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Abstract

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochas-

tic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth

of procedures for a single provider, where each procedure has a known type and associated proba-

bility distribution of random duration. Our objective is to minimize the expectation of a weighted

sum of patient waiting time, provider idling, and clinic overtime. We present computational results

to show the size and characteristics of problem instances that can be solved with our model. We

also compare this model to other formulations in the literature and analyze them both empirically

and theoretically, demonstrating where significant improvements in performance can be gained with

our proposed model. This work is motivated by our research on developing scheduling templates

for endoscopic procedures at a major medical center. More broadly, however, the SOPSP is a

stochastic single-resource sequencing and scheduling problem and therefore has applications both

within and outside of healthcare operations.
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1. Introduction

In this paper, we address the Stochastic Outpatient Procedure Scheduling Problem (SOPSP),

which arises in outpatient procedure centers (OPCs). In this problem, we consider the perspective

of an OPC manager who must schedule the start times for a day’s worth of procedures for a single

provider, where each procedure has a known type and a random (non-negative) duration that

follows a known probability distribution associated with the procedure type. Given the uncertainty

in procedure durations, the goal is to minimize the expectation of a weighted sum of total patient

waiting time (the time from the scheduled start of a procedure to its actual start), total provider
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idle time (the time from the end of one procedure to the start of the next), and clinic overtime (the

time from the scheduled closing time of the clinic to the end of the last procedure of the day).

This research is motivated by our work with the University of Michigan Medical Procedures

Unit, an OPC that performs a variety of endoscopic procedures such as colonoscopies. The ultimate

goal of this project is to optimize daily schedule templates and policies for filling these templates,

to best account for variability in patient procedure times. By building higher-quality schedules that

incorporate the variability in procedure durations, it is possible to improve patient and provider

satisfaction, reduce costs, and even achieve better clinical outcomes. A valuable tool in creating

such templates is the ability to solve the simpler (and yet still challenging) SOPSP as an embedded

sub-problem.

In addition to the value that the ability to solve the SOPSP provides to our work, it also

has relevance for many other applications, including scheduling of surgeries in an operating room,

ships in a port, exams in an examination facility, and more (Ahmadi-Javid et al., 2017; Begen and

Queyranne, 2011; Mancilla and Storer, 2013; Robinson and Chen, 2003; Sabria and Daganzo, 1989).

For example, it is a common practice for surgeries to initially be assigned to a surgeon, date, and

operating room several weeks or even months before their scheduled date. The actual scheduled

start times for these surgeries, however, are typically not set until a few days in advance. It is at

this point when the SOPSP can be solved to construct the final surgical schedule and notify the

patients when to report to the hospital (see Denton et al., 2010; Mancilla and Storer, 2013, and

references therein for more details).

The SOPSP is also computationally challenging to solve, for a number of reasons. First, it is a

complex combinatorial optimization problem, given the inherent implied sequencing problem that

underlies assigning appointment times to each patient (Ahmadi-Javid et al., 2017; Berg et al., 2014;

Mancilla and Storer, 2013). Second, the problem is inherently stochastic due to the uncertainty

in procedure durations. Finally, it is also a multi-criteria optimization problem, in which we must

make trade-offs between longer spacing between appointments, which leads to reduced patient

delays, and shorter spacing, which leads to less provider idling and overtime (Ahmadi-Javid et al.,

2017; Antunes et al., 2016; Cayirli and Veral, 2003; Denton et al., 2010; Gupta and Denton, 2008;

Mancilla and Storer, 2013; Marler and Arora, 2004; T’kindt and Billaut, 2006). More broadly, the

SOPSP is a single-server stochastic appointment sequencing and scheduling (SASS) problem, the

underlying complexity of which has been studied by several previous authors beginning with the

seminal work of Welch and Bailey (1952) and Weiss (1990) (see Ahmadi-Javid et al., 2017; Berg

et al., 2014; Denton et al., 2010; Gupta, 2007; Gupta and Denton, 2008; Mancilla and Storer, 2013,

and references therein).

In this paper, we present a new Stochastic Mixed-Integer Linear Program (SMILP) using Sam-

ple Average Approximation (SAA) for solving the SOPSP, with a focus both on tractability (i.e.,

being able to solve problem instances of realistic sizes in an acceptable amount of time) and im-
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plementability (i.e., proposing a model that can be easily translated into standard optimization

software packages, not requiring customized algorithmic development or tuning). To provide con-

text within the literature, we compare our model with those of Berg et al. (2014) (an enhancement

of Denton et al., 2007) and Mancilla and Storer (2013), which are, to the best of our knowledge, the

only SMIPs for SASS with waiting, idling, and overtime costs. We discuss the relative strengths

and weaknesses of the three models and then compare them computationally under a common,

straightforward software implementation.

The remainder of the paper is structured as follows. In Section 2, we present the relevant

literature. In Section 3, we introduce and analyze three mathematical models of the SOPSP: two

based on prior literature (Berg et al., 2014 and Mancilla and Storer, 2013), and a new model. After

that, in Section 4, we compare the computational performance of the three models and provide

some discussion and insights. Finally, conclusions are drawn in Section 5.

2. Literature review

Outpatient scheduling problems have been an active area of research since the seminal work of

Welch and Bailey (1952). Comprehensive surveys of results obtained since then include Cayirli and

Veral (2003), Gupta and Denton (2008), and Ahmadi-Javid et al. (2017). Within this literature,

there are two primary approaches to stochastic appointment scheduling. The first is to develop

and evaluate scheduling heuristics, often through the use of simulation (see, for example, Ahmadi-

Javid et al., 2017; Ho and Lau, 1992; Klassen and Rohleder, 1996; Rohleder and Klassen, 2000;

Vissers and Wijngaard, 1979). The second is to construct models and design algorithms to find

optimal schedules through the use of queueing theory (see, for example, Bosch and Dietz, 2000;

Jansson, 1966; Mercer, 1960; Sabria and Daganzo, 1989; Soriano, 1966; Vanden Bosch and Dietz,

2001, and references therein), stochastic programming (see, for example, Berg et al., 2014; Denton

and Gupta, 2003; Mancilla and Storer, 2013; Robinson and Chen, 2003, and references therein),

and, more recently, robust and distributionally robust optimization (RO and DRO, respectively;

see, for example, Jiang et al., 2017; Mak et al., 2014, and references therein).

Herein, we present studies that are most relevant to us: papers that use SMILP models to

address offline single-resource stochastic appointment sequencing and scheduling (SASS) problems

that are similar to the SOPSP (“offline” in the sense that sequencing and scheduling decisions are

all made ahead of time). We are interested in generating optimal solutions to the SOPSP assuming

knowledge of the distributions of appointment durations (a classic SASS assumption, Ahmadi-

Javid et al., 2017; Berg et al., 2014; Deceuninck et al., 2018), which rules out both the heuristic

approach (due to sub-optimality and lack of performance guarantees, Ahmadi-Javid et al., 2017; Ho

and Lau, 1992; Rohleder and Klassen, 2000; Klassen and Rohleder, 1996; Vissers and Wijngaard,

1979) and the RO and DRO-based approaches (which assume distributional ambiguity). Finally,
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as pointed out by Robinson and Chen (2003), queueing theory-based results and algorithms are

not appropriate for the SOPSP and other OPC scheduling problems which involve serving a finite

number of patients within fixed service hours (i.e., the queue never reaches a steady state).

Papers that present models and algorithms for optimizing SASS decisions using SMILP fall into

two groups: those that focus on determining the optimal start times (or, equivalently, the inter-

arrival times) assuming that the sequence of patients (customers) is already fixed (e.g., through

the use of a heuristic, see, for example, Bosch and Dietz, 2000; Denton and Gupta, 2003; Erdogan

and Denton, 2013; Ge et al., 2013; Robinson and Chen, 2003; Vanden Bosch and Dietz, 2001, and

references therein), and those that focus on optimizing the sequencing and scheduling decisions

simultaneously. Since we consider both sets of decisions, we further limit the scope of this review

to the latter category. We refer the reader to the following studies: Ahmadi-Javid et al. (2017);

Berg et al. (2014); Cayirli et al. (2006, 2008); Creemers et al. (2012); Gupta and Denton (2008);

Rohleder and Klassen (2000); Salzarulo et al. (2016), and references therein, which demonstrate

the benefit of sequencing heterogeneous patient appointments based on their characteristics for

improving clinic performance and reducing costs compared to fixed sequence approaches. To the

best of our knowledge, and according to the recent review of outpatient appointment systems by

Ahmadi-Javid et al. (2017), papers by Denton et al. (2007), Berg et al. (2014), and Mancilla and

Storer (2013) are the ones most closely related to our work, addressing similar SASS problems with

waiting, idling, and overtime costs using SMILP.

Denton et al. (2007) formulated the stochastic surgery scheduling problem in an operating

room (OR) as a two-stage SMILP with binary precedence variables and continuous time allowance

variables in the first stage, and continuous waiting, idling, and overtime variables in the second

stage. They used the sample-average approximation approach (i.e., a scenario-based approach) to

replace the continuous distributions of surgery durations with approximate discrete distributions

by considering a sample of N randomly generated scenarios. Since it was difficult to solve instances

with more than 4 surgeries, they proposed several sequencing heuristics and then obtained the

optimal surgery start times, for a fixed sequence, via the L-shaped algorithm (Birge and Louveaux,

2011) described in Denton and Gupta (2003). Their results showed substantial potential reductions

in surgeon waiting, OR idling, and overtime costs by sequencing surgeries based on variances of

their durations compared to the schedule of the OR that the study considered.

In a slightly different setting, Berg et al. (2014) considered the problem of optimizing the booking

(number of patients to schedule) and appointment time decisions for outpatient procedures under

no-show and procedure durations uncertainties. The goal was to maximize profit, i.e., the difference

between the expected revenue and the expected variable cost of patient waiting time, provider idle

time, and overtime associated with scheduling patients. Since the revenue was straightforward to

compute, the paper focused on minimizing the expected variable cost determined by sequencing

and scheduling decisions (a SASS problem which is, to some extent, similar to the SOPSP). To
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that end, the paper extended and enhanced the SMILP model of Denton et al. (2007) by includ-

ing heterogeneous no-show probabilities and using both precedence and assignment variables to

strengthen the earlier model, and employed three exact solution methods: L-shaped, hybrid multi-

cut L-shaped with scenario aggregation and ranking (to overcome the computational burden of the

original multi-cut method, see Birge and Louveaux, 1988), and branch-and-bound with progressive

hedging as a primal heuristic (Rockafellar and Wets, 1991). While these methods were compu-

tationally competitive (relative to each other) in solving small instances (≤ 5 patients), it was

challenging to solve larger instances (10 patients), primarily due to the stochastic and combinato-

rial elements of the problem. Therefore, they proposed six sequencing heuristics based on standard

deviations of procedure durations and no-show probabilities, and illustrated the conditions under

which some of these provided a near-optimal solution to the problem.

Mancilla and Storer (2013) formulated the surgery sequencing and scheduling problem in a

single operating room at a local hospital as a stochastic mixed-integer program with sample av-

erage approximation. The model differs from that of Denton et al. (2007) in the following two

ways. First, they replaced binary precedence variables with binary sequence position assignment

variables (previously proposed in Wagner, 1959). Second, they replaced continuous job time al-

lowance variables with continuous appointment (start) time variables. Additionally, using concepts

from Garey et al. (1976), they proved that for two scenarios and equal idling costs but different

waiting costs for each job, the finite scenario SAA problem is NP-complete. Therefore, to overcome

the computational burden of the sequencing decisions, they developed an algorithm to generate

a near-optimal sequence, with the resulting linear subproblem of determining appointment times

solved within their algorithm using the CPLEX barrier method. Given that the SMILP studied

in Mancilla and Storer (2013) is a variation of the one in Denton et al. (2007), and the one in

Berg et al. (2014) is stronger than Denton et al. (2007), in this paper, we focus our analysis on the

models of Mancilla and Storer (2013) and Berg et al. (2014).

Finally, we point out the similarities and differences between single provider stochastic appoint-

ment sequencing and scheduling and single machine scheduling (SMS). At the outset, they look

similar: the provider can be thought of as a single machine, and procedures and their durations

as jobs and their processing times, respectively (see Forst, 1993; Lawler et al., 1993; Pinedo, 2016

for machine scheduling literature). Nevertheless, SASS is materially different from SMS. In SMS

problems, each job release time (the time at which the job becomes available for processing) is

typically exogenous (i.e., a parameter). In contrast, the appointment time in SASS, which can be

thought of as a release time at which the scheduled patient is presumably available for the proce-

dure, is a decision variable. Furthermore, in the classic SMS problem, one scheduling criterion that

has received the most attention over the years is minimizing makespan (i.e., completing the last

job at the earliest possible time), which trivially minimizes overtime but does not consider patient

waiting time nor provider idle time. Our SMILP model, as well as those of Mancilla and Storer
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(2013) and Berg et al. (2014), however, improve on some ideas from the seminal work of Wagner

(1959) and Pinto and Grossmann (1998) in the domain of deterministic single-machine jobs/tasks

sequencing and scheduling.

3. Stochastic mixed-integer linear programming models of the SOPSP

In this section, we present and analyze three SMILP formulations for the SOPSP. First, we

define the problem formally. Then, we present our SMILP formulation and the conditions under

which it is equivalent to two closely-related stochastic appointment sequencing and scheduling

SMILPs in the literature, those of Mancilla and Storer (2013) and Berg et al. (2014), which are

also presented for completeness.

3.1. Formal statement of the problem

We consider the problem of sequencing a set of procedures for a single provider (where each

procedure has a known type and a random, non-negative, duration that follows a known probability

distribution associated with the procedure type) and determining the associated scheduled start

time for each procedure. The performance metric is the weighted sum of three components, total

patient waiting time (the time from the scheduled start of a procedure to its actual start), total

provider idle time (the time from the end of one procedure to the start of the next), and overtime

(the time from the scheduled closing time of the clinic to the end of the last procedure of the day).

Given a set of procedures, their sequence, their scheduled start times, and the distributions of their

durations, the expected value of this weighted sum can be estimated by averaging over finitely

many realizations (a sample) of procedure durations. This sample average is the objective function

of the forthcoming optimization problems. We make the following assumptions:

1. A procedure is not permitted to start before its scheduled start time nor the completion time

of the previous procedure.

2. Although patients may fail to show up to their appointments, we assume that those who do

show up are punctual, i.e., available at the scheduled start times of their procedures.

3. The provider is always available at the start of the day, and immediately after each procedure.

4. There is no opportunity to modify the schedule on the day of service, i.e., rescheduling during

the day or adding procedures (to accommodate walk-ins or emergencies) is not permitted.

The problem can be formulated as a two-stage SMILP with binary (for sequencing) and con-

tinuous (for scheduling, i.e., start times) first-stage variables and continuous second-stage variables

representing what happens for each realization of procedure durations (waiting time, idle time,

and overtime), given the sequence of appointment times decided in the first stage. To incorporate

procedure duration uncertainty into the model, we use a Sample Average Approximation (SAA)
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Table 1: Notation.

Indices and sets

P patients, or procedures, to be scheduled, p = 1, ..., P

I positions in the sequence, or appointments, i = 1, ..., P

N scenarios to be considered, n = 1, ..., N

Parameters

λwi waiting time penalty for appointment i

λgi penalty for idle time between appointments i and i+ 1

λo overtime penalty

L planned length of clinic day

dnp duration of procedure p in scenario n

Scenario-independent (first-stage) variables

xi,p binary assignment variable indicating whether procedure p is assigned to appointment i

ti scheduled start time of appointment i

Scenario-dependent (second-stage) variables

sni actual start time of appointment i in scenario n

gni idle time after appointment i in scenario n

on overtime in scenario n.

approach as in Robinson and Chen (2003), Denton et al. (2010), and Mancilla and Storer (2013).

That is, we generate a sample of N scenarios (each scenario consists of a vector of realizations of

procedure durations which are drawn independently from the distributions corresponding to each

patient’s type; a no-show patient can be represented by a realized procedure duration of 0), and

then optimize the sample average of the weighted sum of the three metrics using the stored sample.

(The technical details of sample average approximation approach are out of the scope of this paper,

and we refer the reader to Kim et al., 2015; Kleywegt et al., 2002; Mak et al., 1999; Molina-Pariente

et al., 2016; Shapiro and Homem-de Mello, 2000, and references therein, for a thorough discussion.)

3.2. Formulations of the problem

Table 1 summarizes notation and some terminology used in our sample-average SMILP formu-

lation of the SOPSP. Note, in particular, that we use the term “appointment” to refer to a position

in the sequence, and use the terms “patient” and “procedure” interchangeably. Using this notation,
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the problem can be formulated as follows:

(S) minimize
1

N

N∑
n=1

[
P∑
i=1

λwi · (sni − ti) +

P∑
i=1

λgi · g
n
i + λo · on

]
(1a)

subject to

P∑
i=1

xip = 1 ∀p (1b)

P∑
p=1

xip = 1 ∀i (1c)

sni ≥ ti ∀i, n (1d)

sni ≥ sni−1 +
P∑

p=1

dnp · xi−1,p ∀(i ≥ 2, n) (1e)

gni = sni+1 −

sni +
P∑

p=1

dnp · xi,p

 ∀(i < P, n) (1f)

on ≥

snP +
P∑

p=1

dnp · xP,p

− L ∀n (1g)

(gni , s
n
i ) ≥ 0 ∀(i, n) (1h)

on ≥ 0 ∀n (1i)

ti ≥ 0 ∀i (1j)

xi,p ∈ {0, 1} ∀(i, p) (1k)

In the above formulation, the objective function in (1a) is the sample average of the weighted

linear combination of the total waiting time, total idle time, and overtime cost. Constraints (1b)

and (1c) ensure that each procedure is assigned to one appointment and each appointment is

assigned one procedure. For every scenario n, constraints (1d) and (1e) require the actual start

time, sni , of the ith appointment to be no smaller than the scheduled start time, ti, and than the

completion time of the preceding appointment, i.e., the (i − 1)st appointment’s actual start time,

sni−1, plus the duration of the procedure assigned to it,
∑P

p=1 d
n
p · xi−1,p. The ith appointment

waiting time is the difference between its actual and scheduled start time (i.e., sni − ti), which

we include in the objective function directly. Constraints (1f) define the idle time between two

consecutive appointments as the gap between the actual start time of an appointment and the

completion time of the preceding one. Constraints (1g) and (1i) define overtime (if any) as the

positive difference between the completion time of the last appointment and the clinic scheduled

closing time, L. Finally, the remaining constraints specify feasible ranges of the decision variables.
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Table 2: Additional notation (Mancilla and Storer, 2013).

Parameters

λwp waiting time penalty for procedure p

λgp idle time penalty for procedure p

Scenario-dependent (second-stage) variables

wn
i,p waiting time of procedure p in scenario n, if it is assigned to appointment i (0 otherwise)

gni,p idle time after procedure p in scenario n, if it is assigned to appointment i (0 otherwise)

en slack variable measuring early completion of the schedule in scenario n

The formulation of Mancilla and Storer (2013) uses additional notation presented in Table 2.

Note that components of g are indexed differently in this model than in our formulation (1a-1k), but

this slight abuse of notation allows us to emphasize the relationship between two sets of variables

representing idling times in the two models. The formulation of Mancilla and Storer (2013) is as

follows:

(M) minimize
1

N

N∑
n=1

 P∑
i=1

P∑
p=1

λwp · wn
i,p +

P∑
i=1

P∑
p=1

λgp · gni,p + λo · on
 (2a)

subject to

P∑
i=1

xi,p = 1 ∀p (2b)

P∑
p=1

xi,p = 1 ∀i (2c)

ti − ti+1 −
P∑

p=1

wn
i+1,p +

P∑
p=1

gni,p +
P∑

p=1

wn
i,p = −

P∑
p=1

dnp · xi,p ∀(i < P, n) (2d)

tP +
P∑

p=1

wn
P,p − on + en = −

P∑
p=1

dnp · xP,p + L ∀n (2e)

wn
i,p ≤M i

1 · xi,p ∀(i, p, n) (2f)

gni,p ≤M2 · xi,p ∀(i, p, n) (2g)

(wn
i,p, g

n
i,p, o

n, en) ≥ 0 ∀(i, p, n) (2h)

ti ≥ 0 ∀i (2i)

xi,p ∈ {0, 1} ∀(i, p) (2j)

As described in Mancilla and Storer (2013), the objective function in (2a) is the sample average

of the weighted linear combination of the total waiting cost, total idling cost, and overtime cost.

Constraints (2b) and (2c) ensure that each procedure is assigned to one appointment, and each

appointment is assigned one procedure. Constraints (2d) define, for each scenario, the waiting and
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Table 3: Additional notation (Berg et al., 2014).

Indices

p, p′ indices for procedures, p, p′ = 1, . . . , P + 1

i index for appointments, i = 1, . . . , P + 1

Parameters

λwp,p′ sequence-dependent waiting cost for procedure p′ following procedure p

λgp,p′ sequence-dependent cost of idling between procedures p and p′

An
p binary attendance indicator for patient p in scenario n (An

p = 0 if and only if p is a no-show)

Scenario-independent (first-stage) variables

rp,p′ binary precedence variable; equals 1 if and only if procedure p is followed by procedure p′

yp time allotted to procedure p

Scenario-dependent (second-stage) variables

wn
p,p′ sequence-dependent waiting time for procedure p′ when preceded by procedure p in scenario n

gnp,p′ sequence-dependent idle time between procedures p and p′ in scenario n

en slack variable measuring early completion of the schedule in scenario n

idle time for every appointment. Constraints (2e) define overtime in scenario n. Constraints (2f)

and (2g) are logical constraints that enforce the relationship between variables wn
i,p, g

n
i,p, and xi,p

(here, M i
1, i = 1, . . . , P , and M2 are sufficiently large constants). Finally, the remaining constraints

specify feasible ranges of the decision variables.

The formulation of Berg et al. (2014) uses additional notation defined in Table 3, and is as

follows:

(B) minimize
1

N

N∑
n=1

P+1∑
p=1

P∑
p′=1

λwp,p′ ·An
p′w

n
p,p′ +

P+1∑
p=1

P+1∑
p′=1

λgp,p′ · g
n
p,p′ + λo · on

 (3a)

subject to

P+1∑
p′=1

rp,p′ ≤ 1 ∀p (3b)

P+1∑
p=1

P+1∑
p′=1

rp,p′ = P (3c)

xi,p + xi+1,p′ − 1 ≤ rp,p′ ∀(p, p′, i ≤ P ) (3d)

P+1∑
i=1

xi,p = 1 ∀p (3e)

P+1∑
p=1

xi,p = 1 ∀i (3f)
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P+1∑
p=1

rp,P+1 = 1 (3g)

P+1∑
p=1

rP+1,p = 0 (3h)

xP+1,P+1 = 1 (3i)

wn
p,p′ ≤M1rp,p′ ∀(p, p′, n) (3j)

gnp,p′ ≤M2rp,p′ ∀(p, p′, n) (3k)

−
P+1∑
p′=1

wn
p′,p +

P+1∑
p′=1

wn
p,p′ −

P+1∑
p′=1

gnp,p′ = An
pd

n
p − yp ∀(p : p ≤ P, n) (3l)

P+1∑
p=1

P∑
p′=1

gnp,p′ − on + en = L −
P+1∑
p=1

An
pd

n
p ∀n (3m)

rp,p′ , xi,p ∈ {0, 1} , yi ≥ 0 ∀(p, p′, i) (3n)

(wn
p,p′ , g

n
p,p′ , o

n, en ≥ 0) ∀(p, p′, n) (3o)

As described in Berg et al. (2014), this formulation uses a dummy procedure P + 1 that has

zero duration and is always assigned to the appointment slot P + 1. The objective function in

(3a) is the sample average of the weighted linear combination of the total waiting cost, total idling

cost, and overtime cost. Constraints (3b) ensure that each procedure precedes at most one other

procedure. Constraints (3c) ensure that every procedure, except for the dummy procedure and the

first procedure, is included in exactly two precedence relationships. Constraints (3d) state that

a precedence relationship can only exist if that same relationship is defined by the appointment

assignment decisions. Constraints (3e) and (3f) require that each procedure is assigned to one

appoitnment, and each appointment is assigned one procedure. Constraints (3g)–(3i) ensure that

the dummy procedure will be the last procedure as defined by the binary precedence variables

and the appointment slot assignment variables. If procedure p does not precede procedure p′,

the associated sequence-dependent waiting and idle times will be 0 by constraints (3j) and (3k),

where M1 and M2 are sufficiently large constants. Constraints (3l) calculate the waiting and idle

times associated with each procedure based on the waiting time for the preceding procedure. The

clinic’s overtime is defined by (3m). Finally, the remaining constraints specify feasible ranges of

the decision variables.

In the following discussion, we will refer to formulation (1) proposed in this paper as (S) (for

Shehadeh et al.), and to formulations (2) of Mancilla and Storer (2013) and (3) of Berg et al. (2014)

as (M) and (B), respectively.

Note that each of the three models has different capabilities in handling various waiting and

idling cost structures. Our model (S) can handle situations where the costs are appointment-
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Table 4: Sizes of formulations of the SOPSP with P procedures and N scenarios.

(B) (M) (S)

# Binary variables 2P 2 + 4P + 2 P 2 P 2

# Continuous variables P + 1 +N(2P 2 + 4P + 4) P +N(2P 2 + 2) P +N(2P + 1)

# First-stage constraints P 3 + 5P 2 + 11P + 10 P 2 + 3P P 2 + 3P

# Second-stage constraints N(4P 2 + 9P + 5) N(4P 2 + P + 2) 5NP

specific, model (M) can handle situations where the costs are patient-specific, and model (B) can

handle situations where the costs depend on the sequence of patients in the schedule.

We also note that the models take different approaches to calculating waiting times and costs

in the presence of no-shows: both in model (M) and our model (S), waiting cost is incurred if an

appointment runs late, even if the patient assigned to the following appointment does not show

(indeed, a no-show patient is treated as a procedure with duration 0), while in model (B) no waiting

cost is incurred in this situation.

In the remainder of the paper, we will consider the SOPSP under the following additional

assumptions: (i) zero no-show rate (i.e., An
p = 1 ∀(p, n)); (ii) identical waiting costs across ap-

pointments and procedures, i.e., λwi = λw ∀i, λwp = λw ∀p, and λwp,p′ = λw ∀(p, p′); and (iii)

identical idling costs across appointments and procedures, i.e., λgi = λg ∀i, λgp = λg ∀p, and λgp,p′ =

λg ∀(p, p′). Under these assumptions, models (S), (M), and (B) are SMILP formulations of the same

SOPSP and are, therefore, equivalent. Table 4 presents the respective sizes, in terms of number of

variables and constraints, of the three formulations under these assumptions.

4. Computational Experiments

In this section, we present computational experiments that explore the size and characteristics

of the SOPSP instances that can be solved with the three SMILP formulations presented in Section

3.2. In Section 4.1, we describe the set of the SOPSP instances that we constructed for our

experiments, explain how we generated a testbed of sample average approximations (SAAs) for

each instance, and discuss other experimental settings. We then present results in Section 4.2,

comparing the computational performance of the three formulations.
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Table 5: Characteristics of SOPSP instances.

Instance # of Procedures # of Types Procedures to be scheduled (by type)

1 4 procedures 3 types (2A, 1C, 1J )

2 5 procedures 4 types (2A, 1G, 1H,1J)

3 5 procedures 4 types (1A, 1D,2G, 1J)

4 6 procedures 5 types (1A, 1B, 1F, 2G, 1H)

5 7 procedures 5 types (1C, 1D, 1F, 1H, 3J)

6 7 procedures 6 types (1A, 1B, 1D, 1E, 2G, 1J)

7 10 procedures 6 types (3A, 1C, 1D, 1G, 1I,3J)

8 10 procedures 6 types (2A, 1B, 1D, 2G, 2I, 2J)

9 10 procedures 2 types (6CL, 4U)

10 11 procedures 8 types (2A, 1C, 2E, 1F, 1G, 1H, 2I, 1J)

11 11 procedures 6 types (2A, 2F, 1G, 2H, 2I, 2J)

12 12 procedures 2 types (9R, 3N)

13 16 procedures 2 types (12R, 4N)

14 20 procedures 2 types (15R, 5N)

4.1. Description of experiments

Due to data privacy policies at the collaborating OPC preventing us from using real patient data

directly, and in order to study the impact of a variety of problem characteristics on computational

performance, we developed a set of diverse SOPSP instances, in part based on prior literature,

summarized in Table 5. Each of the 14 instances is characterized by the number of procedures to

be scheduled, the types of procedures, and the number of procedures of each type (for example,

Instance 1 involves scheduling 4 procedures: two of type A, one of type C, and one of type J).

Probability distributions of procedure durations by type are contained in Table 6.

Instances 1–8, 10, and 11 were based on the data set provided as part of the AIMMS-MOPTA 5th

Optimization Modeling Competition (http://coral.ise.lehigh.edu/mopta2013/competition).

For each procedure type, we used all procedure duration realizations provided in the data set to fit all

valid parametric distributions using the open source Matlab function allfitdist (Sheppard, 2012),

selecting the distribution with the best combination of the reported Goodness of Fit metrics (e.g.,

Akaike Information Criterion, Bayesian Information Criterion, Negative of the Log Likelihood).

Instance 9 was based on the problem studied by Berg et al. (2014), which includes procedures

of two types: colonoscopies (CL) and upper endoscopies (U). Instances 12–14 were based on the

problem studied in Deceuninck et al. (2018), where 75% of the patients are newly referred (N) and

the remaining 25% are follow-up return (R) patients. Accordingly, we constructed instances with

up to 20 procedures, since this is by far the maximum number of patients a single provider can

see in a clinic session. In each instance, we set L equal to the expected total duration of the P

procedures, as is done in Mancilla and Storer (2013), Berg et al. (2014), and others.

We considered three different sets of weights for the multi-criteria objective function: (i) λw =

13
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Table 6: Distribution information for procedure duration, by type.

Procedure type Mean Variance Distribution

A 9.83 12.08 Lognormal

B 81.46 804.56 Normal

C 59.75 652.69 Lognormal

D 34.53 303.94 Lognormal

E 120.84 2.38e+3 Lognormal

F 47.76 232.06 Lognormal

G 43.94 469.86 Gamma

H 39.90 129.28 Lognormal

I 95.13 2.430e+3 Lognormal

J 19.51 99.36 Lognormal

U 12.05 188.57 Weibull

CL 30.96 58.75 Weibull

R 20.00 256.00 Lognormal

N 30.00 576.00 Lognormal

λg = λo; (ii) λw = 1, λg = 0, λo = 10; and (iii) λw = 1, λg = 5, λo = 7.5. For the first set

of weights, each of the three objectives is equally important. The second set comes from Berg

et al. (2014), where it was motivated by the argument that instances with λg 6= 0 proved to be

computationally easier. The third set comes from Deceuninck et al. (2018), where the authors

assumed that the overtime cost is 50% higher than the regular idling cost based on the OPC

literature and practice (Cayirli et al., 2006; Deceuninck et al., 2018). Note that, with these sets of

weights, formulations (S), (M), and (B) are equivalent.

We added symmetry-breaking constraints (see Denton et al., 2010; Berg et al., 2014; Ostrowski

et al., 2011) to all three models, recognizing that the durations of procedures of the same type

are identically distributed. In particular, let Pq be the set of procedures of type q, q = 1, . . . , Q.

Without loss of generality, we can assume that procedures within each Pq are numbered sequentially.

We added the following symmetry-breaking constraints to all three models:

xi,p −
P∑
j>i

xj,p+1 ≤ 0 ∀i = 1, ..., P, ∀p : p, p+ 1 ∈ Pq, ∀q = 1, . . . , Q, (4)

indicating that, if procedures p and p+ 1 are of the same type, p is scheduled before p+ 1.

For each of the 14 SOPSP instances and 3 sets of objective function weights, we generated 10

SAAs, for a total of 420 SAA instances, each with 1000 scenarios (as in Berg et al., 2014).

We represented and solved the 420 SAA instances using the AMPL modeling language and IBM

ILOG CPLEX Optimization Studio (version 12.6.2). We used the default settings of the solver since

our experiments showed no consistent benefits of any parameter or settings tuning. We imposed a

solver time limit of 7,200 second (2 hours) for each SAA instance. We performed all experiments on

an HP workstation running Windows Server 2012 with two 2.10GHz Intel E5-2620-v4 processors,
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Table 7: Solution times (in seconds) using model (S)

SOPSP λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5

Instance Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

1 2 3±0.34 3 3 3±1 7 3 3±0.2 7

2 10 13±2 17 8 11±3 17 4 5±0.9 7

3 8 9±0.9 11 5 5±0.4 6 5 6±0.6 7

4 33 41±6 55 21 23±2 26 23 25±2 28

5 53 65±9 77 44 51±6 60 41 49±5 57

6 99 111±7 122 52 58±8 80 57 70±8 79

7 215 276±46 334 153 176±36 276 168 197±28 248

8 237 284±24 310 140 170±29 242 205 226±18 269

9 57 70±8 85 44 55±6 61 46 53±4 58

10 588 769±105 937 178 226±37 293 233 270±33 342

11 254 357±61 460 660 770±37 987 251 326±43 375

12 83 107±12 123 70 78±5 86 100 116±11 130

13 363 466±59 551 242 297±35 349 455 512±55 602

14 862 1218±164 1464 461 549 ±76 703 461 549 ± 76 703

Table 8: Ratios of solution times of models (B) and (S) on SAAs solved by both.

λw = λg = λo (a) λw = 1, λg = 0, λo = 10 (b) λw = 1, λg = 5, λo = 7.5 (b)

Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

6 31±29 116 4 33±27 107 8 51±35 138

[a] SOPSP Instances 1–6, 10 SAA instances each.

[b] SOPSP Instances 1–5, 10 SAA instances each.

each with 8 cores (16 total) and 128 GB shared RAM.

4.2. Discussion of results

Recall that formulation (1) proposed in this paper is designated by (S), and formulations (2) of

Mancilla and Storer (2013) and (3) of Berg et al. (2014) are designated by (M) and (B), respectively.

Henceforth, we will assume that constraints (4) are included in each of the models.

Using our proposed model (S), we were able to solve all 420 instances of the SAAs associated

with the SOPSP instances described in Table 5 within the imposed time limit of two hours. In

fact, all solution times were less than 25 minutes; see Table 7 for details. Below, we compare the

computational performance of model (S) with models (M) and (B).

4.2.1. Comparison with model (B) of Berg et al. (2014)

Using model (B), we were able to solve 160 of the 420 SAA instances to optimality within two

hours, namely, all 60 SAAs that correspond to SOPSP Instances 1–6 and the first weight set, and
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Table 9: Ratios of optimal objective values of LP relaxations of (S) and (B).

λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5

Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

1.95 2.62±0.41 3.48 1.11 1.38±0.26 2.08 1.27 1.64±0.33 2.49

Table 10: Relative MIP gap at termination for SAAs not solved by (B) in two hours.

λw = λg = λo(a) λw = 1, λg = 0, λo = 10(b) λw = 1, λg = 5, λo = 7.5(b)

Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max

41% 54±0.08% 70% 19% 34±0.09% 53% 16% 40±0.09% 52%

[a] SOPSP Instances 7–12, 10 SAA instances each.

[b] SOPSP Instances 6–11, 10 SAA instances each.

all 100 SAAs that correspond to Instances 1–5 with the second and third weight sets. We present

a comparison of solution times of these 160 SAAs by models (S) and (B) in Table 8. Observe that

model (B) takes from 6 to 138 times longer than model (S). We attribute the difference in solution

times to two primary reasons. First, as shown in Table 4, model (B) has significantly more variables

and constraints. As argued by Artigues et al. (2015); Jünger et al. (2009); Fortz et al. (2017); Keha

et al. (2009); Klotz and Newman (2013); Morales-España et al. (2016); Pochet and Wolsey (2006),

this increase in model size often suggests an increase in solution time for the linear programming

(LP) relaxations. Second, as shown in Table 9, for all 420 SAAs, the LP relaxations obtained using

model (S) were strictly tighter than using model (B), by a factor of 1.11 to 3.48.

Finally, for the 260 SAAs that were not solved by model (B) in two hours, we report the relative

MIP (relMIP) gap, calculated as relMIP gap = UB−LB
UB × 100%, where UB is the best upper bound

and LB is the linear programming relaxation-based lower bound obtained at termination after 2

hours. Of the 260 SAAs in question, 180 terminated with a relMIP gap between 16% and 70% (see

Table 10 for details), while the remaining 80 SAAs terminated without any feasible MIP solutions

(and thus no upper bound).

4.2.2. Comparison with model (M) of Mancilla and Storer (2013)

Using model (M), we solved 340 of the 420 SAAs to optimality within the two hour time limit.

We present performance comparisons for these instances in Table 11. Table 12 identifies the SOPSP

instances that gave rise to the remaining 80 SAAs.

In exploring the difference in solution times between the two models, we first observe that they

have the same first-stage formulation. Furthermore, as we prove in Theorem 1 in Appendix A,

the LP relaxations of the two models have the same optimal objective values. In fact, using the

same proof techniques, we can show that, given any set of values of variables xi,p ∀(i, p) that satisfy

constraints (1b) and (1c) (which are identical to constraints (2b) and (2c)) and 0 ≤ xi,p ≤ 1 ∀(i, p),
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Table 11: Comparison of performance of models (M) and (S) on SAAs solved by both: solution time, number of

nodes, simplex iterations.

λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5

Ratio Min Avg±stdv Max Min Avg±stdv Max Min Avg±stdv Max
(M) sol. time
(S) sol. time 1.2 7±4 21 2 13±9 43 1.1 7±5 27

(M) nodes
(S) nodes 0.5 1±0.2 1.4 0.2 1±0.3 1.9 0.4 1±0.2 1.4

(M) iterations
(S) iterations 1 11±15 119 1 12±19 133 1 16±22 113

Table 12: Number of SAA instances that were not solved to optimality in the two hours by model (M).

SOPSP Instance # λw = λg = λo λw = 1, λg = 0, λo = 10 λw = 1, λg = 5, λo = 7.5
10 10 5 4
11 10 10 0
13 6 2 3
14 10 10 10

the optimal objective value obtained by optimizing the remaining (continuous) variables will be the

same for either model. This suggests that a branch-and-bound algorithm would perform similarly

on both models in terms of the number of nodes explored (recognizing that there will be variability

due to CPLEX preprocessing and implementation of branch-and-cut instead of a traditional branch-

and-bound). The ratios between the number of nodes explored by CPLEX for the two models for

the 340 SAAs solved by both are, indeed, on average equal to 1 for each of the weight sets, as

reported in Table 11.

Clearly, then, the difference in solution times between models (S) and (M) is primarily due

to differences in time spent exploring each node. This is supported further by Table 11 which

reports the ratios in the numbers of simplex iterations required to solve each instance using the two

models. The number of iterations is typically much larger for model (M), presumably as a result

of the significantly larger second-stage formulation (see Table 4).

Finally, for the 80 SAAs that were not solved by model (M) in 2 hours, the relMIP gap at

termination was 15% on average, with the maximum of 25%.

5. Conclusion

In this paper, we presented a new stochastic mixed-integer linear programming model for the

Stochastic Outpatient Procedure Scheduling Problem (SOPSP) using a sample-average approxi-

mation. This problem considers the perspective of an OPC manager who must schedule the start

times for a day’s worth of procedures for a single provider, where each procedure has a known type

and a random (non-negative) duration that follows a known probability distribution associated
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with the procedure type. Given the uncertainty in procedure duration, the goal is to a minimize

the expectation of a weighted sum of patient waiting time, provider idle time, and clinic overtime.

Our model allows for appointment-dependent waiting and idling costs, and treats patient no-shows

as procedures with duration 0.

The SOPSP is a basic (yet still challenging) offline single-resource stochastic sequencing and

scheduling problem that has been studied in various forms by several previous authors. Therefore,

we compared our model with two closely-related models by Mancilla and Storer (2013) and Berg

et al. (2014) under assumptions that ensure their equivalence, and analyzed them both empiri-

cally and theoretically. Computational results demonstrated where significant improvements in

performance could be gained with our proposed model.

In addition to empirical tractability, our modeling approach has the advantage of implementabil-

ity. Indeed, our proposed model performed well in the computational experiments that were per-

formed using commonly available computer resources, a standard optimization modeling tool, and

a commercial MILP solver with default settings — in other words, it did not require development

of any specialized algorithms or a time-consuming search for beneficial software parameter settings.

This is in contrast to previously-studied models of Mancilla and Storer (2013) and Berg et al.

(2014), which were used in conjunction with specially-developed algorithms or heuristics in the

original papers, but did not perform as well as our model with straightforward implementation.

Implementability in the above sense is necessary for an optimization-based decision support tool

to gain wide adoption in OPCs and other healthcare systems that do not have ongoing access to

support staff with optimization expertise, and thus is a valuable feature of our proposed model.

We suggest three areas for future research. First, we would like to extend our approach to include

additional sources of uncertainty, particularly variability in patient arrival time. In addition, we are

interested in studying trade-offs between “day-of” metrics such as provider idling and patient delay

and access delays, i.e., the length of time a patient has to wait before a scheduled appointment is

available to them. Finally, our model assumes static scheduling, i.e., scheduling of a fixed number

of patients whose procedure types are known in advance. We seek to use the results of this research

to develop templates and policies for scheduling patients dynamically as they randomly request

future appointments.
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Appendix A. Comparison of linear programming relaxations of models (S) of (1) and

(M) of (2)

In this section, we compare the LP relaxations of models (S) of (1) and (M) of (2) under the

assumption that waiting and idling costs are identical across appointments and procedures, i.e.,

that λwi = λw and λgi = λg ∀i, and λwp = λw and λgp = λg ∀p. Since these two models take the

same approach to waiting time and cost calculations in case of patient no-shows (see discussion in

Section 3), we allow for no-shows, which would be represented as procedures with duration 0.

Theorem 1. Suppose λw > 0, and λg > 0 and/or λo > 0. The linear programming relaxation of

models (S) of (1) and (M) of (2) are equivalent. In particular, given an optimal solution to the LP

relaxation of (M), we can construct a feasible solution to the LP relaxation of (M) with the same

objective function value, and vice versa.

Proof. Suppose (x̂, t̂, ŝ, ĝ, ô) (with appropriately indexed components) is an optimal solution to the

LP relaxation of (S), which is obtained by replacing constraint (1k) with 0 ≤ x̂i,p ≤ 1 ∀(i, p). Below,

we construct a feasible solution (x̄, t̄, w̄, ḡ, ō, ē) to the LP relaxation of (M) with the same objective

value. (Recall that components of ĝ are indexed differently than those of ḡ.)

• Let x̄ = x̂ and t̄ = t̂. Since x̂ satisfies constraints (1b) and (1c), and 0 ≤ x̂i,p ≤ 1 ∀(i, p), x̄
satisfies (2b) and (2c), and 0 ≤ x̄i,p ≤ 1 ∀(i, p). Similarly, since t̂ satisfies (1j) then t̄ satisfies

(2i). Moreover, if symmetry-breaking constraints (4) are included in both models, they will

be satisfied by both x̂ and x̄.

• Let w̄n
i,p = (ŝni − t̂i) · x̂i,p ∀(i, p, n). Due to constraints (1d), and since x̂i,p ≥ 0, w̄i,p ≥ 0 and

thus satisfies constraints (2h). By construction, w̄i,p = 0 whenever x̂i,p = 0. Moreover, in an

optimal solution of the LP relaxation of (S), t̂ and ŝ will be chosen to ensure that the values

of ŝni − t̂i will not be excessive for any n as long as λw > 0 (otherwise, one would be able to

reduce the waiting component of the cost of the solution). Therefore, constraints (2f) will be

satisfied for sufficiently large M i
1, i = 1, . . . , P .

• Let ḡni,p = ĝni · x̂i,p ∀(i, p, n), which clearly satisfies (2h). By construction, ḡni,p = 0 whenever

x̂i,p = 0. Moreover, in an optimal solution of the LP relaxation of (S), t̂ and ŝ will be chosen

to ensure that the values of ĝni will not be excessive for any n as long as λw > 0, or λg > 0

or λo > 0 (otherwise, one will be able to reduce the waiting or idling/overtime component of

the cost of the solution). Therefore, constraints (2g) will be satisfies for sufficiently large M2.

• Let ōn = ôn ∀n (which satisfies (2h)), and define ēn to satisfy equation (2e) ∀n.

It remains to verify that the vector (x̄, t̄, w̄, ḡ, ō, ē) defined above satisfies constraints (2d), and

ēn ≥ 0 ∀n.
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First, we derive several helpful algebraic expressions. Given the formulae defining w̄n
i,p and ḡni,p,

we have:
P∑

p=1

w̄n
i,p =

P∑
p=1

(ŝni − t̂i) · x̂i,p = (ŝni − t̂i) ·
P∑

p=1

x̂i,p = ŝni − t̂i ∀(i, n) (A.1)

and
P∑

p=1

ḡni,p =
P∑

p=1

ĝni · x̂i,p = ĝni ·
P∑

p=1

x̂i,p = ĝni ∀(i, p), (A.2)

where the last equality, in both cases, is due to (1c). Using (A.1) and (A.2) and the definition of

t̄, the left-hand side of (2d) can be re-written as

t̂i − t̂i+1 − (ŝni+1 − t̂i+1) + ĝni + (ŝni − t̂i) = −ŝni+1 + ĝni + ŝni = −
P∑

p=1

dnp x̂i,p = −
P∑

p=1

dnp x̄i,p, (A.3)

where the second equality follows from (1f), and the third one — from the definition of x̄. This

verifies constraints (2d).

Finally, using the definition of ên via (2e) and expression (A.1), we derive:

ēn = ōn + L −
P∑

p=1

dnp x̄P,p − t̄P −
P∑

p=1

w̄n
P,P = ôn + L −

P∑
p=1

dnp x̂P,p − ŝnP ≥ 0

by (1g).

We conclude that (x̄, t̄, w̄, ḡ, ō, ē) defined above is a feasible solution to the LP relaxation of (M),

with objective function value

1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λww̄n
i,p +

P∑
i=1

P∑
p=1

λg ḡni,p + λoōn
]

=
1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λw(ŝni − t̂i) · x̂i,p +
P∑
i=1

P∑
p=1

λg ĝni · x̂i,p + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) ·
P∑

p=1

x̂i,p +
P∑
i=1

λg ĝni ·
P∑

p=1

x̂i,p + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) +

P∑
i=1

λg ĝni + λoôn
]
,

i.e., equal to the optimal value of the LP relaxation of (S).

Conversely, suppose (x̄, t̄, w̄, ḡ, ō, ē) is an optimal solution to to the LP relaxation of model (M)

of (2). We will construct a feasible solution (x̂, t̂, ŝ, ĝ, ô) to the LP relaxation of (S) with the same

objective value.

• Let x̂ = x̄, t̂ = t̄, and ô = ō, which satisfy constraints (1b), (1c), (1i), (1j), and 0 ≤ x̂i,p ≤
1 ∀(i, p). Moreover, if symmetry-breaking constraints (4) are included in both models, they

will be satisfied by both x̄ and x̂.
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• Let ŝni =
∑P

p=1 w̄
n
i,p + t̄i and ĝni =

∑P
p=1 ḡ

n
i,p ∀(i, n). Due to (2h), ŝ and ĝ satisfy (1h), and ŝ

satisfies (1d).

With the above definitions, (1f) and (1e) readily follow from (2d) and (2h), and (1g) follows

from (2e) and nonnegativity of ē. Therefore, (x̂, t̂, ŝ, ĝ, ô) is a feasible solution to the LP relaxation

of model (S), with objective function value

1

N

N∑
n=1

[ P∑
i=1

λw(ŝni − t̂i) +
P∑
i=1

λg ĝni + λoôn
]

=
1

N

N∑
n=1

[ P∑
i=1

P∑
p=1

λww̄n
i,p +

P∑
i=1

P∑
p=1

λg ḡni,p + λoōn
]
,

i.e., equal to the optimal value of the LP relaxation of (M). This complete the proof.
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