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Abstract

The influence maximization problem (IMP) aims to determine the most influential individuals within a social
network. In this study first we develop a binary integer program that approximates the original problem by
Monte Carlo sampling. Next, to solve IMP efficiently, we propose a linear programming relaxation based
method with a provable worst case bound that converges to the current state-of-the-art 1 − 1/e bound
asymptotically. Experimental analysis indicate that the new method is superior to the state-of-the-art in
terms of solution quality and this is one of the few studies that provides approximate optimal solutions for
certain real life social networks.
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1. Introduction

With the vast penetration of online social networks in our lives, the distribution of ideas, information
or new products is carried out through social networks more and more frequently than ever. As a result,
influential individuals are of great importance as they are highly demanded by companies for viral marketing
campaigns [11]. The influence maximization problem (IMP) aims to determine the most influential individ-
uals within a social network under interest. Aside from its viral marketing applications, the same concept is
studied in network security, computer virus detection, epidemics analysis, infrastructure planning, habitat
conservation and wireless sensor networks [16, 15, 23, 3].

We define IMP as {max σ(S) : |S| = k;S ⊂ V} over a stochastic network. Here the set of nodes is
represented as V and the seed set S, which is a subset of V with a fixed size k, corresponds to the influential
nodes. Finally, the objective function σ(S) is a measure of the expected number of nodes influenced in the
social network when a cascade is triggered by the initial seed set S.

1.1. Related Work

IMP has been attracting a great amount of interest in the last years and many researchers focus on differ-
ent aspects of the problem [22]. The first model of IMP as a mathematical optimization problem is developed
by Kempe et al. [5] (and its recent version [12]) where the problem is addressed as “Influence Maximization”.
They show that the objective function σ(S) is submodular under two popular diffusion models: Indepen-
dent Cascade (IC) and Linear Threshold (LT). Consequently, a naive greedy algorithm together with Monte
Carlo simulations to estimate σ(S) guarantees a (1−1/e) approximation to the optimal solution of IMP [19].
The requirement of calculation of the influence function σ(S) many times in the Monte Carlo simulation
steps results in scalability issues, especially for large networks. Upon this observation, many improvements
have been proposed for the Greedy method such as Cost Effective Lazy Forward (CELF) method [16]. For
large networks, even the performance of CELF is still unsatisfactory and different approaches are applied
to solve IMP in terms of computational efficiency rather than the solution quality. Among the many, PMC
[21], EasySIM [6] and IMM [24] are currently some of the best performers while keeping the approximate
bound guarantee. Recently, Wang et al. [25] present a novel bottom-k sketch based RIS framework (BKRIS)
and Ko et al. [14] develop a hybrid method that combines path and community based IM to significantly
accelerate the seed set selection procedure. For a detailed comparison of the state-of-the-art, the survey by
Li et al. [17] provides the expected and worst-case complexity levels of many algorithms.
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While most researchers focus on scalability of IMP, the interest in the solution quality is increasing as well.
For certain applications of IMP, identifying the optimal seed set can be a priority, rather than scalability. For
instance, in scenarios such as (i) determining the most crucial servers to protect in a mission-critical computer
network, (ii) identifying the most influential people in a small candidate group of expensive celebrities or
(iii) determining the most vulnerable patients for vaccination to avoid an epidemic, determining the optimal
seed set is essential. Since IMP is proven to be NP-hard [5] obtaining optimal solutions for large instances
is difficult within a reasonable duration. Nowadays, the optimization community has started to provide
more contributions in the pursuit of developing efficient methods that provide optimal solutions. IMP is
approximated to a combinatorial optimization problem by Sample Average Approximation (SAA) method
in [15, 8] for obtaining approximate optimal solutions. Recently, Wu and Küçükyavuz [26] develop a delayed
constraint generation algorithm to find the optimal solution to the sampled version of IMP, which is the
current state-of-the-art.

1.2. Contribution and Outline

In this study, we focus on both the formulation and mathematical properties of IMP, so that an efficient
method to obtain optimal solutions can be developed. Our first contribution is modeling the problem by
using a simpler and much efficient discrete binary integer program than the one in our previous work [8],
which is presented in Section 2.3. Our second contribution is a Linear Programming (LP) relaxation based
method with a provable worst case bound, which is a direct consequence of this new formulation. For certain
network instances, this method can solve IMP optimally in polynomial time (when the LP relaxation yields
an integral solution). If a fractional solution emerges, an integer solution can be obtained in linear time
with pipage rounding, resulting in a (1− (1− 1/p))

p − ε) worst-case bound to the optimal solution. Here,
p is the size of the largest predecessor set whose any member can activate a given node in the network and
ε is the error term due to sampling. We prove that this bound is as good as the current state-of-the-art
(1− 1/e).

The paper is organized as follows: In Section 2, the preliminaries of the IMP, its mathematical formulation
and how it is solved by SAA is given. Section 3 presents the LP-relaxation based algorithm and derivation
of its worst case bound. In Section 4, we present the computational results obtained by using some real life
data. The last section gives the conclusion and future directions.

2. Basics of the Influence Maximization Problem

In this section, we first give a formal definition of our problem. Next, we introduce the Independent
Cascade Diffusion model which describes how information propagates in the network. Following it, we
explain how the exact influence of a seed set is determined on a running example and provide some hardness
results. Then, we introduce our mathematical optimization model and its approximation by Monte Carlo
sampling for practical use. Lastly, we describe how we solve the approximation version of our model using
Sample Average Approximation framework. We conclude the section by providing certain mathematical
relations that govern the quality of our approximations.

We define IMP over a weighted and directed network N = (V,A,W). In this network, V corresponds to
the set of nodes that represent the members of the social network and its size is |V| = n. The connections
in the network such as being co-authors, followers, social media friends or similar relations are shown by
arcs and the set of arcs is A. Lastly, W is the set containing the weight information of these arcs. Each arc
(i, j) ∈ A from node i to j has a weight of pij ∈ W. It shows the probability of node i influencing node j
whenever an action is triggered by node i in the social network. The size of set A is |A| = m. For a given
set of initial influentials (or seed set) S, which is the set of active nodes in the beginning of the cascading
process, the expected number of activated or influenced nodes at the end of the process is calculated by the
function σ(S).

Given the network N and a diffusion model to describe how the information spreads over the network,
we formally define IMP as identifying the optimal seed set whose size is k and when the diffusion process
begins with the nodes in S, the influence function σ(S) is maximized.
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Figure 1: A sample social network with 5 nodes and 5 arcs

2.1. Independent Cascade Diffusion Model

It is assumed that the information propagates over the social network N obeying certain rules. To set
these rules, some well-known diffusion models are used. In this study, independent cascade (IC) diffusion
model is considered [7]. Regardless of the diffusion model, a node i is called as active or influenced if it
does the action of interest or accepts the idea that is shared to it. Whenever a node becomes active, it can
not deactivate itself and stays as an active node throughout the diffusion process. Under the IC diffusion
model a node i that is activated in step t has only a single chance to successfully influence any neighbour j
with a probability pij . These attempts are independent of each other and if node i is unsuccessful, it has no
chance to influence node j any more. When a node i activates its neighbour j in step t, then node j tries
to activate all of its inactive neighbours in step t + 1. If there are more than one node trying to activate
node j, they are sequenced arbitrarily. The process begins with an initial active seed set S and runs until
no more activations are possible [3, 5].

A sample network with 5 nodes and 5 arcs with the influence probabilities on the arcs are displayed in
Figure 1. To visualize the IC diffusion model, assume that node-1 is selected as the seed set. Then with
probability 0.6 it will influence its only neighbour node-2. If node-1 is successful, in the next round node-2
will try to influence node-4 and so on.

2.2. Evaluation of Influence

The influence function σ(S) is computationally difficult for exact calculation. Chen et al. [3] prove that
it is #P-hard to compute σ(S) precisely. σ(S) is equivalent to the expected number of nodes that can be
accessed by the elements of the seed set S of a corresponding random graph. Hu et al. [10] show that
there are two possible methods for exact computation of σ(S), similar to the computation of reliability or
reachability both of which possess exponential-time complexity.

In the first method, all possible realizations (or scenarios) of the stochastic network are enumerated.
Each realization is matched by a subset of active and inactive arcs in the network. We call an arc (i, j) as
active if it exists in the network for a given realization. In the IC diffusion model the arc (i, j) is either
active with probability pij or inactive with probability (1 − pij). Since the number of arcs in the network
is finite, the number of realizations is large but finite. Let R be the set of all possible realizations and r be
the index of a given realization. Notice that R has an exponential size with |R| = 2m. Also, let µr be the
probability of occurrence of realization r, which is computed by multiplying m probabilities, i.e. pij values
for active arcs and (1− pij) values for the inactive arcs.

To see the intractability of exact calculation of σ(S), we again refer to our example. In Figure 2, we
display 3 of the possible 25 = 32 scenarios. In the first scenario r = 1, we assume that all the arcs are active
and the probability of this scenario is simply found by multiplying the influence probabilities (µ1 = 0.0288).
In the second scenario r = 2, all the arcs except (3, 4) is active and in the last scenario r = 32 none of the
arcs are active.

Also let’s assume the seed set size to be k = 2. So since there are 5 nodes, there are
(
5
2

)
= 10 possible

combinations for the seed set. We display only 3 of them as the rows of our example. Consequently, one
has to compute the influence spread over each scenario and for each possible seed set to determine the exact
expected influence of any possible seed set. For instance in Figure 2, in scenario r = 1, when the diffusion
starts from the seed set {1,2}, a total of 4 nodes {1,2,4,5} are activated. It is simply calculated by counting
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Figure 2: Illustration of the Exact Calculation of σ(S) Under IC Diffusion Model

all the accessible nodes via active arcs starting from the seed set. Therefore, the spread of {1,2} in scenario
r = 1 is 4 and its contribution to the expected influence of {1,2} is simply the probability of scenario times
the spread, i.e., 4× 0.0288 = 0.1152. When all the influence contributions are summed over all the possible
32 scenarios, we can compute the exact expected influence for a given seed set. This is repeated for each
seed set and the one yielding the maximum expected influence is determined as the optimal solution. The
second method mentioned in [10] is a path-based method and its complexity is even higher than the first
one, thus we prefer to skip the details of it.

2.3. Mathematical Formulation of IMP

As mentioned in the introduction, IMP can be formulated as {max σ(S) : |S| = k;S ⊂ V}. It is
proven that IMP is NP-hard by showing a reduction to the Stochastic Set Covering problem [5]. Therefore,
determining an optimal solution is very hard even for small networks. This form of IMP is inconvenient for
mathematical optimization. thus, we benefit from the enumeration approach as we introduced for the exact
computation of σ(S).

In the proposed mathematical model, all nodes that can activate a given node i should be identified
a priori. For this purpose, we define Pir ⊆ V, which is the set of all predecessor nodes of i in the r-th
realization. Pir are constructed by running a breadth first search starting form node i and going in the
reverse direction by using only the active arcs in a given realization. For instance, in Figure 2, consider
node-4. In the first scenario P41 = {1, 2, 3, 4}, because all these nodes can activate node 4 if they are selected
as the seed set. In the second scenario P42 = {1, 2, 4}, because arc (3, 4) is not active any more. Lastly,
when there are no incoming arcs to a node in a given scenario, Pir = {i} (ex: P31 = {3}).

We define two sets of decision variables, one for representing the seed set and the second to capture all
the activated nodes for each scenario. First, let y be a 0 − 1 vector of nodes in V and yi is one if node
i is selected as a seed and zero otherwise. Second, let X (y) be the set of random variables corresponding
to all nodes that are activated in the diffusion process given the seed set y. Each xir ∈ X (y) is also a
binary variable where xir is one if it is activated in the diffusion process in sample r or zero otherwise. The
members of X (y) with value one are the ones that correspond to the seed nodes plus the nodes which are
activated in the later steps of the IC diffusion process. Notice that, the probability distribution ruling the
activation of the arcs (therefore the nodes connected to them) is independent of y. Given these definitions
the objective function σ(S) is rephrased as: σ(S) = σ(y) =

∑
i∈V E[X (y)] =

∑
r∈R

∑
i∈V µrxir. Also, the

function σ(y) has the same meaning with σ(S) but its domain is the set {0, 1}m. All the sets, parameters,
decision variables and other relevant terminology are summarized in Table 1 for quick reference.

Following the above notations and definitions, the Influence Maximization Binary Integer Program (IM-
BIP) with independent cascade diffusion model is constructed as follows:
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Table 1: Sets, parameters, decision variables and related notations

Sets
V Set of nodes (|V| = n)
A Set of arcs (|A| = m)
W Set of arc weights
S Seed set or initial set of influencers
R Set of all possible scenarios or realizations
Pir Set of all predecessor nodes who can activate node i in scenario r
Rs Subset of scenarios obtained by Monte Carlo sampling
Parameters
k Seed set size
pij Probability of node i to influence node j
µr Probability of scenario r
R number of possible scenarios or sample size
Decision Variables and Formulation Related Notation
yi Binary decision variable to represent seed nodes
xir Binary decision variable to represent if node i is activated in scenario r or not
z Objective function value for IMBIP
z∗ Optimal objective function value of IMBIP
y∗ Optimal seed set (or optimal solution) of IMBIP
zR Objective function value for IMBIP-S
z∗R Optimal objective function value of IMBIP-S
y∗R Optimal seed set of IMBIP-S
Sample Average Approximation Related Notation
M Number of batches (integer programs) to be solved
Rj Sample sizes used in step-j = 1, 2, 3 of SAA algorithm
z∗iR1

Optimal obj. funct. value of the i-th IMBIP-S in step-1
y∗iR Optimal seed set of the i-th IMBIP-S in step-1
ẑR1

SAA obj. funct. value (upper bound estimate)
z∗iR2

Point estimate of z∗iR1
with a larger sample size in step-2

ŷ∗R Best seed set yielding the highest z∗iR2
value

z∗R3
Final point estimate for the seed set ŷ∗R (lower bound estimate)
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max z =
∑
r∈R

∑
i∈V

µrxir (1)

s.t.
∑
i∈V

yi = k (2)

xir ≤
∑

j∈Pir
yj i ∈ V, r ∈ R (3)

0 ≤ xir ≤ 1, yi ∈ {0, 1} i ∈ V, r ∈ R (4)

IMBIP aims to maximize the objective function (1) which calculates the expected number of activated
nodes. The constraint (2) limits the size of the seed set to k, whereas, the constraints (3) capture the
diffusion process. A node i in realization r is active only when it is in the seed set or it is connected to
any member of the seed set through active arcs, which is captured by Pir. The formulation is completed
with binary restrictions on y and non-negativity and unit bounds on x (4). Notice that, even though xir
are initially defined as binary variables, the objective function and constraints (3) and (4) force them to be
either 0 or 1, therefore we can relax the binary requirements. When solved optimally, IMBIP determines
the optimal seed set y∗ which attains the maximal influence value of z∗.

Sheldon et al. [23] developed a similar formulation, which is valid for only acyclic graphs. However, our
formulation is superior as it can be used successfully for networks with cycles. For cyclic networks, when
no precautions are taken in the formulation, a solution may contain some nodes becoming active without
any of them being connected to any of the initial active nodes. Such solutions are unacceptable and it can
be avoided by determining the predecessor set as we have done, or by using a less efficient formulation that
requires an additional time index on the decision variables [8].

2.4. Solving IMP by Sample Average Approximation

Solving IMP (and also IMBIP) optimally is not practical as a consequence of the excessive number of
possible realizations |R|. Therefore, approximating σ(S) using various sampling methods is a viable strategy.
Among all, Monte Carlo sampling is used frequently to obtain a representative sub-network [5, 3, 24, 26].
For this purpose, a biased coin is flipped for each arc (i, j) with a success probability of pij . Thus, a sub-
network Nr = (V,Ar) is constructed for each realization r, that contains only the active arcs according to
the sampling outcome. Let Rs ⊂ R denote the set of the realizations obtained by Monte Carlo sampling
and let σr(y) be the expected number of nodes reachable in sub-network Nr when the diffusion process is
triggered by the seed vector y. By sampling we generate a total of |Rs| = R realizations and we define

zR(y) = 1
R

∑R
r=1 σr(y), which is a Monte Carlo Sample Average Approximation (SAA) of σ(y) = σ(S)

[15, 8]. Observe that zR(y) is an unbiased estimate of the original objective function σ(S).
Then the SAA version of the optimization problem (IMBIP-S) becomes:

max zR =
1

R

∑
r∈Rs

∑
i∈V

xir (5)

s.t.
∑
i∈V

yi = k (6)

xir ≤
∑

j∈Pir
yj i ∈ V, r ∈ Rs (7)

0 ≤ xir ≤ 1, yi ∈ {0, 1} i ∈ V, r ∈ Rs (8)

Note that the major difference in this formulation is the new objective function and the much smaller
realization set Rs. Let y∗R denote the optimal solution (seed set) to IMBIP-S. The fact that the number of
all possible k combinations of y is finite (but obviously very large) guarantees that limR→∞ z∗R = σ(y∗R) with
probability one and similarly the limit points {y∗R} is optimal for IMBIP-S with probability one. Norkin et
al. [20] proved that E [z∗R] ≥ σ(y∗R) due to expectation relaxation. In other words, the optimal objective
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function value of IMBIP-S is a positively biased estimator of the true optimum, even though the SAA
function itself is not. Thus for a more accurate objective function estimate, a function evaluation, which
is simply the point estimation of z∗R is necessary. For this purpose, a much larger sample size R′ � R is
used to compute zR′ = 1

R′

∑
r∈R′s

∑
i∈V

xir for the best SAA solution [4]. Notice that computation of zR′ only

requires the simulation of the diffusion for a fixed set of seed nodes, therefore it is very fast since it does not
include any combinatorial optimization. To frame it up, the SAA procedure computes both an approximate
upper bound (z∗R) and a feasible (hopefully optimal) objective function estimate (z∗R′) for the true optimum
σ(y∗). One can refer to [8] for the detailed implementation of SAA method that is used in this work, which
is slightly different from [15]. However, for completeness we provide steps of the SAA method in Algorithm
1.

Algorithm 1 SAA Algorithm

1: Use M batches of samples of sample size R1 for solving M integer programs to obtain the solutions y∗iR

and objective function values z∗iR1
, i = 1, ...,M . Let ẑR1

= 1
M

M∑
i=1

z∗iR1
and record it as an upper bound

estimate to σ(S).
2: Compute the influence values (point estimates) z∗iR2

(y∗iR) algorithmically, for the solutions y∗iR, i =
1, ...,M with a larger sample size R2. Identify the solution with the best objective function value i.e.,
ŷ∗ = argmaxi{ziR2

(y∗iR)} and record it as the optimal seed set estimate.
3: Compute z∗R3

(ŷ∗) algorithmically with a large sample size of R3 ≥ R2 and record it as a lower bound
estimate to σ(S).

SAA is applied as a three step procedure. In the first step, M independent integer programs are solved
which are constructed by M i.i.d batches of R1 samples. Both the solutions and the objective function
values are recorded. The average of these M solutions, ẑR1

is recorded as an upper bound estimate to the
original objective function. In the second step, the optimal solutions of each integer program of first step
are compared with more accurate estimations. For this purpose, we algorithmically evaluate the objective
function values, z∗iR2

(y∗iR), by using a much larger sample size R2. The solution ŷ∗ yielding the highest
objective function in step two is assumed to be the optimal solution (seed set) of the SAA method. In the
final step of the SAA method, the objective function of the best solution, ŷ∗, is algorithmically re-computed
with a new sample of size R3, which is generally taken larger than or close to R2. Finally, ŷ∗ and z∗R3

are reported as the estimates of the optimal seed set and optimal objective function value of the original
problem. Notice that, since ŷ∗ is a feasible solution, z∗R3

is a lower bound (estimate) to the original problem.
Therefore we have the approximate relation on the optimality gap: ẑR1

& σ(S) & z∗R3
.

2.5. Quality of Approximations

A critical question arises about how to determine the sample size R (consequently R1, R2, R3 and M)
to obtain (i) a good (optimal) seed set and (ii) a good estimate of the original objective function σ. For
the first case, we refer to the approximation results in Kleywegt et al. [13]. Let y∗ε and ŷ∗ε be the set of all
ε-optimal solutions to IMBIP and IMBIP-S, respectively. By using the theory of large deviations (LD), they
show that the probability of the event of having the optimal SAA solution (ŷ∗ε ) as the true optimum solution
(y∗ε ) converges to one exponentially fast as R → ∞. By also benefiting from Cramér’s LD theorem, they
show that with a fixed significance level α ∈ (0, 1), the probability P (ŷ∗ε ⊂ y∗ε ) ≥ 1 − α i.e., any ρ-optimal
solution of the SAA problem is an ε-optimal solution to the original problem with probability at least 1−α,
whenever the sample size,

R ≥ 3σ2
max

(ε− ρ)2
log

(
|X |
α

)
(9)

where ρ ∈ [0, ε). In (9) σ2
max = maxy∈X\y∗ε V ar[z(y

∗) − z(y)] for an optimal solution y∗ ∈ y∗ε and X is the
set of all possible feasible solutions to IMBIP-S [4]. Observe that the bound (9) may be too conservative for
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practical use, resulting in excessively large integer programs. Nevertheless, it has interesting consequences
for complexity issues. In (9) R depends only logarithmically both on the size of the feasible solution set |X |
and on the tolerance probability α. An important implication of such behavior is the following: Even though
the size of the feasible set X grows exponentially in the length of the problem input (number of nodes and
sample size), the variance σ2

max grows polynomially in the length of the problem input. Also the complexity
of finding a ρ-optimal solution for the SAA problem grows polynomially in the length of the problem input.
Then a solution can be generated in time that grows polynomially in the length of the problem input such
that, with probability at least 1− α, the solution is ε-optimal to the original problem.

The computational complexity of solving the IMBIP-S as a stand-alone integer program grows exponen-
tially in the number of decision variables and thus the sample size. Therefore, instead of solving a single
IMBIP-S with a large sample size R, we prefer to use a smaller sample size R1 and solve several IMBIP-S
problems with i.i.d. samples. This approach is generally recommended in the SAA literature for better
computational performance [13, 4, 18]. Each SAA problem can be thought as a Bernoulli trial with proba-
bility of success p = p(R1). Here success means that the optimal seed set identified by the SAA problem is
the actual optimal seed set of the original problem. As mentioned above, this probability p tends to one as
R → ∞ exponentially fast. The probability of producing an optimal seed set of the true problem at least
once in M trials is 1− (1−p)M and this probability again tends to one exponentially as M →∞, given that
p > 0. Therefore, instead of solving a single SAA problem with sample size MR1, solving M separate SAA
problems with sample size R1 is preferable from the computational effort needed to solve integer programs.
Given this conjecture, there is no guarantee that p > 0 for a given sample size R (or R1). Particularly, for
a finite R the probability p can be very small or even zero. Hence, even though this practical approach has
empirical success, it does not contribute to the theoretical bound on the sample size R.

The choice of sample size at the second and third steps of the SAA method is similar to other IMP ap-
proaches. Classical Chernoff-Hoeffding bounds are valid as we algorithmically simulate the diffusion process
for a fixed seed set y. Therefore, if the diffusion process is repeated for a given seed set y independently at
least

R ≥ n2

ε2
log

(
1

δ

)
(10)

times, then the average number of activated nodes over these runs is a (1± ε) approximation to σ(y), with
probability at least 1− δ [12].

As a summary, our first contribution is the new formulation of IMBIP and thus IMBIP-S. It is a simpler
formulation compared to the one in [8], where the decision variables have an additional time index t showing
the actual step when a node is activated in the diffusion process. In [8] breadth-first search procedure is
run to find at which step a node is activated for each of its predecessors that can access to node i. Then
the maximum of these values is recorded as Tmaxir for each node-sample couple. In that formulation, the
predecessor set is not kept (although implicitly identified), but just the one-hop neighbours are kept as the
neighbourhood set Nir to construct the constraints. In the new formulation, we again apply the breadth-first
search procedure and this time record the predecessor set Pir for each node-sample couple. This process is
similar to the reverse reachable set notion presented in [2] and the following studies. As a consequence, the
time index can be dropped because it is not needed to construct the constraints any more. This approach
significantly reduces the number of variables and constraints, thus larger instances of IMBIP-S can be solved
even as stand-alone integer programs with sampling. More importantly, the new form of IMBIP-S has a
special structure that facilitates the development of an LP-based solution technique, which is discussed in
the next section.

3. An LP Relaxation based C-approximation algorithm

Scalability is a critical issue in influence maximization. Many real life social networks contain millions
of nodes and up to billions of edges. As a result, most of the well-known studies in the literature are the
ones that propose fast and scalable methods with relatively less emphasis on optimality. Nevertheless, these
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algorithms try to keep their worst case bound to a reasonable level, mostly to 1 − 1/e. However, in this
work our objective is to find ε-optimal solutions and improve our scalability with minimum sacrifice from
optimality. To achieve this, we benefit from the LP-relaxation of IMBIP-S.

In IMBIP-S, the seed set variables yi dictate the optimal values for xir together with the unit bounds.

Therefore, maximizing zR is equivalent to maximizing the non-linear function F (y) =
∑
r∈Rs

∑
i∈V

(
1−

∏
j∈Pir

(1− yj)

)
over all binary vectors y satisfying (6). Similarly, the objective function zR can be replaced by the function
L(y) =

∑
r∈Rs

∑
i∈V

min{1,
∑

j∈Pir
yj}, which is favorable for an LP-relaxation based optimization scheme.

Ageev and Sviridenko [1] has shown that for the maximum k-coverage problem the following two condi-
tions hold:

(i) The function ψ(ε, y, s, t) = F (y1, .., ys + ε, ..., yt − ε, ...yn) is convex with respect to ε ∈ [−min{ys, 1−
yt},min{1− ys, yt}] for each pair of indices s and t and each y ∈ [0, 1]n,

(ii) There exists C > 0 such that F (y) ≥ CL(y) for each y ∈ [0, 1]n.

Observe that IMBIP-S is a special case of the SAA version of stochastic maximum k-coverage problem.
The objective function aims to find a ground set with size k that maximizes the average coverage for the
given R instances of the network. The constraint (6) restricts the number of selected variables from the
ground set to k and lastly the constraints (7) are equivalent coverage constraints. Different than the classical
max-k-coverage problem, in IMBIP-S, the i-th constraint of (7) contains both xir and yi at the same time
for any r. So if a node is not connected to any other node, then Pir contains only i, otherwise it contains i
plus all the nodes that can access i in sample r. We will first show that these two conditions are also valid
for IMBIP-S by benefiting from the arguments provided in [1].

Proposition 1. For IMBIP-S, the function ψ(ε, y, s, t) = F (y1, .., ys + ε, ..., yt − ε, ...yn) is convex with
respect to ε ∈ [−min{ys, 1− yt},min{1− ys, yt}] for each pair of indices s and t and each y ∈ [0, 1]n

Proof. ψ(ε, y, s, t) will contain terms like (1− (1− ys − ε)(1− yt + ε)
∏

j∈Pir/{s,t}
(1− yj) or will have ys and

yt in separate products according to the network structure and the sampling outcome. Therefore the main
coefficient of ε will always be either quadratic (if they are in the same product) or linear (if they are in
separate products). Thus ψ(ε, y, s, t) is always convex for each pair of indices s and t and each y ∈ [0, 1]n.

Proposition 2. There exists C > 0 such that F (y) ≥ CL(y) for each y ∈ [0, 1]n, where C = (1−(1− 1/p)
p
),

and p = max{|Pir| : i ∈ V, r ∈ Rs}.

Proof. Let g(z) = 1 − (1− z/p)p, where z = min{1,
∑

j∈Pir
yj}. By using the arithmetic-geometric mean

inequality we can write:

1−
∏

j∈Pir
(1− yj) ≥ 1− (1− z/p)p

Observe that g(z) is concave between [0, 1] and g(0) = 0, g(1) = 1− (1− 1/p)
p
, so g(z) ≥ (1− (1− 1/p)

p
) z.

Therefore,

1−
∏

j∈Pir
(1− yj)≥ g(z)≥ (1−(1−1/p)

p
)

(
min{1,

∑
j∈Pir

yj}

)

which completes the proof.

Now, consider the LP-relaxation of IMBIP-S and its optimal solution y∗LP . If y∗LP is integral, then it
is the optimal solution to its original integer version as well. Otherwise, there exists at least 2 fractional
variables ys and yt due to (6). Of these two fractional variables, at least one of them can be made binary
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by adding or subtracting one of the two possible values of ε, which is either ε = min(1 − ys, yt) or ε =
−min(ys, 1 − yt). Since we are maximizing, the ε yielding the higher function value is preferred. This
fractional-to-integer conversion of a fractional variable is called ’pipage’. Then, the new feasible solution
y′LP = {y1, .., ys + ε, ..., yt− ε, ...yn} has less non-integer components. After repeating these ’pipage’ steps at
most n− 1 times, a binary feasible solution ŷLP is obtained.

Theorem 1. The pipage method is a C-approximation algorithm for IMBIP-S, where C = (1− (1− 1/p)
p
),

and p = max{|Pir| : i ∈ V, r ∈ Rs}.

Proof. First, we will show that the worst case bound is asymptotically close to C = (1− (1− 1/p)
p
). Then

we will explain how pipage method guarantees a feasible integer solution preserving the integrality gap.
Set n = pk. Let Pi be the collection of all subsets of nodes {1, 2, ...n} − {i} with cardinality p − 1. We

want to compute the lowest value for z∗R(IP )/z∗R(LP ) for IMBIP-S. Remember that the constraints (7) are
constructed as xir ≤ yi +

∑
j∈Pi/{i}

yj with a total of p terms on the right-hand side, because the seed set

variable yi is always included in the constraint of xir for every sample. Then by symmetry any binary vector

y with k units will provide a solution z∗R(IP ) = k
(
n−1
p−1
)

+(n−k)
((
n−1
p−1
)
−
(
n−k−1
p−1

))
. In this summation, the

left term counts all xir having the same index with the elements of the seed set. Whereas, the right term is
the expected influence of the remaining nodes that are activated later by the diffusion process, which occurs
only when the predecessor set of xir contains at least one of the k seed nodes for the corresponding sample.
For the LP relaxation, the vector with all yi = 1/p provides the optimal LP solution with z∗R(LP ) = n

(
n−1
p−1
)
,

which means all nodes are activated in all samples. Now we can compute the ratio z∗R(IP )/z∗R(LP ) to
provide an upper bound on the optimality gap C.

z∗R(IP )
z∗R(LP ) =

k(n−1
p−1)+(n−k)((n−1

p−1)−(n−k−1
p−1 ))

n(n−1
p−1)

=
n(n−1
p−1)−(n−k)(

n−k−1
p−1 )

n(n−1
p−1)

multiplying both the nominator and denominator with 1/p we get:

z∗R(IP )
z∗R(LP ) =

(np)−(n−kp )
(np)

This is the same bound obtained in [1] so the proof follows:

z∗R(IP )
z∗R(LP ) = 1− (n−k)!

p!(n−k−p)!
p!(n−p)!

n!

=1−
(
n−k
n

) (
n−k−1
n−1

)
...
(
n−k−p+1
n−p+1

)
≤1−

(
n−k
n

) (
n−k−1
n

)
...
(
n−k−p+1

n

)
=1−

(
1− 1

p

)(
1− 1

p −
1
n

)(
1− 1

p−
2
n

)
...
(

1− 1
p−

p+1
n

)
≤1−

(
1− 1

p −
p+1
n

)p
and the last term tends to (1− (1− 1/p)

p
) when p is fixed and n→∞.

Assume that the LP-relaxation of IMBIP-S provides a fractional solution y∗LP . After applying a pipage
step to obtain the new solution y′LP with less fractional variables, F (y′LP ) ≥ F (yLP ) will always hold due to
convexity of ψ(ε, y, s, t) for ε ∈ [−min{ys, 1− yt},min{1− ys, yt}]. When all the pipage steps are completed
with no fractional variables left, a binary feasible solution ŷLP with F (ŷLP ) ≥ CL(y∗LP ) ≥ CL(y∗) = CF (y∗)
is obtained, where y∗ is the actual optimal integer solution to IMBIP-S.

The pipage method has a polynomial time complexity. It involves, first solving an LP relaxation of
IMBIP-S, plus the additional pipage steps, which are simple function evaluations. Also its worst case bound
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Figure 3: An example yielding a fractional LP solution

is as good as the greedy method. The greedy method solves IMBIP-S within a factor of
(

1− (1− 1/k)
k
)

[19]. For the asymptotic case our bound (1− (1− 1/p)
p
) behaves similar to

(
1− (1− 1/k)

k
)

, but for fixed

p, the performance guarantee of the pipage method beats that of the greedy method. For instance, when
the underlying network is bipartite, pipage method’s bound strengthens to 3/4, whereas the greedy method
has still the 1− 1/e bound [1].

To illustrate how the pipage method works consider Figure 3, with 4 nodes, 3 scenarios and k = 2. Also
the coverage constraints are displayed to show how the predecessor sets are translated into a mathematical
form. For this instance, the optimal integer solution is y∗1 = y∗2 = 1 and z∗ = 3.66. However the LP
relaxation results in the fractional optimal solution with all yi = 0.5 and zLP = 4. Observe that, for this
fractional solution y, F (y) = 3.04 and L(y) = 4. We randomly select two fractional variables, say y1 and y2.
We determine two candidate ε values from ε = min(1− y1, y2) or ε = −min(y1, 1− y2). Since y1 = y2 = 0.5,
ε = min(1 − 0.5, 0.5) or ε = −min(0.5, 1 − 0.5), then ε can be ±0.5. When ε = −0.5, the new solution is
y = {0, 1, 0.5, 0.5} with F (y) = 3.17 and L(y) = 3.33. When ε = +0.5, the new solution is y = {1, 0, 0.5, 0.5}
with F (y) = 3.25 and L(y) = 3.33. Observe that F (y) improves in both cases but we prefer ε = +0.5
yielding a higher F(y) and the new solution becomes y = {1, 0, 0.5, 0.5}. We repeat these steps for y3 and y4
and obtain the final seed set of y = {1, 0, 1, 0} or y = {1, 0, 0, 1}) with both solutions yielding F (y) = 3.33
and L(y) = 3.33. Since the final solution is integral we stop. Observe that the new integer solution to
the LP relaxation is not optimal any more. In our example, if we don’t select y1 and y2 together, pipage
method ends up with the optimal solution y∗ = {1, 1, 0, 0} with F (y∗) = 3.66 and L(y∗) = 3.66. As a future
research direction, it may be interesting to test various search methods to determine the best combinations
of selecting the fractional couples to obtain the best possible integral solution.

We can easily integrate the pipage method to our solution approach. In the first step of Algorithm 1,
instead of solving IMBIP-S as binary integer program, we solve its LP relaxation. If the solution is integer
the algorithm proceeds just as it is. However, if the solution is fractional we obtain an integer solution by
using the pipage method. So at the end of step one, we have M objective function values of the relaxed
problems and M integer seed sets. These objective function values are used to compute the estimated upper
bound ( ˆzR1)LP ≥ ( ˆzR1)IP and the corresponding seed sets are used in step-2 of the algorithm where the best
seed set is identified by simulation as before. Basically, we lose from the tightness of our upper and lower
bound estimates, but in return we guarantee a method with polynomial time complexity and potential for
scalability. Overall the SAA method with pipage provides a (1− (1− 1/p))

p − ε) approximation to IMBIP,
where the ε is the approximation error that is carried to IMBIP-S from IMBIP due to sampling.
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Table 2: The Summary of Data Sets

Data Set Category Nodes Edges Type
HEP arXiv scale-free 37,153 231,568 Undirected
ego-Facebook small world 4,039 88,234 Undirected
p2p-Gnutella4 peer-to-peer 10,876 39,994 Directed

4. Experimental Results

In this section we present our experimental results. First, we compare the performance of our new
formulation provided in Section 2.3 with our old formulation in [8]. Next, we analyze the performance of our
LP-based approach and compare both its solution quality and computational performance with the integer
programming (IP) version and two other popular methods from the literature.

4.1. Experiment Setup and Data Sets

Three data sets are used in our experiments which are available in SNAP (https://snap.stanford.edu/data)
and a brief summary of the networks are given in Table 2. The first one is High Energy Physics (HEP)
section of arXiv data, which is also used in the experiments of [3, 5, 12, 8]. In this data set each node cor-
responds to an author and each arc is a co-authorship relation among authors. The co-authorship network
displays a scale-free network characteristic, where a small number of nodes (authors) have high number of
connections and most of the nodes have low number of connections [27, 8].

The second data set is ego-Facebook, which is a small world type network containing social circles
(friend lists) from Facebook with 4, 039 nodes and 88, 234 arcs. The last data set is an internet peer-to-peer
network example, P2P-Gnutella04, with 10, 876 nodes and 39, 994 arcs. A sequence of snapshots of the
Gnutella peer-to-peer file sharing network from August 2002 are collected where nodes represent hosts in
the Gnutella network topology and edges represent connections between the Gnutella hosts. This data set
is also used in [26].

For the arXiv data set, we create 6 different sized networks with the number of arcs m={1K, 2K,
5K, 10K, 20K, 50K} that are selected randomly from the master dataset and 30 different seed set sizes,
k = 1, ..., 30, meaning a total of 180 different test scenarios. For the ego-Facebook and P2P-Gnutella04,
the complete data sets are considered and only seed set size is varied from k = 1 to k = 30. For the
undirected networks, we assume the first node to be the tail and the second node to be the head. Placing
two edges in both directions is a more common way of handling undirected networks, but since the networks
are already large for the integer programs, we preferred such a setting for scalability. Since we are not
interested in determining the actual best influential nodes of the given networks, but rather testing our
approaches on random networks, this choice does not hurt our experimental analysis.

4.2. Methods Applied to Obtain Seed Sets

A total of four methods (IP, Pipage, CELF [16] and IMM [24]) are compared by testing their performance
on the mentioned three data sets. To have a fair and accurate comparison of solution quality, we determine
the best possible seed sets by each method with their default settings. Then the expected influence of these
seed sets are computed algorithmically by simulating the diffusion process on the same batch of sampled
networks with a large sample size.

The first method, IP, is the classical implementation of SAA as displayed in Algorithm 1, where we solve
integer programs (IMBIP-S) at the first step. In method Pipage, we again use Algorithm 1, but in the first
step we solve the LP relaxation of IMBIP-S and apply the pipage method as described in Section 3 to obtain
a feasible seed set if the solution is fractional. In both IP and Pipage methods, the Monte Carlo SAA sample
size R1 = 100 and the number of SAA replications M = 25. So basically, M = 25 instances of the IP or LP
are constructed with a sample size R1 = 100 and then solved by using a commercial solver. For the point
estimates (objective function evaluations) of the second step of the SAA procedure, the extended sample
size is taken as R2 = 10, 000 [5, 8]. Notice that, since we need to identify the best seed set, we don’t need

12



Figure 4: Running Time Comparison of BIP Formulations

to execute the step-3 of Algorithm 1. The choice of M ∈ [20− 30] is recommended in [4] to induce Central
Limit Theorem for providing confidence intervals on the upper bound estimates. The choice of R1 = 100 is
an empirical preference, where the variance of the estimates start to stabilize around this level. We provide
an extended analysis showing the quality of estimates with respect to varying values of R1, which is also
displayed in Figure 8.

The third method is the CELF implementation of the greedy method which is one of the fastest versions
of it [16]. The sample size used in the greedy method is also R = 10, 000 [5]. Last method is IMM - Influence
Maximization with Martingales. It is one of the fastest algorithms to solve IMP with 1 − 1/e worst-case
objective value guarantee. The IMM method is applied with its default parameter values where we set
ε = 0.1 [24].

The experiments are run on a server with two 64-bit, 3.00-GHz Xeon processors and 16GB RAM memory
and the operating system is Windows 2008 R2 Server. GUROBI 7.5 is used for solving the IPs and LPs [9]
with one hour time limit. If the problems are not solved within the time limit, for the upper bound we take
the best bound given by Gurobi and for the seed set we take the best feasible solution in hand. Saying this,
none of the IPs or LPs exceeded the time limit in our experiments.

4.3. Comparison of IMBIP Formulations

Our first analysis is on the efficiency of our new BIP formulation over [8]. The tests are carried out
on random sub-graphs of arXiv data set with the number of arcs m = {1K, 2K, 5K, 10K, 20K, 50K} and
the seed set size k = 1, ..., 30. Algorithm 1 is applied with the aforementioned parameters. For a fair
comparison, the instances generated with both formulations are run on the same hardware, with the default
solver settings. The running times are recorded and averaged over all k values and displayed in Figure 4,
i.e. the values displayed are averages of 30 results. Observe that the new formulation is 2 to 30 times faster
than the old one, which is parallel to our expectations as the new formulation has much few number of
variables and constraints. With this lighter formulation we can solve network instances with m = 100, 000
from arXiv data set, which is twice as large as the largest instance reported in [8].

4.4. Solution Quality of the Seed Sets

In this sub-section, we make a comparison on the solution quality of the proposed methods. To have a
fair comparison, the expected influence of each seed set obtained by each method are computed over the
same sampled network with a large sample size R = 10, 000. With this setting, if two methods have found
the same seed sets, they will definitely produce the same expected influence, so that there will not be any
deviation in objective function values due to sampling. On the contrary, when the seeds sets are different,
we assume that the one yielding a larger influence is a better one with high probability and for very close
values, our decision may be wrong but from a computational perspective the difference is assumed to be
statistically insignificant.
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Table 3: Expected Influence and Comparison of Methods on arXiv Data Set

Optimality Gap (%)
n/m/k IP Pipage Greedy IMM

12133/50000/30 970.88 0.12 0.71 2.20
12133/50000/20 823.39 0.98 0.56 2.68
12133/50000/10 577.65 0.15 1.39 1.52
12133/50000/5 373.95 0.12 1.14 2.50
5847/20000/30 533.34 0.37 0.99 2.33
5847/20000/20 434.79 0.24 0.8 3.01
5847/20000/10 304.94 0.29 - 0.27
5847/20000/5 198.56 0.05 - 0.08
3107/10000/30 319.92 0.06 - 1.61
3107/10000/20 274.33 - 0.01 1.12
3107/10000/10 205.51 0.11 - 2.78
3107/10000/5 151.04 0.15 - 1.66
1157/5000/30 201.03 0.13 0.75 2.71
1157/5000/20 171.78 - 0.28 3.68
1157/5000/10 139.36 0.03 0.04 1.08
1157/5000/5 120.70 - - 2.04
378/2000/30 132.78 - 0.17 1.53
378/2000/20 112.05 0.15 - 1.46
378/2000/10 87.35 0.04 - 3.12
378/2000/5 71.99 - - 3.52
378/1000/30 115.02 - - 3.16
378/1000/20 95.15 0.17 - 2.31
378/1000/10 70.78 - - 8.61
378/1000/5 55.99 - - 9.02

Average 0.13 0.30 2.67
Std. Dev. 0.21 0.43 2.11

For arXiv data set, a representative sample of 24 out of 180 test scenarios is listed in Table 3. The
first column shows the number of nodes and arcs of the sampled network and the seed set size in order.
The second column shows the values of the point estimate of the best SAA solution (z∗R3

(ŷ∗)), which is
tagged as IP . This value is actually the best estimate for the true optimum objective function value σ(S)
in our setting. The last three columns display the percent gap between point estimates of IP and the point
estimates of the pipage, greedy and IMM methods. The gap is calculated with the formula a−b

a ×100, where
a is z∗R3

(ŷ∗) and b is the point estimate value for the corresponding method. One can see that both the
pipage and greedy method are performing quite well with very low gaps (0.13% and 0.30% on the average)
and they find the same best solution in most of the cases. The gap for IMM is larger with 2.11% but again
it is far from its theoretical worst case bound.

Table 4 displays the results for the Facebook data set. Again, Pipage and CELF are performing close
to the best integer results with an average gap of 0.48% and 0.84%, respectively. IMM’s performance is
slightly worse than the others with an average of 2.98% gap. Observe that, Facebook network is denser
than the other two networks, which increases the complexity of finding good seed sets and thus IP’s perfor-
mance superiority increases. Nevertheless, the differences between IP, Pipage and CELF are not statistically
significant.

The results on our last data set Gnutella are somewhat controversial, which are presented in Table 5.
Here IMM is the best performer, followed by Pipage, IP and CELF in order. This network is very sparse,
hence the amount of sampling plays a significant role. As IMM method creates lots of samples compared to
the other methods, it can identify the most influential seeds better than the others. To illustrate it better,
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Table 4: Expected Influence and Comparison of Methods on Facebook Data Set

Optimality Gap (%)
k IP Pipage Greedy IMM
30 991.15 0.78 1.38 4.83
29 984.41 0.21 1.29 4.78
28 978.89 0.40 1.49 4.89
27 970.55 0.85 1.49 4.80
26 963.13 0.29 1.78 4.13
25 955.55 0.54 1.58 3.94
24 946.57 1.14 1.54 5.20
23 938.09 1.04 1.73 5.10
22 926.29 0.65 1.56 4.54
21 918.26 0.61 1.64 5.65
20 907.47 0.80 1.06 5.01
19 897.86 0.65 0.76 4.42
18 887.20 0.11 0.59 3.74
17 876.72 0.67 0.84 2.91
16 864.82 0.52 0.92 2.23
15 854.21 1.07 1.18 3.03
14 840.91 0.51 0.81 2.61
13 827.57 0.55 0.68 2.17
12 810.60 0.17 0.50 2.71
11 797.50 0.22 0.51 2.79
10 783.51 0.84 0.61 2.61
9 766.23 0.23 0.54 3.38
8 750.30 - - 2.47
7 728.78 1.47 0.69 1.42
6 701.38 - - -
5 674.95 - - -
4 635.53 - - -
3 591.64 - - -
2 480.78 - - -
1 284.84 - - -

Average 0.48 0.84 2.98
Std. Dev. 0.40 0.61 1.85
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Table 5: Expected Influence and Comparison of Methods on Gnutella Data Set

Optimality Gap (%)
k IP Pipage Greedy IMM
30 186.65 -0.09 0.24 -1.26
29 183.66 -0.06 0.91 -0.59
28 180.59 - 1.26 -0.30
27 176.53 - 1.12 -0.27
26 171.66 -0.04 0.39 -0.80
25 168.14 0.12 0.48 -0.12
24 163.65 -0.29 0.24 -0.55
23 160.67 - 0.59 0.29
22 155.83 -0.14 0.26 0.03
21 151.52 -0.09 0.14 -0.11
20 147.44 - 0.23 -0.06
19 143.73 0.06 0.23 0.07
18 139.19 0.03 0.18 0.16
17 134.71 - 0.16 0.03
16 129.91 -0.29 -0.29 0.03
15 125.34 - 0.25 0.25
14 120.18 - - -
13 115.00 - - -
12 108.99 - - 0.03
11 103.06 - - 0.12
10 96.85 - - -
9 90.36 - 0.04 -
8 83.87 - 0.03 -
7 77.55 - - 0.45
6 70.75 - - -
5 62.87 - - -
4 52.22 - - -
3 41.09 - - 0.18
2 29.98 0.02 - -
1 18.82 - - -

Average -0.02 0.21 -0.07
Std. Dev. 0.09 0.35 0.34

consider the instance of Gnutella network where n = 10879,m = 39993, k = 30. For this instance, IMM
creates 247 reverse reachable set samples per node on the average, whereas this value is 100 in both IP and
Pipage. In denser networks, the effect of under sampling is not as critical as in this sparse network.

4.5. Effects of LP Relaxation and Pipage Method on Upper and Lower Bound Estimates

As mentioned earlier, solving the LP relaxation of IMBIP-S in the SAA algorithm results in higher upper
bound estimates. Similarly, rounding the fractional solutions by pipage method to get integral solutions may
weaken the lower bound estimates. For the worst case, the degradation can be up to 1− 1/e of the optimal
solution. Table 6 provides useful insights to see the amount of degradation of the upper bounds. In Table
6, the second column displays the number of times the SAA upper bounds (ẑR1) obtained by IP and LP
Relaxation are not equal for k = 1, .., 30 cases. Remember that in each case, we solve M = 25 problems and
average it to obtain ẑR1

. So the SAA objective function values of the two method will be equal only when
all the 25 individual function values are exactly the same for both methods (i.e. yielding the same seed
sets unless there is a multiple optima). Notice that, when the network gets larger or denser, the number of
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Table 6: Comparison of solution quality

DataSet # of times ẑLP 6= ẑIP Avg. Gap (%) Avg. # of pipage steps

arXiv (m=50K) 27 0.039 9.77
arXiv (m=20K) 14 0.010 4.19
arXiv (m=10K) 13 0.003 2.69
arXiv (m=5K) 24 0.024 9.06
arXiv (m=2K) 5 0.005 5.00
arXiv (m=1K) 15 0.018 8.00
Facebook 23 0.182 22.28
Gnutella 12 0.022 9.44

times we see a deviation increases. For smaller or sparse networks the bounds are identical most of the time,
which means LP relaxation provides the same integer solution (or there is a multiple optima with a fractional
solution having the same objective function value). The third column provides the average integrality gap
between IP and LP objective function values. It is computed for only the cases with non-zero integrality
gap. So for instance, in arXiv (m = 50K) case, 27 non-zero gap values are summed and divided by 27 to
obtain 0.039% . The average gaps are very small and the largest difference occurs for the Facebook data set
which is still smaller than 0.2%. Therefore we can conclude the LP relaxation of IMBIP-S is very strong
with a very little integrality gap for the social networks under consideration. Theoretically LP relaxation
can be as large as e/(e − 1) times the IP value, which is roughly 57%, but such a case is never observed.
The last column shows the average number of pipage steps when a fractional solution is found. Again as
the network gets denser and more connected the LP relaxation yields higher number of fractional y values
and increases the number of pipage rounding steps.

One final insight is provided in Figure 5. It shows the relationship between average integrality gap and
the seed set size. These are the average gap values computed over 8 data sets (arXiv(6), Facebook and
Gnutella) for each k. For k = 1 the gap is zero and as the seed size increases, the gap gradually increases
but even for k = 30 it is still lower than 0.1%. In [8], the budgeted version of IMP is solved by using a
different formulation. In that work, the optimality gaps are insensitive to increasing budget, so that the
gap values are not increasing or decreasing but rather zigzagging with increased budget (see Figure 3 in
[8]). However, in our case, the increasing seed set size (in a sense budget) results in an increasing pattern of
optimality gaps.

The comparison of lower bound estimates (thus the quality of seeds obtained by pipage method) is already
available in Tables 3-5. Observe that, the gap between IP and Pipage methods’ lower bound estimates are
always very low. Out of a total 84 results listed, the highest difference observed is 1.47% (in the Facebook
network). Therefore, we can assess that the strength of LP relaxation of IMBIP-S is reflected to the lower
bound estimates as well.

4.6. Comparison of Running Times

We compare the computational performance of four methods and they are displayed in Figure 6. The
values are the averages over k = 1, ..., 30 seed set scenarios. As expected IMM is very fast compared to the
remaining three methods. In the slowest case it requires about 14 seconds to find the seed set. The running
time of IP and Pipage are very close to each other and Pipage is slightly faster. Except a few cases greedy
method is the slowest one and the gap increases as the data sets get larger and denser.

Figure 7 provides an interesting insight. It is obtained by averaging the computation times over 8 data
sets for each k. It shows that our SAA based approach is quite insensitive to increasing seed set size k,
however, greedy method’s running time is almost linearly growing with respect to k. When k is small CELF
is faster than SAA, but after a certain value of k (around k = 5 for large problems and k = 15 for small
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Figure 5: Relationship Between Seed Set Size and Integrality Gap

problems) our method becomes faster. Thus, especially for the instances with large seed set sizes our method
is computationally favorable. Overall the contribution of our LP-based approach’s computational efficiency
is not very significant. This is mainly due to the fact that, the LP relaxation of IMBIP-S is strong and
Gurobi Solver is solving the IP either in the root node or after a small number branch-and-bound steps.
This phenomenon must be further investigated to see if there are some special structures in the problem
that are exploitable using LP theory for better performance.

Lastly, we analyzed the effect of sample size (R1) on the solution quality and running time. Figure 8
summarizes our findings. Here we tested different values of R1 varying between 15 to 225 for fixed k = 20
on four different data sets (arXiv 10K, arXiv 50K, Facebook, GNutella). The left y-axis is displaying the
standard deviation of the M = 25 upper bound values (z∗iR1

) from their mean (ẑR1
). The running times are

also significantly affected from increasing sample size, which are displayed as vertical bars (values displayed
on the right y-axis with logarithmic running time scale).

We first analyze the line chart showing the standard deviation values of Facebook dataset (displayed
with black dotted line) . There is a hinge at R = 100. Until that hinge, the standard deviation is decreasing
consistently with increasing R, but after R = 100 the decrease is not significant any more. Therefore, one can
conclude that R = 100 is a good choice for Facebook dataset, because increasing R further will only result
in higher running times (resource consumption) with minor improvement in the quality of approximation.
The hinge occurs at R = 125 for arXiv-L data set (sparsely dashed line), R = 100 for arXiv-S (straight line)
and at around R = 50 for Gnutella dataset (tightly dashed line).

Next, we analyze the running times whose y-axis values (logarithmic scale) are on the right-hand side.
Again we look for the R values where we observe a hinge. For TFB(solution time of Facebook data set
represented by the tallest bars) the hinge (even though it is not as clear as the std.dev case) is at R = 75.
For the other 3 data sets we do not observe such a clear hinge and the height of the bars are growing almost
linearly (in exponential scale). After all these observations, we conclude to take R = 100 in our tests, where
we see the most number of hinges. However, this reasoning is subjective and for different purposes, the
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Figure 6: Comparison of Running Times

decision maker can prefer different R values. If one needs to solve IMP faster, smaller R values should be
preferred and the risk of missing the best seed due to under sampling increases. Alternatively, one can use
higher R values to increase the confidence on the seed set with much higher solution times. To summarize,
the choice of sample size is critical to determine the trade-off between running time performance and stability
of the algorithm for finding good seed sets.

The experimental analysis indicate that the proposed method is a significant step towards determining
the optimal solution to IMP for small to mid-size social networks. One can determine the optimal seed set
in polynomial time when the LP-relaxation yields an integral solution and if not, a close-to-optimal solution
is easily achieved after applying pipage rounding to the fractional solution. Our methodology is generic and
it can applied to many different types of social networks. Also the proposed method is still applicable for
different diffusion models as long as the predecessor sets are obtained and translated into the constraints
of our model. The computation of the predecessor sets requires a breadth-first-search for each node-sample
couple, which results in scalability issues when the network is large and dense. The memory requirement of
O(n2R) or the computation time of O(n(m+ n)R) is a significant overhead for large networks.

5. Conclusion

In this work we focused on the Influence Maximization Problem. We develop a binary-integer program
to represent IMP with the Independent Cascade diffusion model. The original form of IMP is not favorable
to be solved exactly, so we first converted it into a stochastic k-coverage problem and used the Sample
Average Approximation (SAA) scheme to solve it. Then we proposed an LP-relaxation based pipage method
with polynomial running time, which guarantees a 1− 1/e− ε worst-case optimality bound asymptotically.
Experimental results over different networks and seed set values indicate that, the LP relaxation of IMP
is very strong and the pipage method works very well and provides close-to-optimal solutions in most of
the cases. Another important observation is the unexpectedly good performance of the Greedy and IMM
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Figure 7: Running Time Performances With Respect to Seed Set Size

methods, where both methods provide close-to-optimal solutions. In terms of running time performance,
the LP-relaxation based method is comparable with the greedy method and runs faster when the seed set
size large. The superiority increases when the network size is larger and denser. As for the future research
directions, the underlying LP structure can be analyzed and its sparsity may be exploited. Faster methods
to solve the LP relaxation such as column generation or Lagrangean relaxation might be promising as well.
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