
Rapid prototyping of parallel primal heuristics for domain specific
MIPs: Application to maritime inventory routing

Llúıs-Miquel Mungúıaa,e, Shabbir Ahmedb, David A. Badera,
George L. Nemhauserb, Yufen Shaoc, Dimitri J. Papageorgioud

aCollege of Computing, Georgia Institute of Technology, Atlanta GA 30332
bSchool of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta GA 30332

cExxonMobil Upstream Research Company, Houston, TX 77098
dCorporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale NJ 08801

eCorresponding author: lluis.munguia@gatech.edu

Abstract

Parallel Alternating Criteria Search (PACS) relies on the combination of computer parallelism and

Large Neighborhood Searches to attempt to deliver high quality solutions to any generic Mixed-

Integer Program (MIP) quickly. While general-purpose primal heuristics are widely used due to their

universal application, they are usually outperformed by domain-specific heuristics when optimizing

a particular problem class. In this paper, we focus on the fast development of domain-specific

parallel primal heuristics. Our approach entails specializing PACS to better adapt to the target

problem structure. We showcase its application to two classes of the Maritime Inventory Routing

Problem, an important application of MIPs to real world problems. We computationally compare

the proposed modified framework with state-of-the art specialized algorithms and MIP solvers.

Results show the effectiveness of our approach, and how the modular nature of PACS can provide

an excellent platform for the rapid prototyping of parallel domain-specific heuristics.

Keywords: Parallel Computing, Primal Heuristics, Discrete Optimization, Maritime Inventory

Routing, Large Neighborhood Search

1. Introduction

Mixed Integer Programming (MIP) [1] algorithms can solve a large variety of planning and

operational problems in transportation [2], energy [3], production [4], and finance [5]. Formally,

MIPs can be described as:

mintcTx|Ax � b, l ¤ x ¤ u, xi P Z,@i P Iu (MIP)

Preprint submitted to - September 23, 2018



where c P Rn, A P Rm�n, b P Rm, and I � t1, . . . , nu is the subset of integer variable indices. The

decision vector x is bounded by l P Rn and u P Rn, where R is the extended set of real numbers

RY t�8,8u.

Primal heuristics are an essential component of MIP algorithms whose sole purpose is to find

high quality solutions quickly. Though they rarely guarantee successfully finding such solutions,

their role is of capital importance in providing solutions early in the search. In addition to producing

valid upper bounds for the problem, high quality feasible solutions can help fathom a significant

part of the solution space during the search, thus accelerating MIP solving.

Most MIP solvers based on Branch-and-Cut [6] are general-purpose tools that can be applied

to any optimization problem that can be modeled as a MIP. These algorithms incorporate the use

of primal heuristics as part of their core functionality. Due to their importance, a vast catalogue

of primal heuristics [7, 8] has been developed and incorporated in all general-purpose MIP solvers.

Because of their use as an integrated component, most heuristics must be of universal application,

and cannot rely on any knowledge that may be applicable to only a handful of problem classes.

However, general-purpose MIP solvers may prove to be inadequate for solving particular applica-

tions. Problem-specific algorithms capable of exploiting additional structural properties have been

shown to outperform their general-purpose counterparts. Thus when solving difficult instances, it

may be necessary to use specialized heuristics.

Parallel Alternating Criteria Search [9](PACS) is a parallel distributed-memory primal heuristic

designed for finding solutions to any generic MIP. PACS relies on Large Neighborhood Search

(LNS) techniques in order to find solution refinements very quickly. LNS’s entail solving carefully

restricted sub-MIPs derived from the original problem. The advantage is that this reduced problem

is significantly easier to optimize quickly. It has also been proven to be a very successful technique

for dealing with large MIPs. The heuristic proves to be very effective at finding high quality solutions

to MIPs belonging to all kinds of applications, since it does not rely on assumptions regarding the

underlying structure of the problem. The approach is competitive or better than state-of-the art

MIP solvers for more than 90% of the instances in the MIPLIB2010 library [10].

In this paper, we seek to bridge the performance gap between general purpose and domain-

specific heuristics. We investigate the suitability of PACS as a platform available for rapidly proto-

typing a specialization that better addresses the specific structure of the targeted MIP. Its applica-

tion is showcased using a uniform set of real-world Maritime Inventory Routing Problem (MIRP)

2



instances. When specialized to better exploit the internal structure of MIRPs, PACS can be sub-

stantially more effective. Improvements in performance are made possible with two main novel

contributions: new definitions of MIRP-specific search neighborhoods and a modified objective

function.

The remainder of the paper is organized as follows: Section 2 introduces the PACS heuristic.

In Section 3 we introduce the mathematical models of the Maritime Inventory Routing problem

as well as details of the specialization. Section 4 presents computational experiments and results

on standard instances from the literature. Finally, Section 5 provides some concluding remarks.

Additionally, auxiliary Section 6 provides a review of the nomenclature used in the formulation.

2. Parallel Alternating Criteria Search

In PACS, two auxiliary MIP subproblems derived from the original problem are iteratively

solved to attain a first feasible solution, and to improve it with respect to the original objective.

The first of the auxiliary MIPs is a Feasibility MIP (FMIP), and poses the problem of finding a

feasible starting solution as an optimization problem. Two vectors of continuous variables ∆� and

∆� of size m (corresponding to the m constraints) are introduced. A decision vector is feasible to a

MIP if and only if it can be extended to a solution of value 0 to the associated FMIP. Rather than

directly solving FMIP, its difficulty is reduced by fixing a given subset F of the integer variables and

optimizing the remaining. In turn, a second auxiliary problem, referred to as an Optimality MIP

(OMIP), is aimed at improving a partially feasible vector with respect to the original objective. In

OMIP, the same auxiliary slack variables are introduced in each constraint. In order to ensure that

the optimal solution to OMIP remains at most as infeasible as the input solution x̂, an additional

constraint that limits the amount of slack is added, where the degree of infeasibility is bounded by°m
i�1p∆̂

�
i � ∆̂�

i q.

By iteratively solving carefully restricted neighborhoods of both auxiliary MIPs, the heuristic

will hopefully converge (although its convergence is not guaranteed) to a high quality feasible

solution. By construction, infeasibility decreases monotonically after each iteration. On the other

hand, the solution quality may fluctuate with respect to the original objective. Figure 1 depicts

the expected behavior of the algorithm.

3



min
m̧

i�1

∆�
i � ∆�

i

s.t.

Ax� Im∆� � Im∆� � b

xj � x̂j ,@j P F

l ¤ x ¤ u

xj P Z,@j P I

∆� ¥ 0,∆� ¥ 0

(FMIP)

min cTx

s.t.

Ax� Im∆� � Im∆� � b

m̧

i�1

p∆�
i � ∆�

i q ¤
m̧

i�1

p∆̂�
i � ∆̂�

i q

xj � x̂j ,@j P F

l ¤ x ¤ u

xj P Z,@j P I

∆� ¥ 0,∆� ¥ 0

(OMIP)

m∑

i=0

∆+
i + ∆−

i

n∑

i=0

cixi

Infeasibility Reduction

Objective Minimization

Original objective

In
fe

as
ib

ilit
y

Initial Solution

Feasible Improved Solution

1

1

Figure 1: Transition to a high quality feasible solution

2.1. Parallelization of Alternating Criteria Search

We introduce parallelism by generating and solving a diversified set of large neighborhood

searches in each step of the process, which are solved simultaneously. The improved solutions

found in parallel are then combined by solving an additional sub-MIP, in which the variables that

have the same value across the different solutions are fixed. Figure 2 depicts an example for a simple

0-1 knapsack instance. Firstly, the Feasibility MIP is derived from the original problem instance.

4



Next, two subproblems characterized by different fixings are solved in parallel. In a final step, the

variables with coinciding values are fixed and a feasible solution is found.

maximize: x1 + 4x2 + 3x3 + 2x4 + 10x5 + 7x6 + 2x7 + 3x8

subject to:
2x1 + x2 + 3x3 + x4 + 2x5 + 4x6 + x7 + 2x8 = 4
xi ∈ {0, 1}, 1 ≤ i ≤ 8

maximize: ∆+
1 + ∆−

1

subject to:
2x1 + x2 + 3x3 + x4 + 2x5 + 4x6 + x7 + 2x8 + ∆+

1 − ∆−
1 = 4

xi ∈ {0, 1}, 1 ≤ i ≤ 8
∆+

1 ≥ 0, ∆−
1 ≥ 0

Initial solution: x = [1, 0, 1, 1, 0, 1, 1, 0], ∆+
1 = 0, ∆−

1 = 7

FMIP

FMIP transformation

FMIP LNS 1 FMIP LNS 2

Variable index fixing set:[1,2,3,4] Variable index fixing set:[5,6,7,8]

maximize: ∆+
1 + ∆−

1

subject to:
2x1 + x2 + 3x3 + x4 + 2x5 + 4x6 + x7 + 2x8 + ∆+

1 − ∆−
1 = 4

x2 = 0, x5 = 0, x8 = 0
xi ∈ {0, 1}, 1 ≤ i ≤ 8
∆+

1 ≥ 0, ∆−
1 ≥ 0

Opt. solution: x = [1, 0, 0, 0, 1, 0, 0, 0], ∆+
1 = 0, ∆−

1 = 0

FMIP Recombination LNS

Variable index fixing set:[2,5,8]

maximize: ∆+
1 + ∆−

1

subject to:
2x1 + x2 + 3x3 + x4 + 2x5 + 4x6 + x7 + 2x8 + ∆+

1 − ∆−
1 = 4

x1 = 1, x2 = 0, x3 = 1, x4 = 1
xi ∈ {0, 1}, 1 ≤ i ≤ 8
∆+

1 ≥ 0, ∆−
1 ≥ 0

Opt. solution: x = [1, 0, 1, 1, 0, 0, 0, 0], ∆+
1 = 0, ∆−

1 = 2

maximize: ∆+
1 + ∆−

1

subject to:
2x1 + x2 + 3x3 + x4 + 2x5 + 4x6 + x7 + 2x8 + ∆+

1 − ∆−
1 = 4

x5 = 0, x6 = 1, x7 = 1, x8 = 0
xi ∈ {0, 1}, 1 ≤ i ≤ 8
∆+

1 ≥ 0, ∆−
1 ≥ 0

Opt. solution: x = [0, 0, 0, 0, 0, 1, 1, 0], ∆+
1 = 0, ∆−

1 = 1

minimize

minimize

minimize

minimize

minimize

Figure 2: Example depicting a feasibility improvement iteration for a 0-1 knapsack sample instance

2.2. Specializing PACS

PACS is a heuristic designed for general purpose MIPs, and as such, none of its components

leverages the MIP structure of the input problem. In order to increase the effectiveness of the

heuristic, we introduce a set of problem-specific algorithmic improvements which substitute its

generic counterparts. The proposed changes include the use of new LNS neighborhood definitions

5



as well as a modification to the objective function in FMIP and OMIP. With the latter measure,

we hope to improve the rate of convergence to a first feasible solution.

2.2.1. Increasing the effectiveness of LNS

In Large Neighborhood Search, the set of variables to be fixed adjusts the difficulty of the sub-

MIP to be optimized, as well as the effectiveness of the MIP solver at finding high quality solutions

quickly. PACS uses a simple, generic, yet intuitive variable fixing scheme to be able to tackle any

kind of problem structure. Greater effectiveness in finding solutions can be achieved by considering

the internal structure of the problem in variable fixing. Numerous examples can be found in the

literature for most common MIP applications. All high performing variable selection schemes intend

to preserve the integrity and cohesiveness of substructures within the problem, as this is the key

for decomposing it effectively. A successful variable fixing must identify which variables must be

changed in order to find a better solution, free them, and leave the remainder fixed. Additionally,

a variable fixing scheme must not be too restrictive, or very few improvements will be found as a

result. Conversely, if not enough variables are fixed, the search space might be too large to find

any improvements in a small amount of time. Neighborhood diversification is another key property,

since parallel efficiency depends on it.

2.2.2. Improving the rate of convergence to a first feasible solution

As introduced so far, one of the primary objectives of PACS is to find a first feasible solution.

Although the convergence of the heuristic is not guaranteed, the system in place has proven to

be substantially effective when optimizing most problems of the MIPLIB2010 library [9]. When

solving problems where feasibility is a challenge however, PACS is likely to stall and fail at finding

any solution at all. Our second algorithmic modification is geared towards improving the heuristic’s

effectiveness at converging to a first feasible solution and reducing the probability of stalling.

We propose to use an objective penalization system in order to effectively enforce an order in

which constraints are satisfied. To this end, the objective of FMIP is modified with an additional

vector of weights Λ P r0,8qm to bias the objective function, which becomes
°m
i�1 Λip∆

�
i � ∆�

i q.

The main goal of the measure is to achieve feasibility in the most critical constraints first. As a

result, infeasibility is driven to secondary constraints instead, which should be easier to repair in

the future.

6



Constraint satisfaction priorities are completely problem dependent. As shown in the experi-

mental results, however, they can be instrumental in increasing the effectiveness of the heuristic

when chosen appropriately.

3. Application to Maritime Inventory Routing

Currently, global seaborne logistics are the most utilized form of freight transportation and

account for the vast majority of world trade. In most cases, the optimization of the costs related

to these shipping operations is vital to their economic viability. As a result, these problems are

ideal examples of real-world application of MIPs. In the petrochemicals sector alone, maritime

inventory routing problems are solved regularly to assist business users make tactical and operational

decisions. Maritime inventory routing problems (MIRP) are often formulated as MIPs and attempt

to capture important practical details present in maritime shipping, such as inventory management

at ports and vessels, as well as vessel routing and scheduling. Despite being an extremely flexible and

faithful mathematical model, MIRP instances are very challenging to solve to provable optimality.

In some cases, it is challenging to find a single feasible solution.

3.1. Related Work

Our primary focus is on methods for finding primal solutions to maritime inventory routing

problems. Papageorgiou et al. [11] provide a thorough literature review. Papageorgiou et al. [12]

conduct a comprehensive comparison of the state-of-the art in primal heuristics and exact methods

used for solving this class of problems.

Maritime inventory routing problems have been applied to a broad range of applications, such

as cement manufacturing [13], calcium carbonate slurry shipping [14], oil supply in stochastic sce-

narios [15], and routing and inventory management of vacuum gas oil [16]. MIRP instances present

a real challenge to most commercial MIP solvers, and it can even be challenging to find a good fea-

sible solution. Many construction heuristics have been proposed for MIRPs or similarly constructed

problems, such as the ones presented in [17, 18, 19]. These are specialized algorithms designed to

provide a first feasible solution at the beginning of the optimization. Construction heuristics usually

rely on greedy procedures, multi-start local searches or solving restricted subproblems. Additional

specialized heuristics for similar LNG routing problems are presented in [20].

7



A large number of works have proposed solution methods based on some variation of Large

Neighborhood Search (LNS). LNS heuristics circumvent the complexity of the original problem by

solving derived subproblems obtained by restricting a subset of the variables. A fully featured

MIP solver is then used to optimize the subproblem, which delivers a solution valid to the original

problem. LNS approaches differ in how the search neighborhood is defined. In the context of MIRP

instances, a widely used LNS strategy entails fixing the variables related to a subset of the vessels.

Different variations of this approach are used in [17, 21, 22, 23, 24, 12], and differ in how the subset

of vessels is selected.

Song and Furman [24] apply LNS techniques in combination with a branch-and-cut algorithm

to find improved solutions to an arc-flow model very similar to the one used in this section. On

the same instances, Engineer et al. [25] introduce an alternative column generation formulation,

and solve it using branch-cut-and-price in combination with several newly introduced classes of

cuts. Hewitt et al. [21] follows by applying a branch-and-price guided search (a method previously

used for Fixed-Charge Multicommodity Network Flow problems [26]) in order to find high quality

solutions quickly. This approach uses a small amount of parallelism (four processors) to speed up

the algorithm.

An alternative decomposition approach very popularly applied to MIRPs is based on rolling

horizon techniques. In a rolling horizon heuristic, the planning horizon is subdivided into smaller

overlapping subhorizons. Each subdivision can be characterized with a tractable subproblem, which

can be consecutively solved in a limited amount of time. Rolling horizon heuristics are introduced

in [27, 28, 29, 19]. A variation is the fix-and-relax heuristic proposed by Uggen et al. [30], in

which all posterior integer decision variables not included in the subhorizon are relaxed, and left to

be continuous. Another significant departure is the approximate dynamic programming approach

proposed by Papageorgiou et al. [22], in which the MIRP instance is formulated as a dynamic

programming problem and interpreted as a sequence of vessel dispatching problems. Outside of

the realm of heuristics, Goel et al. [31] introduce a constraint programming method based on a

disjunctive scheduling representation.

Most of the aforementioned works focus on large MIRPs with large planning horizons. Papa-

georgiou et al. [23] focuses on an operational MIRP with a much smaller horizon, a more detailed

model and more challenging from the perspective of feasibility. They overcome the added complex-

ity by designing a two-stage algorithm, in which decisions are first made among loading/discharging

8



regions. In a second step, more detailed routing decisions are made at the ports within each of the

regions.

To the best of our knowledge, the works of Asokan et al. [32] are the only attempt at introducing

parallel heuristics for LNG inventory routing problems, which are a special class of MIRPs. In this

work, the authors parallelize LNS heuristics introduced in [17].

Parallel MIP solvers such as GUROBI [33], CPLEX [34], and ParaSCIP [35] are the only al-

ternative parallel algorithms currently available. In addition to high quality solutions, MIP solvers

also provide a lower bound. Studies have suggested that parallelizing the branch-and-bound search

may not scale well to a large number of cores [36], and this behavior is reflected in some of the

aforementioned distributed-memory implementations. Another disadvantage is the fact that MIP

solvers are general algorithms and they usually do not exploit the underlying network structure

that characterizes MIRPs.

3.2. A time-space discretization of MIRPs

In the remainder of this section, we introduce the arc-based discrete-time formulations used

in the modeling of MIRPs. Further, we perform a preliminary analysis of the performance of

PACS when applied to the problems at hand. To conclude, we showcase a set of problem-specific

modifications in order to further improve the performance of the parallel algorithm.

MIRPs model deep-sea vessel routing with inventory tracking at every port-vessel pair through-

out a time-space network. A depiction of the model used is shown in Figure 3. Given a set T of

time periods and a set of J of ports, the network consists of a set of nodes Ns,t, which symbolize

the state of the ports through different time periods. Additionally, a source node ns and a sink

node nt are used to symbolize the entrance/exit of vessels to the system. A set of directed arcs A
model the travel of vessels between ports. More concretely, each vessel v uses a set of dedicated

arcs Av. For a particular pair of node n and vessel v, we may define the forward star FSvn as the

set of outgoing arcs associated with a vessel v leaving from node n. Conversely, the reverse star

RSvn denotes the set of incoming arcs.

The MIRPLIB library [11] consists of a set of MIRP instances inspired by real-world problems.

The library is composed of multiple instance classes, which differ in the operational resolution and

the planning horizon. Group 1 instances feature an operational MIRP with planning horizons of

45 and 60 periods, multiple ports per region and split pickups and deliveries. Group 1 instances

9



i,2i,1 i,3 i,4

j,2j,1 j,3 j,4

ns nt

i,5 i,6

j,5 j,6

Port i

Port j

ns

Time

nt

j,t

Source node

Sink node

Regular node

Unused vessel

Entering the system

Exiting the system

Travel arc

Waiting arc

Actual route chosen

Figure 3: Time-space horizon modeling of MIRP

present a challenge from the perspective of feasibility, and most commercial MIP solvers struggle to

find a single feasible solution. In contrast, group 2 instances offer simplified models with planning

horizons greater than 60 time periods, but only involving one port per region and never split pickups

and deliveries. Feasibility is trivial for group 2 instances, and the challenge is rather to find high

quality feasible solutions quickly.

3.2.1. Group 1 instances: the challenge of feasibility

In group 1 instances, the objective is to maximize the revenue obtained when product is deliv-

ered to a port and to minimize the expenses incurred by the transportation costs, penalties for buy-

ing/selling product to the spot market as well as the delays in their loading/unloading. The model

features two sets of binary decision variables: x P t0, 1u|A| and z P t0, 1u|N |
�

|V|. xva takes value 1

if vessel v uses a travel arc a. The binary variable zvn indicates whether vessel v loads/discharges

at node n. The constraints ensure the coherency of the model as follows: constraints (1b) guaran-

tee the conservation of vessel flow for each triplet of port, time, and vessel. Constraints (1c) and

10



(1d) ensure the inventory is balanced at each vessel and port throughout timesteps and maintained

within limits. Constraints (1e) guarantee that the number of loads/discharges at a given pair of

port and time does not exceed the number of available berths. The coupling constraints (1f) ensure

a vessel can only load/discharge at a node if it is present. Constraints (1g) and (1h) require the

vessels to travel at capacity from a loading region to a discharging region and empty when traveling

in the opposite direction. The amount of product that a port can buy/sell in the spot market

is restricted by (1i) and (1j). A thorough explanation of each of the symbols is provided in the

Appendix.

max
¸

nPN

¸
vPV

Rnf
v
n �

¸
vPV

¸
aPAv

Cv
ax

v
a �

¸
vPV

¸
nPN

ptεzqz
v
n �

¸
jPJ

¸
tPT

Pj,tαj,t (1a)

s.t.
¸

aPFSv
n

xva �
¸

aPRSv
n

xva �

$''''&
''''%

1 if n � ns

�1 if n � nt

0 if n P N

, @n P Ns,t,@v P V (1b)

sj,t � sj,t�1 � ∆jpdj,t �
¸
vPV

fvn � αj,tq, @n � pj, tq P N (1c)

svt � svt�1 �
¸

n�pj,tqPN
∆jf

v
n , @t P T ,@v P V (1d)

¸
vPV

zvn ¤ Bj , @n � pj, tq P N (1e)

zvn ¤
¸

aPRSv
n

xva, @n � pj, tq P N ,@v P V (1f)

svt ¥ Qvxva, @v P V,@a � ppj1, tq, pj2, t
1qq P Av : j1 P J P , j2 P JC Y tntu (1g)

svt ¤ Qvp1 � xvaq, @v P V,@a � ppj1, tq, pj2, t
1qq P Av : j1 P JC , j2 P J P Y tntu (1h)

¸
tPT

αj,t ¤ αmax
j , @j P J (1i)

0 ¤ αj,t ¤ αmax
j,t , @j P J ,@t P T (1j)

Fmin
j,t zvj,t ¤ fvj,t ¤ Fmax

j,t zvj,t, @n � pj, tq P N ,@v P V (1k)

Smin
j,t ¤ sj,t ¤ Smax

j,t , @n � pj, tq P N (1l)

0 ¤ svt ¤ Qv , @v P V,@t P T (1m)

xva P t0, 1u, @v P V,@a P Av (1n)

zvn P t0, 1u, @n � pj, tq P N ,@v P V (1o)

Figure 4: Group 1 MIRP formulation

11



3.2.2. Group 2 instances: the challenge for optimality

Group 2 instances feature long-horizon deterministic routing with simplified operational con-

straints. The objective remains to minimize the transportation costs and penalties caused by

buying/selling product from/to the spot market. The only integer decision variables are xvca , which

determine the number of vessels belonging to vessel class vc that take arc a. Similar to group 1

instances, constraints (2b) ensure the conservation of flow for each triplet of port, time, and vessel

class. Inventory restrictions for each pair of port and time are specified in (2c), and constraints

(2d) ensure that the number of vessels that attempt to load/discharge is limited by the number

of berths available. This formulation does not require inventory tracking of vessels, since vessels

are required to travel at capacity from a loading region to a discharging region and empty when

traveling in the opposite direction. In contrast to group 1 instances, there are no constraints that

limit the amount of stockout, although stockout is penalized in the objective.

max
¸

vcPVC

¸
aPAvc

�Cvc
a xvca �

¸
jPJ

¸
tPT

�Pj,tαj,t (2a)

s.t.
¸

aPFSvc
n

xvca �
¸

aPRSvc
n

xvca �

$''''&
''''%

1 if n � ns

�1 if n � nt

0 if n P N

, @n P Ns,t,@vc P VC (2b)

sj,t � sj,t�1 � ∆jpdj,t �
¸

vcPVC

¸

aPFSvc,inter
n

Qvcxvca � αj,tq, @n � pj, tq P N (2c)

¸
vcPVC

¸

aPFSvc,inter
n

xvca ¤ Bj , @n � pj, tq P N (2d)

αj,t ¥ 0, @n � pj, tq P N (2e)

sj,t P rS
min
j,t , Smax

j,t s, @n � pj, tq P N (2f)

xvca P t0, 1u, @vc P VC,@a P Avc,inter (2g)

xvca P Z�, @vc P VC,@a P AvczAvc,inter (2h)

Figure 5: Group 2 MIRP formulation

3.3. Applying PACS to MIRP instances

One of our primary focuses is on the application of PACS to group 1 instances. Our computa-

tional experiments presented in Subsection 4 indicate that the algorithm struggles considerably to

12



converge to feasible solutions. The reason for this is an apparent stalling of the heuristic, and its

inability to repair all infeasibilities. We illustrate the issue in Figure 6(a), where the performance

of the heuristic is depicted for a particular problem instance. Specifically, we display the number of

violated constraints in the incumbent solution as a function of time. The objective value of all the

solutions found by the heuristic are also plotted on the secondary axis. As seen in the chart, the

infeasibility of the incumbent solution is reduced significantly at the beginning of the optimization.

Meanwhile, the quality of the solutions found also converges to a value significantly lower than

the best known bound for the problem. Since not all constraints are enforced, it is possible to

obtain infeasible solutions with a better objective than the best bound. PACS is unable to repair

all infeasibilities. Figure 6(b) provides further information regarding the nature of the infeasible

constraints. We determine that the algorithm fails in solutions featuring a few unsatisfied flow

conservation constraints. While we illustrate the issue with a particular example, the same issue

can be extended to most of the instances in the set, as detailed in Subsection 4.3.

We apply both algorithm modifications introduced in the previous section, which attempt to

(a) (b)

Figure 6: Application of PACS to a group 1 MIRP instance, with 4 loading ports, 9 discharging ports, 17 vessels, and

a horizon of 60 timesteps. (a) Depicts the evolution of the infeasibility of the incumbent, and objective value of found

solutions as a function of time. (b) Shows a breakdown of the infeasibility found in the incumbent by constraint type

as a function of time.

13



increase the effectiveness of the algorithm at finding a first feasible solution. The first proposed

modification is to the objective of FMIP, with the intent of preventing infeasibility from accu-

mulating in constraints that may be very hard to repair. Secondly, we introduce MIRP-specific

variable fixing schemes, which may be more effective at finding quality solutions than their generic

counterparts.

3.3.1. Objective penalizations

Finding feasible solutions for group 1 instances is challenging due to the small tolerances imposed

in the inventory constraints of ports and vessels. A feasible vessel schedule must ensure enough

product is transported to satisfy the consumption demand at every port and to avoid stockout.

Vessels must carry the bulk of the product, since constraints p1iq Y p1jq severely limit the amount

of product that can be bought or sold on the spot market. This is not the case for group 2 instances.

In the latter, no upper bound on the spot market is imposed.

In the spirit of group 2 instances, our intent is to prioritize the satisfiability of the vessel schedule

over the inventory management at ports. In the modified Group1FMIP, we apply a large penalty Λ

to all variables except the ones representing the constraints regulating port inventory limits (the set

p1iq Y p1jq). A priori, the generated solutions will provide feasible routing schedules for each vessel

at the expense of violating many stock deficiency/excess constraints. As optimization advances, we

hope the latter can be gradually fixed by systematically re-adjusting feasible vessel trips. The excess

of slack αj,t is also minimized in OMIP, since it is present in the original objective. Therefore, the

amount of infeasibility is minimized in both auxiliary MIP models.

As seen in Group1FMIP, constraints are divided into two separate submatrices. Aα represents

the submatrix related to the constraints regulating the excess slack αj,t, the set p1iq Y p1jq. Let

k be the cardinality of such set. In turn, Â contains the submatrix of the remaining constraints.

∆ variables associated with the constraints in Â are penalized with Λ in the objective, in order to

prioritize the satisfiability of the constraints in Aα.

14



min
m�ķ

i�1

Λp∆�
i � ∆�

i q �
ķ

i�1

∆�α
i � ∆�α

i

s.t.

Âx� I∆� � I∆� � b̂

Aαx� I∆�α � I∆�α � bα

xi � x̂i,@i P F

l ¤ x ¤ u

xi P Z,@i P I

∆� ¥ 0,∆� ¥ 0

∆�α ¥ 0,∆�α ¥ 0

(Group1FMIP)

3.3.2. A MIRP-specific variable fixing scheme

We propose to use two kinds of MIRP-specific variable fixing schemes that decompose the

problems into complementary substructures. The first is a variation of a vessel decomposition

approach, and the latter is a modification of a time-window variable fixing scheme. Both incorporate

randomness in order to satisfy the need for parallel diversified search neighborhoods.

A prevalent large neighborhood search algorithm in the literature is the so called k-opt search,

which entails fixing the variables belonging to all but a subset of vessels. This is a widely used

strategy due to its simplicity and effectiveness. We specify ours with two key elements. We incor-

porate an input parameter ρ, which determines the proportion of vessels to be fixed. In addition,

we incorporate randomness in the selection of vessels. The latter is necessary in order to leverage

computer parallelism. In the proposed algorithm, a diversified set of large neighborhood searches is

generated by selecting different subsets of variables to fix. By solving them simultaneously, we hope

to increase the chances of finding solution improvements. Pseudocode is provided in Algorithm 1.

While the k-opt search decomposes the problem by vessel, the second strategy we propose seeks

to decompose the problem by time. The time-window selection scheme involves establishing a time

window between two timesteps and fixing all travel arcs outside of it. The generated neighborhood

allows the improvement of a solution by modifying the travel schedules of all vessels within the

allowed time window. Travel arcs related to all ports and vessels are left unfixed at the same time.

15



Algorithm 1 Random vessel selection neighborhood

Input: Fraction of variables to fix ρ, 0   ρ   1

Output: Set of integer indices F
1: function VesselSelectionFixing(ρ)

2: F �set of all integer variable indices I
3: while |F | ¡ ρ � |I| do
4: i:= random vessel i P V
5: Remove from F all variable indices related to vessel i

6: end while

7: return F
8: end function

Pseudocode is provided in Algorithm 2.

The time-window selection scheme as presented can become terribly ineffective at finding solu-

tion improvements if a small parameter ρ is selected, or if the problem features a large number of

vessels and ports. In such cases, the produced variable selection may encompass a small time win-

dow. Any vessel trip longer than this time window will have a fraction of its active travel variables

fixed and won’t be rerouted when solving the associated LNS.

We present a modification of the standard time-window variable selection in Algorithm 3, in

which a subset of the ports are fixed for each vessel in order to allow larger time windows. In

order to determine which subset of ports remains fixed, we define the auxiliary concept of a port

Algorithm 2 Random time-window selection neighborhood

Input: Fraction of variables to fix ρ, 0   ρ   1

Output: Set of integer indices F
1: function TimeWindowSelectionFixing(ρ)

2: F �set of all integer variable indices I
3: offset � 0

4: t:= random time t P T
5: while |F | ¡ ρ � |I| do
6: Remove from F all variable indices related to time t� offset, for vessels v P V and ports p P J
7: Remove from F all variable indices related to time t� offset, for vessels v P V and ports p P J
8: offset � offset� 1

9: end while

10: return F
11: end function

16



span. The port span of a vessel v between two time steps t1 and t2 in a solution x is the set of

ports traversed by v during the time window in x. An example depicting multiple examples of port

spans is shown in Figure 7. By its definition, the produced set contains only the ports visited by v

within the time window. The proposed constrained time-window selection scheme incorporates the

definition of a port span in order to include only the relevant ports for each vessel in the variable

selection, while the remaining are fixed.

Port p0

Port p1

Port p2

Port p3

t0         t1         t2         t3         t4         t5         t6         t7         t8         t9

PortSpan(t0,t7,v0)={p0,p1,p2}

PortSpan(t0,t4,v0)={p0,p1}

PortSpan(t0,t4,v1)={p0,p2}

PortSpan(t6,t9,v1)={p3}

Vessel v1Vessel v0

Figure 7: The port span of a vessel v between two time steps t1 and t2 in a solution x is the set of ports traversed

by v during the time window in x.

The proposed algorithm also prioritizes the optimization of the port and time pairs with the

largest excess/deficiency of product. For this purpose, all port-time pairs pp, tq are ranked by the

value of their associated αp,t variable. A single pair pp1, t1q is selected randomly among the pairs

with the largest amount. Then, a time-window is defined using t1 as its epicenter. For each vessel

v, the algorithm proceeds to unfix the variables within the time window belonging to the port span

and p1. The size of the time window is incremented gradually until the desired amount of variables

is selected.

With pp1, t1q as the epicenter of the time-window, we intend to rectify the deficiency of stock at

port p1 and time t1 by rerouting some vessel to p1 before the timestep t1. By using the port span, we

force non-relevant ports to remain fixed in hopes of producing an easier subproblem with a larger

time-window that contains the high quality solutions.

If feasibility has already been achieved, pairs pp, tq are ranked by their absolute contribution

to the original objective instead. Modifications in high ranking pairs will hopefully have a more

significant impact in improving the solution.

Each of the proposed variable fixing strategies provides a substantially different set of search

neighborhoods, which add to the diversity of the approach. We incorporate both by allowing each

17



parallel thread to choose randomly among both strategies, as shown in Algorithm 4.

Algorithm 3 Constrained time-window selection neighborhood

Input: Fraction of variables to fix ρ, 0   ρ   1, input solution x

Output: Set of integer indices F
1: function ConstrainedTimeWindowSelectionFixing(ρ)

2: Generate all pairs pp, tq

3: Rank all pairs by inventory excess/deficit αj,t

4: Select pair pp1, t1q randomly among the pairs with most excess/deficit

5: offset � 0

6: F �set of all integer variable indices I
7: while |F | ¡ ρ � |I| do
8: t1 :� t1 � offset

9: t2 :� t1 � offset

10: for every vessel v P V do

11: P :=PortSpan(t1, t2, v, x)

12: P :� P Y p1

13: for all ports p P P do

14: Remove from F all variable indices related to vessel i and port p between rt1, t2s

15: end for

16: end for

17: offset :� offset� 1

18: end while

19: return F
20: end function

21: function PortSpan(t1, t2, v, x)

22: P :� H

23: for each t P tt1, . . . , t2u do

24: for each p P P do

25: if vessel v is traversing p at time t then

26: P :� P Y p

27: end if

28: end for

29: end for

30: end function

18



Algorithm 4 Variable fixing selection algorithm

Input: Fraction of variables to fix ρ, 0   ρ   1, input solution x

Output: Set of integer indices F
1: function HybridVariableFixing(ρ)

2: Generate random integer n

3: if n%2 � 0 then

4: F :=VesselSelectionFixing(ρ)

5: else

6: F :=ConstrainedTimeWindowSelectionFixing(ρ)

7: end if

8: return F
9: end function

4. Experimental Results

In this section, we evaluate the performance and behavior of the MIRP-specific Parallel Alter-

nating Criteria Search (MIRPpacs) when solving instances in the MIRPLIB library [11]. Out of the

100 instances currently present, there are 28 categorized as group 1 instances, while the remaining

belong to group 2. MIRPLIB group 2 instances feature a planning horizon of 120, 180 or 360

periods and are classified in three difficulty categories [12]. A group 2 instance is declared easy if at

least one commercial MIP solver (in default settings) is able to close more than 90% of the gap (as

defined in Section 4.1) in half an hour. On the other hand, if no MIP solver is able to close more

than 10% of the optimality gap, the instance is labeled as hard. Of the 72 group 2 instances, the

library contains 21 easy instances, 25 medium instances, and 26 hard instances. The difficulty of

a problem instance is typically dependent on the number of ports, vessels, and time periods. Most

easy instances contain fewer than 5 discharging ports and no more than 180 time periods, while all

but 2 hard instances have more than 8 discharging ports and at least 180 time periods. MIRPpacs

is implemented in C++, using CPLEX 12.7.2 as a backbone solver. We compare our framework

against the state-of-the-art general purpose MIP solver CPLEX 12.7.2, and the default version of

PACS. All of our computations are performed on an 8-node computing cluster, each with two Intel

Xeon X5650 6-core processors (96 cores in total) and 24 GB of RAM memory.

19



4.1. Evaluation of primal solution quality

We evaluate the quality of primal solutions in terms of the primal gap and primal integral,

as described in [37]. Given a solution x for a MIP with an optimal solution x̂, the primal gap

γpxq P r0, 1s of x is defined as:

γpxq �

$''''&
''''%

0 if |cT x̂| � |cTx| � 0

1 if cT x̂ � cTx   0

|cT x̂�cT x|
maxt|cT x̂|,|cT x|u else.

(3)

Given a time limit tmax, we define the primal gap function p : r0, tmaxs ÞÑ r0, 1s as:

pptq �

$''''&
''''%

1 if no solution is found by time t

γpxptqq with xptq being the incumbent solution

at point t, else.

(4)

The primal gap function is monotonically decreasing and measures the progress of the optimiza-

tion towards the optimal solution. The primal integral is defined as:

P ptq �

» T
t�0

pptqdt (5)

The primal integral P ptq captures the notion of how early solutions are found. Both pptq and

P ptq are considered powerful metrics when evaluating the performance of finding high quality primal

solutions.

In addition to the primal gap, the optimality gap Γ captures the difference between the best

found upper and lower bounds, zUB and zLB :

Γ �
zUB � zLB

zUB
. (6)

4.2. Tuning of parameters and nondeterminism

MIRPpacs and PACS require two kinds of input parameters that regulate the difficulty and the

solution time of each LNS within the heuristic. The parameter pair rρ, ts determine the percentage

of variables to be fixed and the LNS time limit (measured in seconds). For group 1 instances, the

pair r0.7, 5s is selected. In turn, group 2 instances are solved using r0.2, 5s, r0.5, 5s and r0.7, 5s, for

Easy, Medium and Hard instances respectively. CPLEX is set in its parallel distributed-memory

20



nondeterministic setting in order to utilize all 96 available cores and with a focus on primal solutions

(the emphasis on Hidden Feasible solutions setting). Settings are set to default, otherwise. All the

compared parallel algorithms are of nondeterministic nature, and we repeat each of the experiments

five times. Unless otherwise noted, the performance charts presented in this section display the

average among all runs.

The following set of figures and tables evaluate the quality of the solutions provided by the

different methods when solving group 1 instances. To our knowledge, the only heuristic developed

for this specific problem set was presented by Papageorgiou et al. [23]. The construction heuristic

was based on a construction phase in which multiple starts were tested to obtain a solution to

a coarse-grained, aggregate version of the problem. This was followed by solution polishing at

each regional level and local search. A Gurobi-based implementation was used, and its performance

results are presented under the label CH+LS. While the heuristic is sequential, it can take advantage

of 12-core shared-memory parallelism.

4.3. Group 1 MIRP instances

In Figure 8(a), we show the evolution of the average primal gap as a function of time. As stated

in its definition, a primal gap of 100% is assigned if no solution for a particular instance is found.

At first glance, standard PACS is only able to find solutions for a small subset of instances. As

a result it scores a comparatively higher average primal gap throughout the optimization. The

reason for its poor performance has already been analyzed in section 3.3, and it is one of the main

motivating factors behind the development of MIRPpacs. CPLEX is a full-fledged MIP solver.

As such, it is not afflicted by the same stalling problem and performs slightly better. CH+LS is

able to find solutions for significantly more instances than CPLEX, despite using only a fraction

of the cores. The algorithmic modifications introduced in MIRPpacs certainly make a difference in

comparison to its generic counterpart. The specialized heuristic becomes effective at finding high

quality solutions for most instances, and this is reflected in a much improved average gap right from

the beginning of the optimization.

The same differences are reflected in Figure 8(b), in which the primal integral is depicted instead.

The differences are quite significant after one hour of optimization, as MIRPpacs shows an average

primal integral that is 2.5 times smaller than CPLEX.

Figure 9(a) plots the percentage of group 1 instances for which a feasible solution is found

21



0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(a)

0

360

720

1080

1440

1800

2160

2520

2880

3240

3600

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(b)

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

MIRPpacs-96 PACS-96 CPLEX-96 CH+LS-12

Figure 8: (a) Average primal gap and (b) average primal integral for group 1 instances

by each of the compared methods. MIRPpacs is able to find feasible solutions for 85% of the

instances, CH+LS is able to do so for 69%, while CPLEX stalls at 25% and standard PACS at

0

10

20

30

40

50

60

70

80

90

100

In
st

an
ce

s
w

it
h

fe
as

ib
le

so
lu

ti
o
n

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

MIRPpacs-96

PACS-96

CPLEX-96

CH+LS-12

(a)

0

10

20

30

40

50

60

70

80

90

100

In
st

a
n
c
e
s

w
it

h
a

fe
a
si

b
le

so
lu

ti
o
n

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

LR1 T45

LR1 T60

LR2 T45

LR2 T60

(b)

Figure 9: (a) Percentage of instances for which a feasible solution is found. (b) Percentage of instances for which

MIRPpacs finds a feasible solution, broken down by instance subclass

22



18%. In Figure 9(b), the performance of MIRPpacs is shown after group 1 instances are subdivided

by the number of time periods (45 vs. 60) and by the number of loading regions (1 vs. 2). Note

that a region may contain multiple ports. Results show that instances with a single region are

significantly easier than their multiple region counterparts, as MIRPpacs is able to find solutions

for 100% of the single loading region instances in less than 730 seconds. Increasing the number

of regions raises the complexity. When 45 period instances are considered, solutions are found for

75% of the cases. Performance drops significantly for instances with two regions and 60 ports.

Table 1 provides further details about the variability in the performance of the two best non-

deterministic approaches. We analyze the statistical results of the multiple executions in terms of

the average, standard deviation, minimum, maximum, and median of the primal gap and primal

Table 1: Group 1: Performance comparison of non-deterministic approaches

Parallel Alternating CPLEX

Criteria Search (Opportunistic Mode)

Time Cutoff(s) 180 600 3600 180 600 3600

Avg. P. Gap(%) 53.02 37.10 18.89 80.96 77.36 75.90

P. Integral 137.16 311.19 1001.33 160.31 489.16 2782.76

Count (%) 52.14 67.86 86.43 22.14 25.71 25.71

Std dev Primal Gap 9.51 4.40 3.84 1.74 1.62 2.05

Primal Integral 10.10 29.63 128.12 1.17 9.06 60.65

Count (%) 9.94 3.19 1.60 1.60 1.60 1.60

min Primal Gap 42.10 31.88 13.41 78.44 74.72 72.51

Primal Integral 125.98 274.80 837.57 158.92 475.78 2679.98

Count (%) 42.86 64.29 85.71 21.43 25.00 25.00

median Primal Gap 54.13 37.32 19.45 81.21 77.86 76.58

Primal Integral 136.45 310.89 1005.48 160.22 490.63 2804.07

Count (%) 50.00 67.86 85.71 21.43 25.00 25.00

max Primal Gap 63.24 42.13 22.56 82.32 78.37 77.17

Primal Integral 149.93 346.80 1158.71 161.75 496.56 2818.57

Count (%) 64.29 71.43 89.29 25.00 28.57 28.57

23



0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(a)

0

360

720

1080

1440

1800

2160

2520

2880

3240

3600

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(b)

0

10

20

30

40

50

60

70

80

90

100

In
st

a
n
c
e
s

w
it

h
fe

a
si

b
le

so
lu

ti
o
n

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(c)

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

MIRPpacs Default Random Time-window

Figure 10: (a) Percentage of instances for which a feasible solution is found. (b) Percentage of instances for which

MIRPpacs finds a feasible solution, broken down by instance subclass

integral for different time cutoffs. MIRPpacs shows more variability than CPLEX, especially at

early stages of the optimization. However, the relative distance between both diminishes with time.

Even when the worst run of MIRPpacs is compared with the best run of CPLEX, the parallel

heuristic displays a better primal gap after 180 seconds than the one achieved by CPLEX after one

hour.

In Section 3.3.2, we presented a modification of the standard time-window variable fixing ap-

proach. In the proposed variant, a subset of the ports are fixed for each vessel with the objective

of allowing larger time windows. In addition, our variable fixing scheme prioritizes optimizing the

tuples of port and time with the largest amount of stock deficiency first. In Figure 10, we evaluate

the impact of the proposed modifications by comparing MIRPpacs to a variant of the heuristic in

which the standard time-window variable fixing strategy (Algorithm 2) is used instead.

Our proposed modification allows MIRPpacs to find feasible solutions for 7% more instances.

After one hour of optimization, the version using the standard time-window displays a primal

integral that is 28% larger, and an average primal gap that is 32% higher.

4.4. Group 2 MIRP instances

We incorporate a state-of-the-art MIRP-specific heuristic to the comparison, such as the rolling

horizon heuristic as introduced in Papageorgiou et al. [12]. As explained in Subsection 3.1, the

24



rolling horizon heuristic is a very common form of time decomposition applied to MIRPs. After

the authors in the aforementioned work compared multiple state-of-the-art primal algorithms for

MIRPs, the provided heuristic proved to be one of the best performing construction heuristics.

While it is a sequential algorithm, it takes advantage of the shared-memory parallelism provided

by the underlying MIP solver. The data displayed in the following charts is the one presented in

the original work. The rolling horizon heuristic (RHH) was run using a single computing node with

8 parallel cores. With the purpose of eliminating the discrepancies between computer systems, we

also report its performance after normalizing the CPU times according to the performance metrics

in Passmark [38]. Normalized times are calculated as Tnorm �
Torig�Sorig

Snorm
, where Torig is the original

time reported by the authors, while Snorm
1 and Sorig

2 are the CPU scores of the processors used in

our experiments and the other authors in the comparison respectively.

Figure 11(a) shows the evolution of the average primal time as a function of time for all compared

methods. When all instances are considered, MIRPpacs proves to be the best performing algorithm.

It is able to achieve an average primal gap of 20% in less than 168 seconds, while the next algorithm

1Snorm � 7605 (Intel Xeon X5650)
2Sorig � 14403 (Intel Xeon E5-2687W)

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(a)

0

360

720

1080

1440

1800

2160

2520

2880

3240

3600

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(b)

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

MIRPpacs-96 PACS-96 CPLEX-96 RHH-8 RHH(Adjusted)-8

Figure 11: (a) Average primal gap and (b) average primal integral for all group 2 instances.

25



to achieve the same requires 5 times as much time. It also requires less than 600s to find solutions

with an average gap of less than 10%. The mark of 10% is not surpassed by any other method. The

commendable performance of standard PACS is also worth noting, as it performs similarly to the

non-normalized version of the rolling horizon heuristic despite being a heuristic for general purpose

MIPs. CPLEX seems to follow a different pattern to the aforementioned heuristics, as it is able to

perform on the level of MIRPpacs at the beginning of the optimization. However, it is surpassed by

most heuristics after 500 seconds and ends as the worst performing contender after 2000 seconds.

The rolling horizon heuristic proves to be a better performer than most parallel methods despite

using only 8 cores.

The primal integral is plotted in Figure 11(b). Similarly reflected as in the previous plot,

MIRPpacs shows a significantly lower average primal integral. Precisely, it is 2.5 times better than

the next best contender after 3600 seconds. CPLEX shows a slight advantage at the beginning of

the optimization versus PACS and RHH. The advantage is neutralized after 1200 seconds.

In Figure 12, group 2 instances are split by difficulty category. When only small instances are

0

2

4

6

8

10

12

14

16

18

20

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0

100

200

300

400

500

600

700

800

900

1000

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(a) Easy instances

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(b) Medium instances

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0

360

720

1080

1440

1800

2160

2520

2880

3240

3600

A
v
er

ag
e

p
ri

m
al

in
te

g
ra

l

0 500 1000 1500 2000 2500 3000 3500

Time (s)

(c) Hard instances

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
ri

m
al

g
ap

(%
)

0 500 1000 1500 2000 2500 3000 3500

Time (s)

MIRPpacs-96 PACS-96 CPLEX-96 RHH-8 RHH(Adjusted)-8

Figure 12: Average primal gap and average primal integral for (a) easy, (b) medium, and (c) hard group2 instances.

26



considered, a full featured MIP solver is able provide high quality solutions after other methods

stagnate. CPLEX is able to outperform all methods at the end of the optimization and obtain

the best average gap. However, MIRPpacs presents a lower primal integral due to the fact that

it converges to high quality solutions much earlier in the search. The advantage of the primal

heuristics gradually increases as the problem size grows. RHH shows better performance than

PACS for both medium and hard instances, though PACS uses 12 times as many cores. The

combination of domain-specific improvements and parallelism allow MIRPpacs to be particularly

effective for hard instances in comparison to its general purpose counterpart.

Table 2 provides details regarding the effects of nondeterminism on the variability between

experiments. MIRPpacs has a similar variability to the one displayed by CPLEX. The standard

deviation on the primal gap decreases as the optimization advances. The trend seen in group 1

instances is maintained, as MIRPpacs achieves a better average primal gap in less than 180 seconds

than CPLEX is able to achieve after 1 hour of optimization. As a result MIRPpacs shows a primal

integral that is 3.7 times better on average.

At the time of this writing, primal heuristics remain the best available option for handling

Table 2: Group 2: Performance comparison of non-deterministic approaches

Parallel Alternating CPLEX

Criteria Search (Opportunistic Mode)

Time Cutoff(s) 180 600 3600 180 600 3600

Avg. P. Gap(%) 20.75 12.17 5.70 51.19 41.76 27.98

P. Integral 75.48 140.56 352.36 111.26 302.07 1305.22

Std dev Primal Gap 3.84 3.71 2.23 3.29 2.56 2.24

Primal Integral 5.75 18.79 86.46 3.55 12.52 67.22

min Primal Gap 16.53 8.10 3.45 47.75 38.49 25.08

Primal Integral 68.77 119.81 263.15 107.54 288.25 1226.04

median Primal Gap 20.49 11.72 5.28 50.87 41.79 28.14

Primal Integral 75.39 138.20 339.69 110.98 301.13 1305.10

max Primal Gap 25.82 17.15 8.95 55.51 44.75 30.56

Primal Integral 82.97 166.18 476.49 116.09 318.04 1391.54

27



MIRP instances of practical size, as they significantly outperform state-of-the-art MIP solvers in the

process. In turn, specialized heuristics will always outperform their general purpose counterparts.

5. Conclusions

Parallel Alternating Criteria Search proves to be an effective framework when solving Mar-

itime Inventory Routing Problems, but it can be significantly improved by tailoring a few of the

key components of the algorithm. Firstly, we introduce specific objective penalizations, with the

intent of improving the discovery of a first feasible solution. Secondly, we introduce new defini-

tions of MIRP-specific variable fixing schemes, in order to improve the effectiveness of the large

neighborhood search. The new specialized parallel heuristic is able to significantly outperform

state-of-the-art MIP solvers and domain specific heuristics. The advantage increases considerably

when solving hard instances featuring long horizon periods, and a large number of ports and vessels.

The specialization process described in this paper can be easily adapted to other MIP problem

classes as well. When targeting a specific problem, we preliminarily recommend running the heuris-

tic in its vanilla form. If feasible solutions are not found, it is highly likely that all the infeasibility

is accumulated in a single constraint class. The next step is to penalize the related ∆ variables and

run Parallel Alternating Criteria Search again. Our recommendation is then to iterate on penalizing

the constraint sets stalling the heuristic until feasible solutions are found. In order to improve the

convergence to a high quality feasible solution, the generic variable fixing scheme can be readily

exchanged for a problem specific counterpart.

Parallel Alternating Criteria Search is an excellent platform that can be used as is, or for a rapid

prototyping of heuristics for particular MIP domains. It can be applied as a standalone heuristic or

embedded in an exact branch-and-bound algorithm. We hope this work will motivate researchers

to apply Parallel Alternating Criteria Search to their own MIP domains. The framework is readily

available for download [39].

6. Nomenclature

6.1. Indices and sets

28



t P T set of time periods with T � |T |
v P V set of vessels

vc P VC set of vessel classes

j P J P set of production ports

j P J C set of consumption ports

j P J set of all ports:J � J P

n P N set of regular nodes or port-time pairs: N � tn � pj, tq : j P J , t P T u
n P Ns,t set of all nodes, including the source node ns and a sink node nt

a P A set of all arcs

a P Av set of arcs associated with vessel v P V
a P Avc set of arcs associated with vessel class vc P VC
a P FSvn set of all outgoing arcs associated with node n � pj, tq P Ns,t and vessel v P V
a P FSvcn set of all outgoing arcs associated with node n � pj, tq P Ns,t and vessel class vc P VC
a P RSvn set of all outgoing arcs associated with node n � pj, tq P Ns,t and vessel v P V
a P RSvcn set of all outgoing arcs associated with node n � pj, tq P Ns,t and vessel class vc P VC
FSvc,intern set of all outgoing interregional arcs for node n � pj, tq P Ns,t and vessel class

vc P VC

6.2. Problem data

αmax
j,t upper bound on the amount of product that can be bought/sold at the spot market

at port j P J and time t P T
αmax
j upper bound on the cumulative amount of product that can be bought/sold at the

spot market at port j P J over the entire planning horizon

Bj number of berhs available at port j P J
Cva cost for vessel v P V to traverse arc a P Av

Cvca cost for vessel class vc P VC to traverse arc a P Av

dj,t number of units produced or consumed at port j P J in time period t P T
∆j an indicator parameter taking value �1 if j P J P , and �1 otherwise

εz nonnegative cost parameter associated with attempting to load or discharge at a

port

29



Fmin
j,t pFmax

j,t q minimum (maximum) amount of product that can be loaded or discharged at port

j P J from a single vessel in time period t P T
Pj,t nonnegative penalty parameter associated with one unit of lost production or stock-

out at port j P J in time period t P T
Qv capacity of vessel v P V
Qvc capacity of vessel class vc P VC
Rn the unit sales revenue for product discharged at port-time pair n � pj, tq P N
Smin
j,t pS

max
j,t q lower bound (capacity) at port j P J in time period t P T

sj,0 initial inventory at port j P J
sv0 initial inventory on vessel v P V

6.3. Problem decision variables

αj,t (continuous) amount of product that port j P J purchases or sells to the spot

market in time period t P T
fvn (continuous) amount loaded or discharged at port-time pair n � pj, tq P N from

vessel v P V
sj,t (continuous) number of units of inventory at port j P J available at the end of

period t P T
svt (continuous) number of units of inventory on vessel v P V available at the end of

period t P T
xva (binary) takes value 1 if vessel v P V uses arc a incident to node n � pj, tq P N
xvca (integer) takes value 1 if vessel class vc P VC uses arc a incident to node n � pj, tq P

N
zvn (binary) takes value 1 if vessel v P V attempts to load or discharge product at node

n � pj, tq P N

7. Acknowledgements

This research has been supported in part by ExxonMobil Upstream Research Company, the

National Science Foundation, the Office of Naval Research and the Air Force Office of Scientific

Research.

30



Bibliography

[1] G. L. Nemhauser, L. A. Wolsey, Integer programming and combinatorial optimization, Wiley,

Chichester. GL Nemhauser, MWP Savelsbergh, GS Sigismondi (1992). Constraint Classifica-

tion for Mixed Integer Programming Formulations. COAL Bulletin 20 (1988) 8–12.

[2] M. SteadieSeifi, N. Dellaert, W. Nuijten, T. V. Woensel, R. Raoufi, Multimodal freight trans-

portation planning: A literature review, European Journal of Operational Research 233 (1)

(2014) 1 – 15. doi:https://doi.org/10.1016/j.ejor.2013.06.055.

URL http://www.sciencedirect.com/science/article/pii/S0377221713005638

[3] R. Baños, F. Manzano-Agugliaro, F. Montoya, C. Gil, A. Alcayde, J. Gómez, Optimization

methods applied to renewable and sustainable energy: A review, Renewable and Sustainable

Energy Reviews 15 (4) (2011) 1753 – 1766. doi:https://doi.org/10.1016/j.rser.2010.12.008.

URL http://www.sciencedirect.com/science/article/pii/S1364032110004430

[4] Y. Pochet, L. A. Wolsey, Production planning by mixed integer programming, Springer Science

& Business Media, 2006.

[5] D. Bertsimas, C. Darnell, R. Soucy, Portfolio construction through mixed-integer programming

at grantham, mayo, van otterloo and company, Interfaces 29 (1) (1999) 49–66.

[6] A. Land, A. Doig, An automatic method of solving discrete programming problems, Econo-

metrica: Journal of the Econometric Society (1960) 497–520.

[7] T. Berthold, Primal heuristics for mixed integer programs, Master’s thesis, TU Berlin (2006).

[8] M. Fischetti, A. Lodi, Heuristics in mixed integer programming, Wiley Encyclopedia of Oper-

ations Research and Management Science.

[9] L.-M. Mungúıa, S. Ahmed, D. A. Bader, G. L. Nemhauser, Y. Shao, Alternating criteria search:

a parallel large neighborhood search algorithm for mixed integer programs, Computational

Optimization and Applicationsdoi:10.1007/s10589-017-9934-5.

URL https://doi.org/10.1007/s10589-017-9934-5

[10] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gam-

rath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy,

K. Wolter, MIPLIB 2010, Mathematical Programming Computation 3 (2) (2011) 103–163.

31



[11] D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M.-S. Cheon, A. B. Keha, Mirplib–a library

of maritime inventory routing problem instances: Survey, core model, and benchmark results,

European Journal of Operational Research 235 (2) (2014) 350–366.

[12] D. J. Papageorgiou, M.-S. Cheon, S. Harwood, F. Trespalacios, G. L. Nemhauser, Recent

progress using matheuristics for strategic maritime inventory routing, in: Modeling, Computing

and Data Handling Methodologies for Maritime Transportation, Springer, 2018, pp. 59–94.

[13] M. Christiansen, K. Fagerholt, T. Flatberg, Øyvind Haugen, O. Kloster, E. H.

Lund, Maritime inventory routing with multiple products: A case study from the ce-

ment industry, European Journal of Operational Research 208 (1) (2011) 86 – 94.

doi:http://dx.doi.org/10.1016/j.ejor.2010.08.023.

URL http://www.sciencedirect.com/science/article/pii/S0377221710005606

[14] S. Dauzère-Pérès, A. Nordli, A. Olstad, K. Haugen, U. Koester, P. O. Myrstad, G. Teistklub,

A. Reistad, Omya hustadmarmor optimizes its supply chain for delivering calcium carbonate

slurry to european paper manufacturers, Interfaces 37 (1) (2007) 39–51.

URL http://www.jstor.org/stable/20141461

[15] A. Agra, M. Christiansen, A. Delgado, L. M. Hvattum, A maritime inventory routing problem

with stochastic sailing and port times, Computers & Operations Research 61 (2015) 18 – 30.

doi:http://dx.doi.org/10.1016/j.cor.2015.01.008.

URL http://www.sciencedirect.com/science/article/pii/S0305054815000210

[16] K. C. Furman, J.-H. Song, G. R. Kocis, M. K. McDonald, P. H. Warrick, Feedstock routing in

the exxonmobil downstream sector, Interfaces 41 (2) (2011) 149–163.

URL http://www.jstor.org/stable/23016240

[17] V. Goel, K. C. Furman, J.-H. Song, A. S. El-Bakry, Large neighborhood search for lng inventory

routing, Journal of Heuristics 18 (6) (2012) 821–848.

[18] M. St̊alhane, J. G. Rakke, C. R. Moe, H. Andersson, M. Christiansen, K. Fagerholt, A con-

struction and improvement heuristic for a liquefied natural gas inventory routing problem,

Computers & Industrial Engineering 62 (1) (2012) 245–255.

32



[19] Y. Shao, K. C. Furman, V. Goel, S. Hoda, A hybrid heuristic strategy for liquefied natural gas

inventory routing, Transportation Research Part C: Emerging Technologies 53 (2015) 151–171.

[20] F. Mutlu, M. K. Msakni, H. Yildiz, E. Sönmez, S. Pokharel, A comprehensive annual delivery

program for upstream liquefied natural gas supply chain, European Journal of Operational

Research 250 (1) (2016) 120–130.

[21] M. Hewitt, G. Nemhauser, M. Savelsbergh, J.-H. Song, A branch-and-price guided search

approach to maritime inventory routing, Computers & Operations Research 40 (5) (2013)

1410 – 1419. doi:http://dx.doi.org/10.1016/j.cor.2012.09.010.

URL http://www.sciencedirect.com/science/article/pii/S0305054812002183

[22] D. J. Papageorgiou, M.-S. Cheon, G. Nemhauser, J. Sokol, Approximate dynamic programming

for a class of long-horizon maritime inventory routing problems, Transportation Science 49 (4)

(2014) 870–885.

[23] D. J. Papageorgiou, A. B. Keha, G. L. Nemhauser, J. Sokol, Two-stage decomposition algo-

rithms for single product maritime inventory routing, INFORMS Journal on Computing 26 (4)

(2014) 825–847.

[24] J.-H. Song, K. C. Furman, A maritime inventory routing problem: Practical approach, Com-

puters & Operations Research 40 (3) (2013) 657–665.

[25] F. G. Engineer, K. C. Furman, G. L. Nemhauser, M. W. P. Savelsbergh, J.-H. Song, A branch-

price-and-cut algorithm for single-product maritime inventory routing, Operations Research

60 (1) (2012) 106–122. doi:10.1287/opre.1110.0997.

[26] M. Hewitt, G. Nemhauser, M. W. P. Savelsbergh, Branch-and-price guided search for inte-

ger programs with an application to the multicommodity fixed-charge network flow problem,

INFORMS Journal on Computing 25 (2) (2013) 302–316. doi:10.1287/ijoc.1120.0503.

[27] F. Al-Khayyal, S.-J. Hwang, Inventory constrained maritime routing and scheduling for multi-

commodity liquid bulk, part i: Applications and model, European Journal of Operational

Research 176 (1) (2007) 106–130.

33



[28] J. G. Rakke, M. St̊alhane, C. R. Moe, M. Christiansen, H. Andersson, K. Fagerholt, I. Norstad,

A rolling horizon heuristic for creating a liquefied natural gas annual delivery program, Trans-

portation Research Part C: Emerging Technologies 19 (5) (2011) 896–911.

[29] A. Agra, M. Christiansen, A. Delgado, L. Simonetti, Hybrid heuristics for a short sea inventory

routing problem, European Journal of Operational Research 236 (3) (2014) 924–935.

[30] K. T. Uggen, M. Fodstad, V. S. Nørstebø, Using and extending fix-and-relax to solve maritime

inventory routing problems, Top 21 (2) (2013) 355–377.

[31] V. Goel, M. Slusky, W.-J. van Hoeve, K. C. Furman, Y. Shao, Constraint programming for lng

ship scheduling and inventory management, European Journal of Operational Research 241 (3)

(2015) 662–673.

[32] B. V. Asokan, K. C. Furman, V. Goel, Y. Shao, G. Li, Parallel large-neighborhood search

techniques for lng inventory routing, Submitted for publication.

[33] Gurobi optimizer, http://www.gurobi.com (2015).

[34] IBM CPLEX optimizer, http://www-01.ibm.com/software/commerce/optimization/

cplex-optimizer/ (2015).

[35] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, ParaSCIP: A parallel extension of

SCIP, in: Competence in High Performance Computing 2010, Springer, 2012, pp. 135–148.

[36] T. Koch, T. Ralphs, Y. Shinano, Could we use a million cores to solve an integer program?,

Mathematical Methods of Operations Research 76 (1) (2012) 67–93.

[37] T. Berthold, Measuring the impact of primal heuristics, Operations Research Letters 41 (6)

(2013) 611–614.

[38] P. S. P. Ltd, Passmark software, [Online; accessed 2017-08-05] (2017).

URL http://passmark.com/

[39] L.-M. Munguia, Pacs, https://bitbucket.org/llmunguia/parallel-alternating-criteria-search,

[Online] (2017).

URL https://bitbucket.org/llmunguia/parallel-alternating-criteria-search

34


