.7 below provides a positive answer to the question (under a mild assumption on727

F–see Assumption 4.6). This result, together with Theorem 4.1(i), are enough to728

show (subsequence) convergence of {x̄ν , (1/n)
∑n
i=1 xνi }ν to a(n arbitrary small)729

neighborhood of critical points of F with all xνi ’s being almost consensual; this is730

stated in Theorem 4.8 below.731

Assumption 4.6. There exist R, % > 0 such that ||∇F (x)|| ≥ %, for all x /∈ crit F732

and ||x|| > R.733

Lemma 4.7. Let F : Rm → R be defined in (P), and satisfies Assumptions 2.1’(i)734

and 4.6. Then, there holds735

lim
ε→0

max
q∈critεF

dist(q, crit F ) = 0.736

Proof. By Assumption 4.6, there exists a ε̃ > 0 such that for all ε ≤ ε̃, critεF ∩737

B(0, R) = critF ∩ B(0, R). Thus, it is enough to show738

(4.3) lim
ε→0

max
q∈critεF∩B(0,R)

dist(q, crit F ∩ B(0, R)) = 0.739

We prove (4.3) by contradiction. Suppose740

(4.4) lim sup
ε→0

max
q∈critεF∩B(0,R)

dist(q, crit F ∩ B(0, R)) = γ > 0.741

Then, one can find a sequence {qν}ν , with qν ∈ crit1/νF ∩ B(0, R), such that742

dist(qν , critF ∩ B(0, R)) ≥ γ, for all ν ∈ N. Since ∇F is continuous, crit1F is closed,743

thus crit1F ∩B(0, R) is compact. Since {qν}ν ⊆ crit1/νF ∩B(0, R) ⊆ crit1F ∩B(0, R),744
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{qν}n is bounded. Let {qtν}ν be a convergent subsequence of {qν}ν ; its limit point745

q∞ satisfies dist(q∞, crit F ) ≥ γ. For every given ν́ ∈ N, {qtν}ν eventually will746

belong to crit1/ν́ F ∩ B(0, R), and thus q∞ ∈ crit1/ν́ F ∩ B(0, R). This means747

that ||∇F (q∞)|| ≤ 1/ν́, for all ν́ ∈ N, implying ||∇F (q∞)|| = 0. We thus have748

dist(q∞, crit F ) = 0, which contradicts (4.4) as q∞ ∈ B(0, R).749

Combining Lemma 4.5, Lemma 4.7 and Theorem 4.1(i), we readily obtain the750

desired local convergence result of the DGD algorithm, as summarized next.751

Theorem 4.8. Consider the setting of Lemma 4.5 and let Assumption 4.6 hold.752

Then, for any ε > 0, there exists a sufficiently small α > 0, such that every limit753

point x∞ = (x∞i )ni=1 of a bounded sequence {xν}ν generated by the DGD algorithm754

with that α (or smaller), satisfies755

(4.5) dist(x̄∞, crit F) < ε and ‖x∞ − 1⊗ x̄∞‖ < ε.756

4.3. DGD likely converges to a neighborhood of SoS solutions of F .757

Theorem 4.8 proves convergence of the DGD algorithm to a neighborhood of critical758

points of F where all agents’ variables are almost consensual; however nothing is said759

about the second-order nature of these points. In this section, we show that in fact760

it is unlikely that DGD gets close to strict saddles of F .761

We prove our result under the following extra assumptions.762

Assumption 4.9. Each fi : Rm → R is twice differentiable and ∇2fi is L∇2
i
-763

Lipschitz continuous. The Lipschitz constant of ∇2F and ∇2Fc are L∇2 =
∑n
i=1 L∇2

i
764

and L∇2
c

= maxi L∇2
i
, respectively.765

Assumption 4.10. There exists δ > 0 such that λmin(∇2F (θ∗)) ≤ −δ, for all766

θ∗ ∈ Θ∗ss (Θ∗ss is the set of strict saddle of F–see Definition 3.12).767

Intuition: Our path to prove almost sure convergence of the DGD algorithm to768

a neighborhood of SoS solutions of (P) will be derived from the non-convergence769

of DGD to strict saddles of Lα (cf. Theorem 4.5). Roughly speaking, our idea770

consists in showing that whenever x̄∞ = (1/n)
∑n
i=1 x∞i belongs to a sufficiently771

small neighborhood of a strict saddle of F inside the region (4.5), x∞ = (x∞i )ni=1 must772

be a strict saddle of Lα. The escaping properties of DGD from strict saddles of Lα773

will then ensure that {x̄ν = (1/n)
∑n
i=1 xνi }ν unlikely gets trapped in a neighborhood774

of a strict saddle of F , ending thus in a neighborhood of a SoS solution of (P).775

Proposition 4.11 makes this argument formal; in particular, conditions (i)-(iii)776

identify the neighborhood of a strict saddle of F with the mentioned escaping prop-777

erties.778

Proposition 4.11. Consider the setting of Theorem 4.1 and further assume that779

Assumptions 4.9 and 4.10 hold. Let {xν}ν be a bounded sequence generated by the780

DGD algorithm (2.1) such that its limit point x∞ = (x∞i )ni=1, along with x̄∞ ,781

(1/n)
∑n
i=1 x∞i , satisfy782

(i) dist(x̄∞, crit F) <
δ

2L∇2

;783

(ii) ‖x∞ − 1⊗ x̄∞‖ < δ

2nL∇2
c

;784

(iii) There exists θ∗ ∈ projcrit F(x̄∞) ∩Θ∗ss.785

Then, x∞ is a strict saddle point of Lα.786
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Proof. Given θ ∈ Rm, let υ(θ) denote the unitary eigenvector of ∇2F (θ) associ-787

ated with the smallest eigenvalue, and define υ̃(θ) , 1⊗ υ(θ). Then, we have788

(4.6)

υ̃(θ)>∇2Lα(x∞)υ̃(θ)
(a)
= υ̃(θ)>∇2Fc(x

∞)υ̃(θ)

≤υ(θ)>∇2F (θ)υ(θ)

+ ||∇2F (x̄∞)−∇2F (θ)|| ‖υ(θ)‖2 + ||∇2Fc(x
∞)−∇2Fc(1⊗ x̄∞)|| ‖υ̃(θ)‖2

(b)

≤ υ(θ)>∇2F (θ)υ(θ) + L∇2 ‖x̄∞ − θ‖+ nL∇2
c
‖x∞ − 1⊗ x̄∞‖

789

where (a) follows from υ̃(θ) ∈ null(WD − I); and (b) is due to Assumption 4.9.790

Let us now evaluate (4.6) at some θ∗ as defined in condition (iii) of the proposition;791

using υ(θ∗)>∇2F (θ∗)υ(θ∗) ≤ −δ and conditions (i) and (ii), yields υ̃(θ∗)>∇2Lα(x∞)792

υ̃(θ∗) < 0. By the Rayleigh-Ritz theorem, it must be λmin(∇2Lα(x∞)) < 0. This,793

together with Theorem 4.1(ii), proves the thesis.794

Invoking now Theorem 4.8, we infer that there exists a sufficiently small α > 0795

such that conditions (i) and (ii) of Proposition 4.11 are always satisfied, implying that796

x∞ is a strict saddle of Lα if there exists a strict saddle of F “close” to x̄∞ [in the797

sense of (iii)]. This is formally summarized next.798

Corollary 4.12. Consider the setting of Proposition 4.11 and let Assumption799

4.6 hold. There exists a sufficiently small α > 0 such that, if projcrit F(x̄∞)∩Θ∗ss 6= ∅,800

then x∞ is a strict saddle of Lα.801

To state our final result, let us introduce the following merit function: given802

x = (xi)
n
i=1, let803

M(x) , max
(

dist(x̄,XSoS), ‖x− 1⊗ x̄‖
)
,804

where XSoS denotes the set of SoS solutions of (P), and x̄ , (1/n)
∑n
i=1 xi. M(x)805

capture the distance of the average x̄ from the set of SoS solutions of (P) and well806

as the consensus disagreement of the agents’ local variables x̄i. Using Theorem 4.3 in807

conjunction with Corollary 4.12, we obtain our final result.808

Theorem 4.13. Consider Problem (P) under Assumptions 2.1’, 2.2, 4.6, 4.9,809

and 4.10; further assume that each fi is a K L function. For every ε > 0, there exits810

a sufficiently small 0 < ᾱ < σmin(D)
Lc

such that811

Px0

(
M(x∞) ≤ ε

)
= 1,812

where x∞ = (x∞i )ni=1, with x̄∞ = (1/n)
∑n
i=1 x∞i , is the limit point of the sequence813

{xν}ν generated by the DGD algorithm (2.1) with α ∈ (0, ᾱ], the weight matrix D814

satisfying Assumption 4.2, and starting point x0 ∈ Rmn; and the probability is taken815

over the initialization x0 ∈ Rnm. Furthermore, any θ∗ ∈ projcrit F(x̄∞) is a SoS816

solution of F almost surely.817

Proof. By Corollary 4.12, for sufficiently small α < ᾱ1, if projcrit F(x̄∞) contains818

a strict saddle point of F , then x∞ is also a strict saddle point of Lα. Let ᾱ2 be819

such that for DGD with α < ᾱ2, by Theorem 4.8, every limit point x∞ satisfies820

dist(x̄∞, crit F ) ≤ ε and ‖x∞ − 1⊗ x̄∞‖ ≤ ε. Consider now the DGD algorithm with821

α < min{ᾱ1, ᾱ2}. Let x0 ∈ Rmn be drawn randomly from the set of probability one822

measure defined by Theorem 4.3 for which the algorithm converges to a SoS solution823

of Lα. By the above properties of α, it holds that M(x∞) ≤ ε and projcrit F(x̄∞)824
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Fig. 1. Escaping properties of the DGD and DOGT algorithms, applied to Problem (5.1). Left
plot: distance of the average iterates from θ∗ projected onto the unstable manifold Eu versus the
number of iterations. Right plot: distance of the average iterates from θ∗ versus the number of
iterations.

must contain only SoS solutions of F . Therefore, there exists a θ∗ ∈ crit F such that825

θ∗ ∈ XSoS and ‖x̄∞ − θ∗‖ ≤ ε.826

5. Numerical Results. In this section we present some preliminary tests show-827

ing the behavior of DGD and DOGT algorithms around strict saddle points of a828

quadratic nonconvex minimization problem.829

Consider the following minimization830

(5.1) min
θ∈Rm

F (θ) ,
1

2

n∑
i=1

(θ − bi)
>

Qi (θ − bi) ,831

where m = 20; n = 10; bi’s are i.i.d Gaussian zero mean random vectors with832

standard deviation 103; and Qi’s are m×m randomly generated symmetric matrices833

where
∑n
i=1 Qi has m− 1 eigenvalues {λi}m−1

i=1 uniformly distributed over (0, n] and834

one negative eigenvalue λm = −nδ, with δ = 0.01. Clearly (5.1) is an instance of835

Problem (P), with F having a unique strict saddle point θ∗ = (
∑
i Qi)

−1∑
i Qibi.836

The network of n agents is modeled as a ring; the weight matrix W , {wij}ni,j=1,837

compliant to the graph topology, is generated doubly stochastic.838

To test the escaping properties of DGD and DOGT from the strict saddle of839

F , we initialize the algorithms in a randomly generated neighborhood of θ∗. More840

specifically, every agent’s initial point x0
i = θ∗ + εx,i, i = 1, . . . , n; in addition, for841

the DOGT algorithm we set y0
i = ∇fi(x0

i ) + (wii− 1)εy,i +
∑
j 6=i wijεy,j , where εx,i’s842

and εy,i’s are realizations of i.i.d. Gaussian random vectors with standard deviation843

equal to 1. Both algorithms use the same step-size α = 0.99σmin(I + W)/Lc, with844

Lc = maxi{|λi|}; this is the largest theoretical step-size guaranteeing convergence of845

the DGD algorithm (cf. Theorem 4.1).846

In the left panel of Fig. 1, we plot the distance of the average iterates x̄ν =847

(1/n)
∑n
i=1 xνi from the critical point θ∗ projected on the unstable manifold Eu =848

span(uu), where uu is the eigenvector associated with the negative eigenvalue λm =849

−nδ. In the right panel, we plot ‖x̄ν − θ∗‖ versus the number of iterations. All850

the curves are averaged over 50 independent initializations. Figure in the left panel851

shows that, as predicted by our theory, both algorithms almost surely escapes from852

the unstable subspace Eu, at an indistinguishable practical rate. The right panel853

shows that DOGT gets closer to the strict saddle; this can be justified by the fact854

that, differently from DGD, DOGT exhibits exact convergence to critical points of F .855
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Appendix A. Appendix.859

A.1. Proof of Lemma 2.5. The lemma is a direct consequence of the following860

result, whose proof is quite standard and reported for completeness.861

Lemma A.1. Given any A ∈Mn(R) and ε > 0, there exists a matrix norm || · ||ε862

such that spradii(A) ≤ ||A||ε ≤ spradii(A) + ε. The induced vector norm || · ||ε can863

be written as ||x||ε = ||Hx||2, where H is an invertible matrix dependent on A and ε.864

Furthermore, the vector-norm function || · ||2ε is real-analytic.865

Proof. The proof of the first part is similar to that of [11, Lemma 5.6.10]. The866

Schur form of the matrix A is A = UHTU, where U is a unitary matrix and T is867

an upper triangular matrix with (T)ii = λi and (T)ij = dij , i < j. Define Dt ,868

diag(t, t2, t3, . . . , tn) and let869

(A.1) ∆t , DtTD−1
t =


λ1

d12
t

d13
t2 . . . d1n

tn−1

0 λ2
d23
t . . . d2n

tn−2

0 0 λ3 . . . d3n
tn−3

...
...

...
. . .

...
0 0 0 . . . λn

 .870

Now let us define871

(A.2) ||A|| ,
∥∥∥(DtU) A (DtU)

−1
∥∥∥

2
= λmax

(
∆t∆

H
t

) 1
2

,872

which is a matrix norm. It is not difficult to check that873

(A.3)

∆t∆
H
t =


|λ1|2 +O( 1

t2 ) O( 1
t ) O( 1

t2 ) . . . O( 1
tn−1 )

O( 1
t ) |λ2|2 +O( 1

t2 ) O( 1
t ) . . . O( 1

tn−2 )
O( 1

t2 ) O( 1
t ) |λ3|2 +O( 1

t2 ) . . . O( 1
tn−3 )

...
...

...
. . .

...
O( 1

tn−1 ) O( 1
tn−2 ) O( 1

tn−3 ) . . . |λn|2 +O( 1
t2 )

 ,874

where big-O notation O(·) is defined and trivially extended for complex functions.875

Using the Gers̆gorin lemma, we conclude that there exists a sufficiently large t > 0876

such that ||A|| ≤ spradii(A) + ε.877

To prove the second part of the lemma, let H be a nonsingular matrix, and define878

the vector-norm ‖x‖H,2 , ‖Hx‖2 and the matrix norm ||A||H , ||HAH−1||2. By879

definition880

(A.4) ||A||H = max
‖x‖2=1

∥∥HAH−1x
∥∥

2
= max
‖Hy‖2=1

‖HAy‖2 = max
‖y‖H,2=1

‖Ay‖H,2 ,881

implying that the matrix norm ||A||H induces the vector-norm ‖x‖H,2. Since || · ||22 is882

analytic and composition of real-analytic funtions are real-analytic (see Proposition883

2.2.8 in [14]), therefore ‖x‖2H,2 is real-analytic too. The specific matrix norm used in884

(A.2) is an instance of (A.4) and DtU is full-rank, thus ‖x‖2DtU,2 is real-analytic.885

A.2. Supplement for the proof of Theorem 3.8. We first show that, if there886

exists some ν0 such that dν0 = 0, zν = zν0 , for all ν ≥ ν0 [see updates in (2.2)]; this887

means that {zν}ν∈N+
converges in finitely many iterations. Define D , {ν : dν 6= 0}888

and take ν in D. Let θ = 0, then the K L inequality yields ||∇L(xν ,yν)|| ≥ 1/c, for889
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all ν ∈ D. This together with (3.9) and Lemma 3.2, lead to lν+1 ≤ lν − 1/(Mc)2,890

which by Assumption 2.1-(ii), implies that D must be finite and {zν}ν∈N+
converges891

in a finite number of iterations.892

Consider (3.27). Let θ ∈ (0, 1/2], then (1−θ)/θ ≥ 1. Since Dν → 0 as ν →∞ [by893

Lemma 3.1-(ii)], there exists a sufficiently large ν0 such that (Dν − Dν+1)(1−θ)/θ ≤894

Dν −Dν+1. By (3.27), we have895

Dν+1 ≤ M̃Mc− 1

M̃Mc
Dν ,896

which proves case (ii).897

Finally, let us assume θ ∈ (1/2, 1), then θ/(1− θ) > 1. Eq. (3.27) implies898

1 ≤ M̄(Dν −Dν+1)

(Dν)
θ/(1−θ)899

where M̄ = (MM̃c)θ/(1−θ). Define h : (0,+∞) → R by h(s) , s−
θ

1−θ . Since h is900

monotonically decreasing over [Dν+1, Dν ], we get901

(A.5)

1 ≤ M̄(Dν −Dν+1)h(Dν) ≤ M̄
∫ Dν

Dν+1

h(s)ds = M̄
1− θ
1− 2θ

(
(Dν)p − (Dν+1)p

)
,902

with p = 1−2θ
1−θ < 0. By (A.5) one infers that there exists a constant µ > 0 such that903

(Dν+1)p − (Dν)p ≥ µ. The following chain of implications then holds: (Dν+1)p ≥904

µν + (D1)p =⇒ Dν+1 ≤
(
µν + (D1)p

)1/p
=⇒ Dν+1 ≤ C0ν

1/p, for some constant905

C0 > 0. This proves case (iii).906
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[5] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, Weighted gossip:917
Distributed averaging using non-doubly stochastic matrices, in IEEE Intern. Symp. on Inf.918
Theory, 2010, pp. 1753–1757.919

[6] P. Di Lorenzo and G. Scutari, Distributed nonconvex optimization over networks, in IEEE920
Intern. Conf. on Comput. Advances in Multi-Sensor Adapt. Process., 2015, pp. 229–232.921

[7] P. Di Lorenzo and G. Scutari, NEXT: In-network nonconvex optimization, IEEE Trans.922
Signal Inf. Process. Netw., 2 (2016), pp. 120–136.923

[8] R. Ge, F. Huang, C. Jin, and Y. Yuan, Escaping from saddle points — online stochastic924
gradient for tensor decomposition, in Proc. of the 28th Conf. on Learn. Theory, 2015,925
pp. 797–842.926

[9] R. Ge, J. D. Lee, and T. Ma, Matrix completion has no spurious local minimum, in Proc. of927
the 30th Intern. Conf. on Neural Inf. Process. Syst., 2016, pp. 2981–2989.928

[10] M. Hong, J. D. Lee, and M. Razaviyayn, Gradient primal-dual algorithm con-929
verges to second-order stationary solutions for nonconvex distributed optimization,930
arXiv:1802.08941, (2018).931

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,932
NY, USA, 2nd ed., 2012.933

[12] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, How to escape saddle points934
efficiently, in Proc. of the 34th Intern. Conf. on Mach. Learn., vol. 70, 2017, pp. 1724–1732.935

[13] K. Kawaguchi, Deep learning without poor local minima, in Proc. of the Advances in Neural936
Inf. Process. Syst. 29, 2016, pp. 586–594.937

This manuscript is for review purposes only.



26 A. DANESHMAND, G. SCUTARI, AND V. KUNGURTSEV

[14] S. Krantz and H. Parks, A Primer of Real Analytic Functions, Birkhäuser Boston, 2002.938
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[20] A. Nedić, A. Olshevsky, and W. Shi, Achieving geometric convergence for distributed opti-949

mization over time-varying graphs, SIAM J. on Optim., 27 (2017), pp. 2597–2633.950
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