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Abstract In this paper, we identify partial correlation information structures that
allow for simpler reformulations in evaluating the maximum expected value of
mixed integer linear programs with random objective coefficients. To this end, as-
suming only the knowledge of the mean and the covariance matrix entries restricted
to block-diagonal patterns, we develop a reduced semidefinite programming for-
mulation, the complexity of solving which is related to characterizing a suitable
projection of the convex hull of the set {(x,xx’) : x € X} where X is the feasible
region. In some cases, this lends itself to efficient representations that result in
polynomial-time solvable instances, most notably for the distributionally robust
appointment scheduling problem with random job durations as well as for com-
puting tight bounds in the newsvendor problem, Project Evaluation and Review
Technique (PERT) networks and linear assignment problems. To the best of our
knowledge, this is the first example of a distributionally robust optimization for-
mulation for appointment scheduling that permits a tight polynomial-time solvable
semidefinite programming reformulation which explicitly captures partially known
correlation information between uncertain processing times of the jobs to be sched-
uled. We also discuss extensions where the random coefficients are assumed to be
non-negative and additional overlapping correlation information is available.
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1 Introduction

We consider decision problems where the objective involves maximizing the ex-
pected value of Z(€), where ¢ = (é1,¢2,...,¢n) is a n-dimensional real valued
random vector and,

Z(é):max{é'x:xe)(}, (1)

and the set X is the bounded feasible region to a mixed integer linear program
(MILP):

X={xeR":Ax=b, x>0, z; € ZforjeZC[n]}.

The set X includes the feasible region to linear optimization problems as a special
case. The distribution 6 of € is not always known explicitly, while many a time, only
a set P of distributions is known such that 6 € P. In this scenario, we are interested
in computing the quantity sup{Eqy[Z(¢)] : 6 € P}, referred to as the distributionally
robust bound. In this paper, we focus on the case where only the first moment of
¢ along with some of the second moments are specified. Applications where such
bounds have been previously studied include appointment scheduling, portfolio
management and the newsvendor problem among others. For more details, the
interested reader may refer to [4,6,17,32,43,44,57].

A precise description of the problem is provided next. Suppose that A1,...,Ng
form a partition of the set N' = {1,...,n}, so that V' = | J,. NV and N; N N; = & for
i # j. We use n, = |N;| to denote the size of the subset N;. For any vector a € R",
let a” € R™ be the subvector formed using elements in N, as indices. Let P(R")
be the set of probability distributions on R™. Suppose that the only information
we know about the probability distribution of € is the first moment specified by
E[€] = p and the second moment matrices E[¢"(¢")'] = II" for r € [R] = {1,..., R}.
In this situation, we are interested in:

7" = sup {Ey [2(2)] : Eg[d] =, By[e"(&")] =TI for r € [R], 6 € P(R™) }, (2)

which quantifies the maximum possible expected value of Z(&) over all probability
distributions 6 whose first and second moments are consistent with the moment
information specified for the random vector €. We assume that all r € [R],II" >
" "’ which is sufficient to guarantee that strong duality holds and in the resulting
dual formulations, the optimum is attained. Since R denotes the number of non-
overlapping subsets, the partition for R = n corresponds to the case where only
the mean and diagonal (variance) entries of the covariance matrix are specified.
On the other hand, R = 1 corresponds to the case where the mean and the entire
covariance matrix is specified. Hence, IT"’s denote known sub-matrices of IT which
denotes the matrix of all second moments of ¢. Thus, we relax the assumption that
the complete matrix IT is known for a fixed R > 1, but only that some entries are
known. The model studied in this paper is closest to the model analyzed in [20].
Therein, the authors studied the distributionally robust bound sup{Eg[max &'x :
x € X C {0,1}"] : & € P} where multivariate marginal discrete distributions of
non-overlapping subsets of random variables are specified. While the bound is NP-
hard to compute, [20] identified two instances of the problem for subset selection
and Project Evaluation and Review (PERT) networks, where the tight bound is
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computable in polynomial-time. We build on the model in [20] by allowing for
decision variables x € X C R™ and considering moment-based ambiguity sets.

Notations. Let R™*" be the set of m x n matrices with real entries, S* be
the set of k x k symmetric matrices and Si be the set of k x k symmetric positive
semidefinite (psd) matrices. We write A = 0 to denote that A is a psd matrix.
For any positive integer k, we use [k] to denote the set {1,2,...,k}. For any subset
I of [k] and matrix A € R*** we use A[I] to denote the principal submatrix of
A formed by restricting to rows and columns whose indices are elements of the
set I. For any two vectors x,y € R", we denote by x oy the vector formed by
component-wise multiplication of x and y. For any set £, we write conv(€) to
denote the convex hull of the set £. For a closed convex cone K, the generalized
completely positive cone over K is defined as the set of symmetric matrices that
are representable as the sum of rank one matrices of the form:

C(K) ={A €8":3by,...,by € K such that A = ) byb}}.
ke(p]

For K =R, C(R"}) is the cone of completely positive matrices. The dual to this
cone is the cone of copositive matrices denoted as C*(R’). More generally for
K =R" xR}, C(R" xR} ) is given by

C(R" xR%}) = H’g ]g} esym: Cec(Ri)}. (3)

2 Literature review

There is now a fairly significant literature on methods that either compute the
tight distributionally robust bound Z* or weaker upper bounds on Z* for mixed
integer linear optimization problems [6,10,17,28,32,43,44,59]. In general, one of the
difficulties that arises in exact formulations to compute Z* under moment-based
ambiguity sets is that it involves optimization over the cone of completely positive
matrices, which is typically intractable. This naturally leads to the question of
identifying specific instances for which the problem is tractable, which is our focus
in this paper. We review some of the key concepts briefly next, before discussing
the contributions in this work.

2.1 Exact Reformulations: Completely Positive Matrices and Quadratic Forms

Problem (2) for R = 1 corresponds to the case where the mean g € R™ and the
entire second moment matrix IT € S% is specified. The distributionally robust
bound studied in [44] is:

Zian(p, I0) = sup {Eg [Z(€)] : Eg[e] = p, Bglee] =1L, 0 € P(R") }.  (4)

An exact reformulation of the problem is obtained in [44] by using the expected
value of the following random variables as decision variables:
1 17
E c c

x(@)] [x(©)

o
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where x(€) is a randomly chosen optimal solution for the objective coefficients €.
For the case when the decision variables in the set Z in X’ are binary, building on
the seminal work in [14], [44] provided an equivalent reformulation of this problem,
under mild assumptions on the set X’ as a generalized completely positive program
of the form:

zZ5 II) = t Y
funt (12, IT) plgg%(( race(Y)

1 H'l p/
st |pIIY'| € C(Ry x R" x RY),
PY X (5)
a;cp = bk7 vk € [p]7
aj, Xay, = by, vk € [p],
ij = pj, V] €T,

where aj, is the kth row of the matrix A. The variables p, X and Y may be in-
terpreted as representing E[x(€)], E[x(&)x(€)'] and E[ex(E)’] respectively. The con-
straints involving p correspond to taking expectations on the constraint a},x(€) =
bi. Taking squares on both sides of aj,x(€) = b followed by expectations gives
us the constraint aj,Xa; = b3. Finally all variables x; € T are binary and there-
fore X;; = E[z;(€)?] = E[z;(€)] = p;. Unfortunately, problem (5) is hard to solve
due to the difficulty in characterizing the generalized completely positive cone
C(R4 x R™ x R ). For matrices of size n > 5, testing for membership in the com-
pletely positive cone C(R’}) is known to be NP-hard [19]. However, for n < 4, the
completely positive cone of matrices coincides with the doubly nonnegative cone
of matrices DNN™ = ST NN™ where N denote the set of matrices of size n with
nonnegative elements. It is straightforward to characterise the doubly nonnega-
tive cone of matrices using psd and nonnegativity conditions and this provides a
tractable relaxation to the completely positive cone, since C(R7}) C DNAN™ for all
n. The doubly nonnegative relaxation thus results in an upper bound on Z*, which
might not be tight. There are several hierarchies of psd and nonnegative cones that
have been developed to generate tighter approximations of the completely positive
cone and the dual copositive cone including the works of [11], [12], [63], [47]. We
note that completely positive and copositive programming representations of dis-
tributionally robust optimization problems under alternative ambiguity sets such
as Wasserstein-based ambiguity sets have been recently developed in [28] and [59].

A related formulation that builds on characterizing the convex hull of quadratic
forms over the feasible region and semidefinite optimization was proposed in [43].
They established an equivalent tight formulation to compute Z* as follows:

A II) = t Y
fun (1, IT) m)?)‘(( race(Y)

14 p

st (pIIY'| >0, (6)
pY X
(p,X)Ecom}{(x,xx’):xeX}.

This exact formulation requires an explicit characterization of the convex hull of
quadratic forms on the feasible region. Characterising this convex hull is known to
be NP-hard for sets such as X = {0,1}" which corresponds to characterizing the
Boolean quadric polytope (see [49], [46]). However, the approach allows for the
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possibility of using valid inequalities that have been developed in deterministic
instances for the Boolean quadric polytope, to develop tighter formulations for
distributionally robust bounds in applications such as in the newsvendor problem
(see [43]). Efficient representations of the convex hull in (6) are known for some
special cases of X in low dimensions as discussed in [2] and in some special cases,
in higher dimensions as discussed in [15,60]. Identifying instances where this set is
efficiently representable remains an active area of research.

2.2 Contributions

Our contributions in the paper are the following:

1. In Section 3, we study MILPs with random objective coefficients where the first
moments are entirely known and only partial information of the second mo-
ments is provided, corresponding to non-overlapping subsets of /. We provide
a reformulation of the problem in the spirit of formulation (6), building on the
results in [43]. However, as we show, this formulation requires psd constraints
on smaller matrices and furthermore, it involves characterizing a suitable pro-
jection of the convex hull of the set {(x,xx’) : x € X}, rather than the full
convex hull. This provides a reduced SDP formulation for the problem under
block-diagonal patterns of covariance information.

2. We provide an application of the formulation to appointment scheduling in Sec-
tion 4.1. In the distributionally robust appointment scheduling problem with
moment-based ambiguity sets, tight polynomial-sized formulations exist only
for the mean-variance setting which corresponds to R = n, to the best of our
knowledge. On the other hand, with a full covariance matrix which corresponds
to R = 1, this problem is known to be hard to solve. By identifying an efficient
characterization of projection of the convex hull of the set {(x,xx) : x € X'}
in this example, we identify a new polynomial-time solvable instance of dis-
tributionally robust appointment scheduling with partial correlation informa-
tion when R = 2. We also identify polynomial-time solvable instances in the
newsvendor problem, longest path problem on PERT networks, and random
instances of the assignment problem in Sections 4.2 to 4.4.

3. In Section 5, we perform a detailed computational study of the proposed re-
formulation in the distributionally robust appointment scheduling application.
We compare the results with alternative formulations and help identify specific
structures of correlations where the new formulation is most valuable. Finally
we study the optimal schedules generated by various formulations including
ours.

4. In Section 6 we extend our results to the following settings.

(a) The incorporation of support information, specifically non-negativity re-
strictions on the random coefficients is discussed in Section 6.1. Here, we
propose inequalities to strengthen the formulation and demonstrate the
improvement obtained for appointment scheduling through computations.

(b) In Section 6.2, we extend our results to incorporate information on ad-
ditional entries of the second moment matrix. Here we provide an upper
bound that is not necessarily tight. Through computations, we also compare
the bounds provided by various formulations for appointment scheduling
in this setting.
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3 Tight bounds in the presence of block-diagonal correlation information
3.1 A reduced semidefinite program

In Theorem 1 below, we identify a reduced semidefinite programming formulation
for evaluating Z* in which the positive semidefinite constraints are imposed only
on smaller matrices of dimensions n1,...,n,, instead of a larger matrix of dimen-
sion n. Moreover, Theorem 1 asserts that it is sufficient to enforce the (n? + 3n)/2
dimensional convex hull constraint (ignoring symmetry) in (6) on a suitable selec-
tion involving only >°, (n? + 3n,)/2 variables.

Theorem 1 Define Z* as the optimal objective value of the following optimization
problem:

R
Z* = max trace(Y")
p,X",Y" -
Tfl rl o/
rp (7)
st |pum IIW Y™ | =0, forr € [R],
pT YT‘ X’I”

(p, Xl,...,XR) GCOTLU{(X, xlxll,...,xRxR/) :XEX}.

Then, Z* = Z*, where Z* is defined as in (2).

Before proving this result, which forms the main part of this section, we discuss
some implications. In comparison to formulation (6), formulation (7) involves psd
constraints on multiple but much smaller matrices when max, n, is smaller than n.
Furthermore, the theorem implies that only relevant projections of the convex hull
of quadratic forms require to be characterised to compute Z*, under block-diagonal
correlation information. Such sparse characterizations have been previously ex-
ploited to identify polynomial-time solvable instances of unconstrained quadratic
0-1 optimization problems using an appropriate projection of the Boolean quadric
polytope (see [46]). As we shall see in Section 4, the new formulation allows us to
derive compact representations that results in polynomial-time solvable instances
for the distributionally robust appointment scheduling problem, as well as for com-
puting worst-case bounds in PERT networks and bounds for the linear assignment
problem with random objective.

3.2 On chordal graphs and psd completion

A key element in the proof of Theorem 1 comprises in guaranteeing the existence
of a psd matrix whose entries are partially specified. Therefore, as a preparation
towards the proof of Theorem 1, we provide a brief review of results on the psd
completion problem and a closely related notion of chordal graphs that are rele-
vant for our proofs; see, for example, [26,35] and references therein for a detailed
exposition on the psd completion problem.

We call a matrix whose entries are specified only on a subset of its positions
as a partial matriz. Suppose that A is a partial matrix. The set of positions corre-
sponding to the specified entries of A is known as the pattern of A. A completion
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of the partial matrix A is simply a specification of the unspecified entries of A. If
A is a partial symmetric matrix (that is, the entry A;; is specified and is equal to
A;j whenever A;; is specified) such that every principal specified submatrix of A
is psd, then A is said to be partial psd. A psd completion of the partial psd matrix
A is said to exist if there exists a specification of the unspecified entries of A such
that the fully specified matrix is psd.

A few key concepts on graphs will be reviewed next. Consider a graph G =
(V,E) where V denote the set of vertices and E denotes the set of edges. Let |V|
denote the number of vertices in the graph. Given a cycle in the graph, a chord is
an edge that is not part of the cycle but connects two vertices of the cycle.

A graph is said to be chordal if any cycle of length greater than or equal to
four has a chord (see [5]). A set of vertices S C V is said to form a clique if there
exists an edge between every pair of vertices in S. A perfect elimination ordering is
an ordering (i, ... B of the vertices such that for every i € {1,...,|V]| — 1}, the
set of vertices {Bi11,Bit2,-.-, By} NN (B;) form a clique, where N (v) is used to
denote the set of vertices adjacent to vertex v.

As we shall note in Lemma 1 below, the existence of a perfect elimination
ordering characterizes the chordal property of a graph.

The following well-known results on chordal graphs and psd completion will
be useful in proving Theorem 1.

Lemma 1 ( [51], Theorem 1) A graph is chordal if and only if it has a perfect elimi-
nation ordering.

Lemma 2 (/26], Proposition 1 and Theorem 7) Every partial positive semidefinite
matriz with pattern denoted by a graph G (where the vertices denote the rows (or
columns) of the matriz and an edge is present between two vertices if the corresponding
entry is specified) has a positive semidefinite completion if and only if G is a chordal
graph.

3.3 Proof of Theorem 1
Step 1: To show Z* < Z*. It follows from the definitions of Z* and Zfuu(p,I0)

in (2) and (4) that Z* = max{Z{,;(u,A) : A € S;f,A[N;] = II" for r € [R]}.
Therefore we have from [43, Theorem 2] (see formulation (6)) that

Z* = max trace(Y)
p.X,Y,A
1 “/ p/
!
. -
st |[wAY' | =0, (8)
pY X

AN =11", forr € [R],
(p, X) € conv{(x, xx’) 1X € X}A

Consider any p,X,Y,A feasible for (8). Take X" = X[N;] and Y" = Y[N.].
The psd constraint in (8) forces all the principal submatrices to be psd. Given
the block-diagonal partition, define {V, : r € [R]} to be the following subsets of
{1,...,2n+1}:

Ve={1}u{i+1:ieN;}U{n+i+1:ie€N;}, forrelR]. (9)
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Then, the principal submatrices formed by restricting to entries from the index
set Vp, for r € [R], satisfy,

1 llzl p/ 1 MT/ pT/ 1 ur/ pr/
pAY | V)= |p" AN YN | = [p"TT" Y| = 0.
pY X P’ Y[N:] XN/ p Y X"

In addition, since (p,X) € conv{(x,xx’) : x € X}, it is immediate that the prin-
cipal submatrices X[N;] = X" satisfy the projected convex hull constraint in (7).
Furthermore, the objective, trace(Y) = 3 trace(Y[N:]) = >, trace(Y"). Thus
for every p,X,Y, A feasible for (8), there exist {p,X",Y" : r € [R]} feasible for
(7) with the same objective. Therefore Z* < Z*.

Step 2: To show Z* > Z*

Suppose that {p«, X%, Yy : r € [R]} maximizes (7). We show that Z* > Z* by
constructing p, X, Y, A feasible to (8) and trace(Y) = Z* = > trace(YY).
Construction of p: Simply, take p = px«.

Construction of X: It follows from Carathéodory’s theorem and the convex hull
constraint in (7) that there exists X, a subset of X, containing at most 143 (nZ+
3nr)/2 elements such that,

Lol R 11/ R_R/
(p,X*,...7X*):Zax(X,xx S, XX ),
xeX

for some {ax : x € X} satisfying ax > 0, 3
Then,

s

Construction of Y and A: Consider n x n partial matrices Y, and A, with entries
specified only along the following principal submatrices:

ax = 1. Now take X = 3

axxx’.

xeX xeX

bl

‘ X
xXEX xeX

}:Z%H [i] and  X[N;] = Y axx"x" = XI, for r € [R]. (10)

Yp[N: ] =Y. and AN, ]=10", forrel[R] (11)

Next, consider a (2n + 1) x (2n + 1) partial symmetric matrix Ly constructed in
terms of the partial matrices Yp7 Ap and the fully specified matrix X as follows:

[ 1 [Lll [LR/ pil p*R/_
ptot 2 2 vt 2 2

1w p Y SRR S S
Ly=(pApYp| =[R2 2 R 7 7 YF
pY, X pl Yl ? 7
?2 .09 X

lpf 7 7 YF 1
The entries marked ‘?’ denote missing entries. By demonstrating that the under-
lying pattern of Ly is chordal, Lemma 3 below establishes that there exists a psd
completion for the partial matrix Ly.
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Lemma 3 The matriz Ly has a completion Leomp such that Leomp = 0.

Proof Consider the following construction of an undirected graph G with vertex

set, V = {s,c1,c2,...,¢n,21,...,2n}, comprising 2n+1 vertices. To define the edge
set, identify the vertices s, c1,co,...,cn,T1,...,Tn, respectively, with the rows (or
columns) numbered 1,2,...,2n + 1 of the partial matrix L,. We assign an edge

between two vertices of G only if the the respective entry of the partial matrix Ly
is specified. Therefore, graph G represents the pattern of the partial matrix Ly

With the above described construction of graph G, note that the vertices
{z1,...,2n} form a clique in G as the matrix X is specified completely. The
edges between the vertices {ci1,...,cn} correspond to the specified entries of the
partial matrix Ap. Likewise, the edges between vertices {ci,...,cn} and vertices
{z1,...,2n} correspond to the known entries of the partial martial Yp. Thus, for
any r € [R], when restricted to vertices corresponding to ¢” and x", we again have
a clique (see Figure 1 for an illustration).

Next, consider the ordering of the vertices, c1,c2,...,cn,s,¢1,22,...,Tn, of G.
Since the vertices {s,z1,...,zn} form a clique, it is immediate that for any z;,
the neighbors of the node that appear after it in the ordering also form a clique.
The same reasoning applies for the vertex s. For any i € [n], let 7; be the unique
r € [R] such that ¢ € N;,. Subsequently, the neighbors of ¢; that appear after it
in the ordering comprises the collection {c;, s,z : j,k € Nr;,j > i}, which again
forms a clique. This is because the vertices {s,c;,z; : j € N;} form a clique, for
any r € [R]. Consequently, the ordering c1,c2,...,cn, s, %1,%2,...,Tn is a perfect
elimination ordering for the graph G. Then due to Lemma 1, G is a chordal graph.

Recalling the definition of V; in (9), observe that any fully specified principal
submatrix of Ly is a principal submatrix of

Lou” @) 1 p" pt
LyVr] = |u" ApNe] Yp[N:)| = [p" TT” Y|,
B YN XN pl YL X

for some r € [R]. The latter equality follows from (11) and the second observation
in (10). Since p«, Y%, X} are taken to be feasible for (7), we have that Ly[V;] = 0
for any r € [R]. With the ‘maximal’ fully specified principal submatrices {Ly[V»] :
r € [R]} being psd, we have that all the fully specified principal submatrices are
psd. Therefore Ly, is partial psd.

Finally, with the pattern underlying the partial psd matrix L, forming a
chordal graph, it follows from Lemma 2 that there exists a psd completion for
L. This proves Lemma 3.

To complete the proof of Theorem 1, consider the psd completion Leomp of Ly.
Take A := Leomp[{2,...,n+1}] and Y to be the n x n submatrix of Leomyp formed
from entries in rows {2,...,n+1} and columns {n+2,...,2n+1}. Then Leomp = 0
allows us to write,

!~

Lup
Leomp = | AY'| = 0. (12)

pY X
Since the specified entries of L, match with that of Leomp, it follows from the
construction of L, that Y is a completion of Y, and A is a psd completion of Ay;
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the latter completion is psd because the principal submatrices of Leomp are psd.
Therefore, we have from (11) that

AN, ]=TT" and Y[N;] =Y. (13)
Furthermore, as we have taken {p«, X%, Y% : 7 € [R]} to maximize (7), we have,

R

R
Z* = Z trace(Yy) = Z trace(Y [Ny]) = trace(Y). (14)

r=1

It follows from (12) and the first of the two equations in (10) and (13) that
P, A, X, Y are feasible for (8). Therefore, the optimal value of (8), denoted by Z*,
satisfies Z* > trace(\?). The desired Z* > Z* is now a consequence of (14). This
completes Step 2 and the proof of Theorem 1.

Fig. 1: Illustration for the graph G for the case where n = 6 and the partition is
given by N1 = {1,2}, N2 = {3,4} and N3 = {5,6}. For k odd, c;_1 and ¢ are not
connected and {cg, g, ckr1,Zk+1, s}t form a clique.

The interested reader may refer to Appendix A for details on a worst-case
distribution which attains the expected value Z* in (7).

4 Polynomial-time solvable cases
In this section, we identify efficient representations of the convex hull constraint

in (7) for three illustrative applications. The common theme in these applications
is that the derived efficient characterizations, in turn, result in polynomial-time
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solvable instances for the partial covariance based distributionally robust formu-
lation in (2). As far as we know, the example we consider in Section 4.1 is the
first example of such an approach towards appointment scheduling that results in
a polynomial-time solvable tight reformulation in the presence of explicitly known
correlation information between uncertain processing times of the jobs to be sched-
uled.

4.1 Appointment scheduling
4.1.1 Problem description

In the presence of uncertainty in the processing durations of jobs for a sequence of
customers, the appointment scheduling problem deals with identifying customer
reporting times that minimize the total amount of time spent by customers waiting
for service after arrival. As an example, consider n patients who need to meet a
doctor. Let @; be the random service duration of patient ¢ € [n]. Suppose that all
patients arrive exactly at the reporting time allotted to them. If we let s; denote the
duration scheduled for patient i, then the reporting time for patient ¢ is Z;;ll 55.
We take the waiting time of the first patient to be zero. Then the waiting time
for patient i, denoted by wj;, satisfies the well-known Lindley’s recursion for the
waiting time in single-server queues:

wy =0, w;= max(wi,l + U1 — 82;1,0), 1=2,...,n. (15)

The total waiting time for all patients is the sum of waiting times ", w;. The
overtime of the doctor can be modeled as w41 = max(wn + @n — sn,0). Then the
total waiting time of the patients and the overtime of the doctor are cumulatively
captured by,

f(u,s) = Z max(w; + 4; — $;,0). (16)

i=1

It turns out that f(1,s) can be computed by solving a network flow problem. More
details on this computation can be found in Proposition 1 of [32] and also later in
Step 1, proof of Theorem 2. For now, we list the equivalent linear programming
formulation as follows:

f(u,s) = max (@—s)'x

S.t.x; —xi—1 > *1, fori:Q’,,,7n7 1, (17)
xn <1,
x; >0, fort=1,...,n,

Define S = {s € R} : s1 + ...+ sn < T}, where T is a positive upper time
limit within which the schedules should be fit. It is then natural to seek a schedule
sequence s € S that minimizes E[f(q,s)].

The described setup is applicable to schedule appointments in various situa-
tions where a single server processes the arriving jobs on a first-come-first-serve
basis. In settings where the jobs to be processed are dependent and the joint dis-
tribution of their processing times 1 is difficult to be fully specified, an approach
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that has gained much attention over the last decade is to seek distributionally ro-
bust schedules that minimize the worst case waiting time, supycp Eg[f (0, s)]; here,
the set P is taken to be the family of all probability distributions consistent with
the information known about the probability distribution of @. This problem was
first studied in [32] where complete information on the first moment p and second
moment matrix IT is assumed to be available on the service time durations. The
formulation proposed in [32] builds on the completely positive formulation (5).

4.1.2 Polynomial-time solvable instance

To illustrate the applicability of Theorem 1 in this context, suppose that the
number of patients, n, is even without loss of generality, and the mean of service
times u is fully specified, and only the entries, {II;;, II; j41,Ij41,5 : i € [n],j €
{1,3,...,n — 1}} of the second moment matrix, II = [II;;], are specified. This
corresponds to knowing the correlations among service time durations of adjoining
patient pairs. Recalling the definition of the partition {N;, : r € [R]} of [n], this
partial specification of the second moments corresponds to the scenario where,

R=n/2, and N,={2r—-1,2r}, forr=1,...,R. (18)

For any given schedule s € S, consider the worst-case expected total waiting time,

Zapp(s) = sup {Eq [f(&,9)] : Eg ] = i, Bg ] = [y, for i € [n], (19)
EQ[’I]J’I]]_;'_I] = Hj,j+17 for j S {1,3, no— 1},9 € P(Rn)}

Our key result is that by an appropriate application of Theorem 1, we obtain
a polynomial-time solvable formulation for evaluating Zgp,(s) in Theorem 2.

Theorem 2 Given a schedule s € S, suppose that Zgpp(s) is defined as in (19). Then,

n
app(s) pi.,XIi?%%{j,tkj ‘:1( i Szpz)

1 i Mit1 Di Dit1
wi Iy i1 Yy Yiit1

st | pig1 w1 Hiv1i41 Yit1,i Yig1,i41 | =0,  fori odd, i € [n],
pi Y Yigiso X Xiiga

Dit1 Yiit1 Yigti+1 Xiit1 Xig1,i41

i n+1l ] )
pi= > > tgi(i—1i), fori€ n],
k=1 j=1
i n+1 5
Xii= 32 2 tki(G—14)°,  fori€|[n],
k=1 j=i
7 n+1
Xiiv1=Xiy15i=p, 2 tgi(G—9)(—(i+1)), fori odd, i € [n],
F=1j—i+1
T n+1
> 2ty =1,  foric|n],
k=1 j=i

tg; >0, forl<k<j<n+1.

The proof of Theorem 2 is presented in Section 4.1.3. As demonstrated in Corol-
lary 1 below, an optimal schedule that minimizes the worst-case total expected
waiting time can be obtained by considering the dual minimization problem of the
semidefinite program in Theorem 2.



Exploiting Partial Correlations in Distributionally Robust Optimization 13

Corollary 1 Given T > 0, a schedule s € S = {s € R} : s1 + ...+ sp < T} that
minimizes Zgpp(s) can be obtained by solving the following semidefinite program:

n+1

n
Zapp = min Do+ B+ Y Y Tullu+ Y pi
i=1 i=1

s,n,8,T,p,8,T, )
eS0Ty i€lnl, ke {ii+1}

i odd i odd
21, Bi Bit1  6i+si Git1 + sit1
Bi 2y Ligyr -1 0
s.t 6i+1 Fi)i+1 2Fz‘+1,i+1 0 -1 >0, for i odd,i € [n],
;i + 84 -1 0 27; T;
5i+1 + 8541 0 -1 T 2'Yi+1
j min{j,n} min{j,n} min{j,n}
Zpiz Z&'(J*Z)‘i‘ Z%‘(]*Z) + ZTi(J*Z)(J*(“Ll)):
i=k i=k i=k k

iiodd
or1<k<j<n+41,
f SRS] S

n
Zsi <T, s;>0, forie[n].
i=1

Proof The result follows by performing a joint minimization over s € S and the
objective of the dual of the semidefinite program in Theorem 2. This is because,
for any s € S, the value of the semidefinite program in Theorem 2 is equal to
that of its dual minimization problem. Indeed, the existence of an interior feasible
point for the dual problem can be exhibited as follows. Given s € S, set all the
variables other than n;,v;,vit1, i, Ii+1,i+1, for ¢ odd, to zero, and let Iy;y; > 1/4,
pi > vi(n 4+ 1 —1)2, for every i € [n]; fix n;, for i odd, to be arbitrarily positive;
this assignment results in a dual feasible solution where none of the constraints
are active. Moreover, the requirement that TI" — u"u"" = 0, for every r € [R] is
sufficient to guarantee strong duality.

4.1.3 A proof of Theorem 2

Step 1: Recasting the waiting time f(@,s) in the form of (1). Given a fixed
sequence of schedules s = (s1, ..., sn), the recursive structure in (15) allows writing
the total waiting time, f(11,s), as the value of the following linear program:

n+1

min ) w
i=1

st w; > w1+ U1 —si_1,fori=2,...,n+1,
w; > 0, fori=1,....,n+ 1.

Define €(s) := @1 — s. The dual of this linear program results in,

f(@,s) = max &(s)'x
X
st.xj—xi1>—1,fori=2,...,n—1, (20)
zn <1,
x; >0, fori=1,...,n,



14 Divya Padmanabhan et al.

The constraints in (20) are such that any subset of n active constraints satisfy,
for every i € [n], either z; = 0 or z;—1 = x; + 1. It has been shown in [61,62] that
any x = (x1,...,zn) with this special structure can be uniquely represented as a
partition of intervals of integers in {1,...,n + 1}. This structure was first used in
[38] to identify a tractable instance of appointment scheduling with mean-variance
information and to the case with no-shows in [30]. Lemma 4 below exploits this
representation to characterize the extreme points of the feasible region to (20).
Though this representation arises as a consequence of statements in Theorems
1,2,3 in [61], we provide the complete proof here.

Lemma 4 ([61], Theorems 1,2,3) The extreme points of the feasible region in (20) is
given by,

1 n+1 i n+1

Kapp = {xeRi =Y Thi(—i), fori€n],> > Tiy=1, fori€ [n],
k=1 j=i k=1 j=i
Ty; € {0,1}, f0r1§k§j§n+1}. (21)

Proof Recall our observation on the constraints in (20) that any subset of n active
constraints must have that, for every ¢ € [n], either x; = 0 or ;1 = =z; + 1.
Therefore, any x in the feasible region to (20) is an extreme point if and only if
either z; =0 or ;1 = z; + 1, for every i € [n].

Now, for an extreme point x = (z1,...,2n), let Ix be the unique partition of
intervals of integers {1,2,...,n,n+1} such that the interval [k, j] := {k,k+1,...,5},
for k < j, belongs to the partition Ix if and only if 2; = 0,z;_1 = 1,..., 25 = j— k.
Thus there exists a bijection between the extreme points of the feasible region to
(20) and the collection of partitions of integer intervals of {1,2,...,n + 1}. For
illustration, if » = 3 and x = (0,0,0) then Io 00y = {[1],[2], [3], [4]}; likewise,
the points (3,2, 1), (1,0, 1), are identified with their respective partitions given by,
Ii3,.2,1) = {[1,4]} and I(y o1y = {[1,2],[3,4]}, and vice versa.

Next, for any extreme point x (whose unique interval partition representation
is Ix), consider the following assignment of values to the variables (Tj; : 1 < k <
j<n+1):

(22)

T 1 if the integer interval [k, j] € Ix,
& 0 otherwise.

It follows from the very construction of the interval partition Ix that that only

one of {Ty; : k <1i < j} equals 1, for every i € [n], and 2; = 22:1 Z?Ll Ty (j —1).
Therefore any extreme point of the feasible region of (20) lies in Xapp.

On the other hand, for any x = (z1,...,2n) in Xupp, we have z; =
22:1 Z;Lizl Ty;(j — 1) satisfying,

0 if Ty; = 1 for some k < 1,
;=<1 if i =n and T}, =0,

zi+1 +1 otherwise,
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for every i € [n]. Here we have again used the observation that for any given
assignment of variables T; € {0,1} satisfying >~ _, Z?;l Tyj = 1, for every i €
[n], only one of {T}; : k <4 < j} equals one. Since any x € Xap) satisfies z; = 0 or
xi—1 = x; + 1 for every i € [n], we arrive at the conclusion that X,pp is indeed the

set of extreme points of the feasible region to (20).
O

As the feasible region to the linear program in (20) is bounded, there exists an
extreme point at which the maximum is attained. Then as a consequence of Lemma
4, we have that

f(@,s) = max {&(s)'x : x € Xapp } - (23)
Step 2: Application of Theorem 1. For the partition {\; : r € [R]} specified in
(18), we use (23) to express Zg,p(s) as,

sup {Eg [ max e(s)’x} L Eglé(s)] = p — s, By [e(s)’“e(s)’”’} =TI Vr € [R],0 € P(R")} ,

XEXapp
where, for : =1,3,...,n — 1, the second moment of (¢;(s),€;+1(s)) is specified by,
/ li /
mli/2l — | Ha i s i i si || s s
S - - .
;401 i i41 Sit1] [Mit1 Mit1] [Si+1 Sit1] [Si+1

Then as an application of Theorem 1, we can write Z;,,(s) as the value of the
semidefinite program in (7) by replacing parameters p”,II", respectively, with
p” —s" and II5. Further, changing the variables Y” to Y" — p"s” for r € [R],
the objective in (7) becomes, Y, trace(Y" —p”s"’), and the psd constraints in (7)
becomes,

r!

1 u—s" P
N'f —s" II — ST,,LLN _ ,LLTSN + STSW Y'r/ _ srpr/ = 0.
pr Y — prsr/ b a
This psd constraint is equivalently written as,
1 Mr/ pr/
“7‘ H’l" YT/ t 0’
p’l‘ Y’I‘ XT‘
due to the identical constraints that arise as a result of Schur complement condi-
tions (for psd matrices) on both the constraints above. Indeed, block-matrices of
the form (52) are psd if and only if both A and C —B’A~'B are psd; for the block
matrices in the above constraints, take A = 1 to verify the desired equivalence.
With these observations, we have

n
Zanp(s) = max (Yii — sip3)
app Pi,Xij,Yij,th;j ; " wr
1 125 Hit1 i Pit1
wi Iy i1 Y Yiit1
st | pivr Miip1 Mig1iv1 Yigrs Yigr141 | =0, foriodd,
i Y Y1 X Xigga
Pit1 Yiit1l Yigrti+1 Xiir1 Xig1it1
(pla «evyPn, X117 BRI Xnn,XIZ’XC’Ay ceey Xn—l,n) € Capp, (24)
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where
_ 2 2 .
Capp =convq (T1,...,%n,TT,...,Tn,T1X2,L3T4, ..., Tn—1%n | : X € Xapp ¢ -

Step 3: An efficient representation of the convex hull Cypp. We now complete
the proof of Theorem 2 by identifying a characterization of the convex hull Coupp
that leads to an efficient representation of the last constraint written in (24).

Proposition 1 The set Capp is equivalently written as,

Capp = { (p1,---,pn, X11, .-, Xnn, X12, X34,. .., Xn_1n) € RO™/2 .

7 n+1 7 n+1

=Y tii(G—i), Xis=Y_ > tyi(j—1i)?, fori€n],
k=1 j=i k=1 j=i
i n+tl
Xiig1 =2 > tri(i =G = (i+1)), fori€ [n],iodd,
k=1j=i+1

i n+l
ZZtkal, fori € [n], tkj20f0r1§k§j§n+1}
=1 j—i

Proof Take any x € Xapp. It follows from the characterization in (21) that there
exists an assignment for variables Tj; € {0,1} such that only one of {T}; : k <
i < j} equals one, for every i € [n], and z; = 22:1 Z;’Ll Ty;(j — i). Therefore,
x; = j—i and z7 = (j —i)? for the unique j > i such that Ty; = 1. Equivalently,
we have

7 n+1

o= Tii—i)™ (25)

k=1 j=i
Again, since only one of {Ty; : k < i < j} equals one, for every i € [n], we have,
TyjTay =0, when either kZaorj#band k<i<ja<i<b. (26)

Equipped with this observation, consider:

i n+tl i+1 n+l
v = [ X 1560 ) (X3 Tul-6+1)
k=1 j=i a=1b=i+1
i n+1 i n+1
=2 > Tli=ix Y D Talb—(+1)
k=1 j=i a=1b=i+1
i n+1 n+1
YD TG x Y Tip(b—(i+ 1),
k=1 j=i b=i+1

where the latter summand is equal to zero because, a) the terms for which j =i are
zero due to the appearance of j —i, (see Figure 2) and b) the terms for which 7 > 4
are zero due to the appearance of Tj,;T;;1 5, which is zero due to (26) (illustrated
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in Figure 3) . Likewise, in the first summand, the terms for which k # a,j # b
vanish due to (26). As a result,

i n+1

viwipr = Y Tig(i—9)(j = (i +1)). (27)

k=1j=i+1

i E 1 E 1
|3 i it

Fig. 2: Terms involving Ty;T; 1 vanish as x; = 0.

~ i E ‘ ‘ ) F ] >
|3 i i1 R b

Fig. 3: Terms involving T};;T; 1 4 vanish as only one of T}, T; 115 can be 1.

Remark 1 The representation in (27) for the cross terms z;z;41 can be easily under-
stood via the interval partition representation Ix for x € X4pp described in Lemma
4. For any point x € Xupp, identify the only interval in the partition Ix containing
i to be [k, j]. Then we have that z; =0,z;_1 =1,...,2;, =j — k and T},; = 1 (see
(22)). If i + 1 € [k, 4], then z; = (j — i) and z;417 = j — (i + 1) and the product
ziziy1 = T;(j —1)(§ — (i +1)). On the other hand, if i + 1 does not belong to the
interval [k, j], we have x; = 0; consequently, again z;z; 1 = Tj;(j —4)(j — (¢ + 1)).
Since only one element, T, in the collection {T, : a < i < b} equals one, the
representation in (27) holds. While the representation for the square terms in (25)
has been known in the literature (see, for example, [38]), the representation for the
specific cross terms in (27) has been explicitly characterized, as far as we know,
for the first time in this paper.

Combining the observation in (27) with that in (25) we obtain
Capp = conv { (ml, ey T, m%, ey x%,xlxg, T3T4,y ..., zn_lzrn) 1X E Xapp}

= com;{ (p1,---»Pn, X11,- -+, Xnn, X12, X34,..., Xn—1,n) € RO/2 .

i n+1l i n+l
P = Z ZTkj(j — i), Xii = Z ZTkj(j —4)?, forie[n],
k=1j=1 k=1 j=i
7 n+1
Xiin1 =3 3 Tigli— i) — (i+1)), for i€ [n]iodd,
k=1j=i+1
i n4+1l
ZZTkj =1, forie[n], Ty; €{0,1} for1 Skﬁjﬁn—{—l},
k=1 j=i

as a consequence of Lemma 4. Further, total unimodularity of the constraints over
T verifies the representation for Capp in the statement of Proposition 1. O
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With this characterization of the set Cupp in Proposition 1, observe that the state-
ment of Theorem 2 follows as a consequence of the formulation in (24). This
completes the proof of Theorem 2. O

Remark 2 Mean-variance bound: For any given schedule s € S, the worst-case ex-
pected total waiting time,

Z:“,(S) = sup {Eg [f(ﬁ, S)] : Ey [ftz] = /.Li,Eg[ﬂ?] = [I;;, fori e [n], 0 e p(Rn)},
(28)
that is consistent with given mean and variance information of the service times
{@; : 1 € [n]}, can be computed by solving the semidefinite programming formula-
tion below in (29). This formulation results from a similar application of Theorem

1 to the simpler case where N, = {r}, for r=1,... n.
n
Zrw(s) = max Yii — sipi
mv( ) i, XiiyYiisthj ;( ! Zpl)
1w pi
st |p My Yii | =0, for i € [n],
pi Yii Xis
i n+1l
pi=3_ Y tej(G—i), forie[n], (29)
k=1 j=i
7 n+l1
Xii =Y > tij(i—1)% forieln],
k=1 j=i
i n+1l
ZZtkal, for ¢ € [n],
k=1 j=i
tr; >0, for1<k<j<n+1.

Similar to the formulation in Corollary 1, a distributionally robust schedule that
minimizes the worst-case total expected waiting time can be found by solving the
following semidefinite program:

n n n n+1
min Somi+Y B+ Y Tillii+ Y pi
sn.B.0.p.87 =7 i=1 i=1 i=1
2ni Bi dits
s.t B; 2I;; -1 >0, for i € [n],

oi+si —1 2y

i min{in} min {j,n} (30)
Doz D G-+ Y -0 for I<k<j<n+1,
i=k i=k i=k

81'<717

NE

i=1

s; >0, for i € [n].
The semidefinite program in (30) can be seen as an alternative to the second
order conic programming formulation in [38] where the problem of appointment
scheduling in the presence of mean and variance information was considered.
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Remark 3 A representation for cross terms z;z;4.2, similar to that in (27) in terms
of variables Tj; € {0,1}, does not result in linear representation in the variables
Ty;. To see this, recall the interval partition representation described in Lemma
4. Consider any x € Xgpp such that there exist k,j satisfying [k,i + 1] € Ix and
[i +2,j] € Ix. Then z; = 1 and z;42 = j — (¢ + 2), in which case z;z;45 =

?:1 ?:;_2 Ty i+1Ti42,j(J — (i +2)), which cannot be reduced in a straightfor-
ward manner to a linear representation as in (27).

4.2 The Newsvendor Problem

We next study the version of the newsvendor problem presented in [29,43]. We look
at the problem of a newsvendor who sells a product in multiple stores spanning
several geographical areas in a city. For a store ¢, the unit order cost of the product
is ¢; while the unit selling price is v; and the quantity to be ordered is ¢; while
the demand is d;. For each product unsold in store i, a cost of g; is recovered,
while the cost for a unit stock-out is f;. The decision variable is the optimal order
quantity vector q. We consider the budgeted version of the newsvendor problem
where the newsvendor has a budget @ for the overall order quantity. The set of
all feasible order quantities is therefore, @ = {q € R} : 37" | ¢; < Q}. For a given
order quantity vector and demand vector, the total cost for the newsvendor is,

vimin(gi,di) = Y gi(gi — min(gi, di)) + Y fi(d; — min(g;, d;))

i=1 i=1

n

=1 7

&, 1

=a'q+bd+ ) mld —at

i=1
n

=a +b/a+ max hix; (d; — q; 31
q xE{O,l}"; ii(di = ai) (31)

wherea=c—g>0,b=g—v,h=v—g+f>0and [d — ¢]" = max(d; — ¢;,0).

The order quantity q must be decided even before the demand is known and
hence the demand vector d is assumed to be a random variable with a distribution
0. In the distributionally robust version of the newsvendor problem, the distri-
bution # however is assumed to be unknown and the order quantity is selected
in such a way that the worst case expected cost of the newsvendor is minimized.
With knowledge of the first moment specified by @ and the entire second moment
matrix IT, the distributionally robust optimization problem,

é%i@ sup {Eg [Z(q,d)] : Eg[d] = p, Eg[dd'] =II,0 € P(R")} (32)
is NP-hard [6,29]. Observe that for a given q and d, the newsvendor problem in
(31) boils down to maximizing a linear function over the hypercube {0,1}". Then,
formulation (6) provides an approach to reformulate the second stage problem in
(32). However the reformulation thus obtained is exponential sized, as it involves
enumerating all the 2" extreme points of {0,1}", towards capturing the convex
hull, conv{xx’, x € {0,1}"}. This convex hull, commonly referred to as the boolean
quadric polytope (BQP), is known to be hard to characterise in general [49]. In or-
der to circumvent the difficulty that arises from the hardness of BQP, [43] propose
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the following semidefinite programming relaxation for the second stage problem
based on approximations for BQP.

max_trace(diag(h)Y) — (hoq)'p+a'q+b'u
p. XY
1 “/ p/
st. [pIIY'| =0
PpY X (33)
Xii = pi for ¢ € [TL]
Xij < min(pi,pj) for i,] € [n]
Xij > max(pi +p; — 1,0) for i,] € [n]

We will now propose an exact reformulation for the distributionally robust newsven-
dor problem under knowledge of partial correlations. As we will see next, the
knowledge of partial correlations occurs naturally in the newsvendor application.
Assume that there are a total of R clusters of the n stores. These R clusters can be
thought of geographical areas in which the stores are located. Let N1,...,Ng be a
partition of the set A= {1,...,n}. The set N, corresponds to the set of all stores
in a geographical area r. The correlation of the demand between the various stores
in a particular area is usually available to the newsvendor. Let the first moment
be specified by E[d] = p and the second moment matrices E[d"(d")] = II" for
r € [R] ={1,..., R}. For a fixed order quantity q, denote by Z,(q) the worst-case
expected cost to the newsvendor,

Zno(q) = sup {Eg [Z(q7 a)] : Eg[&] =pu, Eg [&T(aT)'] =II"forr€[R],0 € P(Rn)}
(34)
We are interested in finding the distributionally robust order quantity by solving
the following problem:
Zpy = min Zno(a)
Theorem 3 For a given order quantity vector q € Q, let
R
Zno(a) = max Y trace(diag(h")Y") - (h" oq")'p" +a'q+b'p
gr:i(r". r=1
* 1 MT, pr/
st |p" IIWY"™ | =0, forr € [R],
pT Y’I‘ X’r‘
pr = Zxre{o,l}ﬂ”‘ a;TXr V'I" c [R]
X" = ZxTE{O,l}”T akrx"(x") Vr € [R]
Zx7‘e{0,1}nr alkr = 1Vr € [R]
axr > 0Vx" € {0,1}"",Vr € [R]

Then Z, (a) = Zj(q).

Proof From (31), Z(q,d) can be re-written as,
Z(q, a) _ a/q+b/a+ Z (hT')l(a'r‘ _qT)+
re[(R]

=a'q+bd+ Z max (h"od")'x" — (h" 0oq")'x"
rer) < StOH"
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Now, for a fixed order quantity q, an application of Theorem 1 (by setting ¢ = d),
gives us the above formulation for Z,(q). O

We now describe how the optimal first stage decisions can be computed.

Corollary 2 Given Q > 0, an order quantity q € Q ={q€R"} :q1 + ...+ qn < Q}
that minimizes Zn,(q) can be obtained by solving the following semidefinite program:

__— . ror ’ ’ ’
i g g 5 0T 1)
re(R)
20y B (8"+4q oh")
s.t 8" r” —diag(h") =0, forré€l[R],

6" +q " oh" —diag(h") 2W"

2 Y G WhxE+ Y Y Wixix) forx" € {0,1}",r € [R],
i€ i€, | GEIN, |
i

ZQi <Q, ¢ >0, forie[n].

=1
When n, < logn, for allr € [R], Zpy is polynomial time solvable in n.

Proof Take dual of the semidefinite program in Theorem 3 and perform a joint
minimization over the dual variables and q. It can be verified that an interior
point exists for the dual as well as primal semidefinite programs if II” = u"(u")’
thereby guaranteeing strong duality. Note that the above dual formulation requires
enumeration of all the points in {0, 1}"" and therefore involves ZTG[R] 2™ inequal-
ity constraints involving variables in R positive semidefinite matrices, each of size
2n2 + 1. In the special case where n, < logn, the formulation is polynomial sized
in n.

4.3 Longest path in directed acyclic graphs

In this section, we examine the problem of computing the expected length of the
longest path between a fixed start node and a sink node in a directed acyclic
graph whose arc lengths are uncertain. A key application of this longest path
problem is to estimate project completion times using Project Evaluation and
Review Technique (PERT) networks in project management (see, for example,
[55]). A PERT network is a directed acyclic graph representation of a project that
consists of several activities with partially specified precedence relationship among
the activities. Our objective is to tackle the case where the activity durations (arc
lengths) are random, dependent and their joint distribution is not fully known.
Let V = {0,...,m — 1} denote the set of nodes of a directed acyclic graph G.
Suppose that the nodes 0 and m — 1 represent the start and sink nodes. Let A
denote the set of arcs in G and ¢;; denote the length of arc (i, j) between nodes i
and j. If G is a PERT network, the nodes 0 and m —1 represent the start and end of
the project; the length of the longest path between nodes 0 and m—1 represents the
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project completion duration. The length of the longest path can be represented as
the optimal objective value of the following combinatorial optimization problem:

Z(c) = max Z CijTij

(i,5)€A
1, ifi=0,
st Y wg— Y wp=<-1, ifi=m-1, (85)
Ji(i,j)€A J:(gi)eA 0, otherwise,

xz;; € {0,1},  for (i,7) € A.

If the arc lengths (c;;) (i jye are known, Z(c) can be computed in polynomial-time
by solving the linear programming relaxation of the formulation in (35) due to the
total unimodularity of the underlying constraint matrix.

On the other hand, if the arc lengths are random, exact computation of the
expected length of the longest path is known to be #P-hard even with the assump-
tion of independence among arc lengths (see [27]). For specialized graph structures
such as series-parallel graphs, it has been shown in [3,40] that the expected length
of the longest path can be computed in time polynomial in the size of the graph
and the number of points in the discrete support of the arc lengths.

In the absence of the knowledge of the entire joint distribution of the arc
lengths, the distributionally robust formulations in [7,8] result in polynomial-time
solvable bounds for the project duration when the marginal moments of arc lengths
are specified. A natural approach to specify correlation information in PERT net-
works, in order to obtain tighter bounds, is to consider all the activities that enter
a node to be related and therefore specify correlation information among all ac-
tivities that enter a node. Indeed, such a partition formed by sets of incoming arcs
into nodes have been considered for specifying marginal distribution information
in [20,23,52]. Theorem 4 below identifies a polynomial-time solvable formulation
for evaluating the maximum possible (worst-case) expected project duration in
the presence of mean and covariance information of activity durations whose arcs
enter the same node.

To fix notation, let n be the cardinality of the set A of arcs and R = m — 1.
For the given directed acyclic graph G, consider the following partition of A,

Ne={i: (i,r) € A}, forr=1,...,R,

formed by considering sets of arcs that enter node r, for r = 1,...,m — 1. Let
€ = (Cij)(i,j)ea be the random vector of arc lengths and ¢" = (i) (i,r)c.4 be the
random subvector of arc lengths of arcs entering node r, forr = 1,..., R. Given that

the expected value of ¢ is u and that of ¢"(¢")’ is II" for every r € {1,...,m — 1},
our objective is to evaluate,

Zpatn = sup {Eq [Z(€)] : Eg[¢] = p, Eg[c"(€")]=1" for r € [R], 0 € PR™)},
(36)

where Z(-) is specified as in (35).
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Theorem 4 Z;ath can be evaluated as the optimal objective value of the following
semidefinite program:

m—1
Z¥ ., = max trace(Y"
path XY ; ( )
71 NT/ pr/
st lp" I™ Y™ | =0, forre{l,...,m—1},
pT YT‘ X?"
1, fi=0, (37)
S opi— Y., pu=4-1, ifi=m-1,
J:(i,5)€A J:HeA 0, otherwise,
pij, U J=k,
X = orr=1,....,m—1,
gk 0, otherwise, f

pij >0,  for (i,5) € A.

Proof Let us use Xpq¢p, to denote the feasible region to the formulation (35). Then
as an application of Theorem 1, Z;ath can be written as the optimal objective
value of the semidefinite program in (7). To efficiently represent the convex hull
constraint in (7), observe that for any x € X,q¢p,

miT‘v le:.]a
— 38
TirZjr {07 lf’L;é], ( )

for every i, j such that i,j € N,. This follows from the observation that any path
from 0 to m that passes through r can contain only one of the arcs {(k,r) : (k,r) €
A}. To see this explicitly from the constraints in (35), observe that if x is such
that Zk:(k,r)GA zgr = 1, then as zy,. € {0,1}, only one of {zy, : (k,7) € A} equals
1. Therefore x;.x;, = 0 if 4 # j. On the other hand, :r%r =z as x; € {0, 1}, thus
verifying (38). As a result of this and total unimodularity of the constraints in
formulation (35),

conv { (x, xlxll7 . .,xm_lxm_ll) ix € Xpath}
= conv { (x, Diag(x'),..., Diag(xm71)> iX € Xpath} ,
= {(p.Diag(p")...... Diag(p" ")) : p € conv(Xpaun) |

where Diag(x") denotes the n, x n, diagonal matrix formed with elements from
the subvector x". Since the convex hull of X4, is simply the collection of points
p= (pij)(i,j)eA such that p;; > 0 and

1, ifi=0,
Z Pij — Z pji =4 -1, ifi=m-1,,
ji(i,j)eA J:(g)eA 0, otherwise,

the constraints in the formulation (37) are equivalent to those in (7). This com-
pletes the proof of Theorem 4. O
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4.4 Bounds on the expected value of random linear assignment problems

Assignment (or) matching problems constitute a special class of combinatorial
optimization problems whose properties of random instances have been studied
extensively in the literature. The specific example of linear assignment problem
(see [33,41]) corresponds to the setting where m entities belonging to a set V need
to be assigned to m entities in a set U such that the total utility is maximized. The
entities in the sets U and V' can be thought, respectively, as candidates and jobs
that need to be performed by the candidates. Each candidate must be assigned to
exactly one job and each job must be assigned to exactly one candidate. With ¢;;
representing the utility of assigning the entity ¢ in set U to the entity j in set V,
the linear assignment problem which maximizes the total utility is formulated as,

Z(C) = H;?;X Z Z CijTij

ieU jev

s.t Z x5 =1, forieU,
jEV (39)
Z:Eij:]., for j eV,
eU

Tij € {0,1}, forieU,jeV.

In graph-theoretic terms, the formulation (39) corresponds to finding a maximum-
weight perfect matching in a bipartite graph with edge weights ¢ = (c;5 : (4,4) €
U x V). Similar to the formulation for computing the length of the longest path
in (35), the constraints in the formulation (39) are totally unimodular. Therefore
a linear programming relaxation can be used to identify an optimal assignment in
polynomial-time.

Studying the distributional properties of random instances of large-scale linear
assignment problems has received much attention since the early works of [21,34]
in 1960s. Specifically, assuming that the coefficients ¢ = (¢;; : (¢,5) € U x V) are
independent uniform [0, 1] random variables, progressively better upper and lower
bounds for E[Z(c)] are established in [25,31,36,56] and [45]. In particular, the
derivation of the bound in [31] has served as a foundation for analysing a broader
class of random linear programs in [22]. One of the most widely known results
in this area is the Aldous’s proof [1] of the conjecture by Mezard and Parisi [39];
their conjecture is that the limiting expected value of the objective of minimum
cost random linear assignment problem equals 7r2/ 6, when the number of entities
m — oo and the random coefficients are taken to be independent copies of uniform
[0,1] random variable (or) exponential random variable with mean 1. Subsequent
non-asymptotic studies that remove the strict assumptions of identical marginal
distributions and independence among coefficients can be found, respectively, in
[13,58] and [7]. In particular, Bertsimas et. al [7] propose a formulation to com-
pute sup E[Z(€)] under knowledge of marginal moments. They show that that the
computation can be performed in polynomial time and obtain tight bounds. We
will now illustrate how Theorem 1 can serve as a computational tool for arriving
at tight bounds for E[Z(€)] when the mean and certain second moments of ¢ are
specified. A precise description of the problem we consider is as follows.

Identifying the entries in U with {1,...,m}, we take Ny = {(r,j) : j € V}, for
r € [m]. This corresponds to the setting where the correlation of utilities between
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any two jobs for the same candidate is known, but correlation across candidates
is not known. Let ¢ = (5z‘j)i:z‘eU,jev be the random vector of utilities and & =
(¢i5)jev be the random subvector of € when the indices are restricted to the subset
N;. We aim to evaluate the bound,

Zjap = sup {Eg [Z(€)] : Eg[¢] = p, Bg[e"(€")'] =TI" for r € [R], 6 € P(R")}, (40)

where Z(-) is given by (39). As an alternative to the partition considered, one could
consider the partition where we identify the entities in V with {1,...,m} and take
Ny = {(i,r) : i € U}, for r € [m]. In settings where —c;; can be interpreted as
the cost for assigning job j to candidate 4, this partition corresponds to knowing
correlation between costs for the same job when performed by different candidates.
The following observation can be replicated for this partition as well.

Theorem 5 Suppose that Zj,,, is defined as in (40). Then Z],, can be evaluated as
the optimal objective value of the following semidefinite program:

m
Zlap = TI%E%I;(YT Ztrace(Y )
r=1
1 NT/ pr/
st|p" " Y"| =0, forr e m],
p’l“ YT X’I”
> pij=1, forieU (41)
jev
> pig=1, forjeV,
€U
Prj, Zf.] = k‘v
Xh = orr=1,...,m,
ik {O, otherwise, f

pij >0, forieU,jeV.

Proof As in the proof of Theorem 4, let Aj4;, be the bounded feasible region to the
formulation (39). Then as an application of Theorem 1, Zj,,, can be written as the
optimal objective value of the semidefinite program in (7). To efficiently represent
the convex hull constraint in (7), observe that for any x € X4y,

Tijs if j =k,
TR0 ik

for every ¢ € U, j,k € V. This is because, as in the proof of Theorem 4, only one
of {z;; : j € V} equals 1, for every i € U; here recall the constraint, Zjev zi; =1,
that dictates that only one entity from V is assigned exactly to every i € U. With
x' = (x45)jev, we obtain,
conv { (x, xlxl/, . ,xmxm/) X € Xlap}
= conv { (x, Diag(x'),..., Diag(xm)> ix € Xlap} ,

= {(p,Diag(pl), . .,Diag(pm)) ‘pE conv(Xzap)} )



26 Divya Padmanabhan et al.

where Diag(lx") denotes the m x m diagonal matrix formed with elements from the
subvector x". Since, due to total unimodularity, the convex hull of A}, is simply
the collection of points p = (p;;)icv,jev such that p;; > 0, Zjevpij =1 and
ZieUpij = 1, the constraints in the formulation (41) are equivalent to those in
(7). This completes the proof of Theorem 5. O

The semidefinite program in (41) can be viewed as a useful computational
tool for relaxing the strict independence assumptions which are prevalent in the
analysis of random instances of assignment problems.

5 Numerical results

In this section, we report the results of numerical experiments for the appointment
scheduling formulation considered in Section 4.1. We compare the performance of
the semidefinite programming formulation in Theorem 2 (which we refer to as
Non-overlapping), with the following three alternatives:

a) The mean-variance formulation is solved using the SOCP reformulation orig-
inally proposed in [38]. This approach, addressed “Mean-Variance” in the dis-
cussions that follow, provides a reformulation for Z,,(s) in (28). Since the
formulation does not make use of any cross moment information, it provides
an upper bound for Z;,,(s) in Theorem 2.

The SOCP formulation in (Page 322, Theorem 1, Formulation (20) in [38]) is
provided below for reference, where o2 denotes the vector of variances (diag-
onal entries of TT — pp'):

n
Zapp (1, 0%) = . ﬁgl(i)ﬂa \ > i+ pici + (1F +07)Bi
PRt i

min{n,j} min{n,j} 2 42)
(mij — ;) (
s.t. Z A > Z <”47&l — §iTij
i=k i=k
for1<k<nk<j<n+1

where m;; = j —4,1 <i<j<n+1.

b) For the second alternative, we solve for Zg,,(s) using a formulation very similar
to the formulation originally proposed in (Page 716, [32], maximization problem
in formulation (C)), that assumes the knowledge of the mean and all second
moments of & to compute:

Ziow(s) = sup {Eg [f(11,5)] : Eg [0] = p, Eg[an’] =11, 6 € P(R™)},

In order to adapt this approach to the non-overlapping moments model, we
treat the whole second moment matrix as an additional variable A and only
set the block diagonal elements in A to be II" for all r. This adaptation will
now give us an exact formulation for Zg,,(s). However, it still involves a com-
pletely positive constraint. We therefore relax the completely positive con-
straint (M € C(]Rf_”"‘l)) with a doubly nonnegative matrix constraint (M =
0, M non-negative) for tractability (see [32]). Since the adaptation described
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above solves a maximization problem, relaxing the feasible region will there-
fore give us an upper bound for Z;,,(s). In particular, in Section 5.1 where we
restrict our attention to the distributionally robust bound, we use formulation
(43) where p € R*", Y € R"*?" and X € R?*"*?", The matrix A € R"*" is such
that A;; = —1for j € [n], Aj41,,=1for j € [n—1], b; = —1 for j € [n] and a]
indicates row i of A and e; € R™ denotes a column vector with 1 at position 4
and zero everywhere else. Note that Z;,,(s) < Zapp(p, I, ... TIF s).

Zapp(p, T .. TIE s) = max trace(Y) —s'p

p. XY,
1 IJ:/ p/
st |pAY'| =0,
pY X (43)
[A7 —In]p =b,

[a], —ef]X[a}, —ej] = b7, Vi € [n]
AT =T1I",Vr € [R]
p, X non-negative.

In Section 5.2, where we analyse the distributionally robust schedules, we
adapt the dual formulation (Page 718, [32], Zp(s) along with constraints in
(8)), where instead of the copositivity requirement M € C*(R3"*'), we use
M = P + N,P > 0,N non-negative as an approximation. Note that in this
dual form, the copositivity constraint arises whereas in the primal form (Page
716, [32], maximization problem in formulation (C)), the completely positivity
constraint arises, thereby necessitating different approximations for the two
formulations. In particular, the distributionally robust schedules may be ob-
tained by optimizing the dual of formulation (43) over the dual variables as
well as s. The relevant formulation is provided in Equation (44) where a, v € R,
B,u,v,n,x € R*, T e R"*"™ A € R¥*?" 1, and O, denote the identity ma-
trix and the square matrix of zeros respectively, both of size n. We address the
primal (43) and dual formulation (44) as “DNN-relazation” in our discussions.

R
. T\/ T /
S i
uv,Anx "=l
PN
n (52 56
’ =1
a+ > vi—u % 2 :
=1
s.t 3 0.5\’ =0
2 r O,
s+ 2 n a
( 2x n) =N (e) 05L& (A ) ([ a )
= (o) B () (%)
n 1

! <Z)/ =P+N (44)

P > 0, N non-negative
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c) The exact value of Zg,,(s) is also computed using an adaptation of the formu-
lation (8) where the extreme points of X are explicitly enumerated in order to
represent the convex hull constraint. The explicit enumeration of the extreme
points involves introduction of new scalar variables ax for each extreme point
x such that > ax = 1 and ax > 0. The convex hull constraint in formula-
tion (8) is captured using the following constraints: p = er/’\.’app axx, X =
Do, XX Y cx ax = 1,ax > 0¥x € Xapp. Since the number of ex-

treme points grows exponentially with n, this approach is feasible only for
small values of n. This exact approach, labeled as “Large-SDP”, is feasible in
our computational setup only for n < 9, but nevertheless gives us an exact for-
mulation for Zz,,(s). The formulation is provided below explicitly for a better
understanding.

max  trace(Y) —s'p

p,X, Y, A
1 “/ p/
st ([pAY'| >0,
pY X

AN =TI", forr € [R],
p= > axx
XEXapp
X= 3 axxx’
XEXapp
erXapp ax =1, ax > 0Vx € Xgpp

We also tested a recently proposed alternate approximation scheme proposed in
[11] in place of the doubly nonnegative matrix based relaxation for approximating
the completely positive constraint in the exact formulation in [32]. The results
obtained were identical to the approach labeled above as “DNN-relazation” and
hence we only report the results of DNN-relazation. All experiments were run on
MATLAB using SDPT3 solver® [53,54] and YALMIP interface?.

5.1 Comparison of worst-case expected total waiting times

Assuming that the correlation coefficient between service times 4; and @;41 equals
p, for every i in {1,3,...,n—1}, we compare the objective value of the formulation
in Theorem 2 with that of the alternative approaches described above, for various
values of p in the interval [—1,1]. We report objective values averaged over 50
independent runs, where in each run, the means and variances of ¢;(s) = 4; — s;
are taken to be independent realizations of random variables uniformly distributed
in the intervals [-2,2] and (0, 5] respectively. For all the results in the current
subsection, since we are interested in only the bound computation, we set s = 0
in all the formulations.

See Figure 4a for a comparison of the ratio of average objective values of our
formulation in Theorem 2 and the Large-SDP approach for n = 6. Table 1 gives
the min, max and mean ratios for various formulations. Since our formulation is
exact, it is not surprising that the ratio is 1 for all values of p. The ratios resulting

I http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
2 https://yalmip.github.io/
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by comparing average objective values of Mean-Variance and DNN-relaxation ap-
proaches with the exact Large-SDP approach are also reported in Figure 4a. The
variability in the ratio for the Mean-Variance approach can be inferred from the
error bars in Figure 4a. The growth in gap between the objective values of the
Mean-Variance approach and our partial covariance based approach in (19), as n
increases can be inferred from Figure 4b.

Table 1: Bound ratios over Large-SDP bound for various approaches to DR ap-
pointment scheduling for various p values, n=6. 50 runs were performed with
random means in [-2,2] and variances in (0,5].

Mean-variance Our Approach DNN Relaxation
P mean min max mean | min | max | mean min max
-1.0 | 1.489 | 1.054 | 2.028 1 1 1 1.001 1 1.008
-0.7 1.251 1.036 1.492 1 1 1 1.001 1 1.006
-0.3 1.141 1.023 1.285 1 1 1 1.001 1 1.004
0.0 1.088 1.016 1.185 1 1 1 1.001 1.001 1.007
0.3 1.051 1.010 1.111 1 1 1 1.001 1 1.002
0.7 1.017 1.001 1.039 1 1 1 1.001 1 1.001
1.0 1.010 1 1.055 1 1 1 1.002 1 1.056
Bound Ratios over Exact-Bound vs rho Bound Ratios over Exact-Bound vs n
17 =] = Mean-variance 221 = = Mean-variance
= { = Mon-overlapping (2) = { = Non-overlapping (2)
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Fig. 4: Bound Ratios of various approaches.

It is evident from Figure 4a that the bound resulting from mean-variance for-
mulation in (19) is significantly higher than Zgp,(s) for negative values of p. As p
approaches 1, the bound resulting from Mean-Variance approach appears to coin-
cide with Zg,,(s).

While the numerical results appear to suggest that the distributionally ro-
bust formulation with partial correlation information offers a behaviour similar to
that of the Mean-Variance approach as p — 1, it is worthwhile to note that the
correlation coefficients between ¢; and ¢;41 need not equal 1 for the worst-case
distribution that attains the supremum in the Mean-Variance formulation (19).
Indeed, given marginal distributions, for objective functions that are supermodu-
lar in its random variable arguments, it is well known that the comonotone joint
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distribution maximises the expectation (see, for example, [16,24,37]). However this
comonotone joint distribution may very well be such that the correlation coeffi-
cients between its components are lesser than 1. This also explains the reason why
the mean-variance bound need not exactly match the Large-SDP bound for p =1
(see the last row in Table 1).

From Figures 4a and 4b, we also observe that the DNN-relazation approach
consistently gives a good approximation ratio (close to 1, see Table 1 for specific
values), though it tends to be computationally expensive for large values of n; see
Figure 5 for comparison of execution times for the different approaches considered.

Comparison of Execution times n Mean Min Max
——— 30 | 8.397 8.052 8.835
2l e l 40 | 19.565 | 18.712 | 21.127

[ ! .r' 50 | 41.215 | 38.515 | 48.330
! ¥ 60 | 78533 | 75.563 | 82.552
g ! T+ 70 | 129.533 | 122.533 | 142.875
i s I e 80 | 227.400 | 206.607 | 244.174
# 90 | 416.586 | 343.712 | 478.861
B I B E—" 100 | 672.803 | 611.037 | 716.489

Table 2: Execution times (in sec) for
solving the semidefinite program in
Theorem 2

It can be inferred from Figure 5 that the Large-SDP approach is computa-
tionally prohibitive for large values of n. The mean, minimum and maximum of
observed execution times of the semidefinite program in Theorem 2 are provided
for larger values of n in Table 2. Even for n = 100, the average execution time of
our approach is only 672 seconds (roughly 11 minutes).

Fig. 5: Execution times in seconds
of various approaches with n

5.2 Comparison of optimal schedules

We next compare the optimal schedule obtained using the semidefinite program
in Corollary 1 with those obtained from the Mean-Variance and DNN-relazation
approaches. For this purpose, we consider n = 20 patients, all with mean process-
ing duration 2 and standard deviation 0.5. We take T" = 45 units to be the time
within which the schedules need to be fit. Figure 6a - 6d portray the schedules,
respectively, for the cases where the correlation coefficient between @; and @;1,
for i € {1,3,...,n — 1} is given by p = 1,—1,0 and —0.5. In order to understand
the differences in the optimal schedules when the full covariance matrix is known,
we plot the schedules given by the DNN-relazation approach for the specific in-
stance where the covariance entries that are not specified are set to 0. We use
the label DNN-Full covariance for this scenario and DNN-Non-overlapping for the
DNN-relaxation with partial moments.

Interestingly, for negative values of p, we observe that the inclusion of partial
correlation information results in optimal schedules that are considerably different
(in the relative durations allotted for earlier and later patients) when compared to
those resulting from the Mean-Variance approach that assumes only the knowledge
of mean and variance (see Figure 6b). For the extreme case where p = —1, we ob-
serve that the worst-case waiting time, Z;,,, in the presence of partial correlation
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information is 4.116; this quantity is much smaller when compared to the worst-
case expected total waiting time of 25.615 for the Mean-Variance approach where
the partial correlation information is not included in the formulation. Moreover,
we observe that employing the optimal schedule resulting from the mean-variance
approach increases the worst-case waiting time, Zgp,(-), by nearly 100% over the
optimal Z3,,. On the other hand, employing the optimal schedule from our for-
mulation (30) results in about 30% increase in the worst-case waiting time Z,,(+).
Such stark changes in the structure and objective value for optimal schedules are
typically not observed for nonnegative values of p (see Table 3).

Table 3: Mean percentage increase in the worst-case waiting time Zg,,(-) when
the optimal schedule from Mean-Variance approach is used instead of the optimal
schedule that minimizes Zgp,(s), and vice versa, for n = 20 and cases p = —1,0
and 1. The rows indicate schedules and columns indicate the DRO formulation
used: M-V for the objective, Z;,,(-), of the Mean-Variance approach and P-C for
the objective, Zgp,(+), that also includes the knowledge of partial correlations.

p=—-1 p=0 p=1
Objective | \p.v | p-c || P-C | P-C || M-V | P-C
Schedule
M-V optimal 0 98 0 7.9 0 2.8
P-C optimal 34 0 5.2 0 1.9 0

6 Extensions

In this section, we discuss how our approach can be extended to capture additional
information such as non-negative support and also additional entries of the second
moment matrix. In all these cases, we can get polynomial time computable bounds,
but tightness is not necessarily guaranteed.

6.1 Non-negativity assumptions on ¢

In Theorem 1, we assumed that ¢ € R™ and proposed a tight reformulation to
compute Z*. We now discuss how our results can be extended to the case where
¢ € R}. In particular, in this subsection we obtain bounds for

7z =sup {Eg [Z(€)] : Eg[€] = p, Eg[e"(€")'] =T0" for r € [R], 0 € P(RY) },

In general, it is well known that checking for a feasible distribution with prescribed
cross moments and support restricted to R} is hard [9,42]. Formulations based on
copositive optimization (which is again known to be hard [18]) have been provided
in [44]. Our formulation in (7) clearly provides an upper bound to Z7 . Additionally
inequalities may be added to formulation (7) so as to obtain tighter bounds for
Z% , as discussed next.

Suppose the sets V1, ..., Ng form a partition of {1,...,n} as before and without
loss of generality assume an order among the elements N, for every r.
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Comparison of Schedules
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(a) Correlation between patient 1 and 2 =
correlation between patients 3 and 4 = ... =
p = 1. For Full-covariance, all other correla-
tions are set to zero. Maximum time avail-
able (T) is 45 units. Optimal objective value
= 25.0688, Mean-Variance bound= 25.6151,
DNN Non-overlapping bound= 25.1534,
DNN Full covariance bound = 15.9460.
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mum time available (T) is 45 units. Opti-
mal objective value=19.7474, Mean- Variance
bound= 25.6151 , DNN Non-overlapping
bound= 19.8607, DNN Full covariance bound
= 11.4211.
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(b) Correlation between patient 1 and 2 =
correlation between patients 3 and 4 = ... =
p = —1. For Full-covariance, all other corre-
lations are st to zero. Maximum time avail-
able (T) is 45 units. Optimal objective value
= 4.1162, Mean-Variance bound= 25.6151,
DNN Non-overlapping bound= 4.2290, DNN
Full covariance bound = 4.2250.
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(d) Correlations between patient 1 and 2 =
correlations between patients 3 and 4 = ...
p = —0.5. For Full-covariance, all other corre-
lations are set to zero. Maximum time avail-
able (T) is 45 units. Exact bound= 14.6842,
Mean-Variance bound= 25.6151, DNN Non-
overlapping bound= 14.7904, DNN Full co-
variance bound =9.4101.

Fig. 6: Optimal schedules under knowledge of non-overlapping moments. 20 pa-
tients all with mean 2 and standard deviation 0.5.

Lemma 5 Denote by ir the ith

element in the ordered set Ny.

Then,

0 <Y < i, max zj,., 1<i <N, 1< <IN, Vr € [R] (45)
xr

provide valid inequalities. Inclusion of the above inequalities with formulation (7) gives
an upper bound for Z7, that is at least as tight as Z*.

Proof The variable Y;; corresponds to E[¢;, x(€);,]. The lemma is a consequence
of the fact that 0 < ¢;2;(¢) < & maxxey x; whenever ¢ > 0 and X C R}, Taking
expectations gives the inequalities. These inequalities are to be necessarily satisfied
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and hence the resulting formulation with these inequalities yields an upper bound
for Z7.

As an example, let N, = {3,4,5,6}. Note that Y™ € R**%, The entry Y3,
corresponds to E[¢szs(¢)]. Since ¢ € R | E[éaz6(€)] < pa maxxex 6. We will now
demonstrate how these valid inequalities can be used in the appointment schedul-
ing context.

6.1.1 Appointment Scheduling: Including Support Information on @

For a given schedule s define ZJ,,(s) as,

Z,fpp(s) = sup {IE9 [f(q,s)] : Eg[@;] = pi, Eg [1]3] = II;;, for i€ [n],
Eg[ﬂjﬂj+1] = Hj,j+17 for j € {1,3, .n— 1},0 S 'P(Ri)}

where f(q,s) is as defined in Equation (17). Theorem 2 provides an exact for-
mulation to compute Zg;,,(s). Note that this formulation already gives an upper
bound for ZJ,,(s). We now describe how Lemma 5 can be used to obtain valid
inequalities. These valid inequalities when used in conjunction with Theorem 2,
provide a tighter bound for Zg,,(s).

Lemma 6 The following are valid inequalities for computing Z[l’;,p(s):

Yiit1 < pi(n—14) Vi odd,i € [n]
Yit1,i < pig1(n+1—1) Vi odd,i € [n]

The proof follows by applying Lemma 5 and noting that z; <n+1—iforallx € X
(from Lemma 4).

Upon including these valid inequalities we still have a semidefinite program
that provides bounds for ZJ,,(s). The dual of this semidefinite program can be
used to get distributionally robust schedules. However in our numerical results,
we are unable to distinguish between the schedules thus obtained and the optimal
schedules obtained in Corollary 1 (without enforcing support information).

6.1.2 Numerical Results

We now compare various bounds obtained when the support information @ > 0
is explicitly taken into account in the context of appointment scheduling. For the
experiments in this subsection, for n = 10 patients, the mean processing durations
w were generated randomly at uniform in [5, 10]. The standard deviation was fixed
at 5 for all the patients. The correlation p between the patients’ processing dura-
tions were varied between —1 and 1. All the bound computations were performed
for 50 randomly generated instances. We considered the following formulations:

i. Formulation in Theorem 2 (which does not account for support information).
ii. Formulation in Theorem 2 along with valid inequalities from Lemma 6 to take
into account the support information.
iii. DNN relaxation approach: Formulation (43) with non-negativity constraint on
1 ”/ Pl
the whole matrix |p A Y’
pY X



34 Divya Padmanabhan et al.
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Fig. 7: Improvement in bounds by including support information

In all the examples we focus only on the second stage bound.

In Figure 7, we plot the error bars of percentage improvement in the bounds
obtained by (ii.) over (i.) (the red curve), and also the improvement in the bounds
obtained by (ii.) over (iii.) (the blue curve), where the percentage improvement
in bound X over bound Y is (X —Y) x 100/Y. The standard deviation of the
percentage improvement in bounds is quite low for all cases and hence the er-
ror bars are not clearly visible. The plot suggests that the valid inequalities, when
included with the formulation in Theorem 2, improve the bounds in Theorem 2 sig-
nificantly. For larger values of correlations, the improvement is more pronounced.
An improvement of about 1% is observed over DNN, again for larger values of
correlations.

We also computed the schedules by minimizing the dual formulation for (ii.)
over the schedules as well as the dual variables. However the schedules obtained
were almost identical to the schedules obtained without including the support
information via the formulation in Corollary 1.

6.2 The Case of Overlapping Moments

In all the sections above, we described an approach to compute sup Eq[Z(€)] over
0

all distributions consistent with known first moments and second moments cor-
responding to a partition of {1,...,n}. We next show how the approach can be
used to obtain bounds when additional entries of the second moment matrix are
known. We illustrate this using an example.

Suppose that the only information we know about the probability distribution
of ¢ is the first moment specified by E[¢] = p and the partial second moments
E[éf] = II,;, E[¢;¢;41]) = I ;41 for 1 <i <n — 1. In this section, we are interested
to compute:

Eg[é] =M, E‘g[é?] = Hii for i e [n],

Zaeries = SUP {E9 2@ By [eizis1] = Mogsr fori e [i—1], 0 € P(RY) } . (46)

Note that this situation is equivalent to knowing the means and second moments
corresponding to the sets S = {{1,2},{2,3},{3,4},...,{n — 1,n}}. S can be in-
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terpreted as the set of edges in a series graph on n nodes and hence we refer

to the bound in (46) using the subscript ‘series’. Our exposition so far had been

focussed on incorporating entries on second moment matrix corresponding to non-

overlapping blocks (e.g. N1 = {1,2}, N2 = {3,4},... N, /5 = {n—1,n}). In contrast,

we now possess information of n/2 — 1 more entries of the second moment matrix.
We have the following tight bound from formulation (6),

*

rories = max  trace(Y)

p.X,Y,A
1 IL/ p/
st ([pAY'| =0,
PY X (47)

Ay =1, forie€[n],
Aj g1 =1 541, forie[n—1],
(p, X) € com){(x, xx’) 1X € X}.

We next show that a similar approach to our formulation in Theorem 1 (cap-
turing only a subset of the variables p,X and Y) to this particular scenario of

overlapping moments results in an upper bound for Z7,,.;..-

Lemma 7 Define Z:eries as the optimal value of the optimization problem:

n
ZA:M‘iee = max § Yii
P, Xii,Xi i1 —
Yii,Yiit1 =

1 i Mit1 y23 Pit1
i Iy i1 Y Yiit1
st | pigr i1 Higr 541 Yigrs Yig1,i41| =0, forie [n—1],
pi Yy Yivis X Xiiga
Dit1 Yiit1 Yitti+1 Xiit1 Xigri,i41
(p, (Xiiri € [n]), (Xiis1 i€ [n—1])) €
conv { (x, (27 ri€n]), (zizipr i€ n—1])) :x € X}. (48)

* %
Then Zse'ries < Zseries'

The proof follows by using a similar reasoning in proof of Theorem 1, Step 1.
However the bound is not guaranteed to be tight in general. In Appendix B, we
investigate why the bound provided above is not necessarily tight always.

6.2.1 Numerical Results

Taking the number of patients n = 6 for the appointment scheduling application
and setting the correlation coefficient between service times u; and ;11 to p,
for every ¢ in {1,...,n — 1}, we vary p in the interval [-1,1]. We compute the
expected total waiting times averaged over 50 independent runs, where in each
run, the means and variances of ¢;(s) = 4; — s; are taken to be independent
realizations of random variables uniformly distributed in the intervals [—2, 2] and
(0,5] respectively. We are interested in only the bound computation and we set
s = 0 in all the formulations. We compute the following bounds.
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(a) Formulation (47) applied to appointment scheduling by explicitly enumerating
the extreme points of Xupp. This gives the exact value of Z7, ;s The formula-
tion is provided next for reference.

max  trace(Y) —s'p

p,X, Y, A
1 IJ/ p/
st |pAY'| >0,
pY X

Ay = I, for i € [TLL
Ai,i+1 = Hi,i+17 for i € [n — 1],
P= ) oxX
XEXapp
X= > axxx’
xEXapp
erXapp ax =1, ax > 0Vx € Xapp

(49)

(b) The upper bound Z%,,,., from (48), which when applied to appointment schedul-
ing (by using Lemma 4, (25),(27) in formulation (48)), boils down to,

n
. ;(Y; $iP;)
T Hit1 pi Pit1
pi o Iy i1 Yy Yiit1
s.te | pig1 iy Migrivn Yigri Yigriq1 | =0, forie[n—1]
pi Y Yig1: X Xiiga
Pit1 Yiit1 Yit1i+1 Xiit1 Xigr1,i41

i n+l
pi=»_ Y trj(i—i), foriclnl, (50)
k=1 j=i
i n+1l
Xii = Z Z trj(j —i)°, fori€ [n],
k=1 j=i
7 n+1
Xiit1 = Xit14 = Z Z trj(j —1)(j — (i + 1)), forie [n—1],
k=1j=i+1
i n+1
ZZtkal, for i € [n],
k=1 j=i

tp; >0, for1<k<j<n+1

The difference from the formulation in Theorem 2 is that there is a positive
semidefinite constraint on n — 1 matrices, each of size 5 x 5 here. In Theorem 2,
the positive semidefinite constraint appears for only n/2 matrices. Similarly
here the constraints on X; ;41 appear for all values of ¢ < n — 1 whereas in
the formulation in Theorem 2, the constraint appears for odd values of 7 alone.
This formulation is referred to as ‘Overlapping’ in the plots.

(¢) The following upper bound from a DNN relaxation to the completely positive
reformulation in [32] for the scenario of overlapping moments,
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max  trace(Y) —s'p

p.X,Y,A
1 ,J,l p/
st [pAY'| =0,
pY X (51)
[A,-I,]p =D,
[a}, —ei]X[aj, —ef] =b], Vi€ [n]

Ajip1 =T, Vi€ [n—1]
p, X non-negative.

In the above formulation, p € R?", Y € R™*2" and X € R?"%2", The matrix
A € R™"™ is such that A;; = —1forj € [n], Aj41,; = 1forj € [n—1],
bj = —1 for j € [n] and a} indicates row i of A and e; € R™ denotes a column
vector with 1 at position ¢ and zero everywhere else. This formulation is referred
to as ‘DNN-Quverlapping’ in the plots.

(d) We compute Zi,,(s) from Theorem 2 which makes use of information only
on non-overlapping blocks of the second moment matrix. Only the cross mo-
ments 112, IT34, IT56 are used in this formulation while ITo3 and IT45 are unused.
Therefore note that this formulation is an upper bound for ZJ, ;.. This for-
mulation is referred to as ‘Non-overlapping (2)’ in the plots.

(e) Finally we compute the mean-variance bound from formulation (42). Note that
this bound does not make use of any off-diagonal entries in II.

In Figure 8, the percentage gap in the bounds over (a) is plotted in brown
for (b), blue for (c), red for (d) and pink for (e). The bound from formulation
(50), labelled Overlapping is not tight always. The gap can be seen especially for
negative correlations. For larger correlations however, the gap is close to zero.
In spite of the gap in bounds, this formulation offers an advantage in terms of
speed (see Figure 9). Non-Owverlapping (2) shows a larger gap, as expected, as the
entries I1a3, 145 are not used here. Mean-variance demonstrates the largest gap
as it does not make use of any of the off-diagonal entries in II. DNN-Qverlapping
proves to be the best out of the four. However from the execution time analysis in
Figure 9, Overlapping offers a significant advantage compared to DNN-Qverlapping.
Non-OQverlapping (2) is faster than Overlapping due to fewer number of variables and
positive semidefinite constraints in the formulation inTheorem 2 over (50). The
performance of the mean-variance formulation is very close to Non-Overlapping (2)
in terms of execution time. The exact formulation (shown in green) is labelled as
‘Large SDP(overlapping)’. Due to explicit enumeration of the extreme points, this
formulation is feasible in our computational setup only for n < 9. Note that the
execution time for this formulation increases rapidly.
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Appendix A On the structure of a worst-case distribution

In this section, we exhibit a probability distribution for & that attains the optimal
value Z* of (7). The construction is along the lines of the worst case distribution
proposed in proof of Theorem 1 - step 2 of [43]. The worst-case distribution we
identify in particular is a mixture of normal distributions. Each of these normal
distributions is in turn constructed by first constructing suitable marginal distri-
butions and then applying conditional independence.

We begin with a result on psd matrix factorization in [43]. The following def-
inition of Moore-Penrose pseudoinverse (see [48,50]) is useful in stating the psd
matrix factorization in Lemma 6. Let X be a matrix of dimension k1 x k2. Then
the Moore-Penrose pseudoinverse of X is a matrix X' of dimension ko x k1 and is
defined as a unique solution to the set of four equations:

XXX =X, Xxx'=x xx'=xxM, and X'X=(X'X).
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Theorem 6 [43, Theorem 1] Suppose that L is a (k1 +k2) X (k1 +k2) positive semidef-
inite block matriz of the form,

L= [g ]g} =0, (52)

where the matrices A € Rlekl,C € RF2xk2 e symmetric and the matriz C admits
an explicit factorization given by C = VV'. Then L admits the following factorization:

CPOIPCTEE e

where the matriz U is defined such that A — B'C'B = UU’ » 0.

For a given partition {N; : r € [R]} and projected covariance matrices {II" :
r € [R]}, suppose that {p«, XL, Y% : r € [R]} maximizes (7). As in the proof of
Theorem 1, it follows from Carathéodory’s theorem and the convex hull constraint
in (7) that there exists X, a subset of X, containing at most 1+ 3, (nZ + 3n,)/2
elements such that,

1 R 11/ R_R'
(p*,X*,...,X*):Zax(x,xx S, XX ),
xE./?

for some {ax : x € X} satisfying ax > 0, > xei @x = 1. Consequently, for any
r € [R], we have from Lemma 6 that,

I I"'T Y:/ B ur Y:/
w1 opt | = Zax p 1 X"
YIpl XI|  gex YD X XX
-dr(xr) dr(xr) ' D, OnT,l On,,n,
=) ox| 1 1 + 010, 0 O1pn |, (54)
xeX i x" x" On,n. 0 Onp.on,

where d,(x") € R" and &, € S, for every r € [R]. From the above factorization,
observe that,

R
trace(Yy) = trace Z axx"dr(x") | = Z ax Z dr(x")'x". (55)
r=1

zeX zeX

For completeness, we will now list explicitly the expressions for the means
d,(x") and ®,. These expressions are obtained by making appropriate substitu-
tions as per Theorem 6. For every r € [R], define the matrix V. of size (nr+1) x m;
where m, is the number of points in the projected space X" as follows.

v :|: \/ar(xr) }
Do (x)xT
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Each column of V, corresponds to an element x” of X" and is of the form
T
ar(>‘< )r . Define ®, of size n, x n, as:
Vo (x7)x

=T = [0 Y|y af(xr)xr Z%;i‘zif;l?’fl?ﬁ W

The mean vector dr(x) is set to be the column vector of the matrix
[ YZ] (VI)’ x 1/4/ar(x") corresponding to where x, occurs in V.

Proposition 2 Suppose that {ps, X%, YT : r € [R]} mazimizes (7). Let X C X be a
finite subset and {ax : x € X} satisfy (54). Let 0* be the distribution of ¢ generated
as follows:

Step 1: Generate a random vector X € X C X such that P(X = x) = ax.
Step 2: For every r € [R], independently generate a mormally distributed random
vector zr € R™", conditionally on x, with mean d,(x") and covariance ®r. Set

¢ =z.
Then 0" attains the mazimum in (2).

Proof Consider (x,¢) generated jointly according to the described steps. Then
it follows from the law of iterated expectations that, E[f(¢)] = E[E[f(¢)|x] =
> e xE[f(€)|x = x], for any function f. As a result, we have from (54) that for
any r € [R],

. ﬁ“] m’ _ XGZX o {m(x’“)(;i:((xxf)/’M» drgxr)] _ Llj ﬂ . (56)

Moreover, as X € X, the objective E[max, ¢y & x| satisfies,

Z* >R [maxélx} >E[E'x] =E[E[¢|x]'x] =E
xeX

R
> EE x]x}
r=1
R R R
Z dr(ir)lf} = Z ax Zdr(xr 'x" = Ztrace(?;) =7"=27"
r=1 r=1

xeX r=1

=E

where the last three equalities follow, respectively, from (55), the optimality of
{p+, X%, YL : r € [R]} for (7), and Theorem 1. Combining this observation with
(56), we have that the distribution of €, denoted by 6%, is feasible and it attains
the maximum in (2). O

The generation of the normal distributions for each of ¢"and the mixture propor-
tions ax are both identical to [43]. The difference is that in step 2 above, the joint
distributions over the whole vector ¢ is the independent distribution on ¢", r € [R]
conditional on x. Note that in [43], this additional step of constructing a joint dis-
tribution was not required as the whole vector ¢ was entirely generated at once.
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Appendix B Reasoning for Gap in Bounds Produced by Formulation (48)

In this section we investigate why the formulation (48) does not necessarily provide
tight bounds for Z7, ;.-
Using a similar reasoning in proof of Theorem 1, Step 1, we can show that
Zovios < 2% ies- However a similar adoption of Step 2, proof of Theorem 1 to check
¥ vies = Zseries does not go through, unfortunately. To see this, let p*,X*, Y* be
an optimal solution to formulation (48) and let us attempt to construct a solution
p,X,Y, A feasible to (47) such that trace(Y) = Zi ies = > 5, trace(Y}).
Construction of p and X: Analogous to proof of Theorem 1, step 2.
Construction of Y and A:
Set Yi; = Yis, Vi1 = Yiiy1, Yig1,i = Yiga, and Ay = Iy, Agjpn = Iy
As before, consider a (2n+1) x (2n+1) partial symmetric matrix L, constructed
using the analogous partial matrices Y, (with entries Y;; and Y; ;41 described
above), Ap(with entries A;; and A; ;41 described above) and the fully specified

matrix X as follows:

(1 p1 p2 w3 pa  ps ... PI P> P3 Pi |
M1 H11 H12 ? ? ? . Yl*l Yl*Z ? ?
H2 H21 H22 H23 ? ? e YQ*I YI*Q Y2*3 ?
u3 ? I35 Il33 Il34 ? 7 Y3*2 Y3*3 Y3*4 ?...
na 7 ? Iys Iyq Iys 7... 7 7 Y4*3 Y
1 H/ 15/ .
Lp B g éz Y):(p B pik Yl*l YQ*I ? ? ? N

* * * *

P2 Y12 Y22 Y32 ? ? N
* * * *

P3 ? Y23 Y33 Y43 7 e
* * * *

P4 ? ? Y34 Y44 Y54 oo

i

We note that the fully specified principal submatrices of L, are exactly the matrices
that appear in the positive semidefinite constraints in formulation (48) and are
therefore guaranteed to be positive-semidefinite. Similar to proof of Theorem 1,
if the partial matrix L, can be shown to admit a completion Lecomp such that
Ecomp > 0 then the rest of the entries in Y and A can be computed. However in
this stage, the analogous graph constructed as in Lemma 3 is not chordal (refer
to Figure 10). Since the graph constructed is not chordal, the construction of a
positive semidefinite completion cannot be guaranteed. Therefore the bound Z7, ;..
is not necessarily tight. However it may be used as a polynomial time computable
upper bound for Z7, ;.. Whether Z7, ;s can be solved in polynomial time or not,
is an interesting open question.
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Fig. 10: Illustration of a graph G for the case where n = 4 and the moments
corresponding to {{1,2},{2,3},{3,4}} are known. The whole graph additionally
includes a vertex s connected to all the nodes in the graph and is omitted here
for clarity. Consider a subgraph formed by the vertices {c2,z1,z4,c3}. The edges
induced by this subset of vertices are shown in red. These edges form a chordless
cycle and therefore the graph is not chordal.



