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Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic

programming (SP) problems arising in practical applications. By using incremental sampling, this approach

is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either

scenario reduction or arbitrary sample sizes to create sample average approximations (SAA). SD provides

solutions of similar quality in far less computational time using ordinarily available computational resources.

However, previous versions of SD did not allow randomness to appear in the second-stage cost coefficients.

In this paper, we extend its capabilities by relaxing this assumption on cost coefficients in the second-

stage. In addition to the algorithmic enhancements necessary to achieve this, we also present the details of

implementing these extensions which preserve the computational edge of SD. Finally, we demonstrate the

results obtained from the latest implementation of SD on a variety of test instances generated for problems

from the literature. We compare these results with those obtained from the regularized L-shaped method

applied to the SAA function with different sample sizes.

Key words : Stochastic programming, stochastic decomposition, sample average approximation, two-stage

models with random cost coefficients, sequential sampling.

History :

1. Introduction

The two-stage stochastic linear programming problem (2-SLP) can be stated as:

min f(x) := c⊤x+E[h(x, ω̃)] (1a)

s.t. x∈X := {x | Ax≤ b} ⊆Rn1

where, the recourse function is defined as follows:

h(x,ω) :=min d(ω)⊤y (1b)

s.t. D(ω)y= ξ(ω)−C(ω)x

y ≥ 0, y ∈Rn2.
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The random variable ω̃ ∈ Rr2 is defined over an appropriate probability space, and ω denotes a

realization of this random variable. The problem statement above allows one or more elements

of data (d,D, ξ,C) to depend on the random variable. Moreover, the statement accommodates

both continuous as well as discrete random variables. Computational approaches to address this

formulation, however, have largely focused on problems with finite support, where uncertainty is

represented using a set of realizations {ω1, ω2, . . . , ωN} with their respective probabilities pj, j =

1, . . . ,N known. When N is small, a deterministic equivalent problem can be formulated and solved

using off-the-shelf solvers.

In problems with continuous random variables, calculation of the expectation functional involves

multidimensional integral in high dimension. For such problems, as well as problems where number

of possible realizations is astronomically large, sampling-based methods offer a computationally

viable means for attaining a reasonable approximation. When sampling precedes the optimization

step (i.e., external sampling), the objective function in (1a) is replaced by its so called sample

average approximation (SAA) with a fixed number of outcomes. As an alternative to choosing

the sample size, one can allow the algorithm to dynamically determine a sufficiently large sample

size during optimization. We refer to such a coupling of sampling and optimization as sequential

sampling, and this forms the basis for the stochastic decomposition (SD) algorithm (Higle and Sen

(1991, 1994)).

The SD algorithm allows for seamlessly incorporating new outcomes to improve the approxi-

mation of the expected recourse function without having to restart the optimization. In order to

accomplish this, the algorithm continuously gathers relevant information during the course of its

run, and efficiently re-utilizes this information in future iterations. These features have enabled SD

to provide high quality solutions in far less computational time using ordinary desktop and laptop

computers when compared to methods which involve using SAA to obtain solutions of similar

quality. This was demonstrated on a suite of SP instances in Sen and Liu (2016) and on a real

scale power system operations planning problem in Gangammanavar et al. (2016).

Nevertheless, previous research on SD, including the most recent work of Sen and Liu (2016),

focuses on 2-SLPs where uncertainty effects only the right-hand side elements of subproblem (1b),

i.e., elements of vector ξ and matrix C. In this paper we extend the capability of SD to address

2-SLPs with random cost coefficients.

In classical approaches to solve 2-SLPs – including the L-shaped method (Van Slyke and Wets

(1969)) – the subproblems for all realization are solved in every iteration and outer linearization

generated in an iteration are based on dual multipliers computed only in that iteration. Hence, when

compared to computational workload for 2-SLPs with deterministic second-stage cost coefficients,

an instance with random cost coefficients does not pose any additional difficulty for such methods.
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On the other hand, the reliance on information discovered in earlier iterations to generate SD

approximations, and in particular, the repeated use of previously discovered dual vertices can no

longer be justified for the case when cost coefficients have random elements. In light of this, the

main contributions of this work are as follows:

• We show that in the presence of random cost coefficients, dual vertices can be represented

by a decomposition consisting of a deterministic representation together with a shift vector which

depends on the realization of the random variable. This shift vector can be applied both when

the elements of d(ω) are dependent or independent. Moreover, the dimension of the shift vector

depends on the number of random elements in d. For instances in which the number of random

elements is small, the dimension of shift vectors is also small, thus allowing SD to retain many of

the advantages available in the case of fixed second-stage cost coefficients.

• We design extensions of previous SD data structures to accommodate the introduction of

random cost coefficients without sacrificing most of the computational advantage of SD. However,

the number of random cost coefficients does have a negative impact on the algorithm’s performance.

In view of this, we also identify structures, in presence of which we are able to overcome these

negative impacts.

• We design new instances with random cost coefficients which can be used to benchmark

stochastic programming (SP) algorithms. We also present new computational results obtained from

our enhanced SD algorithm and compare them to those obtained for the L-shaped method applied

to SAA of the problems.

The rest of the paper is organized as follows. In §2 we present a succinct review of the the SD

algorithm focusing on the principal steps involved in computing the statistical approximations of

the first-stage objective function. In §3 we will formalize all the key algorithmic ideas necessary

to enable the SD algorithm to address problems with random cost coefficients. Our discussion will

also include notes on challenges associated with implementing these ideas and our approach to

address them. This will be followed by a narration of our computational experience in §5 on both

small and large scale instances.

2. Background: Stochastic Decomposition

Before we our present work, a brief overview of the SD algorithm is in order. We refer the reader

to Higle and Sen (1991), Higle and Sen (1994) and Sen and Liu (2016) for a detailed mathematical

exposition of this algorithm. Our discussion here will focus on the construction of lower bounding

approximations of the expected recourse function in (1a) with an eye towards computer implemen-

tation. In the remainder of this paper, the programming constructs will be presented in typewriter

font to distinguish them from the mathematical constructs.



4 Gangammanavar, Liu, and Sen: Stochastic Decomposition for 2-SLPs with Random Cost Coefficients

In this section, we present a high level description of the regularized SD algorithm while ignoring

the algorithmic details regarding incumbent-update (used in the proximal term of regularized

version) and stopping rules. In particular, we will focus on the information that is collected during

the course of the algorithm, and discuss how this information is utilized to generate/update the

approximations in a computationally efficient manner. We first state the assumptions for the 2-SLP

models as required by previous versions of SD.

Assumption 1. The 2-SLP model satisfies fixed recourse, in other words, the recourse matrix

D is not affected by uncertainty.

Assumption 2. The cost coefficient vector d of subproblem (1b) are deterministic.

We will denote outcomes of random variables using a superscript over the parameter’s name. For

instance ξj and Cj are equivalent to ξ(ωj) and C(ωj), respectively. The letter k will be reserved

to denote the algorithm iteration counter.

2.1. Algorithmic Description

The principal steps of regularized SD are presented in Algorithm 1. We begin our description at

iteration k when we have access to a candidate solution xk, an incumbent solution x̂k and the

current approximation fk(x). The iteration begins by sampling an outcome ωk of the random

variable ω̃. If this outcome is encountered for the first time, it is added to the collection of unique

outcomes Ok−1 := {ω1, ω2, . . .} observed during the first (k − 1) iterations of the algorithm. The

current candidate solution xk and outcome ωk are used to evaluate the recourse function h(xk, ωk)

by solving the subproblem (1b) to optimality. The resulting optimal dual solution πk
k is added to the

collection of previously discovered dual vertices Vk−1
0 , i.e., Vk

0 = Vk−1
0 ∪ {πk

k}. Using the outcomes

in Ok, one may define a SAA function:

F k(x) = c⊤x+
1

k

k
∑

j=1

h(x,ωj) (2)

which uses a sample size of k. In iteration k the SD algorithm creates an approximation fk(x)

which satisfies fk(x) ≤ F k(x). In order to see how this is accomplished we make the following

observations:

1. Under Assumption 1 and 2, the dual feasible region Π0 := {π | D⊤π ≤ d} is a deterministic

set.

2. Linear programming duality ensures that a π ∈ Vk
0 satisfies π⊤[ξ(ω̃)−C(ω̃)x]≤ h(x, ω̃) almost

surely for all x∈X .



Gangammanavar, Liu, and Sen: Stochastic Decomposition for 2-SLPs with Random Cost Coefficients 5

Thus, we identify a dual vertex in Vk
0 which provides the best lower bounding function for each

summand in the SAA function of (2) as follows:

πk
j ∈ argmax{π⊤[ξj −Cjxk] | π ∈ Vk

0 } ∀ ωj ∈Ok, j 6= k. (3)

During our presentation of the algorithmic aspects, we use the function argmax(·) to represent

the procedure in (3). Since πk
k is the optimal dual solution of the subproblem in (1b) with (xk, ωk)

as input, it can be used to compute the best lower bound for h(x,ωk), and hence, invoking the

argmax(·) procedure is not necessary for j = k. These dual vertices {πk
j } are used to compute the

subgradient βk
k and the intercept term αk

k of an affine function ℓkk(x) as follows:

αk
k =

1

k

k
∑

j=1

(πk
j )

⊤ξj; βk
k = c− 1

k

k
∑

j=1

(Cj)⊤πk
j . (6)

Algorithm 1 Regularized SD Algorithm

1: Input: Scalar parameters σ > 0, q > 0, and τ > 0.

2: Initialization: Solve a mean value problem to obtain x1 ∈X . Initialize O0 = ∅, V0 = ∅, x̂0 = x1,

σ0 = σ and k← 0. Set optimality flag to FALSE.

3: while optimality flag = FALSE do

4: k← k+1.

5: Generate an independent outcome ωk and update Ok←Ok−1 ∪{ωk}.
6: Setup and solve linear programs to evaluate h(xk, ωk) and h(x̂k, ωk).

7: Obtain optimal dual solutions πk
k and π̂k, and update Vk

0 ←Vk−1
0 ∪{πk

k , π̂
k
k}.

8: Include new affine functions ℓkk(x) = form cut(Vk
0 , x

k, k); ℓ̂kk(x) = form cut(Vk
0 , x̂, k);

9: Update previously generated affine functions {ℓkj} = update cuts({ℓk−1
j }, k);

10: Update the first-stage objective function approximation as:

fk(x) = max
j=1,...,k−1

{ℓkj (x), ℓkk(x), ℓ̂kk(x)}. (4)

11: x̂k =incumbent update (fk, fk−1, x̂k−1, xk);

12: σk =update prox(σk−1,‖xk − x̂k−1‖, xk, x̂k);

13: Obtain the next candidate solution by solving the following regularized master problem:

xk+1 ∈ argmin{fk(x)+
σk

2
‖x− x̂k‖2 | x∈X}. (5)

14: optimality flag = check optimality(x̂k,{ℓkj (x)});
15: end while
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Similar calculations with respect to the incumbent solution yields another affine function ℓ̂kk(x) =

α̂k
k +(β̂k

k)
⊤x, where x̂k replaces xk in (3) and the corresponding dual multipliers are used to obtain

(α̂k
k, β̂

k
k) in (6). Both the candidate affine function ℓkk(x) and the incumbent affine function ℓ̂kk(x)

provide lower bounding approximation of the SAA function in (2). Note that the SAA function uses

a larger collection of outcomes as algorithm proceeds, and hence, an affine function ℓjj generated at

an earlier iteration j < k provides a lower bounding approximation of the SAA function F j(x), but

not necessarily F k(x). Consequently, the affine functions generated in earlier iterations need to be

adjusted such that they continue to provide lower bound to the current SAA function F k(x). For

models which satisfy h(x, ω̃)≥L almost surely, the adjustment can be achieved using the following

recursive calculations:

αk
j ←

k− 1

k
αk−1
j +

1

k
L, βk

j ←
k− 1

k
βk−1
j j =1, . . . k− 1. (7)

The most recent piecewise linear approximation fk(x) is defined as the maximum over the new

affine functions (ℓkk(x) and ℓ̂kk(x)) and the adjusted old affine functions (ℓkj (x) for j < k). This

update is carried out in Step 10 of Algorithm 1. The next candidate solution is obtained using this

updated function approximation. The cut formation is performed in the function form cut(·), and
the updates are carried out in update cuts(·).
We postpone the discussion on implementational details of functions form cut(·),

update cuts(·), update prox(·) and argmax(·) until §4. In this paper, we do not dis-

cuss the details regarding incumbent update and stopping rules (incumbent update(·) and

check optimality(·), respectively). These details can be found in earlier works, in particular Higle

and Sen (1999) and Sen and Liu (2016). We end this section by drawing attention to two salient

features of the SD algorithm.

• Dynamic Sample Size Selection: A key question when SAA is used is to determine how many

outcomes must be used so that the solution to the sampled instance is acceptable to the true

problem. The works of Shapiro and Homem-de Mello (1998), Kleywegt et al. (2002) offer some

guidelines using measure concentration approaches. While the theory of SAA recommends a sample

size for a given level of accuracy, such sample sizes are known to be conservative, thus prompting a

manual trial-and-error strategy of using an increasing sequence of sample sizes. It turns out that the

computational demands for such a strategy can easily outstrip computational resources. Perhaps,

the best known computational study applying SAA to some standard test instances was reported

in Linderoth et al. (2006) where experiments had to be carried out on a computational grid with

hundreds of nodes. The SD algorithm allows for simulation of a new outcome concurrently with the

optimization step. This avoids the need to determine the sample size ahead of the optimization step.
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Further, the SD stopping criteria not only assess quality of current solution, but also determine

whether increasing the sample size will have any impact on future function estimates and solutions.

These procedures together allow SD to dynamically determine the statistically adequate sample

size which can be sufficiently stringent to avoid premature termination.

• Variance Reduction: In any iteration the SD algorithm builds affine lower bounding functions

ℓkk and ℓ̂kk, created at the candidate solution xk and the incumbent solution x̂k, respectively. Both

these functions are created using the same stream of outcomes. This notion of using common

random numbers is commonly exploited in simulation studies, and is known to provide variance

reduction in function estimation. In addition to that, Sen and Liu (2016) introduced the concept

of “compromise decision” within the SD framework which uses multiple replications to prescribe a

concordant solution across all replications.This replication process results in reducing both variance

and bias in estimation, and therefore, the compromise decision is more reliable than solutions

obtained in individual replications.

3. SD for Recourse with Random Cost Coefficients

In this section we will remove Assumption 2 and allow the cost coefficients of subproblem (1b)

to depend on uncertainty. We will, however, retain Assumption 1. More specifically, we can think

of the vector valued random variable ω̃ as inducing a vector (ξj,Cj, dj)⊤ associated with each

outcome ωj. As a result, the dual of subproblem (1b) with (x,ωj) as input is given as

max {π⊤[ξj −Cjx] | D⊤π≤ dj}. (8)

Notice that the dual polyhedron depends on the outcome dj associated with the observation ωj.

This jeopardizes the dual vertex re-utilization scheme adopted by SD to generate the best lower

bounding function in (3) as all elements of the set Vk
0 may not be feasible for some observation ωj.

The main effort in this section will be devoted to designing a decomposition of the dual vectors

such that calculations for obtaining lower bounding approximations and for establishing feasibility

of dual vectors can be simplified. To do so, we first leverage Assumption 1 to identify a finite

collection of basis submatrices of D. Since D(ω̃) = D, almost surely, the basis submatrices are

deterministic. Secondly, without loss of generality, we represent a random vector as the sum of its

deterministic mean and a stochastic shift vector. Consequently, the optimal solution of (8) can be

decomposed into a deterministic component and a stochastic shift vector. In the following, we will

present this procedure in greater detail.
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3.1. Sparsity Preserving Decomposition of Second-Stage Dual Vectors

An important notation used frequently here is the index set of basic variables Bj, and a collection

of such index sets Bk. When subproblem (1b) is solved to optimality in iteration k, a corresponding

optimal basis is discovered. We record the indices of the basic variables Bk into the collection of

previously discovered index sets as: Bk = Bk−1∪Bk. We will use DB to denote the submatrix of D

indexed by B.

In the kth iteration, the optimal dual solution πk
k and basis DBk of the subproblem (1b) with

(xk, ωk) as input satisfies

D⊤

Bkπ
k
k = dk

Bk . (9)

Letting d̄= E[d(ω̃)], we can express the kth outcome for cost coefficient in terms of the expected

value d̄ and deviation from the expectation δ(ωk) (or simply δk) as

dk = d̄+ δk. (10)

Using the decomposed representation of cost coefficients (10) for only the basic variables in (9)

yields the optimal dual vector as solution which has the following form

πk
k = (D⊤

Bk)
−1d̄Bk +(D⊤

Bk)
−1δkBk . (11)

This allows us to decompose the dual vector into a two components πk
k = νk + θkk , where

νk = (D⊤

Bk)
−1d̄Bk , θkk = (D⊤

Bk)
−1δkBk . (12)

While the deterministic component νk is computed only once for each newly discovered basis DBk ,

the stochastic component θkk (shift vector) depends on the basis DBk as well as observation ωk.

Our motivation to decompose the dual vector1 into these two components rests on the sparsity of

deviation vector δj
Bi associated with previous (j = 1, . . . , k− 1) and future observations ωj, j > i.

Only basic variables with random cost coefficients can potentially have a non-zero element in vector

δj
Bi .

3.2. Description of the Dual Vertex Set

Let us now apply the above decomposition idea to describe the set of dual vectors associated with

an observation ωj and all the index sets encountered until iteration k. We will denote this set by

Ṽk
j . Since for every basis DBi the deterministic component νi associated with it is computed only

when it is discovered, our main effort in describing the set of dual vertices is in the computation

of the stochastic component θij (see (12)).

1 The dual vector πi
j and its components (νi, θij) are indexed by j and i. The subscript j denotes the the observation

ωj and the superscript i denotes the index set Bi associated with the dual vector.
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For an index set Bi, let B̃i ⊆ Bi index the basic variables whose cost coefficients are random,

and en denote the unit vector with only the nth element equal to 1 and the remaining elements

equal to 0. Using these, we define a submatrix of basis inverse matrix (D⊤

Bi)
−1 as follows:

Φi = {φi
n = (D⊤

Bi)
−1en | n∈ B̃i}. (13)

In essence, the matrix Φi is built using columns of the basis inverse matrix corresponding to basic

variables with random cost coefficients. We will refer to these columns as shifting direction vectors.

Using these shifting directions, the stochastic component can be computed as:

θij =Φiδj
B̃i =

∑

n∈B̃i

φi
nδ

j
n. (14)

With every discovery of a new basis, we will compute not only the deterministic component νi,

but also the shifting vectors Φi. These two elements are sufficient to completely represent dBi(ωj),

and consequently the dual vector πi
j, associated with any observation. Using these, the dual vector

set associated with an observation can be built as follows:

Ṽk
j := {πi

j | πi
j = νi +Φiδj

B̃i , ∀i∈Bk}. (15)

With every new observation encountered, one can use the pre-computed elements νi and Φi to

generate the set of dual vectors. This limits the calculation to computationally manageable sparse

matrix multiplication in (14). We will present ideas for efficiently utilizing the decomposition of

dual vectors to directly compute coefficients of affine function ℓ(x) later in this section, but before

that we will discuss techniques used to address one additional factor, namely, determining feasibility

of dual vectors in Ṽk
j .

3.3. Feasibility of Dual Vectors

We are interested in building the set Vk
j ⊆ Ṽk

j of feasible dual vectors associated with observation

ωj. When Assumption 2 is in place, the cost coefficients are deterministic and the stochastic

shift-vector δj = 0 for all observations in Ωk. Therefore, every dual vector can be represented using

only the deterministic component, i.e., πi
j = νi for all j. In other words, for every element in the set

Vk
0 there is a unique basis which yields a dual vector νi = (D⊤

Bi)
−1d̄Bi = (D⊤

Bi)
−1dBi that is feasible

for all observations ωj ∈Ωk.

However in the absence of Assumption 2, a basis DBi encountered using an observation ωj′

may fail to yield a feasible dual vector for another observation ωj for which δj 6= δj
′

. Therefore, we

will need to recognize whether a index set Bi will admit dual feasibility for a given observation ωj.

We formalize the dual feasibility test and necessary computations through the following theorem.
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Theorem 1. Let Π0 = {π | D⊤π≤ d̄} be a nonempty polyhedral set, and V0 be the set of vertices

of system describing Π0. For a vector valued perturbation δ(ω), let Πω = {π | D⊤π ≤ d̄+ δ(ω)}
represent the perturbed polyhedral set and Vω the set of vertices of Πω. Given a feasible index set

B, the following statements are equivalent:

1. A vertex of Π0, say ν ∈ V0, can be mapped to a vertex of perturbed polyhedra on Πω as ν+θω ∈
Vω where θω = (D⊤

B)
−1δB(ω) is a parametric vector of ω.

2. Gd+Gδ(ω)≥ 0, where G= [−D⊤
N(D

⊤
B)

−1,I].

Proof. We will begin by first showing that 1 =⇒ 2.

Since ν is a vertex of deterministic polyhedra on Π0, it is the solution of a system of equations

given by D⊤
Bπ = d̄B. That is, ν = (D⊤

B)
−1d̄B. Let N denote the index set of non-basic variables,

and consequently DN is the submatrix of recourse matrix D formed by the columns corresponding

to non-basic variables. Since the current basis DB is also feasible for perturbated polyhedra Πω, a

basic solution can be identified by solving the following system of equations:

D⊤

Bπ= d̄B + δB(ω) = D⊤

Bν+ δB(ω),

⇔ D⊤

B(π− ν) = δB(ω),

⇔ π= ν+(D⊤

B)
−1δB(ω).

The second equality is due to d̄B =D⊤
Bν. Using (D⊤

B)
−1δB(ω) = θω, we can define the basic solution

of perturbed polyhedron as π= ν+ θω. This basic solution is feasible, i.e. π ∈ Vω, if it also satisfies

the following system:

D⊤

Nπ≤ d̄N + δN(ω)

⇔ D⊤

Nν+D⊤

Nθω ≤ d̄N + δN(ω)

⇔ 0≤ [−D⊤

N(D
⊤

B)
−1d̄B + d̄N ] + [−D⊤

N(D
⊤

B)
−1δB(ω)+ δN(ω)]

= [−D⊤

N(D
⊤

B)
−1,I][d̄⊤

B, d̄
⊤

N ]
⊤ + [−D⊤

N(D
⊤

B)
−1,I][δB(ω)

⊤, δN(ω)
⊤]⊤

= Gd̄+Gδ(ω)

where, G = [D⊤
N(D

⊤
B)

−1,I] with I as an (n2 −m2) dimensional identity matrix. Therefore, π =

ν+ θω ∈ Vω implies that Gd̄+Gδ(ω)≥ 0.

In order to show that 2 =⇒ 1, we can start with the definition G= [D⊤
N(D

⊤
B)

−1,I] and rearrange

the terms to get:

D⊤

N [(D
⊤

N)
−1d̄B +(D⊤

B)
−1δB(ω)]≤ dN . (16a)
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Define π= (D⊤
B)

−1d̄B +(D⊤
B)

−1δB(ω) and note that:

D⊤

Bπ= [D⊤

B(D
⊤

B)
−1]d̄B + [D⊤

B(D
⊤

B)
−1]δB(ω) = d̄B + δB(ω) = dB (16b)

From (16a) and (16b) we can conclude that π is a vertex of Πω. Moreover, when δ(ω) = 0 for all ω,

we obtain D⊤
N(D

⊤
B)

−1d̄B ≤ d̄N and D⊤
B(D

⊤
B)

−1d̄B = d̄B which implies that ν = (D⊤
B)

−1 is a vertex of

dual polyhedron Π0. Q.E.D.

The implication of the above theorem is that the feasibility of a basis DB associated with an index

set B ∈ Bk with respect to an observation ω ∈ Ωk can be established by checking if the following

inequality is true:

[−D⊤

N(D
⊤

B)
−1,I][δ⊤B(ω), δ

⊤

N(ω)]
⊤ ≥ ḡ (17)

where ḡ = [D⊤
N(D

⊤
B)

−1,−I]d̄. Once again note that the term on the right-hand side of (17) is a

dense matrix-vector multiplication which only needs to be calculated when the basis is discovered

for the first time. Moreover, note that the term D⊤
N(D

⊤
B)

−1 is the submatrix of the tableau formed

by the non-basic variables and is readily available as a by-product of subproblem optimization.

The left-hand side term is a sparse matrix-sparse vector multiplication which can be carried out

efficiently even for a large number of observations. These calculations are further streamlined based

on the position of the variable with random cost coefficient in the basis. In this regard, the following

remarks are in order.

Remark 1. Suppose that the index set B̃i = ∅, that is, the basic variables associated with index

set Bi have deterministic cost coefficients (equivalently, the variables with random cost coefficients

are all non-basic), then all the elements of δB(ω) are zeros and only δN(ω) has non-zero elements.

In such a case, the calculations on left-hand side of (17) for feasibility check yield:

[−D⊤

N(D
⊤

B)
−1,I][δ⊤B(ω), δ

⊤

N(ω)]
⊤ = [−D⊤

N(D
⊤

B)
−1,I][0⊤, δ⊤N(ω)]

⊤ = δN(ω). (18)

Consequently, we can verify dual feasibility by checking if δN(ω)≥ ḡ. Since any feasible outcome

lies inside an orthant, this check can be carried out very efficiently.

Remark 2. If B̃i 6= ∅, i.e., at least one basic variable associated with index set Bi has random

cost coefficient, then we need to explicitly check the feasibility of the remapped basic solutions

using the inequality (17). Nevertheless, one can take advantage of sparsity of these calculations.

Remark 3. The amount of calculations necessary to compute the dual vector and to establish

their feasibility depends on the number of random elements in cost coefficient vector d. When d

is fixed, every basis DBi is associated with a unique dual vector with stochastic component θji =0

which remains feasible for any outcome ωj. In this case, the calculations reduce to those in the orig-

inal SD algorithm. When the number of random elements of d is small, the dimension of stochastic
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component is also small. Consequently, calculations in (12) and (17) impose only a marginal over-

head over those involved for 2-SLPs with fixed d. Therefore, many of the computational advantages

of the original SD are retained.

Remark 4. The advantages resulting from low dimensional randomness in d can also be obtained

in some special cases. Suppose that we discover a deterministic matrix Θ (say of dimension ℓ2× r2)

such that l2 << r2, and d(ω) = Θ⊤g(ω), with a random vector g(ω) ∈Rℓ2 . Then, we can re-write

d⊤(ω)y = g(ω)⊤Θy. Suppressing ω to simplify the notation, we append a second-stage constraint

z − Θy = 0. Thus, the second-stage objective is now in the form g(ω)⊤z, where g(ω) has only

ℓ2 << r2 elements, thus achieving the desired reduction in dimension random elements in cost

coefficients. Since the matrix (I,−Θ) does not change with ω̃, this transformation does not affect

the fixed recourse structure required for SD. In other words, scalability of our approach may depend

on how the model is constructed, and the modeler is well advised to minimize the number of second

stage variables which have random cost coefficients associated with them.

A very special case arises when one random variable may affect cost coefficients of multiple deci-

sion variables simultaneously, i.e., ℓ= 1. For example, the Federal Reserve’s quarterly adjustment

of interest rate might impact returns from multiple investments at the same time. Following the

earlier observations, if the new decision variable z is non-basic, then the high dimensional orthant

reduces to simple one dimensional check to see if the random outcome is within a bound. Alterna-

tively, when a variable with random cost coefficient is basic, feasibility check requires us to verify

whether the outcome belongs to a certain interval. Recall that φj = (DB)
−1ej, j ∈ B̃, and in this

special case |B̃|=1. Hence,

[−D⊤

N(D
⊤

B)
−1, I][δ⊤B(ω), δ

⊤

N(ω)]
⊤ =−D⊤

Nφjδj(ω)≥ ḡ, (19)

which implies that δlb ≤ δj(ω)≤ δub with

δlb =maxi∈I1{
ḡi

(−D⊤
Nφj)i

} where I1 = {i|(−D⊤

Nφj)i > 0}

δub =mini∈I2{
ḡi

(−D⊤
Nφj)i

} where I2 = {i|(−D⊤

Nφj)i < 0}.

Note that subscript i in the above equations indicates the ith element (corresponds to a row in

basis matrix) of the column vector.

3.4. Revised-Algorithm Description

Before closing this section, we summarize the modifications necessary to the SD algorithm described

in §2.1 to incorporate problems with random cost coefficients. While book-keeping in SD of §2.1
was restricted to dual vertices, the revision proposed in this section mandates us to store the basis
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Algorithm 2 SD for problems with random cost coefficients

7a: if ωk 6∈ Ok−1 (observation generated for the first time) then initialize the set Vk−1
k as follows:

Vk−1
k ←{νi + θik | Giδk ≥ ḡi, θik =Φiδk

B̃i , i∈Bk−1}.

7b: end if

7c: Obtain the optimal index set Bk, and add it to the collection Bk←Bk−1 ∪{Bk}.
7d: if Bk 6∈ Bk−1 (basis encountered for the first time) then compute νk, Φk, Gk and ḡk as:

νk = (D⊤

Bk)
−1d̄Bk Φk = {φk

j | j ∈ B̃k}

Gk = [−D⊤

Nk(D
⊤

Bk)
−1,I] ḡk =−Gkd̄

where φk
j is defined as in (13).

7e: for ωj ∈Ωk do update Vk−1
j as follows:

Vk
j ←Vk−1

j ∪{νk + θkj | Gkδj ≥ ḡk, θkj =Φkδj
B̃k}.

7f: end for

7g: end if

8: ℓkk(x) = form cut(Bk, x, k); ℓ̂kk(x) = form cut(Bk, x̂, k);

generating the dual vectors. Specifically, modifications effect steps 7-8, and are summarized in

Algorithm 2.

At the beginning of the iteration, we have a collection of index sets Bk−1 and observations Ok−1.

Whenever a new observation ωk is encountered, the set of feasible dual vectors Vk−1
k is initialized

by computing the stochastic components θik using the parameter Φi and establishing the feasibility

of πi
k = vi+ θik corresponding to all index sets in Bk−1. The feasibility of dual vectors is determined

by checking the (16b) which uses parameters Gi and ḡi. Note that the parameters used for these

computations, viz., Φi, vi, Gi and ḡi, are precomputed and stored for each index set Bi ∈Bk−1.

Once the subproblem is solved, we may encounter a new index set Bk. This mandates an update

of the sets of feasible dual vectors. In order to carry out these updates, we begin by computing

the deterministic parameters νk, Φk, Gk and ḡk. These parameters are stored for use not only in

the current iteration, but also when new observations are encountered in future iterations. For

all observations ωj ∈ Ok, ωj 6= ωk, the set of feasible dual vectors is updated with information

corresponding to the new basis DBk . This is accomplished by computing the stochastic component

θkj , using this stochastic component to compute the dual vector πk
j = vk + θkj , and adding the dual

vector to the set Vk−1
j only if it is feasible. This results in an updated set Vk

j .
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indicates feasibility.

Basis
Index sets

Deterministic
components

Observations
ω1 ω2 ωk−1 ωk

New

B1

B2

Bk−1

BkNew

ν1,Φ1,G1, ḡ1

ν2,Φ2,G2, ḡ2

νk−1,Φk−1,Gk−1, ḡk−1

νk,Φk,Gk, ḡk

π1
1 = ν1 + θ11 π1

2 = ν1 + θ12 π1
k−1 = ν1 + θ1k−1 π1

k = ν1 + θ1k

π2
1 = ν2 + θ21 π2

2 = ν2 + θ22 π2
k−1 = ν2 + θ2k−1 π2

k = ν2 + θ2k

πk−1
1 = νk−1 + θk−1

1 πk−1
2 = νk−1 + θk−1

2 πk−1
k−1 = νk−1 + θk−1

k−1 πk−1
k = νk−1 + θ2k

πk
1 = νk + θk1 πk

2 = νk + θk2 πk
k−1 = νk + θkk−1 πk

k = νk + θkk

Figure 1 Illustration of calculations to obtain the set of feasible dual vectors.

Finally for all observations ωj(j 6= k), the dual vertex that provides the best lower bounding affine

function is identified from the corresponding collection of feasible dual vectors Vk
j . This procedure

is completed in the subroutine form cut(·) which is discussed in §4. To give a concrete sense of

the calculations being carried out, we present an illustrative example in Appendix A. The revised

SD algorithm uses the original procedure in Algorithm 1 with steps 7-8 updated as shown in

Algorithm 2.

4. Implementational Details

The SD algorithm is designed to effectively record information that is relevant across different

realizations of the random variable and hence, is shareable. This results in significant computational

savings for the SD algorithm. However, one cannot completely take advantage of its features without

appropriate implementation of this algorithm. Therefore, our presentation of the algorithm will

be incomplete without a detailed discussion of the implementation. In this section we will present

the data structures employed, the implementation of cut generation and update schemes, and the

procedure to update proximal term. The details presented here expand those presented in Chapter

6 of Higle and Sen (1996).

Our implementation relies upon a principal idea that involves decomposing the information

discovered during the course of the algorithm into a deterministic component (̄·), and a stochastic

component ∆(·) which captures the deviation from the deterministic component. We discussed

the value of this decomposition in our calculations described in §3.1. Here, we will extend this

idea to other components of the problem. Note that for most problems the number of problem

parameters that are effected by the random variable are significantly smaller than the dimension

of the subproblem. Therefore, our decomposition approach reduces the computations necessary for

cut coefficients by introducing sparsity. Recall that, the random variable affects the right-hand side

ξ, technology matrix C and the cost coefficient vector d. These components can be written as:

d(ωj) = d bar+ d obs[j], ξ(ωj) = xi bar+ xi obs[j], C(ωj) = C bar+ C obs[j], (20)
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where, the deterministic components d bar, xi bar and C bar are set to d̄= E[d(ω̃)], ξ̄ = E[ξ(ω̃)]

and C̄ =E[C(ω̃)], respectively. Note that for deterministic parameters, the stochastic components

* obs[j]= 0, for all observations ωj.

Figure 1 illustrates the information matrix which captures the evolution of information over the

course of SD iterations. Each iteration of SD may add one observation and up to two new index

sets to the collection Bk (one from solving subproblem with candidate solution as input, and other

from solving with incumbent solution as input). Calculations associated with each new observation

result in an additional column in the information matrix and discovery of a new basis results in a

new row. Every basis is associated with an index set B̃i which is stored as basis idx[i].

4.1. Elements of the Information Matrix

These computations are carried out for the lightly shaded cells in the last column and row of the

information matrix. There are two sets of elements that are stored in each cell of the information

matrix.

The first set is associated with elements that are necessary to establish feasibility of a basis

for a given observation. When a new basis is observed, these elements are necessary to establish

feasibility of the basis not only with respect to observations already encountered, but also for

observations which the algorithm may discover in the future iterations. To see the development

of these elements, notice that the inequality used to establish feasibility of a basis DBi associated

with an index set Bi ∈Bk can be rewritten as:

Giδ− ḡi = (Gi
B̃iδB̃i , δÑi)⊤− ḡi ≥ 0.

Here, the calculations only involve columns from the constraint matrix corresponding to basic

variables with random cost coefficients (indexed by B̃i), and constant vector ḡi. These elements

are stored as:

ḡi = sigma gbar[i]; Gi
B̃i = lambda G[i]. (21)

The first term is a floating point vector in R
n2 and the second term is a floating point sparse matrix

in R
m2 ×R

q2 .

A critical step in computing the lower bounding affine functions in SD is the argmax(·) procedure

whose mathematical description appears in (3). By introducing the decomposition of subproblem

dual vectors into this calculations, we can restate the argument corresponding to a feasible basis

DBi and observation ωj as follows:

(πi
j)

⊤(ξj −Cjx) = (vi +Φiδj
B̃i)

⊤[(ξ̄+∆j
ξ)− (C̄+∆j

C)x]

= [(vi)⊤ξ̄− (vi)⊤C̄x] + [(vi)⊤∆j
ξ− (vi)⊤∆j

Cx]+

(ξ̄⊤Φi)δj
B̃i − (C̄⊤Φi)δj

B̃ix] + [(∆j
ξ)

⊤Φiδj
B̃i − (∆j

C)
⊤Φiδj

B̃ix]. (22)
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The elements in the first bracketed term are computed only once when the basis is discovered:

(vi)⊤ξ̄ = sigma bbar[i][0]; C̄⊤vi = sigma Cbar[i][0]. (23)

The first term is a floating point number, while the second is a sparse vector in R
n1 . To facilitate the

calculations in the second bracketed term, note that if the structures ξ(ω̃) and C(ω̃) are such that

there are no random elements in row-m, then the mth element in the term computes to zero. Thus,

we use λi
0 to denote a vector obtained by extracting only those components of vi that correspond

to rows with random elements, and naturally stored as a sparse vector lambda rho[i][0].

Recall that Φi is formed by the columns of the basis matrix corresponding to variables with

random cost coefficient (see (13)). We treat these columns in a manner similar to the deterministic

component vi, and therefore, the terms ξ̄⊤Φi and C̄⊤Φi are concatenated to sigma bbar and

sigma Cbar, respectively:

ξ̄⊤φi
n = sigma bbar[i][n]; C̄⊤φi

n = sigma Cbar[i][n]; ∀n∈ B̃i. (24)

This concatenation results in sigma bbar[i] being a floating point vector in R
q2+1 and

sigma Cbar[i] a floating point sparse matrix in R
n2×(q2+1). For the calculations in the last brack-

eted term, we use λi
n to denote a vector obtained by extracting the components of φi

n corresponding

to rows with random elements, and store it as a sparse vector lambda rho[i][n]. This results in

lambda rho[i] to be a sparse matrix in R
q2×(q2+1).

Given lambda rho[i], sigma bbar[i] and sigma Cbar[i], the computation in (22) can be

performed as follows:

delta b[i][j] =lambda rho[i][0]× xi obs[j]+
length(basis idx[i])

∑

n=1

(sigma bbar[i][n] + lambda rho[i][n]× b obs[j])× d obs b[i][j]; (25a)

delta C[i][j] =lambda rho[i][0]× C obs[j]+
length(basis idx[i])

∑

n=1

(sigma Cbar[i][n] + lambda rho[i][n]× C obs[j])× d obs b[i][j]; (25b)

where, d obs b[i][j] is defined as a vector with only those elements of d obs[j] indexed by

basis idx[i], i.e. δ̃j
B̃i
. All matrix multiplications in the above calculation are undertaken in the

sparse manner. In the above notation, delta b in (25a) define scalars, while delta C in (25b)

define vectors. Note that in a deterministic problem the deviation terms are all zero, and the

above calculations reduce to zeros as well. The same will be case if the observation corresponds to

the mean value scenario. Therefore, the terms delta b and delta C are necessary to account for

variability in random observations.
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Subroutine 3 Subroutine to check feasibility of a dual vector.

1: function check feasibility(lambda G, sigma gbar, d obs, basis idx, i, j)

2: feasFlag = TRUE;

3: for n = 1...length(basis idx) do

4: if n 6∈ basis idx then

5: feasFlag = d obs[j][n] - sigma gbar[i][n] >= 0;

6: else

7: feasFlag = lambda G[i][n] × d obs[j][n] - sigma gbar[i][n] >= 0;

8: end if

9: end for

10: return feasFlag;

11: end function

The choice of the above data structure and calculation is motivated by the fact that

lambda rho[i], sigma bbar[i] and sigma Cbar[i] require less memory than storing entire vec-

tors vi and θij. The reason for this is that in 2-SLPs the size of the second-stage subproblem is

significantly larger than the the number of first-stage decisions effecting the subproblem. This,

along with earlier note on the sparsity of deviation of the observations from their means, leads to

substantial savings in memory usage and required computations. Further savings are achieved by

sharing the elements of lambda rho[i][n], sigma bbar[i][n] and sigma Cbar[i][n] across the

indices in Bk (this is possible when more than one basis matrix have the same column φn).

In summary, the updates to information matrix are carried out as follows:

1. Column update: Given a new observation ωk, use (25) to compute the delta b[i][k] and

delta C[i][k] for all bases Bi ∈Bk.

2. Row update: If a new basis DBk is seen, then compute the feasibility elements

sigma gbar[k] and lambda G[k] in (21). For every element in basis idx[k], use (23) to com-

pute sigma bbar[i][0] and sigma Cbar[i][0], and for all ωj ∈Ok compute delta b[i][j] and

delta C[i][j] using (25).

Due to the dynamic nature of evolution of the information matrix, and therefore, the storage

requirement of SD algorithm, we emphasize the need for careful memory management during

implementation of this algorithm. We suggest lower level programming languages, such as C, for

their dynamic memory allocation feature.

4.2. Checking Feasibility

Feasibility of a given basis DBi for an observation ωj is verified using the inequality in (17).

The steps are presented as function check feasibility(·) in Subroutine 3. The process of
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Subroutine 4 Cut formation subroutines of SD.

1: function argmax(bases,x,j)

2: maxval = -∞;

3: for i = 1...length(bases) do

4: if obsFeasibility[i][j] == TRUE then

5: val = sigma bbar[i][0] + delta b[i][j]

-(sigma Cbar[i][0] + delta C[i][j]) × x;

6: if maxval < val then

7: alpha star = sigma bbar[i][0] + delta b[i][j]

8: beta star = -(sigma Cbar[i][0] + delta C[i][j]);

9: maxval = val;

10: i star = i;

11: end if

12: end if

13: end for

14: return (alpha star, beta star, i star);

15: end function

16: function form cut(bases,x,k)

17: /* alpha, beta, sample size, i star and eta coeff are fields of cut. */

18: alpha = 0, beta = [0,...,0], sample size = k, eta coeff = 1.0;

19: for j = 1,...,k do

20: (alpha star, beta star, i star[j]) = argmax(bases,x,j);

21: alpha = (j-1)/j × alpha + alpha star/j;

22: beta = (j-1)/j × beta + beta star/j;

23: end for

24: return cut;

25: end function

26: function update cut(cuts, k)

27: for c = 1 . . . length(cuts) do

28: eta coeff[c] = k/(k-1) × eta coeff[c];

29: end for

30: return cuts;

31: end function
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checking feasibility is completed in two steps. The first one is a trivial check for non-basic vari-

ables: δj
Ñi − ḡi

Ñi ≥ 0. The second step is for basic variables, which involves checking the inequal-

ity: Gi
B̃iδB̃i − ḡi

B̃i ≥ 0. Once the feasibility check is completed, the results (the return values of

check feasibility(·)) are stored in a boolean vector obsFeasibility[i], one for each index set

Bi ∈ Bk. The next set of calculations are carried out only if the basis is found to be feasible. The

use of this boolean vector avoids the need to store separate sets of feasible dual vectors V k
j for each

observation ωj.

4.3. Computing and Updating Cut Coefficients

With the elements of the information matrix defined, we are now in a position to present the

calculations involved in computing the coefficients of the lower bounding affine functions. The

principal step is the argmax(·) procedure presented in Subroutine 4 which is invoked once for

each observation ωj ∈ Ok. The argument for this operation in (3) is computed using elements of

the information matrix as:

(πi
j)

⊤(ξj −Cjx) = sigma bbar[i][0] + delta b[i][j]− (sigma Cbar[i][0] + delta C[i][j])× x.

Note that the above calculation is performed only for index set Bi ∈ Bk which yields a feasible

basis with respect to the observation ωj. The output of the argmax procedure are the coefficients

alpha star and beta star. These coefficients correspond to the intercept and subgradient of the

affine function which provides the best lower bound to h(x,ωj). The argmax(·) also returns a

pointer to a index set in Bk which is used to compute these coefficients. These pointers are stored

in an integer vector called i star for their use in resampling the cut for our statistical optimality

tests. We define a cut data structure with fields alpha, beta, sample size and i star, where

sample size denote the number of observations which are used to create the cut (this is same as

iteration count k, as one sample is added every iteration). The generation of the SD affine functions

is performed as shown in the function form cut(·) in Subroutine 4.

Recall that, as the algorithm progresses the coefficients of the lower bounding affine function

are updated as shown in (7). The affine functions are added as constraints in the master problem.

The direct implementation of this procedure will require updating all the coefficients (αk−1
j , βk−1

j )

of the affine functions. Computationally this may prove to be cumbersome. However, one can view

these updates in the mathematically equivalent form for j =1, . . . , k− 1 as:

η≥αk
j +(βk

j )
⊤x=

k− 1

k
(αk−1

j +(βk−1
j )⊤x) =

j

k
(αj

j +(βj
j )

⊤x) ≡
(

k

j

)

η ≥αj
j +βj

jx.

This representation allows us to retain the coefficients at values obtained when they were computed

(for example, (αj
j, β

j
j ) which were computed in iteration j), and the updates are restricted only to a

single column corresponding to the auxiliary variable η. This update is carried out in the function

update cut(·) in Subroutine 4.
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Subroutine 5 Subroutine to update proximal parameter

1: /* r1, r2 < 1.0 are given constants, norm(·) computes two-norm. */

2: function update prox(prox param, old norm, x, hat x, new incumb)

3: if new incumb == TRUE then

4: new norm = norm(x, hat x);

5: if new norm >= r1 × old norm then

6: prox param = min(max(r2 × prox param, pow(10,-6)), 1.0);

7: end if

8: else

9: prox param = prox param/r2;

10: end if

11: return prox param;

12: end function

4.4. Updating the Proximal Parameter

The SD algorithm uses a proximal term built around the incumbent solution x̂k to form the

regularized master program. Our implementation includes certain enhancements which involve

the proximal parameter σk and are designed to improve the computational performance of the

SD algorithm. Instead of keeping the proximal parameter constant, we allow it to be updated

throughout the course of the algorithm (hence, we use iteration index in our notation σk). In general,

the σk is decreased when the incumbent changes and ‖xk+1− x̂k‖ increases from one iteration to the

next, and increased when the incumbent does not change. This procedure is presented as function

update prox(·) in Subroutine 5 where σk is referred as prox param. We note that this procedure

does not alter the theoretical properties of the regularized SD algorithm since σk > 0 for all k.

To conclude, we summarize how the earlier implementation of SD compares with the current

version. In 2-SLPs with deterministic cost coefficients, every dual vertex is associated with a unique

basis and the index set B̃i = ∅ (basis idx is empty). Therefore, in the earlier implementation of

the SD algorithm (detailed in Chapter 6 of Higle and Sen (1996)), a cell of the information matrix

can be viewed to be associated with a unique dual vertex (instead of a basis) and an observation.

Therefore, elements of the cell included sigma bbar[i][0] and sigma Cbar[i][0] in (23), and

delta b[i][j] and delta C[i][j] in (25). The dual vertex is remains feasible with respect to all

observations, and hence, voiding the need for feasibility check procedure in Subroutine 3. Finally,

the calculations in (25) are restricted to only the first terms (without the summation). The original

implementation and the updated implementation of SD algorithm are available under the GNU

license from the authors’ Github repository as v1.0 and v2.0, respectively.
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5. Computational Experiments

In this section we will present our computational experience with the SD algorithm when applied to

instances with random cost coefficients.While there are many challenging instances of 2-SLPs where

randomness affects the right-hand side vector ξ, there is a lack of real-scale instances with random

cost coefficients. The SG-Portfolio problems which appeared in Frauendorfer et al. (1996) have cost

coefficients which are modeled as random variables, however, the available instances have a small

set of realizations. Such small sample sizes, do not mandate the use of sampling-based approaches.

Therefore, we modified three problems from the literature to include random cost coefficients.

These problems are: ssn rc – a telecommunication network resource allocation problem, scft –

logistics/supply chain planning problem, and transship – a multilocation transshipment problem.

Further details regarding these instances are given in Appendix B.

Since 2-SLPs are predominantly solved using the L-shaped method, we use it as a benchmark

to present our computational results for SD. We begin this section by briefly describing our imple-

mentation of the L-shaped method (see Birge and Louveaux (2011) for details). The L-shaped

method is applicable to problems where uncertainty is characterized by a finite number of real-

izations (random variables with discrete distribution or SAA). As before, this set of realizations

will be denoted by O. In iteration k, we start with a candidate first-stage solution xk obtained by

solving a master program. We solve subproblems for all possible observations ωj ∈ O and obtain

the optimal dual solution πk
j . These are used to generate a lower bounding affine function:

αk
j +βk

j x= c⊤x+
∑

ωj∈O

pj · (πk
j )

⊤[ξj −Cjx].

In contrast to the coefficients computed in SD (see (6)) which use relative frequency of realizations,

the above calculations are based on given probabilities associated with the realizations. In this

regard, the affine function always provides a “true” lower bound of the first-stage objective function

in (1a), or (2) when SAA is employed, and does not warrant the update mechanism in (7). The

algorithm is terminated when the gap between in-sample upper and lower bound is within an

acceptable tolerance (set to a nominal value of 0.001 in our implementation).

Our implementation of L-shaped method also provides the option of quadratic regularization

in the first-stage. When regularization is used, the first-stage approximate problem includes a

proximal term centered around an incumbent solution, and therefore, the candidate solutions are

obtained by solving a quadratic program. The incumbent update rules and the stopping criteria

are based on Ruszczyński (1986). This implementation is also available on the authors’ Github

repository.

Both the regularized L-shaped (RLS) and the SD algorithms are implemented in the C program-

ming language on a 64-bit Intel core i7− 4770 CPU at 3.4GHz ×8 machine with 32 GB memory.

All linear and quadratic programs were solved using CPLEX 12.8 callable subroutines.
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5.1. Experimental Setup:

The experimental setup employed here follows from estimation of lower and upper bounds through

multiple replications introduced by Mak et al. (1999). For SAA, we generate M independent

samples {ωj,m}Nj=1, each of size N . These samples are generated using the standard Monte-Carlo

simulation and are used to set up the SAA function which is then solved using the RLS method.

Note that variance reduction techniques, such as Latin Hypercube Sampling, can be employed to

reduce variance of SAA estimates (see Linderoth et al. (2006)). The optimal objective function

values are denoted as f ∗,m
N with corresponding solutions as x∗,m

N . We compute the statistical lower

bound to the true optimal value f ∗ and the (1− a)-confidence interval associated with this lower

bound as:

LN :=
1

M

M
∑

m=1

f ∗,m
N ; CIL =

[

LN −
za/2sL√

M
,LN +

za/2sL√
M

]

. (26)

Here, za is the (1−a) quantile level of standard normal distribution and sL is the sample variance

of lower bounds {f ∗,m
N }.

An upper bound estimate is computed by evaluating the function at solutions from individ-

ual replications solves {f(x∗,m
N )}Mm=1. The functions are evaluated using a different set of samples

{ω̂j,m}j, independent from those used for optimization as well as those used in evaluating solutions

from other replications. The estimate of the function and the variance associated with it is given

by:

fEV,N ′(x) =
1

N ′

N ′
∑

j=1

[c⊤x+h(x,ωj)], sEV =
1

(N ′− 1)

N ′
∑

j=1

[c⊤x+h(x,ωj)− fEV,N ′(x)]2 (27)

The estimation is terminated when sEV is within an acceptable threshold ǫ. The final estimation

value is denoted as fEV (x).

The function estimates at solutions obtained by optimizing SAA function in different replication

can in turn be used to obtain an estimate of the upper bound as follows:

UN :=
1

M

M
∑

m=1

fEV (x
∗,m
N ); CIU =

[

UN −
za/2sM√

M
,UN +

za/2sM√
M

]

(28)

We also build a confidence interval around this estimation as show above. Finally we define a

pessimistic gap as the difference between the upper limit of CIU and the lower limit of CIL. While

the pessimistic gap is a reliable indicator of optimality, in some cases it can be too demanding to

reduce it beyond a certain level. Nonetheless, we will use this gap as a measure for solution quality

– a lower value indicates higher quality solution. For our experiments with the SAA function, we

calculated values f ∗,m
N for m= 1, . . . ,M , and varying number of observations N in SAA function.

The function estimation for computing the upper bound is terminated when sEV /fEV,N ′ < ǫ=0.01.
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The SD algorithm does not require a preset number of observations, but instead determines the

number of outcomes necessary for obtain statistically optimal solutions. As in SAA experiments,

optimization is performed over M replications. In each replication, statistical optimality of a solu-

tion is established using an In-Sample and an Out-of-Sample stopping rule (see Higle and Sen

(1999) and Sen and Liu (2016) for details). These rules basically establish whether the approxima-

tions have sufficiently stabilized based on a given tolerance level. In our experiments we execute all

the instances using three increasingly tighter relative tolerances, i.e., loose (0.01), nominal (0.001),

and tight (0.0001). Once all the M replications are completed, we proceed to recommend an aver-

age decision computed using solutions obtained across all the replications. We compute the 95%

confidence interval of the upper bound computed at the the average decision.

In our experiments, we set the number of replications M = 30 for both the SAA and SD exper-

iments. We use two sets of M random number seeds, the first set is used to generate the samples

to be used in the optimization step and the second set is used for evaluation.

5.2. Numerical Results

The results from the SAA experiments with varying sample sizes solved using RLS and SD exper-

iments with varying tolerance values are reported in Table 1, Table 2, Table 3 and Table 4. The

tables present the average lower bound (26) and upper bound (28) along with half widths of their

corresponding 95% confidence intervals (parenthetical values); pessimistic gap as absolute value

and as fraction of its respective average lower bound (computed as pessimistic gap over average

lower bound); and average computational time with its standard deviation.

Algorithm
Sample size Lower Bound Upper Bound Pessimistic Avg. Time (s)

(std.dev.) (95% CI) (95% CI) Gap (std.dev.)

RLS-Nominal

50 4.46 (± 0.80) 13.63 (± 0.36) 10.32 (231.24%) 12.54 (4.41)

100 6.53 (± 0.64) 12.18 (± 0.20) 6.49 (99.52%) 31.54 (8.05)

500 9.06 (± 0.39) 10.43 (± 0.07) 1.84 (20.30%) 470.34 (208.88)

1000 9.56 (± 0.25) 10.15 (± 0.04) 0.88 (9.17%) 1698.00 (806.79)

5000 9.85 (± 0.10) 9.95 (± 0.01) 0.22 (2.20%) 30800.76 (15187.34)

SD-Loose 1567 (± 286) 9.59 (± 0.22) 10.21 (± 0.05) 0.89 (9.27%) 38.91 (17.60)

SD-Nominal 2315 (± 251) 9.72 (± 0.13) 10.14 (± 0.04) 0.59 (6.03%) 103.86 (30.48)

SD-Tight 3318 (± 670) 9.88 (± 0.11) 10.12 (± 0.04) 0.39 (3.98%) 299.02 (177.00)

Table 1 Optimal Objective Value and Optimality Gap Estimates for ssn rc0 instances

The ssn rc0 instance is the derivative of SSN which is one of the early 2-SLP models with

deterministic cost coefficients. SSN has been used in past to study scalability of sampling-based

methods (for example, Linderoth et al. (2006), Sen and Liu (2016)), and therefore, we begin our

discussion with results for this model. The SAA results in Linderoth et al. (2006) were obtained
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Algorithm
Sample size Lower Bound Upper Bound Pessimistic Avg. Time (s)

(std.dev.) (95% CI) (95% CI) Gap (std.dev.)

ssn rc1

RLS-Nominal

50 38.85 (± 8.58) 149.60 (± 5.78) 125.11 (321.99%) 21.82 (5.19)

100 63.62 (± 6.48) 129.13 (± 3.21) 75.19 (118.20%) 43.69 (5.57)

500 90.51 (± 4.70) 107.31 (± 0.91) 22.41 (24.76%) 212.49 (14.96)

1000 93.51 (± 3.06) 104.56 (± 0.40) 14.51 (15.52%) 441.57 (25.41)

5000 98.35 (± 1.38) 101.70 (± 0.14) 4.86 (4.94%) 2421.76 (123.20)

SD-Loose 1600 (± 266) 95.64 (± 1.95) 104.73 (± 0.56) 11.44 (11.96%) 84.31 (31.39)

SD-Nominal 2352 (± 410) 97.75 (± 1.62) 104.45 (± 0.56) 8.72 (8.92%) 221.41 (95.62)

SD-Tight 3305 (± 614) 99.30 (± 1.55) 103.93 (± 0.65) 6.68 (6.73%) 536.48 (242.50)

ssn rc2

RLS-Nominal

50 19.75 (± 4.07) 73.40 (± 2.59) 60.30 (305.27%) 17.87 (4.40)

100 30.38 (± 3.21) 62.36 (± 1.47) 36.67 (120.69%) 36.77 (5.79)

500 44.92 (± 1.88) 51.83 (± 0.31) 9.10 (20.26%) 171.06 (9.36)

1000 46.77 (± 1.02) 50.91 (± 0.22) 5.38 (11.50%) 359.77 (22.02)

5000 48.29 (± 0.56) 49.65 (± 0.06) 1.98 (4.09%) 1904.31 (114.96)

SD-Loose 1759 (± 340) 47.54 (± 0.81) 51.24 (± 0.42) 4.83 (10.39%) 131.80 (74.75)

SD-Nominal 2628 (± 423) 48.44 (± 0.86) 50.92 (± 0.32) 3.58 (7.54%) 366.50 (147.59)

SD-Tight 3939 (± 704) 49.02 (± 0.59) 50.76 (± 0.34) 2.58 (5.44%) 1018.46 (476.64)

ssn rc3

RLS-Nominal

50 12.55 (± 2.37) 48.11 (± 2.07) 40.01 (318.85%) 16.47 (2.63)

100 20.02 (± 2.00) 40.65 (± 1.17) 23.80 (118.85%) 32.95 (4.18)

500 29.27 (± 1.33) 32.99 (± 0.31) 5.36 (18.33%) 152.07 (9.83)

1000 29.66 (± 0.93) 31.76 (± 0.11) 3.15 (10.63%) 298.02 (18.52)

5000 30.55 (± 0.33) 30.95 (± 0.05) 0.77 (2.51%) 1556.83 (87.75)

SD-Loose 1833 (± 334) 31.82 (± 0.68) 32.86 (± 0.36) 2.08 (6.54%) 140.88 (56.61)

SD-Nominal 2648 (± 460) 31.99 (± 0.60) 32.59 (± 0.26) 1.46 (4.58%) 357.93 (152.25)

SD-Tight 3975 (± 662) 32.07 (± 0.52) 32.60 (± 0.28) 1.32 (4.11%) 1033.81 (441.54)

ssn rc4

RLS-Nominal

50 8.67 (± 1.70) 35.36 (± 1.47) 29.87 (344.54%) 14.84 (2.97)

100 14.86 (± 1.44) 30.25 (± 1.28) 18.11 (121.85%) 29.06 (4.20)

500 20.64 (± 0.98) 23.89 (± 0.14) 4.37 (21.17%) 133.93 (12.03)

1000 21.52 (± 0.57) 23.24 (± 0.11) 2.41 (11.18%) 267.68 (16.34)

5000 22.17 (± 0.21) 22.56 (± 0.04) 0.65 (2.94%) 1337.37 (94.24)

SD-Loose 1797 (± 331) 23.71 (± 0.63) 24.64 (± 0.35) 1.91 (8.07%) 143.08 (69.65)

SD-Nominal 2798 (± 418) 23.99 (± 0.43) 24.56 (± 0.37) 1.37 (5.70%) 417.94 (156.96)

SD-Tight 3928 (± 634) 24.08 (± 0.42) 24.50 (± 0.37) 1.21 (5.01%) 1017.31 (428.80)

Table 2 Optimal Objective Value and Optimality Gap Estimates for ssn rcG instances

using obtained using a computational grid with hundreds of desktop PCs, although no more than

one hundred machines were in operation at any one time. For the instance with sample size N =

5000, the authors had reported a wall clock time of the order of 30− 45 minutes per replications.

While the solutions and the bound estimates for SAA instances with Monte Carlo sampling are
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Algorithm
Sample size Lower Bound Upper Bound Pessimistic Avg. Time (s)

(std.dev.) (95% CI) (95% CI) Gap (std.dev.)

scft-6

RLS-Nominal

50 553806 (± 1900) 553536 (± 250) 1879 (0.34%) 0.14 (0.03)

100 554129 (± 1659) 553408 (± 226) 1164 (0.21%) 0.25 (0.04)

500 554032 (± 518) 553393 (± 220) 100 (0.02%) 0.94 (0.09)

1000 553458 (± 325) 553393 (± 220) 480 (0.09%) 1.83 (0.22)

5000 553278 (± 134) 553393 (± 220) 469 (0.08%) 8.51 (0.78)

SD-Loose 149 (± 13) 554812 (± 1409) 553598 (± 244) 438 (0.08%) 0.20 (0.02)

SD-Nominal 274 (± 10) 554391 (± 813) 553499 (± 262) 182 (0.03%) 0.40 (0.03)

SD-Tight 526 (± 5) 554239 (± 541) 553658 (± 269) 230 (0.04%) 0.85 (0.06)

scft-46

RLS-Nominal

5 7391427 (± 120741) 7763122 (± 15146) 507582 (6.87%) 3954.39 (905.08)

10 7486263 (± 72180) 7706001 (± 8586) 300503 (4.01%) 6506.03 (1003.11)

25 7549045 (± 50789) 7659751 (± 6165) 167661 (2.22%) 10913.06 (1217.61)

50 7582958 (± 35836) 7642093 (± 3769) 98740 (1.30%) 14268.55 (1298.53)

SD-Loose 288 (± 28) 7339518 (± 17206) 7648999 (± 3509) 330195 (4.50%) 25.24 (4.39)

SD-Nominal 430 (± 44) 7408929 (± 13428) 7647755 (± 3828) 256081 (3.46%) 53.12 (10.41)

SD-Tight 1282 (± 295) 7517501 (± 8061) 7642883 (± 4288) 137731 (1.83%) 373.78 (158.45)

Table 3 Optimal Objective Value and Optimality Gap Estimates for scft instances

Algorithm
Sample size Lower Bound Upper Bound Pessimistic Avg. Time (s)

(std.dev.) (95% CI) (95% CI) Gap (std.dev.)

RLS-Nominal

10 2333.13 (± 3.95) 2341.36 (± 1.60) 13.78 (0.59%) 0.20 (0.02)

20 2333.75 (± 2.99) 2338.99 (± 1.17) 9.40 (0.40%) 0.31 (0.04)

30 2335.65 (± 2.10) 2337.93 (± 1.01) 5.38 (0.23%) 0.41 (0.04)

40 2335.82 (± 1.79) 2337.69 (± 1.00) 4.66 (0.20%) 0.52 (0.04)

50 2336.64 (± 1.64) 2337.38 (± 0.92) 3.30 (0.14%) 3.84 (2.20)

75 2337.38 (± 1.35) 2337.17 (± 0.89) 2.02 (0.09%) 0.92 (0.07)

100 2337.59 (± 0.91) 2337.01 (± 0.85) 1.18 (0.05%) 60.55 (164.51)

SD-Loose 168 (± 17) 2336.80 (± 0.85) 2336.88 (± 0.92) 1.86 (0.08%) 0.34 (0.06)

SD-Nominal 292 (± 18) 2336.44 (± 0.83) 2337.02 (± 0.77) 2.18 (0.09%) 0.86 (0.11)

SD-Tight 544 (± 18) 2337.00 (± 0.59) 2337.69 (± 0.88) 2.16 (0.09%) 2.70 (0.23)

Table 4 Optimal Objective Value and Optimality Gap Estimates for transship instances

comparable to the earlier work, our computational times are significantly higher – exceeding 8.5

hours on average for instances with N = 5000 – as we used a single desktop computer. Nevertheless,

our results further underscore the fact that the SAA approach for challenging 2-SLP models requires

significant computational time and/or a high-performance computing environment.

Across all the instances, the SAA results indicate that the quality of function estimates and

solutions improve as the sample size used in creating the SAA function increases. This is clear
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by noting an overall reducing trend of the pessimistic gap with increasing sample size2. These

results computationally verify the theoretical properties of the SAA function. However, as the

sample size increases, a larger number of subproblems are solved in the second-stage during the

execution of RLS, thus increasing the computational requirement. This is reflected in the increasing

computational time with sample size N .

Given that the 2-SLPs are computationally very demanding, the re-use of previously discov-

ered structures of an instance in future iterations provides considerable relief. This is the case in

the “sampling-on-the-fly” approach of SD, as the results indicate. The SD results for ssn rc0 are

comparable to those reported in Sen and Liu (2016) which used the previous version of SD imple-

mentation. The minor increase in the computational time can be attributed to additional overhead

introduced by the data structures necessary to handle the updated information matrix described

in §4.1. The increasing tightness in tolerance levels used in experiments with SD algorithm reflect

a more demanding requirement in terms of stability of approximation. This results in a higher

computational time as indicated in the tables. An increased tolerance level also results in a more

accurate estimation of the objective function, and therefore, the solution obtained from such a

setting results in a lower pessimistic gap, as the results indicate.

Unlike deterministic optimization, we are more than satisfied to get a solution whose pessimistic

gap is within an acceptable limit. This limit is dependent on the instance, for example, a 5% gap

may be considered acceptable for ill-conditioned problem instances such as ssn rcG. As the results

are indicative, this is already a very high bar to set for SP algorithms. Thus, whenever we achieve

1% or less in pessimistic gap, we consider the instance as being solved. In light of this, it is only

appropriate to compare SP algorithms and sample sizes in terms of the pessimistic gap of the

solutions reported.

The computational advantage of SD is evident in the results of ssn rcG, scft and transship

instances. In these instances the results in the last column of the tables show that the time required

for SD to generate a solution of comparable quality is significantly lower than the RLS method. For

example, the solution obtained using SD with nominal tolerance for ssn rc0 results in a pessimistic

gap of 0.89 which is comparable to the solution obtained using the RLS method applied to a SAA

function with sample size of N = 1000 (pessimistic gap is 0.88). However, the computational time

of SD is lower (by a factor of 43) when compared to the computational time for RLS.

An SAA experiment involves executing multiple optimization steps using RLS, each time increas-

ing the sample size used to build the SAA function if the solution is not acceptable and starting

the optimization step from scratch. Therefore, the cumulative experiment time before a solution

2 Since these are stochastic estimates which depend on randomly sampled quantities, one should not expect a strictly
monotonic behavior. Moreover, the numbers reported are averages across multiple replications.
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of desired quality is identified is always significantly higher than the computational time for SD to

identify a solution of comparable quality. Moreover, the cumulative time depends on the sequence

of sample sizes chosen for experiments (for example, N = 50,100,500,1000,5000 in our experiments

for most instances), and there are no clear guidelines for this selection. On the other hand, when

SD is executed with a certain tolerance level and if the desired solution quality is not attained, then

the tolerance level can be increased and optimization can resume from where it was paused. This

means that the additional computational time to achieve a higher quality solution (on average) is

simply the difference between the computational times reported for different tolerance levels in our

tables. Such “on-demand quality” solution is desired in many practical applications.

6. Conclusions

In this paper, we presented the algorithmic enhancements to SD to address fixed recourse 2-SLPs

with random right-hand side components as well as cost coefficients in the second-stage. For prob-

lems with deterministic cost coefficients, SD re-utilizes previously discovered second-stage dual

vertices to compute value function approximations in future iterations. However for problems with

stochastic cost coefficients, the feasibility of past dual vertices is not guaranteed. In order to address

this issue, we treated the bases which generate the dual vertices as fundamental elements which

can be reused in the future. We proposed a sparsity preserving decomposition of dual vectors

into deterministic and stochastic components computed using these bases. We presented compu-

tationally efficient steps for establishing the feasibility of dual vectors and computing the value

function approximations. We also described the data structures employed in our implementation of

the algorithm which are designed to be applicable to real-scale problem instances. Our numerical

experiments illustrated the computational edge of SD on a variety of test instances when compared

to the SAA-based approach.

The multistage stochastic decomposition algorithm was presented in Sen and Zhou (2014) which

was the first attempt to extend SD to a multistage setting. While the authors provide algorithmic

details supported by strong analytical results, the computational implementation of this exten-

sion faces a critical challenge. When sequential sampling is employed in a multistage setting, the

approximations of cost-to-go functions are stochastic in nature. Consequently, the optimization

problem at a non-terminal stage has objective function with random cost coefficients. The enhance-

ments presented in this paper for the two-stage problems provide the foundation necessary to build

a successful implementation of the multistage stochastic decomposition algorithm. This will be

undertaken in our future research endeavors.

The notion of compromise decision was introduced in Sen and Liu (2016) for sampling-based con-

vex optimization algorithms. The principal idea was to use function approximations and solutions
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generated during different replication of the algorithm to create a “grand-mean” or a compromise

problem. The solution obtained by solving this problem, which is termed as the compromise deci-

sion, is shown to reduce bias and variance in function estimation, and provide a more reliable

performance. They also show that the difference between an average solution (computed across all

replications) and a compromise decision provides a natural stopping rule. The idea of compromise

decisions are best implemented in a parallel environment. This is because all replications (con-

ducted with different seeds for random number generation) should be continued until the stopping

criterion, based on the difference between average and compromise decision being small enough,

is satisfied. Further bounds on objective function estimates can also be obtained as suggested in

Deng and Sen (2018). In any event, since our tests were performed on a serial implementation, we

did not adopt the compromise solution. Given the relevance of compromise decisions from prac-

titioners point of view, honing the concept of compromise decision for 2-SLPs with random cost

coefficients and adapting our implementation for parallel/high performance environment will also

be an integral part of our future research.

Appendix A: An Illustrative Example

We illustrate the random cost developments via an example which we refer to as the “Diamond-shaped”

problem. Consider the following problem:

min
0≤x≤5

f(x) =−0.75x+E[h(x, ω̃)], (29)

where h(x,ω) is the value of the following LP:

h(x,ω) =min − y1+3y2+ y3+ y4+ω5y5 (30)

s.t. − y1+ y2− y3+ y4+ y5 = ω6+
1

2
x, − y1+ y2+ y3− y4 = ω7+

1

4
x, yi ≥ 0, i= 1, . . . ,5.

(a) ω1

5
= 2.5 (b) ω2

5
=1.5 (c) ω3

5
=0.5

Figure 2 Basic solutions and feasible regions of subproblem dual LP in (31)
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







6 : {4,5}/{1,2,3}







1.5

0.5







{

φ6
5 =







1.0

1.0







}













−1.0 2.0 1.0 0 0

1.0 −2.0 0 1.0 0

1.0 0 0 0 1.0

























−1.0

−1.0

−2.0













7 : {2,5}/{1,3,4}







1.5

1.5







{

φ7
5 =







1.0

−1.0







}













1.0 0 1.0 0 0

−1.0 2.0 0 1.0 0

1.0 −2.0 0 0 1.0

























−2.0

−1.0

−1.0













8 : {1,5}/{2,3,4}







1.5

−0.5







{

φ8
5 =







1.0

−1.0







}













1.0 0 1.0 0 0

1.0 2.0 0 1.0 0

−1.0 −2.0 0 0 1.0

























−2.0

−3.0

1.0













Table 5 Bases and deterministic components used to compute dual vectors of subproblem (31).
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Bi/Ni

Observation ω1 (δ15 = 1.0) Observation ω2 (δ25 = 0) Observation ω3 (δ35 =−1.0)
πi
1 Gi× δ1 ḡi Feasibility πi

2 Gi× δ2 ḡi Feasibility πi
3 Gi× δ3 ḡi Feasibility

B1/N1

(

0

1

)







0

0

1













−2
−2
−1.5






True

(

0

1

)







0

0

0













−2
−2
−1.5






True

(

0

1

)







0

0

−1













−2
−2
−1.5






True

B2/N2

(

1

2

)







0

0

1













−2
−2
−0.5






True

(

1

2

)







0

0

0













−2
−2
−0.5






True

(

1

2

)







0

0

−1













−2
−2
−0.5






False

B3/N3

(

1

0

)







0

0

1













−2
−2
−0.5






True

(

1

0

)







0

0

0













−2
−2
−0.5






True

(

1

0

)







0

0

−1













−2
−2
−0.5






False

B4/N4

(

2

1

)







0

0

1













−2
−2
0.5






True

(

2

1

)







0

0

0













−2
−2
0.5






False

(

2

1

)







0

0

−1













−2
−2
0.5






False

B5/N5

(

2.5

3.5

)







2

−2
0













−3
1

−2






False

(

1.5

2.5

)







0

0

0













−3
1

−2






False

(

0.5

1.5

)







−2
2

0













−3
1

−2






True

B6/N6

(

2.5

1.5

)







2

−2
0













−1
−1
−2






False

(

1.5

0.5

)







0

0

0













−1
−1
−2






True

(

0.5

−0.5

)







−2
2

0













−1
−1
−2






False

B7/N7

(

2.5

0.5

)







0

2

−2













−2
−1
−1






False

(

1.5

1.5

)







0

0

0













−2
−1
−1






True

(

0.5

2.5

)







0

−2
2













−2
−1
−1






False

B8/N8

(

2.5

−1.5

)







0

2

−2













−2
−3
1






False

(

1.5

−0.5

)







0

0

0













−2
−3
1






False

(

0.5

0.5

)







0

−2
2













−2
−3
1






True

Table 6 Dual vectors for all bases and their feasibility check for ω1 = 2.5, ω2 = 1.5, and ω3 =0.5.
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The random variables ω̃5, ω̃6 and ω̃7 are assumed to be independent follow uniform distribution over the

intervals [0,3], [−1,0] and [0,1], respectively. The dual LP of the subproblem (30) is given by:

h(x,ω) =max

(

ω6 +
1

2
x

)

π1 +

(

ω7 +
1

4
x

)

π2 (31)

s.t. − π1− π2 ≤−1, π1 + π2 ≤ 3, − π1 + π2 ≤ 1, π1− π2 ≤ 1, π1 ≤ ω5.

Notice that the dual feasible region depends on the observation of the random variable ω̃ through the

constraint: π1 ≤ ω5. We present all the calculations with respect to three observations of the random variable,

viz., ω1

5
= 2.5, ω2

5
= 1.5, and ω3

5
= 0.5. The dual feasible region and the basic solutions of the subproblem

dual LP (31) with respect to the three observations are shown in Figure 2. For each basis we compute νi,

Φi, Gi and ḡi as given in Line-3 of Algorithm 2. Recall that these values are computed on-the-fly, as and

when the basis are discovered for the first time. We present these values in Table 5. In the matrix Gi, the

columns associated with the variables with random cost coefficients (highlighted in the table) are sufficient

for the feasibility check (see (17)), and suffices to store only these columns.

When new observations are encountered, the stochastic components required to compute the dual vector

are computed and the feasibility of the resultant dual vector is established based on the inequality (17).

These calculations are shows in Table 6. Note that these computations are based on deviation from the

mean of random variable δj
5
= ωj

5
− ω̄5, that is δ

1

5
= 1.0, δ2

5
= 0.0 and δ3

5
=−1.0.

Appendix B: Test Instances

In this section we provide a brief description of the test instances used in our computational study3. The size

of the problem instances is summarized in Table 7. The fourth column corresponds to the number of second-

stage parameters effected by the random variable (RV) presented as number of right-hand side elements and

objective cost coefficients. These instances are available in SMPS format on the authors’ website.

B.1. Sonet Switched Network with Random Cost Coefficients

This problem has its origin in the telecommunication network planning and was presented in the original

form in Sen et al. (1994). The problem considers allocation of additional capacity to the links in a network

that provides private line telecommunication services. These service requests arise between pairs of nodes in

the network. In the original model the service quantity (demand) is the only parameter assumed to depend

on the random variable, and the goal is to allocate capacity so as to reduce the total demand lost. Here we

extend the model by associating a cost with lost demand which also depends on the random variable. We

briefly describe the model here.

We will denote the communication links in the network by L. A service request is characterized by a pair

origin-destination nodes which is assumed to be an element of the set S. Each service request (say i) can

be satisfied over a set of routes denoted by Ri. If there are no routes with sufficient capacity available to

accommodate the request, it cannot be fully served. The existing capacity of the links denoted as eℓ needs to

be appended by additional capacity xℓ which constitutes the first-stage decision variable. The total amount of

3 The scope of the variables and parameters defined here is restricted to individual subsections.
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Instance 1st stage 2nd stage # of RV Magnitude of

Name variables/constraints variables/constraints RHS + Obj. outcomes

ssn rcG 89/1 709/178 86 + G 1070

SCFT-6 30/18 86/36 12 + 2 109

SCFT-46 602/174 348/1480 184 + 2 10129

transship 7/0 77/35 7 + 7 Normal distribution

Table 7 Details of Problem Instances

capacity that can be added is restricted to be with a budget denoted as b. This results in following first-stage

optimization problem:

min

{

E[h(x, ω̃)]

∣

∣

∣

∣

∑

ℓ∈L

xℓ ≤ b, xℓ ≥ 0 ∀ℓ∈L
}

Once the capacity decisions have been made, requests for service can be routed in a manner that efficiently

utilizes the network resources. To this effect the function h(x,ω) captures the cost of unsatisfied service, and

is the value of the following LP:

min
∑

g∈G

dg(ω)

[

∑

i∈Sg

ui

]

s.t.
∑

i∈S

∑

i∈Ri

Airfir ≤ eℓ + xℓ ∀ℓ∈L
∑

r∈Ri

fir + ui = ξi(ω) ∀i∈S,

fir, ui≥ 0 ∀r ∈Ri, i∈ S.

Here the decision variable ui captures the number of units of unsatisfied demand and fir denotes the amount

of service satisfied via route r ∈Ri for every service request i∈ S. The term Air denotes an incidence matrix

whose element-ℓ is 1 is link-ℓ belongs to route r ∈ Ri, and 0 otherwise. While the first set of constraints

ensure that the total flow on each link in the network does not exceed the sum of existing and newly installed

capacity, the second set of constraints account for the total amount of service requested by i ∈ S as either

satisfied over all the associated routes or as unsatisfied. The right-hand side of the second set of constraint,

representing the total service requested, depends on the random variable. We distinguish the service requests

by clustering them into groups denoted by the set G, and penalize the unsatisfied service request differently

across these groups. Moreover the penalty cost for group g, denoted by dg, also depends on the random

variable. Note that the original model can be recovered by setting |G|=1 and dg(ω̃) = 1, almost surely.

To create the instances of this model we assume that the demand and the cost coefficients are independent

of one another. We use the original stochastic information for the service demand data, and use a discrete

distribution to model the demand random variable. We created different instances by varying the number of

groups. These instances are denoted as ssn rcG where G= 1, . . . ,4.

B.2. Supply Chain - Freight Transportation Optimization

This problem is aimed at mid-term planning of a global multi-product chemical supply chain and appeared

first in You et al. (2009). A set of products are manufactured and distributed through a given global supply
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chain that includes a large number of world wide customers and a number of geographically distributed plants

and distribution centers. The facilities can hold inventory and are connected to each other by transportation

links. The problem is to determine the monthly production and inventory levels of each facility, and the

monthly shipping quantities between network nodes such that the total expected cost of operating the global

supply chain is minimized while satisfying customer demands over the specified planning horizon. Due to

involved notations in the model, we restrict to a verbal presentation of the model, and refer the reader to

the original publication for the mathematical formulation.

The problem involves decisions made over a finite horizon at multiple discrete time epochs. The inventory,

transshipment and production decisions are made at the beginning of the time period. These decisions are

subject to mass balance constraints at the plants, distribution centers and customer locations. These mass

balance equation take into account the transportation time during shipping process such that the freight

can arrive at the destination on time. The initial inventory required for mass balance at all facilities is

assumed to be known, and an explicit constraint ensures that the inventory level is maintained above a

certain minimum requirement. In addition to these constraints, the decision variables are bounded by their

respective capacities. The decisions for the first time period are made in a here-and-now manner, while

the decisions for the remaining horizon are adaptive in nature and depend on the realization of random

variables corresponding to customer demands and freight rates. The objective function is to minimize the

total expected cost which includes the inventory holding costs at facilities, freight and facility throughput

costs for shipment between facilities (including customer locations), and penalty costs for unmet demand.

Unfortunately, the data used in the original publication is not publicly available. Therefore, we have

generated two instances of the model using synthetic data. The first instance (SCFT-6) is for a supply

chain network with 2 plants, 3 distribution centers and 6 customer locations which are connected by 14

transportation links. The second more realistic instance is comparable in size to the to that used in You

et al. (2009). This instance has 5 plants, 13 distribution centers and 46 customer locations. These facilities

are connected by 131 transportation links. In our instances the model horizon is set to three months – the

first month is considered to be the the here-and-now stage and the remaining two months constitute the

second-stage. Further, in our instances 10% of the freight rates are affected by randomness and are assumed

to follow a discrete distribution. The size of the two problem instances is summarized in Table 7.

B.3. Multilocation Transshipment Problem

This problem, adopted from Herer et al. (2006), involves several nonidentical retailers and one supplier who

coordinate their replenishment strategies and transshipments to minimize the long-run expected cost. The

system inventory is periodically reviewed, and the replenishment orders are placed with the supplier. At

the beginning of a period, replenishment orders (placed in previous time period) arrive which are used to

satisfy any outstanding backlog and to increase the inventory level. Following this, the demand is realized,

transshipments are completed immediately which are used to satisfy the demand, the unsatisfied demand is

backlogged, and the inventory quantities are updated. Finally, based on the inventory and backlog quantities,

new replenishment decisions are placed with the supplier. The system costs are determined by transshipment

costs, inventory holding cost and backlog penalties. In the original work, the authors assume that only the
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demand at each retailer in a period is random and stationary over time. We extend their model by also

allowing the transshipment costs to be random.

Under non-shortage inducing policy assumption, Herer et al. (2006) show that there exists an optimal

order-up-to policy. The order upto quantities are estimated using a sample-path optimization method such as

Infinitesimal Perturbation Analysis. Alternatively, one can formulate this problem as a 2-SLP with the first-

stage tasked with identifying the order-up-to quantities, and the second-stage is associated with replenishment

orders and transshipments. To present the 2-SLP formulation, we will use N to denote the number of

suppliers, si and di(ω̃) to denote the first-stage decision representing the order-up-to quantity and random

variable dependent demand at retailer i. The second-stage decisions are the ending inventory ei, stock

used to satisfy demand fi, inventory increased through replenishment qi and amount of backlog met after

replenishment ri at retailer i, and stock at retailer i used to meet demand at retailer j using transshipment

tij . The unit holding and backlog penalty costs at retailer i, unit transshipment cost from retailer i to j are

denoted as hi, pi and cij(ω̃), respectively. Given an order-up-to policy for the replenishment quantities, Herer

et al. (2006) suggest a linear cost network flow model to identify the optimal transshipment quantities. We

will use the same approach to state the 2-SLP as follows:

min
si≥0, i=1,...,N

E[h((si)i, ω̃)] (32a)

where,

h((si)i, ω̃) =min

N
∑

i=1

(hiei + piri)+

N
∑

i=1,i6=j

cij(ω̃)tij (32b)

s.t. fi +

N
∑

j=1,j 6=i

tij + ei = si i=1, . . . ,N

fi +

N
∑

j=1,j 6=i

tij + ri = di(ω̃) i= 1, . . . ,N

N
∑

i=1

(ri + qi) =

N
∑

i=1

di(ω̃)

ei + qi = si i= 1, . . . ,N

ei, fi, qi, ri, tij ≥ 0 i, j = 1, . . . ,N.

To build our instances with random cost coefficients, we have used the demand distribution information

presented in Table 3 of Herer et al. (2006). The cost coefficients are nonidentical and built as described in

§4.5 of Herer et al. (2006). We assume that the transshipment costs follow a normal distribution with mean

equal to the deterministic quantities from the reference and standard deviation set to 20% of the mean. This

instance is named as transship in our database.
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