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Abstract

In this work we consider the problem of minimizing a differentiable functional restricted to
the set of n× p matrices with orthonormal columns. This problem appears in several fields
such as statistics, signal processing, global positioning system, machine learning, physics,
chemistry and others. We present an algorithm based on a recent non-monotone variation
of the inexact restoration method for nonlinear programming along with its implementation
details. We give a simple characterization of the set of tangent directions (with respect
to the orthogonality constraints) and we use it for dealing with the minimization (tangent)
phase. For the restoration phase we employ the well-known Cayley transform for bringing the
computed point back to the feasible set (i.e., the restoration phase is exact). Under standard
assumptions we prove that any limit point of the sequence generated by the algorithm is a
stationary point. A numerical comparison with a well established algorithm is also presented
on three different classes of the problem.
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1 Introduction

In this paper we consider the problem:

min
X∈Rn×p

f(X)

s.t. XTX = Ip,
(1)
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where f : Rn×p → R (p ≤ n) is a twice continuously differentiable function and Ip denotes
the p× p identity matrix. Sometimes this problem is referred in the literature as minimization
on Stiefel manifold [1, 7, 9, 16]. Although our scheme encompasses the general case, we are
particularly interested in medium/large scale problems with p � n. Among a wide variety of
applications that can be considered in this context we mention, Kohn-Sham/Hartree-Fock energy
minimization problems [14, 22], nearest low-rank correlation matrix problems [26], linear/non-
linear eigenvalue problems [13, 25], and sparse principal component analysis (PCA) [17] (see [1]
for further applications and algorithms).

The difficulty with Problem (1) is that, in general, neither the feasible set nor the objective
function are convex. Therefore, with the exception of a few cases, finding a global minimizer (or
sometimes even a stationary point) is a challenging and computationally expensive task. It is
precisely because of this difficulty and because the vast number of applications that the problem
has attracted the attention of many researchers and consequently several algorithms have been
proposed [7, 16, 23, 25]. For an excellent survey on gradient-based methods as well as geometric
properties of Problem (1) the reader is referred to [1]. Most of the algorithms in the literature
generate a feasible sequence of iterates either by moving along a geodesic path or by projecting
a trial point onto the feasible set. Both strategies are combined with some backtracking-like
scheme in order to obtain a sufficient decrease (monotone or not) in the objective function.

We propose an algorithm that can be regarded as a geodesic-like numerical scheme combined
with a non-monotone line-search along a suitable tangent descent direction, such that instead
of a curvilinear search on the manifold of feasible matrices, a backtracking is performed in the
tangent subset and then the obtained trial point is restored back to feasibility through a Cayley
transform as done in [23] and clarified ahead. In this way, our proposal can be seen as a
specialized version of the method introduced in [8], a non-monotonous variation of the inexact
restoration method (IRM) [12, 19] (introduced first by Mart́ınez and Pilotta[19] and revisited
after by Fischer and Friedlander), for solving Problem (1). In brief, the IRM consists of two
phases: given an iterate Xk, in the (inexact) restoration phase, we look for a Yk which is, in
some sense, more feasible than Xk and whose objective value f(Yk) is not too worse than f(Xk).
Then, by considering the null-space of the Jacobian of the constraints, in the minimization phase
(also called tangent phase) we consider the minimization of a model for the objective function f
(or for the Lagrangian) in the tangent set at Yk in order to find a new iterate Xk+1 that ensures
a sufficient decrease of a chosen merit function. An advantage of this approach is its relative
freedom in choosing the algorithms for each phase, which is interesting since in these cases it
is possible to explore particular features of the minimization problem at hand. Fischer and
Friedlander redesigned the IRM and established in [12] a simplified model algorithm to extend
its applicability. There, convergence to a stationary point is proved under mild hypotheses. It is
important to note, however, that in addition to the number of backtrackings in the line-search,
the IRM needs at least two evaluations of the objective function (or of an approximation) per
iteration. This can significantly increase the computational time of the overall process in some
optimization problems, as occurs in many instances of Problem (1) where each objective function
evaluation may demand expensive matrix algebra operations, e.g. multiplication of large dense
matrices. To overcome this drawback, Francisco et. al proposed in [8] a non-monotone variation
of the IRM introduced in [12].

In this work, we consider the application of the non-monotone inexact restoration algorithm
of [8] to Problem (1), wherein the restoration phase is exact and it is accomplished by means
of the Cayley transform, which in general is computationally less expensive than SVD-based
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projections [16]. Briefly, for a feasible point Y , we restore the feasibility of X+ in the tangent
set of the constraints at Y (which is of the form X+ = (I+A)Y for some skew-symmetric matrix
A) by using the Crank-Nicholson-based Cayley transform of [23]. Therefore, the new feasible
point can be calculated as

Y + = (I − 1

2
A)−1(I +

1

2
A)Y,

or alternatively as a by product of a local strategy (see Section 3) that allows to find a new feasible
point with greater decrease of the objective function. This makes possible to considerably save
the number of function evaluations, thus making our algorithm competitive with state of the art
manifold-based gradient methods for Problem (1).

From a theoretical point of view, we provide a suitable characterization of the tangent set
of the orthogonality constraints together with efficient formulas to calculate projections on it.
Additionally, based on the global convergence property of the non-monotone inexact restoration
algorithm of [8], we prove global convergence of the generated sequence to stationary points of
(1).

Numerical experiments over different sets of problems such as linear eigenvalue problems,
nonlinear eigenvalues problems and orthogonal Procrustes problems, confirm that the proposed
algorithm is reliable and competitive with the efficient gradient-like method of [23] for solving
the minimization problem (1).

This paper is organized as follows. Section 2 provides the necessary background for the
minimization problem with orthogonality constraints, a preliminary version of the proposed
algorithm, as well as its main convergence properties. Further, key concepts related to the
variant of the inexact restoration method are introduced. Section 3 introduces the proposed
algorithm including details of its practical implementation. Section 4 describes a set of numerical
experiments carried out with our algorithm over a representative set of problems. Section 5 closes
the paper with final remarks.

2 Background

We start with some notation and a few basic concepts. Tr(·) means the trace of a matrix and,
unless stated otherwise, 〈X,Y 〉 = Tr(XY T ) denotes the trace inner product and ‖X‖ denotes
the Frobenius norm, ‖X‖ =

√
Tr(XTX). If W is a vector subspace, W⊥ denotes its orthogonal

complement. Throughout the text, I denotes the identity matrix of appropriate order, Ip denotes
the identity matrix of order p and

Ĩ :=

[
Ip
0

]
∈ Rn×p.

In addition, the feasible set of Problem (1) is denoted by Γ,

Γ = {X ∈ Rn×p | H(X) := XTX − I = 0},

L : Rn×p × Rp×p → R is the associated Lagrangian,

L(X,Λ) = f(X) + Tr(Λ(XTX − I)), (2)

and
Φ(X, θ) = θf(X) + (1− θ)‖H(X)‖
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the corresponding merit function. Also, we say that (X̄, Λ̄) is a critical pair for (1), if X̄ ∈ Γ
and ∇XL(X̄, Λ̄) = 0. In this case, X̄ is said to be a stationary point of (1).

Furthermore, following [7] we note that

H(Y + tX) = (Y + tX)T (Y + tX)− I = H(Y ) + t(Y TX +XTY ) + t2XTX.

Thus, by a Taylor series expansion, the null-space of H ′(Y ) is

ker(H ′(Y )) = SΓ(Y ) := {X ∈ Rn×p | XTY + Y TX = 0},

so that, the tangent set at Y ∈ Γ is

TΓ(Y ) = {X ∈ Rn×p | Y T (X − Y ) is skew-symmetric}
= {X ∈ Rn×p | Y TX +XTY = 2I}.

For simplicity we shall use the short notation Sk := SΓ(Yk). Also, PSk
(Z) denotes the orthogonal

projection of Z onto SΓ(Yk) (w.r.t. the trace inner product).
Next we summarize the framework of our algorithm.
Let Xk ∈ Rn×p be the current iterate, not necessarily feasible. In a simplified version of the

non-monotone inexact restoration method, at the restoration phase it is computed a Yk which
is more feasible than Xk in the sense that:

‖H(Yk)‖ ≤ r‖H(Xk)‖, (3)

f(Yk)− f(Xk) ≤ β‖H(Xk)‖, (4)

with r ∈ [0, 1) and β > 0.
Afterwards, in the minimization phase, after computing a weight θk+1 ≤ θk (which deter-

mines a trade-off between f(Xk) and ‖H(Xk)‖) and a descent direction Dk ∈ Sk, we determine
a step size tk > 0 by means of a backtracking scheme such that

Φ(Yk + tkDk, θk+1) ≤ Tk +
1− r

2
(‖H(Yk)‖ − ‖H(Xk)‖), (5)

for a suitable parameter Tk. So, we update Xk+1 = Yk + tkDk. Fischer and Friedlander consider
Tk = Φ(Xk, θk+1) in [12]. Such choice may turn (5) into a very demanding condition in terms
of the number of backtrackings and function evaluations.

Instead, we follow [8] and consider

Tk = max{Ck,Φ(Xk, θk+1)}, (6)

with Qk and Ck updated at every iteration as

Qk+1 = ηkQk + 1 (7)

Ck+1 = (ηkQkTk + Φ(Xk+1, θk+1))/Qk+1, (8)

where Q0 = 1, C0 = Φ(X0, θ0) and 0 ≤ ηmin ≤ ηk ≤ ηmax < 1. According to [8], in case ηk = 0,
for k sufficiently large we have Tk = Φ(Xk, θk+1). Otherwise, for ηk ∈ (0, 1), the line search
mentioned above turns into a non-monotone one based on the work of [24].

This non-monotone line search can be useful as it allow us accepting larger step sizes and
saving function evaluations. Additionally, the global convergence of the inexact restoration
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algorithm can still be ensured under mild assumptions. In the numerical experiments section
we show how an adequate choice for ηk can significantly improve the overall performance of the
scheme.

A preliminary version of the non-monotone inexact restoration method for Problem (1) is
given in Algorithm 1. It is a particular version of the model algorithm proposed in [8]. There,
the authors provide a careful analysis of the non-monotone IR algorithm and prove that it is
well-defined and globally convergent under mild assumptions.

It is worthwhile mention that here we compute, at the restoration phase, Yk ∈ Γ for all k,
that is, the restoration step is exact. Therefore, the requirement (3) is always fulfilled for every
r ∈ [0, 1).

Algorithm 1 Exact restoration algorithm for (1) - Preliminary Version

Step 0. Given µ, β > 0, 0 ≤ ηmin ≤ ηmax < 1, µ̄, θ0 ∈ (0, 1), r ∈ (0, 1] and X0 ∈ Rn×p

such that XT
0 X0 = Ip, set Y0 = X0, C0 = Φ(X0, θ0), Q0 = 1 and k = 0.

Step 1. Set θk+1 as the first term of the sequence {θk/2j}j∈N satisfying

Φ(Yk, θk+1) ≤ Φ(Xk, θk+1)− 1

2
‖H(Xk)‖.

Step 2. (Minimization phase) Find Dk ∈ Sk such that

〈∇f(Yk), Dk〉 ≤ −µ̄‖Dk‖2 and ‖Dk‖ ≥ µ‖PSk
(−∇f(Yk))‖.

Step 3. Set tk as the first term of the sequence {1/2j}j∈N such that

Φ(Yk + tkDk, θk+1) ≤ Tk −
1− r

2
‖H(Xk)‖,

where Tk comes from (6). Update Xk+1 = Yk + tkDk.

Step 4. (Restoration phase) Compute Yk+1 ∈ Γ fulfilling (4). Update Qk and Ck by
(7) and (8), set k = k + 1 and return to Step 1.

Since f is a twice continuously differentiable function and Γ is compact, it follows that
there exists a closed and convex set containing Γ in which f and H are Lipschitz continuous.
Consequently, the following convergence result is straightforwardly obtained from [8].

Theorem 2.1. limk→∞ ‖Dk‖ = 0.

Proof. : First, note that

H(Xk+1) = H(Xk + tkDk) = H(Xk) +
t2k
2
DT

kDk.

Then, from [8, Theorem 3.1 and Lemma 3.3], it follows that {tk}k is bounded away from zero
and limk→∞ ‖H(Xk)‖ = 0. Hence, ‖Dk‖2 = Tr(DT

kDk)→ 0. �
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Note that if we remove redundant constraints from Γ, the remaining constraints satisfy the
Linear Independence Constraint Qualification (LICQ), and straightforward calculations show
that every Y ∈ Γ fulfills the Constant Rank Constraint Qualification (CRCQ) [15]. Let us now
present the main convergence result for Algorithm 1, which is a consequence of Theorem 2.1.

Corollary 2.1. Let {Yk} be the sequence generated by Algorithm 1 and Y ∗ ∈ Γ be an accumu-
lation point of {Yk}. Then Y ∗ is a stationary point of (1).

Proof. : Let Y ∗ ∈ Γ be an accumulation point of (1). From Step 2 of Algorithm 1 and Theorem
2.1 we have that PS∗(∇f(Y ∗)) = 0, wherein S∗ is the tangent set of Γ at Y ∗. Hence Y ∗ satisfies
the Approximate Gradient Projection (AGP) condition and the CRCQ. Consequently, it is a
stationary point of (1) (see [20] for further details on AGP condition). �

A well-known result concerning the local convergence rate of the inexact restoration method
is presented in [2] and can be applied to our algorithm. This is the subject of the following
theorem.

Theorem 2.2. Let Ȳ be an accumulation point of {Yk} (so a stationary point) with Λ̄ as
Lagrange multiplier. Suppose that there exists k0 > 0 such that tk = 1 for all k ≥ k0 in
Algorithm 1. Besides, consider Λk an approximation for the Lagrange multipliers in such a way
that Dk at Step 2 satisfies, for all k ≥ k0,

‖PSk
(∇L(Yk +Dk,Λk)) ‖ ≤ ζk‖PSk

(∇L(Yk,Λk)) ‖,

‖Dk‖+ ‖Λk+1 − Λk‖ ≤ c‖PSk
(∇L(Yk,Λk)) ‖

and
‖Xk − Yk‖ ≤ ĉ‖H(Xk)‖,

for some c, ĉ > 0 and {ζk} ⊆ (0, ζ), with ζ ∈ [0, 1). Then, there exists ε > 0 such that if
‖Λk0 − Λ̄‖ < ε we have (Yk,Λk)→ (Ȳ , Λ̄). In addition,
(i) if ζk → 0, the convergence is R-superlinear;
(ii) if ζ = 0, the convergence is R-quadratic.

Proof. : Follows from [2, Theorems 2.4 and 2.5]. �

Next subsection deals with schemes for solving Step 2 and Step 4. Specifically, the following
technical issues are considered: (i) how can we obtain Yk ∈ Rn×p satisfying (4)? (ii) how can
we compute a “good” tangent direction Dk ∈ Sk?

2.1 Characterization of the tangent set

We begin this subsection with a smart characterization of the tangent set. It will be useful
to compute the orthogonal projection onto TΓ(Y ) (or SΓ(Y )) as well as to obtain the main
results of this work. Then, in the next subsections, we clarify how to perform the restoration
and minimization phases for the Problem (1) in order to guarantee global convergence.

Theorem 2.3. Let Y ∈ Γ. Then,

SΓ(Y ) = {AY ∈ Rn×p | A ∈ Rn×n, AT = −A} (9)
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and
TΓ(Y ) = {(I +A)Y ∈ Rn×p | A ∈ Rn×n, AT = −A}. (10)

Proof: Since TΓ(Y ) = {Y + Z | Z ∈ SΓ(Y )}, it is sufficient to prove (9). Let us denote
S̃(Y ) = {AY ∈ Rn×p | A ∈ Rn×n, AT = −A}. So, by inspection, we have S̃(Y ) ⊆ SΓ(Y ). We
now prove the equality of both sets. Let Q ∈ Rn×n be an orthogonal matrix such that Y = QĨ.
Then

dim(S̃(Y )) = dim({QTAY | A ∈ Rn×n, AT = −A})
= dim({BĨ | B ∈ Rn×n, BT = −B})
= p(n− p) + (p− 1)p/2.

Yet, we have that

dim(SΓ(Y )) = dim({X ∈ Rn×p | XTQĨ + ĨTQTX = 0})
= dim({[ZT

1 , Z
T
2 ]T ∈ Rn×p | Z2 ∈ R(n−p)×p, ZT

1 = −Z1})
= (n− p)p+ (p− 1)p/2.

Therefore, SΓ(Y ) = S̃(Y ) and the result follows. �

Corollary 2.2. Let Y ∈ Γ. Then SΓ(Y )⊥ = {Y L ∈ Rn×p | LT = L ∈ Rp×p}.

Proof: Let L and A be symmetric and skew-symmetric matrices, respectively. Then, for Y ∈ Γ,
trace properties imply

〈AY, Y L〉 = Tr(AY LTY T ) = Tr(AY LY T ) = Tr(Y LTY TAT )
= −Tr(Y LTY TA) = −Tr(AY LTY T ) = −〈AY, Y L〉,

that is, 〈AY, Y L〉 = 0 and {Y L ∈ Rn×p | LT = L ∈ Rp×p} ⊆ SΓ(Y )⊥. Since dim({Y L ∈
Rn×p | LT = L ∈ Rp×p}) = (p2 + p)/2, the result follows straightforwardly from Theorem 2.3.
�

Let now Y ∈ Γ be a local minimizer of (1). Hence, since Y satisfies the constant rank
constraint qualification, it follows that ∇f(Y ) ∈ SΓ(Y )⊥ and, from Corollary 2.2, we have

∇Y L(Y,Λ) = ∇f(Y ) + Y Λ = 0, (11)

Y TY − Ip = 0, (12)

where the symmetric matrix Λ ∈ Rp×p contains the Lagrange multipliers corresponding to
the orthogonality constraints. Conditions (11) and (12) are the practical representations for
stationary points of Problem (1).

From (11) and (12) one can also deduce a closed expression for the Lagrange multiplier
matrix:

Λ = −∇f(Y )TY + Y T∇f(Y )

2
. (13)

Next result is relevant for the tangent phase, specifically, for minimizing a smooth model of f
on the tangent set. It gives an explicit formula of the gradient of a continuous differentiable func-
tion restricted to the tangent set and thus gradient-based methods (conjugate gradient, spectral
gradient and others) can be employed while thinking the tangent phase as an unconstrained
minimization problem.
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Proposition 2.1. Let ` : Rn×p → R be a continuous differentiable function, Y ∈ Γ and, for
any skew-symmetric matrix A ∈ Rn×n define, GY (A) = `(Y + AY ), that is, ` restricted to the
tangent set. Then,

∇GY (A) =
∇`(Y +AY )Y T − Y∇`(Y +AY )T

2
. (14)

Proof: Note that defining GY (A) over the skew-symmetric matrices subspaces is equivalent to
define GY ((A − AT )/2) over the vector space of n × n real matrices. Let A ∈ Rn×n be a skew-
symmetric matrix and Z be an arbitrary matrix. By Taylor expansion, for a t ∈ R it follows
that

GY (A+ t
2(Z − ZT )) = `(Y +AY + t

2(Z − ZT )Y )
= `(Y +AY ) + t〈∇`(Y +AY ), (Z − ZT )Y 〉/2 +O(t2)
= `(Y +AY ) + tTr(∇`(Y +AY )T (Z − ZT )Y )/2 +O(t2)
= `(Y +AY )+

tTr((Y∇`(Y +AY )T −∇`(Y +AY )Y T )Z)/2 +O(t2).

Then

∇GY (A) =
∇`(Y +AY )Y T − Y∇`(Y +AY )T

2
,

as claimed. �

We list some remarks that can be obtained from Proposition 2.1:
(i) It turns out that if Y ∗ ∈ Γ is a stationary point of (1) then ∇GY ∗(0) = 0, therefore
∇f(Y ∗)(Y ∗)T is symmetric. Also, from (11), ∇f(Y ∗)TY ∗ is symmetric as well. This can be
useful in measuring how far an iterate is from a stationary point.
(ii) In some applications (e.g. symmetric eigenvalue problem and the electronic structure calcu-
lation problem [11]), we have that ∇f(Y ) = G(Y )Y where G(Y ) is a symmetric matrix. Thus,
in such a case (with ` = f),

∇GY (A) =
G(Y +AY )Y Y T − Y Y TG(Y +AY )

2
,

and so, if Y ∗ ∈ Γ is a stationary point, it follows thatG(Y ∗)D∗ = D∗G(Y ∗), withD∗ = Y ∗(Y ∗)T ,
therefore D∗ is the orthogonal projector onto the invariant subspace of G(Y ∗).

Next subsection deals with the theoretical results related to the restoration phase of the
inexact restoration method.

2.2 Restoration phase

We recall a well-known result whose proof can be found in [13]. Such a result has a strict
connection with the restoration step of Algorithm 1.

Theorem 2.4. Let C ∈ Rn×p and let C = UΣV T be its thin SVD decomposition (that is
Σ ∈ Rp×p). Then the solution of

min ‖C −X‖ subject to XTX = I,

is given by X∗ = UV T .
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Notice that ‖X‖ ≤ √p, ∀X ∈ Γ, so the feasible set Γ is a bounded set and it is contained
in a (large enough) non-empty convex compact set Ω ⊂ Rn×p. Since f is twice continuously
differentiable, there exists a L0 > 0 such that

‖∇f(X)‖ ≤ L0, for all X ∈ Ω. (15)

In what follows, we present a condition with which requirement (4) always holds true.

Lemma 2.1. Let Ȳk, Xk ∈ Ω be such that

‖Ȳk −Xk‖ ≤ β̂‖XT
k Xk − I‖, (16)

for some matrix norm ‖ · ‖ and β̂ > 0. If Yk ∈ Rn×p is such that f(Yk) ≤ f(Ȳk), we have

f(Yk)− f(Xk) ≤ β̂L0‖XT
k Xk − I‖, (17)

wherein L0 > 0 comes from (15).

Proof: From the Taylor expansion with Lagrange remainder and (15), we have

f(Yk)− f(Xk) ≤ f(Ȳk)− f(Xk) ≤ L0‖Ȳk −Xk‖ ≤ β̂L0‖XT
k Xk − I‖.

�

Next, regardless the Xk ∈ TΓ(Yk−1), we give two practical schemes for obtaining a point
Ȳk ∈ Γ where (16) is satisfied for some β̂ > 0.

Theorem 2.5. Let Yk−1 ∈ Γ, Xk ∈ TΓ(Yk−1) and Yk solution of

min ‖Xk − Z‖ subject to ZTZ = I.

Then,
‖Xk − Yk‖ ≤ ‖(Xk)TXk − I‖, (18)

that is, Xk and Yk satisfy condition (16) with β̂ = 1.

Proof: Let Xk = UkΣkV
T
k be the thin SVD decomposition of Xk. Hence, from Theorem 2.4,

Yk = UkV
T
k . Now, using invariance of Frobenius norm by orthogonal matrices and denoting the

i-th singular value of Xk by σik, it turns out that

‖Xk − Yk‖2 = ‖Σk − Ip‖2 =

N∑
i=1

(σik − 1)2.

Moreover, using orthogonal invariance again

‖(Xk)TXk − Ip‖2 = ‖Σ2
k − Ip‖2 =

N∑
i=1

((σik)2 − 1)2.

Since each σik is nonnegative, we have that |σik − 1| ≤ |(σik)2 − 1| for all i ∈ {1, . . . , N}. Thus∑N
i=1(σik − 1)2 ≤

∑N
i=1((σik)2 − 1)2 and, consequently, ‖Xk − Yk‖ ≤ ‖(Xk)TXk − Ip‖. �
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Theorem 2.6. Let β̄ > 0, Yk−1 ∈ Γ and Xk = Yk−1 + AYk−1 ∈ TΓ(Yk−1), for some skew-
symmetric matrix A ∈ Rn×n such that ‖AYk−1‖2 ≥ 1/β̄. Then Ȳk = (I− 1

2A)−1(I+ 1
2A)Yk−1 ∈ Γ

and ‖Ȳk −Xk‖2 ≤ β̄‖XT
k Xk − I‖2. That is, Ȳk satisfies (16) with β̂ = β̄.

Proof: Since (I − 1
2A)(I + 1

2A) = (I + 1
2A)(I − 1

2A) and A is skew-symmetric we have that
(I − 1

2A)−1(I + 1
2A) and (I + 1

2A)−1(I − 1
2A) are orthogonal matrices, from where it results

that Ȳk = (I − 1
2A)−1(I + 1

2A)Yk−1 ∈ Γ. Also, we have that ((I − 1
2A)−1(I + 1

2A))−1 =
((I + 1

2A)−1(I − 1
2A))T and thus (I + 1

2A)−1(I − 1
2A) = (I + 1

2A)(I − 1
2A)−1. Therefore, since

‖.‖2 is invariant by orthogonal matrices, on one hand we have

‖Xk − Ȳk‖2 = ‖(I +A)Yk−1 − (I + 1
2A)(I − 1

2A)−1Yk−1‖2
≤ ‖(I + 1

2A)Yk−1 − (I + 1
2A)(I − 1

2A)−1Yk−1‖2 + 1
2‖AYk−1‖2

= ‖(I + 1
2A)(I − (I − 1

2A)−1)Yk−1‖2 + 1
2‖AYk−1‖2

= ‖(I + 1
2A)(I − 1

2A)−1((I − 1
2A)− I)Yk−1‖2 + 1

2‖AYk−1‖2
= ‖AYk−1‖2.

(19)

On the other hand,

‖XT
k Xk − I‖2 = ‖Y T

k−1(I −A)(I +A)Yk−1 − I‖2
= ‖Y T

k−1(I −A2)Yk−1 − I‖2
= ‖(AYk−1)T (AYk−1)‖2.

(20)

Let σkmax be the largest singular value of AYk−1. Then, since

β̄σkmax = β̄‖AYk−1‖2 ≥ 1,

from (19) and (20) we obtain

‖Ȳk −Xk‖2 ≤ ‖AYk−1‖2 = σkmax

≤ β̄(σkmax)2 = β̄‖(AYk−1)TAYk−1‖2 = β̄‖(Xk)TXk − I‖2,

from which the result follows. �

Theorem 2.6 provides us a scheme to restore a point from the tangent subspace to the feasible
set Γ that is free of SVD computations. Furthermore, the orthogonal matrix (I − A)−1(I + A)
obtained from a skew-symmetric A is known as Cayley Transform. This restoration approach
has also been employed by Wen and Yin for solving (1) [23]. There, a gradient descent type
method based on this transform is presented that results in a SVD-free scheme for minimization
with orthogonality constraints. Briefly, given a feasible iterate Yk and the particular choice
Ak = Yk∇f(Yk)T −∇f(Yk)Y T

k , the method devised in [23] computes

Yk+1 = Y (tk) = (I +
tk
2
Ak)−1(I − tk

2
Ak)Yk, (21)

where tk > 0 satisfies a Armijo-like sufficient decrease condition. A non-monotone Barzilai-
Borwein based choice of tk is used in order to reduce the number of steepest descent iterations
as well as the number of backtrackings in the curvilinear search. For more details, the reader is
referred to [23].

Theorems 2.5 and 2.6 are essential from an algorithmic point of view. Indeed, we have
to assure that the procedure to bring Xk back to feasibility fulfills both conditions (3) and

10



(4). As mentioned before, the first requirement is automatically satisfied since we restore Xk

to feasibility in a exact way (up to floating point precision). On the other hand, if we use the
procedures given by Theorem 2.5 or 2.6, second requirement is assured as well, with a convenient
choice for β > 0.

2.3 Minimization phase

In the minimization phase of the inexact restoration method, we need to find Xk+1 in TΓ(Yk)
such that condition (5) is fulfilled. For this, given Yk ∈ Γ, according to [8] it is sufficient at Step
2 of Algorithm 1 to compute Dk ∈ SΓ(Yk) such that

‖Dk‖ ≥ µ‖PSk
(−∇f(Yk))‖, (22)

for µ > 0, and
〈∇f(Yk), Dk〉 ≤ −µ̄‖Dk‖2, (23)

for µ̄ ∈ (0, 1]. In other words, if Dk ∈ Sk satisfies (22) and (23) then there exists a tk > 0 such
that (5) is verified at Xk+1 = Yk + tkDk.

Due to the characterization of Sk = SΓ(Yk) (see Theorem 2.3), the orthogonal projection
onto Sk can be easily computed, as describes the next proposition.

Proposition 2.2. Let Y ∈ Γ and Z ∈ Rn×p. Then, the skew-symmetric matrix A that minimizes
‖Z −AY ‖ is given by

A∗ = (I − 1

2
Y Y T )ZY T − Y ZT (I − 1

2
Y Y T ), (24)

and the orthogonal projection of Z onto SΓ(Y ) is

PSΓ(Y )(Z) = A∗Y = Z − 1

2
Y (ZTY + Y TZ).

Proof: Notice that Y can be expressed as

Y = QĨ = [Y Y ⊥]

[
Ip
0

]
,

where Y ⊥ is a matrix whose columns form an orthonormal basis for R(Y )⊥, so that Y Y T +
(Y ⊥)(Y ⊥)T = I. From the invariance of Frobenius norm by orthogonal transformations

‖A∗Y − Z‖2 = ‖ĀĨ −QTZ‖2 = ‖Ā11 − Y TZ‖2 + ‖Ā12 − (Y ⊥)TZ‖2, (25)

where

Ā = QTA∗Q =

[
Ā11 −ĀT

12

Ā12 Ā22

]
,

with ĀT
11 = −Ā11. Expression (25) is minimized by Ā∗11 =

1

2
(Y TZ − ZTY ), Ā∗12 = (Y ⊥)TZ and

by an arbitrary Ā22 ∈ R(n−p)×(n−p); we choose Ā∗22 = 0. Then

A∗ = QĀ∗QT = (I − 1

2
Y Y T )ZY T − Y ZT (I − 1

2
Y Y T ),

11



and therefore

PSΓ(Y )(Z) = A∗Y = Z − 1

2
Y (ZTY + Y TZ).

�

Proposition 2.3. Let Y ∈ Γ and consider A∗ as in (24) with Z = D ∈ SΓ(Y ). Denote

B(t) = (I − t

2
A∗)−1(I +

t

2
A∗)Y.

Then, B′(0) = D. Besides,

B(t) = Y + tU(I − t

2
V TU)−1V TY, (26)

wherein U = [(I − 1
2Y Y

T )D | Y ] ∈ Rn×2p, V = [Y | − (I − 1
2Y Y

T )D] ∈ Rn×2p.

Proof: First, note that (I−t/2A∗)B(t) = (I+t/2A∗)Y . So, by the chain rule, (I−t/2A∗)B′(t) =
1/2A∗(Y + B(t)) = 1/2A∗(I + (I − t

2A
∗)−1(I + t

2A
∗))Y = A∗(I − t/2A∗)−1Y . Then

B′(t) = (I − t

2
A∗)−1A∗(I − t

2
A∗)−1Y

and B′(0) = AY . Now, since D ∈ SΓ(Y ), it follows from Theorem 2.3 and Proposition 2.2 that
D = AY and the first part is proved. For the second part, note from (24) that A = UV T with
Z = D. Statement (26) follows by applying the Sherman-Morrison-Woodbury formula [13]:

(I − t

2
UV T )−1 = I +

t

2
U(I − t

2
V TU)−1V T

and by using that

I + (I − t

2
V TU)−1 +

t

2
(I − t

2
V TU)−1V TU = 2(I − t

2
V TU)−1.

�

From Proposition 2.3 we conclude that if D ∈ SΓ(Y ) is such that 〈∇f(Y ), D〉 < 0 then

〈∇f(Y ),B′(0)〉 = 〈∇f(Y ), D〉 < 0,

and so B(t) is a descent curve for f in Γ, for t > 0. Also, Equation (26) can be applied when
p < n/2 in order to reduce computational effort for the case of the restoration via Cayley
transform (21) with

Ak = (I − 1

2
YkY

T
k )DkY

T
k − YkDT

k (I − 1

2
YkY

T
k )

and Dk ∈ Sk a search direction such that 〈∇f(Yk), Dk〉 < 0.

12



2.3.1 Basic scheme based on Spectral Projected Gradient

A possibility to choose a search direction Dk satisfying (22) and (23) is to use the projection
of a positive multiple of the negative gradient onto Sk, namely

DS
k := PSk

(− 1

αk
∇f(Yk)) = − 1

αk

(
∇f(Yk)− 1

2
Yk[∇f(Yk)TYk + Y T

k ∇f(Yk)]

)
,

where αk is a positive scalar based on Barzilai-Borwein spectral stepsize:

α1
k = min

{
max

{
|〈∆Gk−1,∆Yk−1〉|
〈∆Yk−1,∆Yk−1〉

, α

}
, ᾱ

}
or

α2
k = min

{
max

{
〈∆Gk−1,∆Gk−1〉
|〈∆Gk−1,∆Yk−1〉|

, α

}
, ᾱ

}
,

with 0 < α < ᾱ < +∞ and

∆Yk−1 := Yk − Yk−1, ∆Gk−1 := ∇f(Yk)−∇f(Yk−1).

It is not hard to show that DS
k fulfills both conditions (22) and (23) and that DS

k = 0 if and
only if Yk is a stationary point with corresponding Lagrange multiplier

Λk = −
∇f(Yk)TYk + Y T

k ∇f(Yk)

2
. (27)

In other words, for Yk ∈ Γ, condition (11) is equivalent to PSk
(∇f(Yk)) = 0. This justifies the

use of ‖PSk
(∇f(Yk))‖ as stationarity measure at feasible points.

2.3.2 Accelerating final convergence with Conjugate Gradient

An advantage of the inexact restoration approach is the flexibility to choose specific algo-
rithms for the restoration and minimization phases. For example, in order to minimize f over
the tangent set at a feasible point Yk, one could employ second order methods (rather than the
simpler projected gradient scheme presented in the previous section) that exhibit better local
convergence properties, mainly when Yk is close enough to a strict local minimizer of (1).

In the light of R-quadratic (or R-superlinear) convergence given in the Theorem 2.2, we
consider the following subproblem

min
D

Q(Yk +D)

s.t D ∈ Sk,
(28)

as an alternative to determine the search direction Dk in the tangent phase. In (28), Q(Yk +D)
denotes a quadratic model for the Lagrangian

L(Yk +D,Λk) = f(Yk +D) + 〈Λk, H(Yk +D)〉,

where H(X) = XTX−Ip and Λk is chosen as in (27). For solving (28), we adopted a constrained
conjugate gradient proposed by Shariff [21] for minimizing a quadratic function subject to linear
constraints. Such conjugate gradient method requires the projection onto the affine subspace
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defined by the linear constraints. In our case, we have a closed form expression for the projection
onto SΓ(Yk) = {D ∈ Rn×p : Y T

k D +DTYk = 0}, given in Proposition 2.2.
As we will discuss ahead, in the numerical experiments, we consider to invoke the Conjugate

Gradient (CG) algorithm for computing a search direction DCG
k based on (28) as soon as the

stationarity measure falls below a certain threshold: ‖PSk
(∇f(Yk))‖ < δCG.

Some care must be taken because we may find a direction of negative curvature inside CG
or reach the maximum number of inner iterations. Moreover, the direction DCG

k is used as
search direction on the tangent set only if conditions (22)-(23) are verified – otherwise we use
the spectral projected gradient direction.

For certain problems, where the Hessian ∇2Q(X) has a favorable eigenvalue distribution,
these CG iterations may considerably improve the final convergence.

3 The algorithm for minimization over orthogonality constraints

Section 2 gave the necessary background concerning the restoration and minimization phases
of an inexact restoration algorithm applied to Problem (1). In this section, we update Algorithm
1 and summarize in Algorithm 2 the ideas discussed so far. Since this algorithm is a particular
case of Algorithm 1, the convergence properties of both are the same, particularly, convergence
to a stationary point of (1) is assured.

In the restoration step (Step 4), we remark that if ‖tkDk‖ > 2/β, then the restoration
based on the Cayley transform is used since in this case Theorem 2.6 ensures the β-condition.
Otherwise, we employ the SVD based projection onto Γ, where condition (4) holds true with
β = L0 (see Lemma 2.1 and Theorem 2.5).

In Step 2, we start by computing the scaled projected gradient direction DS
k (see Sec-

tion 2.3.1). If ‖PSk
(∇f(Yk))‖ < δCG, then a certain number of conjugate gradient iterations is

considered to obtain DCG
k based on (28). If such direction fulfills conditions (22) and (23), then

Dk = DCG
k , otherwise Dk = DS

k .
Step 5 is optional, because it asks for a feasible Yk+1 with objective value no greater than

f(Ȳk+1), which is clearly satisfied by the choice Yk+1 = Ȳk+1. However, in Step 5 we can also
consider a few “local iterations” that are allowed to move Ȳk+1 to another feasible point with a
possibly smaller objective value. Here we consider M local iterations of the spectral projected
gradient (no line search) followed by a restoration step.

4 Numerical experiments

In this section, we present some numerical experiments on three classes of Problem (1) and
compare the results obtained by the proposed Algorithm 2, henceforth named ERNM, with those
of [23]. Recall from Section 2.2, that the authors of [23] also employ the Cayley Transform (21)
for a particular choice of Ak to devise a manifold based gradient method for Problem (1). The
corresponding algorithm will be called StiefelGBB.

In ERNM, the iterations are stopped as soon as

‖PS(Yk)(−∇f(Yk))‖ < ε (29)

14



Algorithm 2 Exact Restoration Algorithm for Problem (1)

Step 0. Given β, µ > 0, 0 ≤ ηmin ≤ ηmax < 1, µ̄, θ0 ∈ (0, 1), r ∈ (0, 1], and X0 ∈ Rn×p

such that XT
0 X0 = Ip, set Y0 = X0, C0 = Φ(X0, θ0), Q0 = 1 and k = 0.

Step 1. Set θk+1 as the first term of the sequence {θk/2j}j∈N satisfying

Φ(Yk, θk+1) ≤ Φ(Xk, θk+1)− 1

2
‖H(Xk)‖.

Step 2. Find Dk ∈ Sk such that

〈∇f(Yk), Dk〉 ≤ −µ̄‖Dk‖2, and ‖Dk‖ ≥ µ‖PSk
(−∇f(Yk))‖.

Step 3. Set tk as the first term of the sequence {1/2j}j∈N such that

Φ(Yk + tkDk, θk+1) ≤ Tk −
1− r

2
‖H(Xk)‖,

where Tk = max{Ck,Φ(Xk, θk+1)}. Update Xk+1 = Yk + tkDk. Choose ηk ∈ [ηmin, ηmax]
and update

Qk+1 = ηkQk + 1,

Ck+1 = (ηkQkTk + Φ(Xk+1, θk+1))/Qk+1.

Step 4. (Restoration step) If ‖tkDk‖ ≥ 2/β, then set

Ak = (In −
1

2
YkY

T
k )DkY

T
k − YkDT

k (In −
1

2
YkY

T
k )

and update

Ȳk+1 =

(
In −

tk
2
Ak

)−1(
In +

tk
2
Ak

)
Yk

or via (26). Otherwise, define Ȳk+1 as the orthogonal projection of Xk+1 on Γ.

Step 5. Find a feasible Yk+1 such that

f(Yk+1) ≤ f(Ȳk+1).

Update k = k + 1 and return to Step 1.
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i.e., when the stationarity measure is small enough. Also, in case

〈∇f(Yk), Dk〉
‖∇f(Yk)‖‖Dk‖

> −εX (30)

or
‖Xk −Xk−1‖ < εX , and |f(Xk)− f(Xk−1)| < εF (31)

for small positive tolerances εX , εF , the iterations are interrupted as well as when either the
maximum number of iterations ITmax or the maximum number of function evaluations FEmax

is reached.
We remark that StiefelGBB uses as stationarity measure ‖P̃S(Y )(∇f(Y ))‖ where

P̃S(Y )(∇f(Y )) = ∇f(Y )− Y (∇f(Y )TY )

which is, in general, different from

PS(Y )(∇f(Y )) = ∇f(Y )− Y
(
∇f(Y )TY + Y T∇f(Y )

2

)
,

agreeing only at stationary points.
Unless stated otherwise, the tolerances used in the stopping criteria for ERNM (and also for

StiefelGBB) are ε = εCG = 10−4, εX = 10−10, εF = 10−10, FEmax = 2000, along with the
following parameters: ITCGmax = 50, µ = 10−4 and µ̄ = 10−8. Concerning the parameter r,
we use r = 10−4 when Dk is obtained by CG and r = 0.9998 when Dk is the spectral projected
gradient direction. In the non-monotone line search we use ηk = η,∀k. The choice of η is
discussed in the next subsection.

We also remark that we invoke CG to determine the search directionDk whenever ‖PS(Yk)(−∇f(Yk))‖ ≤
δCG, allowing at most ITCGmax inner iterations to achieve a tolerance εCG. We start with
δCG = 10−2 and, in order to avoid premature CG iterations, we update this parameter accord-
ing to

δCG ← max{10−4, 0.1δCG},

every time the direction does not satisfy the conditions of Step 2 in Algorithm 2.
All codes were implemented in Matlab R2016b and run in a MacBook Pro 2.4Ghz Intel Core

i7, 8GB RAM.

4.1 Monotone × Non-monotone line search

In order to assess the impact of the non-monotone line search strategy in Algorithm 2, and to
set a suitable value for the parameter η, we performed some experiments on a set of 48 random
problems with the following features:

� Linear eigenvalue problem: 20 instances with n ∈ {500, 1000, 2000, 3000} and p ∈ {10, 50, 100, 200, 300};

� Nonlinear eigenvalue problem: 16 instances with n ∈ {200, 400, 800, 1000} and p ∈ {10, 20, 30, 40};

� Orthogonal Procrustes problem: 12 instances with n ∈ {500, 1000, 2000} and p ∈ {10, 20, 50, 100}.
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Figure 1: Performance Profile (CPU time) for different choices of η.

The definitions of such problems and the details on how the random instances were generated
are presented in Sections 4.3, 4.4 and 4.5, respectively.

For this test set we limit the number of iterations to 2,000, function evaluations to 4,000
and CPU time to 300s. We consider M = 0 (no local iterations), and η = 0, 0.15, 0.5, 0.85, 0.99.
Recall that η = 0 favors a monotone line search.

Figure 1 shows the performance profile [6] for these choices of η using the CPU time as
performance measure. We can see that, for this set of problems, η = 0.99 yields the most
efficient and robust version of Algorithm 2 among the considered choices of η. Henceforth, we
use η = 0.99 for the following experiments.

4.2 Local × Globalized iterations

In Step 5 of Algorithm 2, we need to find a feasible Yk+1 such that f(Yk+1) ≤ f(Ȳk+1). Of
course, this condition holds for Yk+1 = Ȳk+1 and one could just skip Step 5 and go on. However,
this “local window” allows the application of heuristics in order to find another feasible point
with an improved objective value and to accelerate the overall convergence while keeping the
global convergence properties (see Section 2).

In these experiments we consider as such heuristic M local iterations of the spectral projected
gradient (discussed in Sec. 2.3.1) – without line search (tk = 1) – followed by the restoration
step described in Sec. 2.2.

We have solved the same 48 problems from the previous section (using η = 0.99) for different
values of M , namely M = 0, 5, 10, 15, 20. Figure 2 brings the performance profile in terms of
CPU time. Although there is no clear winner in terms of efficiency and robustness, M = 15
appears to be slightly better in the majority of the problems in this test set.

In view of preliminary results obtained so far, in the numerical experiments of the next
sections we consider the parameters η = 0.99 and M = 15 (unless stated otherwise). In the
following sections, F ∗ denotes the known optimal value and F̂ stands for the objective value
obtained by the algorithms.
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4.3 Linear eigenvalue problem

Let A ∈ Rn×n be a symmetric matrix and λ1 ≥ λ2 ≥ · · · ≥ λn its eigenvalues. The problem
of determining the p largest eigenvalues of A may be formulated as

min
X∈Rn×p

− Tr(XTAX)

s.t. XTX = Ip,
(32)

and the columns of an optimal X∗ ∈ Rn×p are the corresponding normalized eigenvectors.
In the following subsections we present computational results in random instances of problem

(32) and on large sparse instances of the problem, respectively.

4.3.1 Random instances

In these instances, A = BTB whose entries of B ∈ Rn×n are sampled from a standard normal
distribution. Initial points were generated by the procedure

X̄0 = randn(n, p);X0 = orth(X̄0);

in Matlab, which obtains a feasible X0 from the columns of a random n× p matrix X̄0.
Table 1 presents the CPU time in seconds spent by StiefelGBB and ERNM to reach some stop

criterion. We see that StiefelGBB is slightly faster than ERNM in almost all instances, but it fails
to solve two of them in less than FEmax function evaluations, namely, for (n = 1000, p = 300)
and (n = 3000, p = 300). Moreover, for these two problems |F̂ − F ∗| ≈ 10−4 for StiefelGBB

whereas ERNM obtained |F̂ − F ∗| ≈ 10−8 in all instances (here F ∗ is obtained by using eigs

routine from Matlab R2016b).
Concerning the cost per iteration, we remark that each backtracking in the curvilinear search

(on the manifold) of StiefelGBB requires to compute a Cayley transform and a function evalua-
tion whereas in ERNM the line search is performed in the tangent set and requires only additional
function evaluation. This difference may be significant for higher values of p.
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Table 1: CPU time for StiefelGBB and ERNM in random instances of the Linear Eigenvalue
Problem

StiefelGBB ERNM

p \n 500 1000 2000 3000 500 1000 2000 3000

10 0.14 0.22 1.94 2.82 0.16 0.31 2.19 5.30
50 0.42 0.65 2.50 14.97 0.52 0.86 3.28 15.03
100 1.33 2.7 15.69 16.29 1.13 3.38 13.43 19.01
200 3.38 6.18 21.21 64.09 2.93 6.05 22.67 68.20
300 8.82 117.15 72.81 430.08 8.12 30.09 68.08 289.91

Table 2: CPU time for StiefelGBB and ERNM in some sparse instances of LEP (p = 2).

StiefelGBB ERNM

Name n NF CPU |F ∗ − F̂ | NF CPU |F ∗ − F̂ |

crack 10240 402 0.4540 5.4816e-07 469 0.6470 9.9935e-09
tsyl201 20685 121 0.6096 2.9413e-09 141 1.0613 3.9037e-11
bcsstm35 30237 14 0.0879 3.1025e-08 17 0.0704 2.0224e-07
obstclae 40000 498 1.3914 4.6208e-06 980 3.1531 3.8665e-06
nasasrb 54870 149 1.0591 3.0136e-04 182 1.5082 2.8610e-06
wing 62032 408 2.4835 4.6407e-08 600 3.4285 9.7303e-09
cfd1 70656 220 1.6557 2.4863e-07 561 6.8381 6.7763e-09
thermal1 82654 144 1.3336 1.4721e-07 160 1.5036 3.8733e-09
fe rotor 99617 149 1.8208 6.0000e-08 118 1.8073 1.1764e-09
ford2 100196 21 0.2468 2.9139e-10 33 0.4167 2.3515e-11
filter3D 106437 20 0.3141 0.0151 46 1.0375 0.0151
x104 108384 152 2.9749 1.8533e-07 218 6.2391 2.3283e-10

4.3.2 Sparse instances

We also consider a subset of sparse symmetric matrices from University of Florida sparse
matrix collection [5].

In Table 2, we report the results obtained by StiefelGBB and ERNM in 12 large sparse
symmetric matrices. As in [23], we consider the estimation of the p = 2 largest eigenvalues.
Again, StiefelGBB was faster but the precision of ERNM was at least as good as the manifold
algorithm. Notice also that both failed to find the global minimizer for the problem “filter3D”.

4.4 Nonlinear eigenvalue problem

Consider a map A : Rn×p → Sn, where Sn is the set of n × n real symmetric matrices. In
the nonlinear eigenvalue problem, we look for X ∈ Rn×p such that

A(X)X = XΛp, XTX = Ip, (33)

where Λp ∈ Rp×p is a diagonal matrix containing the p smallest eigenvalues of the symmetric
matrix A(X). Problem (33) encounters many interesting applications in science and engineering
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[4].
Here we focus on a particular class of problem (33), namely, the total energy minimization

problem [25]:

min
X∈Rn×p

1

2
Tr(XTLX) +

α

4
ρ(X)TL−1ρ(X)

s.t. XTX = Ip,

(34)

where L is a discrete Laplacian operator, α > 0 is a constant, diag(M) = (m11,m22, . . . ,mnn)T ,
and

ρ(X) = diag(XXT ) = (X �X)e,

where e is the column vector of ones and � stands for the Hadamard product.
In accordance with [25], a necessary optimality condition for (34) is given by (33) with

A(X) = L+αDiag(L−1ρ(X)), where Diag(x) is a diagonal matrix with the elements of a vector
x in its diagonal. Thus (34) is a particular case of (33).

The parameter α ≥ 0 controls the degree of nonlinearity in the eigenvalue problem. In Ta-
ble 3, we present the results of StiefelGBB and ERNM algorithms for p = 10, n ∈ {200, 400, 800, 1000}
and increasing values of α.

As in [25], we consider random starting points generated according to the following procedure
(in Matlab slang):

X̄ = randn(n, p), [U, S, V ] = svd(X̄, 0), X̂ = UV T , X0 = eigs(A(X̂), p, ’sm’).

The tolerances used in the stopping criteria were ε = 10−4, εX = 10−10, εF = 10−10,
ITmax = 2000.

For the instances of Table 3, we can observe a similar behavior for both algorithms, with
StiefelGBB demanding less function evaluations in all the instances. However, for α = 100, we
can see in Table 4 that as p increases, StiefelGBB starts to face some difficulties, not achieving
the desired precision before reaching the maximum number of iterations, whereas ERNM appears
to remain stable, solving all the instances within the criterion ‖PS(Ȳ )(Ȳ )‖ < ε = 10−4.

4.5 Orthogonal Procrustes problem

Given A ∈ Rn×n and B ∈ Rn×p, n ≥ p, the orthogonal Procrustes problem reads

min
X∈Rn×p

1

2
‖AX −B‖2

s. t. XTX = Ip.

(35)

It is interesting to mention that although this problem has a closed form solution when
n = p, given by X∗ = UV T , where ATB = UΣV T is the SVD of ATB, (1) is a non-convex
optimization problem which has more than one stationary point.

In the numerical experiments of this section, besides varying the dimensions n and p, we
also consider different singular value distributions for A inspired by [9, 10]. Namely, A = UΣV T

where U and V are random orthogonal matrices and Σ is a non-negative diagonal matrix. Then,
a random Q̃ ∈ Rn×p with orthonormal columns is generated and B = AQ̃.

Initial points were generated by the procedure

X̄0 = X∗ + 0.001 randn(n, p);X0 = orth(X̄0);

where X∗ is the known solution.
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Table 3: CPU time for StiefelGBB and ERNM in some instances of the Nonlinear Eigenvalue
Problem (p = 10).

StiefelGBB ERNM

α n NF CPU ‖PS(Ȳ )(Ȳ )‖ NF CPU ‖PS(Ȳ )(Ȳ )‖

0.01 200 92 0.03561 6.8396 ×10−5 164 0.05131 1.7545 ×10−4

0.01 400 129 0.0890 6.3604 ×10−5 171 0.09423 9.4575 ×10−5

0.01 800 100 0.2611 9.5978 ×10−5 186 0.4559 4.9998 ×10−5

0.01 1000 102 0.4401 8.7415 ×10−5 239 1.000 6.8828 ×10−5

1.00 200 48 0.02278 9.0125×10−5 74 0.0284 6.5455×10−5

1.00 400 50 0.03683 7.3631×10−5 70 0.05672 6.8436×10−5

1.00 800 52 0.1343 8.3579×10−5 71 0.1791 6.2643×10−5

1.00 1000 48 0.2088 9.1069×10−5 71 0.2971 6.3466×10−5

10 200 63 0.02394 7.7930×10−5 216 0.07786 9.3466×10−5

10 400 61 0.04328 7.6372×10−5 225 0.1277 7.8082×10−5

10 800 70 0.1825 2.8644×10−5 138 0.344 4.4447×10−5

10 1000 74 0.3195 4.9461×10−5 142 0.5587 2.1190×10−5

100 200 82 0.09359 9.2752×10−5 208 0.1424 4.4285×10−5

100 400 90 0.0611 8.9270×10−5 250 0.1593 6.6543×10−5

100 800 91 0.2323 9.4751×10−5 208 0.4991 6.6366×10−5

100 1000 121 0.5195 9.7985×10−5 226 0.91 7.0921×10−5
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Table 4: CPU time for StiefelGBB and ERNM in some instances of the Nonlinear Eigenvalue
Problem (α = 100).

StiefelGBB ERNM

p n NF CPU ‖PS(Ȳ )(Ȳ )‖ NF CPU ‖PS(Ȳ )(Ȳ )‖

10 200 82 0.03695 9.2752×10−5 208 0.09656 4.4285×10−5

10 400 101 0.05986 2.9693×10−5 243 0.1322 4.0926×10−5

10 800 83 0.2273 8.0371×10−5 221 0.5746 3.8825×10−5

10 1000 98 0.4717 9.1351×10−5 248 1.112 8.9374×10−5

20 200 9426 3.48 1.1047×10−3 553 0.2642 8.2123×10−5

20 400 201 0.1601 5.5251×10−5 908 0.6944 5.4108×10−5

20 800 9254 27.18 1.9862×10−3 618 2.105 2.9033×10−5

20 1000 9508 44.43 5.4834×10−4 801 3.264 5.8985×10−5

30 200 378 0.253 4.4016×10−5 1593 1.131 9.5992×10−5

30 400 371 0.4885 7.9130×10−5 1191 1.654 8.6490×10−5

30 800 9044 32.15 9.2117×100 1183 3.582 6.3497×10−5

30 1000 2432 14.5 7.8938×10−3 2098 11.72 4.7705×10−5

40 200 7469 4.674 6.1828×10−2 1362 1.03 5.8821×10−5

40 400 555 0.958 1.0339×10−4 1038 1.617 5.0187×10−5

40 800 504 2.545 1.2082×10−4 1234 5.125 1.6375×10−4

40 1000 5019 30.85 3.2227×100 1060 6.436 8.8694×10−5
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Table 5: CPU time for StiefelGBB and ERNM in random instances of OPP (uniformly distributed
singular values)

StiefelGBB ERNM

p \n 500 1000 2000 500 1000 2000

10 0.06 0.05 0.13 0.05 0.04 0.11
20 0.06 0.07 0.16 0.04 0.06 0.16
50 0.10 0.14 0.36 0.08 0.11 0.31
100 0.24 0.38 0.98 0.10 0.22 0.63

Table 6: CPU time for StiefelGBB and ERNM in random instances of OPP (equally spaced
singular values)

StiefelGBB ERNM

p \n 500 1000 2000 500 1000 2000

10 0.06 0.18 1.54 0.11 0.27 2.03
20 0.10 0.41 3.19 0.16 0.60 3.00
50 0.27 1.23 2.98 0.39 0.93 4.47
100 0.71 1.45 80.49 0.86 11.10 30.11

4.5.1 Uniformly distributed singular values

The singular values are uniformly distributed in the interval [10, 12]. In this case, the matrix
A is well-conditioned and we expect a good performance for both algorithms.

As expected both algorithms solve these instances very fast (see Table 5), expending around
20 function evaluations, and obtaining very good accuracy: |F̂ − F ∗| ≈ 10−10.

4.5.2 Different equally spaced singular values

The singular values of A follow the arithmetic progression:

σi = 1 +
i

100
, i = 1, 2, . . . , n.

This implies in n different and equally spaced singular values in the interval [1, 1 + n/100].
Though the condition number of A is not so high, these instances are difficult for gradient

methods due to this specific eigenvalue distribution.
From Table 6 we observe that StiefelGBB is faster than ERNM in the majority of instances,

except for the very last one with n = 2000 and p = 100. In fact for this instance, StiefelGBB
exceeded the maximum number of 2,000 function evaluations, returning an objective value F̂
such that |F̂ − F ∗| ≈ 2.0306. ERNM found the wrong stationary point for n = 1000 and p = 100,
obtaining |F̂ − F ∗| ≈ 1.8968.
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Table 7: CPU time and relative error for StiefelGBB in random instances of OPP (clustered
singular values)

CPU time (secs.) Relative Error: |F̂ − F ∗|

n \ p 10 20 50 10 20 50

500 2.6858 6.7247 14.7839 1.3403×100 1.7920×100 0.0063×100

1000 12.2200 16.8900 32.5965 3.2388×100 5.0986×100 1.7202×101

2000 36.0926 47.3296 97.3582 8.8538×100 1.6301×101 3.8828×101

Table 8: CPU time and relative error for ERNM in random instances of OPP (clustered singular
values)

CPU time (secs.) Relative Error: |F̂ − F ∗|

n \ p 10 20 50 10 20 50

500 0.9329 1.0058 11.4787 5.8667×10−10 2.6106×10−9 1.0419×10−9

1000 3.2726 11.7934 16.4994 7.3380×10−10 2.7454×10−10 2.4048×10−10

2000 20.6557 25.0054 78.1576 1.1640×10−10 1.4985×10−9 4.3011×10−10

4.5.3 Clustered singular values

In these instances we generate the singular values of A in some clusters, according to the
formulae

σi = 1 + 100

(⌊
i

100

⌋)
+ δi, i = 1, 2, . . . , n,

where δi are independent and identically distributed samples from a standard GaussianN(0, 0.1).
Such singular value distribution implies in an ill-conditioned Hessian ATA with few eigenvalue
clusters.

Since gradient-like methods perform poorly for ill-conditioned Hessians, in StiefelGBB we
increase the maximum number of iterations to 5,000.

In ERNM, the “local iterations” described in Sect. 3 were disabled (M = 0) and we set

δCG = max{10−2,min{102, 10−3‖PS(Y0)∇f(Y0)‖}}

in order to favor early Conjugate Gradient iterations.
From Tables 7 and 8 we observe that ERNM with these adjustments was faster than StiefelGBB

and also obtained better solutions. In fact, in all problems of this set, StiefelGBB faced con-
vergence problems and stopped with the maximum number of iterations. On the other hand,
the results of ERNM are justified by the good behavior of the Conjugate Gradient (used in the
minimization phase) for this kind of problem.

4.6 Higher precision solutions

In this last section of numerical experiments we consider again the Linear Eigenvalue Problem
(LEP) described in Section 4.3 but requiring now a higher precision, namely

ε = εCG = 10−8, εX = εF = 10−12.
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Figure 3: Relative error decay (n = 2000, p = 50).

Table 9: CPU time and optimality measure of StiefelGBB in LEP instances

CPU time (secs.) ‖PS(Y )(∇f(Y ))‖

n \ p 10 50 100 10 50 100

500 0.1525 4.4038 4.0377 5.3175×10−8 1.0835×10−3 1.1602×10−6

1000 0.3862 10.4264 20.9483 1.0084×10−7 1.5551×10−2 6.2479×10−3

2000 0.9369 24.2097 52.6929 2.4871×10−7 4.8590×10−4 1.5396×10−3

With this we intend to highlight once more that the flexibility in the minimization phase of
Algorithm 2 allows one to employ methods exhibiting better local convergence rates that are
more suitable when high precision in the solution is paramount. Here we consider again the
linearly constrained conjugate gradient of Section 2.3.2.

Table 9 presents the results obtained by StiefelGBB. We remark that the maximum number
of 2,000 iterations was reached for five problems (whose values of ‖PS(Y )(∇f(Y ))‖ are in bold).

From Table 10 we see that the desired precision ε = 10−8 was also not achieved by ERNM in
all problems, though it achieved relatively better results than StiefelGBB as expected. Figures
in bold correspond to problems where ERNM stopped by criterion (31) and figures in italics
correspond to the stopping criterion (30).

In Figure 3 we display how the relative error on the objective function decays as a function
of the number of function evaluations spent by the algorithms, for the LEP with n = 2000 and
p = 50. This significant decay of the relative error in the final stage of the process is in general
observed when full CG iterations are accepted (with tk = 1) from a given iteration k̄.
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Table 10: CPU time and optimality measure of ERNM in LEP instances

CPU time (secs.) ‖PS(Y )(∇f(Y ))‖

n \ p 10 50 100 10 50 100

500 0.1643 0.7542 1.5811 4.2003×10−9 7.6564×10−6 5.3753×10−6

1000 0.7749 1.9112 6.3284 3.7871×10−6 1.0084×10−7 6.9316×10−8

2000 2.0149 10.2729 14.6052 5.5677×10−9 7.5310×10−5 9.0842×10−9

5 Final remarks

In this work we presented a numerical scheme for minimizing a differentiable function over
the set of (rectangular) matrices with orthonormal columns. The proposed algorithm is based on
a non-monotone variation of the inexact restoration method and has the advantage of allowing
specific approaches for solving the two phases, namely, minimization (tangent) and restoration
phases, so that the structure of the problem can be better explored. Our theoretical results
guarantee convergence of the generated sequence to stationary points as well as local super-
linear/quadratic convergence under reasonable conditions. In particular, we have shown that
suitable numerical schemes for treating subproblems (with second-order information) lead to a
substantial improvement in some classes of problems, such as problems with Hessian mismatch or
those where high accuracy is required. To validate our algorithm and illustrate the theoretical
results in practical problems, results of numerical experiments were reported on three different
representative classes of Problem (1). The numerical results indicate that our algorithm is re-
liable and performs as efficiently as a state-of-the-art manifold-based gradient algorithm while
endorsing the convergence theory established in Section 4, for example, global and R-quadratic
(or superlinear) convergences.

In future works we plan to investigate two issues where there is room to improve in our
algorithm: (1) since at the tangent phase the minimization is performed over a linear subspace,
the backtracking over the merit function can be replaced by a standard interpolation scheme in
order to reduce the number of function evaluations; (2) problem-oriented extrapolation schemes
could be employed at the restoration phase in order to compute the restored point Yk such that
f(Yk) ≤ f(Ȳk) (here called “local window”).
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