
A new combinatorial algorithm for separable convex
resource allocation with nested bound constraints

Zeyang Wu
Department of Industrial and Systems Engineering, University of Minnesota, wuxx1164@umn.edu.

Kameng Nip
School of Mathematical Sciences, Xiamen University, China, kmnip2004@gmail.com.

Qie He
Department of Industrial and Systems Engineering, University of Minnesota, qiehe01@gmail.com. Corresponding author.

The separable convex resource allocation problem with nested bound constraints aims to allocate B units

of resources to n activities to minimize a separable convex cost function, with lower and upper bounds

on the total amount of resources that can be consumed by nested subsets of activities. We develop a new

combinatorial algorithm to solve this model exactly. Our algorithm is capable of solving instances with

millions of activities in several minutes. The running time of our algorithm is at most 73% of the running

time of the current best algorithm for benchmark instances with three classes of convex objectives. The

efficiency of our algorithm derives from a combination of constraint relaxation and divide and conquer based

on infeasibility information. In particular, nested bound constraints are relaxed first; if the obtained solution

violates some bound constraints, we show that the problem can be divided into two subproblems of the same

structure and smaller sizes, according to the bound constraint with the largest violation.

Key words : resource allocation; constraint relaxation; divide and conquer; polynomial-time algorithms;

mixed-integer convex optimization

1. Introduction

The resource allocation problem is a collection of optimization models with a wide range of

applications in production planning, logistics, portfolio management, telecommunication,

statistical surveys, and machine learning (Ibaraki and Katoh 1988, Katoh et al. 2013,

Patriksson 2008, Patriksson and Strömberg 2015). In its simplest case, the goal is to allocate

certain units of resources to a set of activities to minimize the total allocation cost. In

this paper, we study the model with a separable convex cost function and prescribed lower

and upper bounds on the total amount of resources that could be consumed by some

nested subsets of activities. These bounds could represent storage limits, time-window

requirements, or budget constraints, depending on the application. We called this model

the resource allocation problem with nested lower and upper bound constraints. This model

1

Author: Article Short Title
2 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

also appears as a subproblem in vehicle routing models in green logistics (Kramer et al.

2015, Fukasawa et al. 2018) and the support vector ordinal regression problem (Chu and

Keerthi 2007, Vidal et al. 2018), and has to be solved repeatedly by iterative algorithms

for these models. All these applications motivate us to develop an efficient algorithm for

this model.

We now introduce the mathematical programming formulation of this model. Let [n]

denote the set {1,2, . . . , n} for any positive integer n and ∅ otherwise. The resource allo-

cation problem with nested lower and upper bound constraints can be formulated as the

following mixed-integer convex program:

min
x

f(x) :=

n∑
i=1

fi(xi) (1a)

s.t.

n∑
i=1

xi =B, (1b)

ai ≤
i∑

k=1

xk ≤ bi, ∀i∈ [n− 1], (1c)

0≤ xi ≤ di, ∀i∈ [n], (1d)

xi ∈Z, ∀i∈ [n], (1e)

where n is the number of activities in consideration, f is a separable cost function with

fi being the univariate convex cost function for activity i ∈ [n], B is the total units of

resources to allocate, ai, bi ≥ 0 for i∈ [n− 1], di > 0 for i∈ [n], and Z is the set of integers.

Formulation (1) stipulates that we want to determine the amount of resources xi allocated

to activity i to minimize the total allocation cost, while satisfying the constraint (1b) on the

total amount resources consumed, the bound constraints (1c) on amount of resources that

can be consumed by the first i activities, simple bound constraints (1d), and integrality

constraints (1e). We use DRAP-NC to denote the discrete model described by Formula-

tion (1), and RAP-NC to denote its continuous relaxation, i.e., Formulation (1) without

constraints (1e).

Vidal et al. (2018) first studied DRAP-NC and RAP-NC, and called constraints (1c)

the nested lower and upper bound constraints, since these constraints are imposed upon a

sequence of nested subsets of activities. As illustrated in Vidal et al. (2018), these nested

bound constraints are motivated by a variety of applications including production planning,

vessel fuel optimization, and stratified sampling. RAP-NC also appears as a subproblem

in iterative algorithms for other more complex optimization and machine learning models,

such as the pollution-routing model (Bektaş and Laporte 2011) and the joint vehicle routing

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 3

and speed optimization model (Fukasawa et al. 2018) in green logistics and the support

vector ordinal regression problem (Chu and Keerthi 2007, Vidal et al. 2018) in supervised

learning. Vidal et al. (2018) developed an efficient exact algorithm called the Monotonic

Decomposition Algorithm (MDA) to solve DRAP-NC. Its running time is O(n logn logB),

currently the best in the literature. MDA could also be used to find an ε-optimal solution

of RAP-NC (a solution x satisfying ‖x−x∗‖∞ ≤ ε with x∗ being some optimal solution) in

O(n logn log nB
ε

) time through parameter scaling.

In this paper, we introduce an infeasibility guided divide-and-conquer algorithm to solve

DRAP-NC exactly. We call this algorithm DCA for short in the rest of this paper. The

worst-case running time of DCA is Θ(max{n2 log B
n
, n2}). Although this running time is

much worse than that of MDA, the computational performance of DCA is surprisingly

good on a variety of instances from different applications. In particular, the running time of

DCA is between 33% and 73% of the running time of MDA on all the test instances (with

the largest instance having more than 6.5 million variables). The running time of DCA also

grows much slower with n2 on all the test instances. We hypothesize that this mismatch

between the theoretical running time and practical performance of DCA is largely due

to the conservative worst-case analysis of the complexity of the algorithm. In particular,

the asymptotic complexity result indicates that there exist “bad” instances for which the

running time of DCA is proportional to the maximum of n2 log B
n

and n2 for large n or

B. But it seems that all the benchmark instances in the literature are not bad enough for

the running time to reach the asymptotic bound. In Section 6, we report one statistic, the

number of resource allocation subproblems solved by DCA, in all computational experi-

ments to provide some evidence for our hypothesis. In addition, we introduce in Section 5

a family of DRAP-NC instances for which DCA only needs two recursions to terminate,

illustrating the advantage of DCA in solving some instances. Finally, our algorithm can be

easily extended to find an ε-approximate solution of RAP-NC by scaling all parameters by

n
ε
, due to a proximity result from Hochbaum (1994).

We summarize the contributions of this paper below.

1. We develop a new combinatorial algorithm DCA to solve the discrete resource alloca-

tion problem with nested lower and upper bound constraints. Its worst-case running

time is Θ(max{n2 log B
n
, n2}). DCA can also be extended to find an ε-optimal solution

of RAP-NC with a worst-case running time Θ(max{n2 log B
ε
, n2}).

Author: Article Short Title
4 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

2. We apply DCA to a variety of benchmark instances of DRAP-NC with different convex

objectives. DCA is efficient in solving all these instances, with the running time being

between 33% and 73% of the running time of the currently best algorithm MDA.

3. We present some explanation on the practical efficiency of DCA, and introduce spe-

cially designed instances for which the running time of DCA varies significantly.

The remainder of this section is organized as follows. Section 2 reviews existing algorithms

for DRAP-NC and similar models that are mostly related to our algorithm. Section 3 intro-

duces the details of DCA and Section 4 presents the proof of its correctness. In Section 5,

we analyze the time complexity of DCA, and present some specially designed instances for

which DCA only requires a few recursions to terminate. We present extensive numerical

results on DRAP-NC instances in Section 6 and conclude in Section 7.

2. Literature review

Resource allocation is a fundamental problem in operations research with a wide variety

of applications, from early examples in distribution of search effort (Koopman 1953) and

sample allocation in stratified sampling (Neyman 1934) to recent ones including vessel

speed optimization (He et al. 2017), energy management (van der Klauw et al. 2017),

and machine learning (Vidal et al. 2018). Depending on the context of the applications,

the resource could be divisible or indivisible, leading to continuous or discrete resource

allocation models. The methodologies for these two classes of models could be significantly

different. In theory, algorithms for many discrete models could be easily applied to find an

ε-optimal solution of the continuous models by scaling the parameters. On the other hand,

a large class of algorithms for the continuous models rely on optimality conditions such as

the Karush-Kuhn-Tucker conditions, which do not have a counterpart in the discrete cases.

In this paper, we focus on surveying results for discrete resource allocation models. We only

mention one paper on the continuous model that is closely connected to our algorithm:

van der Klauw et al. (2017) used the same divide-and-conquer framework to solve RAP-NC,

which is a convex optimization problem. Since they were handling continuous problems, the

proof of correctness of their algorithm used Karush-Kuhn-Tucker conditions of the original

and relaxed problems. For a comprehensive review of algorithms for continuous resource

allocation models, we refer interested readers to the following excellent surveys (Patriksson

2008, Katoh et al. 2013, Patriksson and Strömberg 2015).

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 5

Discrete resource allocation problems are NP-hard in general, but efficient algorithms

exist when the objective function and the resource constraints have certain properties.

One such case is that the objective function is separable and convex and there are no

additional resource constraints other than the non-negativity constraints, i.e., model (1)

without constraints (1c) and upper bounds on variables in constraints (1d). This model

(or its continuous relaxation) is usually called the simple resource allocation problem in

the literature. We use DRAP to denote this model. Gross (1956) developed the first greedy

algorithm for DRAP, with a running time of O(B logn+ n). With more complex greedy

steps, polynomial-time algorithms have been developed (Galil and Megiddo 1979, Fred-

erickson and Johnson 1982). The current best algorithm was developed by Frederickson

and Johnson (1982) and runs in Θ(max{n log B
n
, n}) time. Hochbaum (1994) developed a

scaling-based algorithm with a greedy subroutine for a more general resource allocation

problem. Her algorithm, when specialized to DRAP, also achieves the best running time

Θ(max{n log B
n
, n}), but avoids many complicated procedures of the algorithm by Freder-

ickson and Johnson (1982). This is also the algorithm we use in DCA to solve the sub-

problem DRAP. Faster algorithms exist for DRAP with special objective functions: DRAP

with linear or quadratic separable objective functions can be solved in O(n) time (Brucker

1984). It should be noted that all the aforementioned algorithms for DRAP can be easily

extended to DRAP with additional upper bounds on variables (Ibaraki and Katoh 1988).

A model that is slightly more complicated is DRAP with additional nested upper bound

constraints, i.e., model (1) with ai =−∞ in constraints (1c) for each i ∈ [n]. This type of

nested upper bound constraints are also called ascending constraints or cumulative con-

straints in the literature. Dyer et al. (1984) proposed an early polynomial-time divide-and-

conquer algorithm with a running time of O(n logn log2 B
n

). The scaling-based algorithm

by Hochbaum (1994) could also be applied to solve this model and runs in O(n logn log B
n

)

time. Vidal et al. (2016) developed an O(n logm log B
n

)-time divide-and-conquer algorithm,

provided that there are m (out of n− 1) nested upper bound constraints. Their algorithm

recursively divides a problem into two subproblems of even size, and uses optimal solutions

of the subproblems to tighten variable bounds so that each subproblem only needs to be

solved as a DRAP. The same framework was later extended in Vidal et al. (2018) to deal

with DRAP-NC.

Author: Article Short Title
6 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

The nested upper bound constraints are a special case of the more general submod-

ular constraints. The submodular constraint has the form of
∑

i∈S xi ≤ r(S), where the

set S ⊆ [n] is an element of a distributive lattice and r is a submodular function defined

over this lattice. The submodular constraints generalize a large class of constraints such as

the generalized upper bound constraints, tree constraints, and network constraints (Katoh

et al. 2013). Federgruen and Groenevelt (1986a) showed that the greedy approach for

DRAP in Gross (1956) could be extended to DRAP with submodular constraints. The run-

ning time of this greedy approach is O(B(logn+F)) where F is the number of operations

required to check the feasibility of a given increment in the solution. Groenevelt (1991)

developed two polynomial-time algorithms for DRAP with certain types of submodular

constraints: a decomposition algorithm which runs in polynomial time for network and

generalized symmetric polymatroids, and a bottom up algorithm which runs in polynomial

time when the polymatroid is given as an explicit list of constraints. The decomposition

algorithm uses optimal solutions of DRAP to tighten the variable bounds of the original

problem. Similar ideas have been used in the decomposition algorithms for DRAP with

nested upper bound constraints (Vidal et al. 2016) and DRAP-NC (Vidal et al. 2018).

Hochbaum (1994) developed an O(n(logn+ F) log B
n

)-time scaling-based algorithm that

uses a greedy algorithm as a subroutine for DRAP with submodular constraints. This

improvement on the time complexity is based on a general proximity theorem between

DRAP with submodular constraints and its scaled version. The proximity theorem showed

that the greedy algorithm can be applied to the model with arbitrary increments and

only the last increment of each variable can be potentially erroneous, but the last incre-

ment could be removed to produce a valid lower bound of the integer optimal solution.

Hochbaum (1994) also showed that the algorithm runs in O(n(logn+ F) log B
ε
) time for

the continuous relaxation of DRAP with submodular constraints, and cannot be improved

for DRAP and DRAP with generalized upper bounds.

There has been only limited work focusing on problems with resource constraints with

nested lower and upper bound constraints. Ahuja and Hochbaum (2008) studied a dynamic

lot-sizing model with linear costs and nested lower and upper bound constraints on the

cumulative production. They treated the problem as a min-cost flow problem over a net-

work with a special structure, and developed an O(n logn)-time algorithm using efficient

data structures for the successive shortest path algorithm. We would like to point out that

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 7

the nested lower and upper bound constraints are indeed a special case of the submodular

constraints. This connection is not obvious, and to the best of our knowledge, has not been

mentioned in the literature. The reason is that one could show that the nested lower and

upper bound constraints are a special case of the network constraints (see the detailed

definition of network constraints in Section 2.2 of Katoh et al. (2013)), and network con-

straints have been shown to be a special case of the submodular constraints (Federgruen

and Groenevelt 1986b). Therefore, Hochbaum’s algorithm for DRAP with submodular

constraints could be applied to DRAP-NC. After working on the details of specializing

Hochbaum’s algorithm to DRAP-NC, one could show that the algorithm actually runs in

O(n2 log B
n

) time when B >n. In their recent paper, Vidal et al. (2018) showed that their

decomposition algorithm for DRAP with nested upper bound constraints can be extended

to DRAP-NC with nontrivial bound tightening techniques. Their algorithm MDA runs in

O(n logm logB) time, where m is the pairs of nested lower and upper bound constraints

in (1c), and can be applied to the continuous relaxation in O(n logm log nB
ε

) time. Their

algorithm currently has the best time complexity for DRAP-NC. Although MDA also uses

a divide-and-conquer framework, unlike DCA, it always divides the problem evenly at each

recursion.

Finally, DRAP-NC belongs to the class of convex mixed-integer nonlinear programs

(MINLPs), so it could be solved by a general MINLP solver. Please refer to Kronqvist

et al. (2019) for the latest survey of methods and solvers for convex MINLPs. Furthermore,

DRAP-NC has a separable convex objective function. Several reformulation and approx-

imation techniques that explore this structure (Hijazi et al. 2014, Kronqvist et al. 2018)

could be applied to improve the performance when a general MINLP solver is used to solve

DRAP-NC.

3. An infeasibility guided divide-and-conquer algorithm

Before introducing our algorithm for DRAP-NC, we mention several assumptions used

throughout the paper.

1. Without loss of generality, we assume that all data involved in (1b)-(1d) are integral,

a1 ≤ a2 ≤ . . .≤ an−1, b1 ≤ b2 ≤ . . .≤ bn−1, and the lower bound for each variable is 0.

We also assume that ai < bi for i ∈ [n− 1]. For if ai = bi for some i, we can break the

original problem into one DRAP-NC with variables x1, . . . , xi and one DRAP-NC with

variables xi+1, . . . , xn and solve them separately.

Author: Article Short Title
8 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

2. We assume that fi is convex over the interval [0, di] and is encoded by a value oracle

(which returns the value of fi(x) for any given input x in one operation) for each

i∈ [n]. We do not impose any additional assumption on fi such as differentiability or

Lipschitz continuity.

3. We assume the problem is feasible. Feasibility can be checked easily by checking

whether [ai, bi]∩ [0,
∑i

k=1 dk] 6= ∅ for i∈ [n].

We now present the details of DCA. DCA is conceptually simple and easy to implement.

Its main idea can be described as follows: relax the nested bound constraints (1c) first and

solve the problem to optimality; if the obtained optimal solution satisfies the nested bound

constraints, then this solution is optimal for DRAP-NC and we stop; otherwise find out the

bound constraint that has the maximum violation, fix it at equality, and divide the original

problem into two DRAP-NCs of smaller size and solve each subproblem recursively. Our

algorithm combines three ingredients: (1) a recursive divide-and-conquer framework; (2) a

scaling-based greedy algorithm for DRAP (Hochbaum 1994); (3) constraint relaxation and

the use of constraint violation information to guide how to divide the problem.

For the ease of exposition, we introduce four dummy parameters a0, b0, an, and bn, and

set a0 = b0 = 0 and an = bn = B. For integers i and j with i ≤ j, we use [i : j] to denote

the set of integers {i, i + 1, . . . , j}. We define the problem DRAP-NC(s, e) below to be

DRAP-NC with respect to activity s, s+ 1, . . . , e for s, e∈ [n].

min
x

e∑
i=s

fi(xi) (2a)

s.t.
e∑
i=s

xi = be− as−1, (2b)

ai− as−1 ≤
i∑

k=s

xk ≤ bi− bs−1, ∀i∈ [s : e], (2c)

0≤ xi ≤ di, xi ∈Z, ∀i∈ [s : e], (2d)

where we assume that as−1 = bs−1 and ae = be. Moreover, we define the problem DRAP(s, e)

to be a relaxation of DRAP-NC(s, e) by dropping the nested constraints (2c).

min
x

e∑
i=s

fi(xi) (3a)

s.t.

e∑
i=s

xi = be− as−1, (3b)

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 9

0≤ xi ≤ di, xi ∈Z, ∀i∈ [s : e]. (3c)

Our goal is to solve DRAP-NC(1, n). To solve DRAP-NC(s, e) for any s, e ∈ [n], we

first solve the relaxation DRAP(s, e) to optimality. If the resulting optimal solution sat-

isfies the nested constraints (2c), then we stop and output it as the optimal solution of

DRAP-NC(s, e). Otherwise, we select an index K of a mostly violated nested constraint

and fix the total resources consumed by the first K activities to be aK or bK , depending

on which side of the nested constraints is violated. In particular, let x̄ be an optimal solu-

tion of DRAP(s, e), then K ∈ arg maxi∈[s:e]

{
(ai− as−1)−

∑i
k=s x̄k,

∑i
k=s x̄k− (bi− bs−1)

}
.

If
∑K

k=s x̄k > bK − as−1, then we set the constraint
∑K

k=s xk ≤ bK − as−1 to equality for

the rest of the algorithm; otherwise we have
∑K

k=s x̄k < aK − as−1 and set the con-

straint
∑K

k=s xk ≥ aK − as−1 to equality for the rest of the algorithm. With the above

adjustment, we are able to divide DRAP-NC(s, e) into two subproblems DRAP-NC(s,K)

and DRAP-NC(K + 1, e), and solve each separately. Finally, we combine the optimal

solutions of DRAP-NC(s,K) and DRAP-NC(K + 1, e) to obtain an optimal solution of

DRAP-NC(s, e). The subproblems DRAP-NC(s,K) and DRAP-NC(K+1, e) will be solved

recursively following the above procedure. The details of the algorithm are described in

Algorithm 1.

We state our main result below.

Theorem 1. Algorithm 1 returns a global optimal solution of DRAP-NC at termina-

tion.

Theorem 1 follows directly from Theorem 2 below.

Theorem 2. Let (x̄s, x̄s+1, . . . , x̄e) be an optimal solution of DRAP(s, e). Suppose

(x̄s, x̄s+1, . . . , x̄e) violates at least one nested bound constraint of DRAP-NC(s, e) and the

index of a mostly violated nested constraint is K. Then there exists an optimal solution

(x̂s, x̂s+1, . . . , x̂e) of DRAP-NC(s, e) such that
∑K

k=s x̂k = aK − as−1 if
∑K

i=s x̄i < aK − as−1
or
∑K

k=s x̂k = bK − as−1 if
∑K

i=s x̄i > bK − as−1.

We postpone the proof of Theorem 2 to Section 4, and first elaborate on Step 6 of Algorithm

1, i.e., how to solve the relaxation problem DRAP(s, e) to optimality.

Author: Article Short Title
10 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Algorithm 1 DCA: a recursive algorithm for DRAP-NC(s, e)

1: Input: nested bounds ai and bi for i∈ [s− 1 : e] with as−1 = bs−1 and ae = be; variable

upper bound di and function oracle fi for i∈ [s : e].

2: Output: an optimal solution (x̂s, . . . , x̂e) of DRAP-NC(s, e).

3: function DRAP-NC(s, e)

4: if e= s then return xs = as− as−1
5: end if

6: Solve DRAP(s, e) and obtain an optimal solution (x̄s, . . . , x̄e)

7: if (x̄s, . . . , x̄e) satisfies the nested lower and upper bound constraints then return

(x̄s, . . . , x̄e)

8: end if

9: Find index K of a mostly violated nested constraint, with the tie-breaking rule of

choosing the maximum index.

10: if
∑K

k=s x̄k > bK − as−1 then aK← bK . Update bounds for subproblems

11: else bK← aK

12: end if

13: (x̂s, . . . , x̂K)←DRAP-NC(s,K)

14: (x̂K+1, . . . , x̂e)←DRAP-NC(K + 1, e)

15: return (x̂s, . . . , x̂e)

16: end function

3.1. Step 6 of Algorithm 1

At Step 6 of Algorithm 1, we need to solve a problem DRAP(s, e), which is an instance

of DRAP with e − s + 1 variables. As we mentioned in Section 2, the current fastest

algorithm for DRAP runs in Θ(max{n log B
n
, n}) time (Frederickson and Johnson 1982,

Hochbaum 1994). Here we use Hochbaum’s algorithm to solve DRAP(s, e), since it is much

easier to implement than that of Frederickson and Johnson (1982). Hochbaum’s algorithm,

which was called Algorithm GAP in Hochbaum (1994), was developed for a more general

resource allocation problem with submodular constraints. It makes multiple calls to a

greedy subroutine (called greedy(s) in Hochbaum (1994)) that returns a solution which

uses as many resources as possible. To give a complete description of our algorithm, we

present Hochbaum’s algorithm specialized to DRAP with our own notations. The details

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 11

of solving DRAP(s, e) are described in Algorithm 2 (corresponding to Algorithm GAP

in Hochbaum (1994)) and Algorithm 3 (corresponding to greedy(s) in Hochbaum (1994)).

We use e, 0, and ei to denote a column vector of all ones, a column vector of all zeros,

and a unit vector with the i-th entry being one, respectively.

Algorithm 2 An algorithm for DRAP(s, e) (Hochbaum 1994)

1: Input: variable upper bound di and value oracle fi for i∈ [s : e] and the total amount

of resources B = be− as−1.

2: Output: an optimal solution x∗ of DRAP(s, e).

3: function DRAP(s, e)

4: Initialization: δ←
⌈
B
2n

⌉
, x← 0

5: while δ > 1 do

6: x← Greedy(δ,x,B)

7: x←max{x− δe,0}, δ←
⌈
δ
2

⌉
8: end while

9: x∗ ← Greedy(1, x,B)

10: return x∗

11: end function

4. Proof of Theorem 2

In this section, we provide a complete proof of Theorem 2. The proof relies on the con-

nection between the optimal solution of the discrete resource allocation problem and the

optimal solution of its continuous relaxation through piecewise linear functions. This con-

nection was also used in proving the correctness of MDA in Vidal et al. (2018). Given a

convex function f(x), we define a piecewise linear function as follows:

fPL(x) = f(bxc) + (x−bxc)× (f(dxe)− f(bxc)), (4)

where bxc and dxe give the greatest integer less than or equal to x and the least integer

greater than or equal to x, respectively. It can be easily verified that fPL(x) has the

same values as f(x) at integer points. Consider any instance of DRAP-NC(s, e). We define

DRAP-NCPL(s, e) to be a problem by replacing the function fi in DRAP-NC(s, e) with

the function fPLi for each i ∈ [s : e]. Similarly, we define RAP-NCPL(s, e), DRAPPL(s, e),

Author: Article Short Title
12 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Algorithm 3 The greedy subroutine Greedy(δ, y,B) (Hochbaum 1994)

1: Input: integer step size δ, a vector y that satisfies the variable bound constraints

of DRAP(s, e) (i.e., yi ∈ [0, di] for i ∈ [s : e]), the total amount of available resources

B = be− as−1, and the value oracle fi for i∈ [s : e].

2: Output: a solution x with the property that xi ∈ [0, di] for i ∈ [s : e] and
∑e

i=s xi ≥∑e
i=s yi.

3: function Greedy(δ, y,B)

4: Initialization: x← y, R←B− y>e, E←{s, s+ 1, . . . , e}

5: while R> 0 and E 6= ∅, do

6: Find i ∈ E such that ∆i(xi) = minj∈E{∆j(xj)} where ∆j(xj) = fj(xj + 1) −

fj(xj). . Find out the index with the smallest marginal cost.

7: if xi + 1>di then E←E \ {i} . Check if the variable bound constraint is

violated.

8: else if xi + δ > di or δ >R then

9: δ′←min{R,di−xi}, xi← xi + δ′, R←R− δ′

10: E←E \ {i}

11: else xi← xi + δ, R←R− δ

12: end if

13: end while

14: return x

15: end function

and RAPPL(s, e) to be the continuous relaxation of DRAP-NCPL(s, e), DRAP-NCPL(s, e)

without nested bound constraints, the continuous relaxation of DRAP-NCPL(s, e) without

nested bound constraints, respectively. We first introduce several propositions needed later

for the proof.

Proposition 1. Any solution of DRAP-NC(s, e) is optimal if and only if it is an opti-

mal solution of DRAP-NCPL(s, e). Any solution of DRAP(s, e) is optimal if and only if it

is an optimal solution of DRAPPL(s, e).

Proof. DRAP-NC(s, e) and DRAP-NCPL(s, e) have the same set of feasible solu-

tions. Each feasible solution has the same objective value in DRAP-NC(s, e) as in

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 13

DRAP-NCPL(s, e), since fi and fPLi coincide in the integer domain for each i. There-

fore, any solution of DRAP-NC(s, e) is optimal if and only if it is an optimal solution of

DRAP-NCPL(s, e). The second statement follows directly from the fact that DRAP(s, e)

and DRAPPL(s, e) are special cases of DRAP-NC(s, e) and DRAP-NCPL(s, e) respectively

by setting ai =−∞ and bi =∞ for each i. �

Proposition 2. (Vidal et al. 2018, Theorem 4) Any optimal solution of

DRAP-NCPL(s, e) is also an optimal solution of its continuous relaxation RAP-NCPL(s, e).

Proposition 3. Any optimal solution of DRAP(s, e) is an optimal solution of

RAPPL(s, e).

Proof. By Proposition 1, any optimal solution of DRAP(s, e) is an optimal solution

of DRAPPL(s, e). By Proposition 2, any optimal solution of DRAPPL(s, e) is an optimal

solution of RAPPL(s, e) by setting ai =−∞ and bi =∞ for each i. Then the result follows

directly. �

With Proposition 3, we are now ready to prove Theorem 2.

Proof of Theorem 2 We will prove that there exists an optimal solution (x̂s, . . . , x̂e) of

DRAP-NC(s, e) satisfying
∑K

k=s x̂k = bK − as−1 if
∑K

k=s x̄k > bK − as−1. The result for the

other case in which
∑K

k=s x̄k <aK − as−1 can be proven analogously.

We prove the result by contradiction. Suppose that there does not exist any optimal

solution of DRAP-NC(s, e) such that the constraint
∑K

k=s xk ≤ bK − as−1 is satisfied at

equality. Since any instance of DRAP-NC(s, e) has only a finite number of optimal solu-

tions, we select the optimal solution that maximizes
∑K

k=s xk among all optimal solutions.

Call this solution x̂= (x̂s, . . . , x̂e) and we have
∑K

k=s x̂k < bK − as−1. We will show that we

could create another optimal solution x̃ of DRAP-NC(s, e) such that
∑K

k=s x̃k >
∑K

k=s x̂k,

contradicting to the choice of x̂.

The construction works as follows. Let I be the maximum element in the set {i |∑i
k=s x̂k = bi−as−1, s−1≤ i <K} and J be the minimum element in the set {i |

∑i
k=s x̂k =

bi−as−1,K < i≤ e}. Both I and J are well-defined since the sets defining them contain s−1

and e respectively. We claim that there exist integer p∈ [I+ 1 :K] and q ∈ [K+ 1 : J] such

that x̄p > x̂p and x̄q < x̂q. To see this, since K is the index of a nested constraint with the

largest violation,
∑K

k=s x̄k − bK ≥
∑I

k=s x̄k − bI . Then
∑K

k=s x̄k −
∑I

k=s x̄k ≥ bK − bI . Mean-

while,
∑K

k=s x̂k < bK − as−1 and
∑I

k=s x̂k = bI − as−1. Thus
∑K

k=s x̄k −
∑I

k=s x̄k ≥ bK − bI >

Author: Article Short Title
14 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

(
∑K

k=s x̂k + as−1)− bI =
∑K

k=s x̂k−
∑I

k=s x̂k. Therefore
∑K

k=I+1 x̄k >
∑K

k=I+1 x̂k. Then there

must exist some p∈ [I+1 :K] such that x̄p > x̂p. Similarly, we can find some q ∈ [K+1 : J]

such that x̄q < x̂q.

We claim that for such p and q, the following inequalities hold.

sup∂fPLp (x̂p)≤ inf ∂fPLp (x̄p)≤ sup∂fPLq (x̄q)≤ inf ∂fPLq (x̂q). (5)

To see this, since the solution x̄ is an optimal solution of DRAP(s, e), by Proposition 3,

it is also an optimal solution of the continuous optimization problem RAPPL(s, e). In

addition, x̄p > x̂p ≥ 0 and x̄q < x̂q ≤ dq. Therefore, the solution x̄ should satisfy the Karush-

Kuhn-Tucker conditions for RAPPL(s, e) (see Chapters 28-30 of Rockafellar (1970) for

Karush-Kuhn-Tucker conditions with subdifferentials for optimization problems involving

non-smooth functions). In particular, there must exist some dual variable λ such that

inf ∂fPLp (x̄p)≤ λ≤ sup∂fPLq (x̄q),

where ∂fPLi (x) is the subdifferential of fPLi (x) for i ∈ [s : e]. Then by the monotonicity of

the subdifferential of convex functions, we prove (5).

Now we create an integer vector x̃= (x̃s, . . . , x̃e) such that x̃p = x̂p + 1, x̃q = x̂q − 1, and

x̃i = x̂i otherwise. We claim that x̃ is also an optimal solution of DRAP-NC(s, e). To check

the feasibility of x̃, note that x̂p < x̄p ≤ dp and x̂p and x̄p are integers, so x̃p ≤ dp. Similarly,

we can show that x̃q ≥ 0. To check that x̃ satisfies all nested constraints, note that by the

choice of p and q,
∑j

k=s x̂k < bj − as−1 for each j ∈ [p : q]. Since all parameters are integral,

for each j ∈ [p : q],
∑j

k=s x̃k ≤ bj−as−1. To check the optimality of x̃, note that fPLp and fPLq

are both piecewise linear functions with break points only at integer points. Then from (5)

we have fPLp (x̃p)+fPLq (x̃q)≤ fPLp (x̂p)+fPLq (x̂q). But
∑K

k=s x̃k =
∑K

k=s x̂k +1, contradicting

to the choice of x̂ such that it maximizes
∑K

k=s xk among all optimal solutions. �

5. Time complexity of Algorithm 1

We first introduce the notations of O, Ω, and Θ when the functions involved have two

variables (Cormen et al. 2009).

Definition 1.

1. Given two functions f(n,B) and g(n,B), f(n,B) =O(g(n,B)) if there exist positive

real numbers K and M such that

0≤ f(n,B)≤Kg(n,B) for all n≥M or B ≥M.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 15

2. Given two functions f(n,B) and g(n,B), f(n,B) = Ω(g(n,B)) if there exist positive

real numbers K and M such that

0≤Kg(n,B)≤ f(n,B) for all n≥M or B ≥M.

3. Given two functions f(n,B) and g(n,B), f(n,B) = Θ(g(n,B)) if there exist positive

real numbers K1, K2, and M such that

0≤K1g(n,B)≤ f(n,B)≤K2g(n,B) for all n≥M or B ≥M.

From the definitions above, it is not difficult to verify that f(n,B) = Θ(g(n,B)) if and only

if f(n,B) =O(g(n,B)) and f(n,B) = Ω(g(n,B)).

The upper bound on the running time of the algorithm is shown by the Proposition

below.

Proposition 4. The worst-case time complexity of Algorithm 1 is

O(max{n2 log B
n
, n2}).

Proof. We will show that the recursion tree of Algorithm 1 has a maximum depth n−2

and the running time at each level of the recursion tree is O(max{n log B
n
, n}).

At each level of the recursion tree, Algorithm 1 fixes at least one nested bound constraint

(out of a pair of lower bound and upper bound constraints) at equality. DRAP-NC(1, n)

has n− 1 pairs of nested bound constraints, so the recursion tree of the algorithm has a

maximum depth of n− 2.

We now show that the running time at each level of the recursion tree is

O(max{n log B
n
, n}). Without loss of generality, we assume that the base of the logarithm

in the complexity result is 2 in the rest of the proof. Consider one level of the recursion

tree. Suppose that there are m DRAP-NC subproblems at this level and the ith DRAP-NC

subproblem has ni variables and Bi units of resources for i∈ [m]. We have

m∑
i=1

ni = n and

m∑
i=1

Bi =B.

For the ith DRAP-NC subproblem, it takes at most K1 max{ni log Bi

ni
, ni} time for

Hochbaum’s greedy subroutine to solve the DRAP relaxation for some positive integers

K1. In addition, it takes at most K2ni time to find out the mostly violated nested bound

Author: Article Short Title
16 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

constraint for some positive integer K2. Therefore the total running time of DCA at this

level of recursion tree is at most
∑m

i=1K1 max{ni log Bi

ni
, ni}+

∑m
i=1K2ni. We have

m∑
i=1

K1 max{ni log
Bi

ni
, ni}+

m∑
i=1

K2ni

=
m∑
i=1

K1ni log(max{Bi

ni
,2}) +

m∑
i=1

K2ni

=K1 log
m∏
i=1

(
max{Bi

ni
,2}
)ni

+K2n

≤K1 log

∑m
i=1

(
max{Bi

ni
,2}×ni

)
∑m

i=1 ni


∑m

i=1 ni

+K2n

=K1 log

(∑m
i=1 (max{Bi,2ni})∑m

i=1 ni

)∑m
i=1 ni

+K2n

≤K1 log

(∑m
i=1 (Bi + 2ni)∑m

i=1 ni

)∑m
i=1 ni

+K2n

=K1 log

(
B

n
+ 2

)n
+K2n

≤K1 log

(
2 max{B

n
,2}
)n

+K2n

=K1n(log(max{B
n
,2}) + 1) +K2n

=K1n log(max{B
n
,2}) + (K1 +K2)n

≤ (2K1 +K2)n log(max{B
n
,2})

= (2K1 +K2) max{n log
B

n
,n}

=O

(
max{n log

B

n
,n}
)
,

where the first inequality follows from the fact that the geometric mean of the
∑m

i=1 ni

positive numbers is smaller than or equal to their arithmetic mean. �

Proposition 4 gives an upper bound on the worst-case running time of our algorithm. The

following instance shows that that upper bound is indeed tight. This instance is a minor

modification of an instance proposed by Thibaut Vidal (Vidal 2018) for an earlier version

of our algorithm, in which we did not assume ai < bi for each i. Consider the following

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 17

instance of DRAP-NC:

min

n∑
i=1

x2i (6a)

s.t.
n∑
i=1

xi = (−1)nn, (6b)

(−1)ii≤
i∑

k=1

xk ≤ (−1)ii+ 1, ∀i∈ [n− 1], (6c)

− 2n≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n]. (6d)

This instance can be transformed into Formulation (1) through variable substitution. This

instance is feasible since it has a solution (−1,3,−5, . . . , (−1)n(2n− 1)).

We claim that DCA needs Ω(n) recursions to terminate for this instance. To see this, in

the first iteration of DCA, the nested constraints (6c) are relaxed and we solve DRAP(1, n)

below (assuming n to be even here):

min
n∑
i=1

x2i (7a)

s.t.
n∑
i=1

xi = n, (7b)

− 2n≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n]. (7c)

The optimal solution is x∗1 = . . .= x∗n = 1. The mostly violated nested constraint under this

optimal solution is the (n− 1)-th upper-bound constraint
∑n−1

k=1 xk ≤−(n− 1) + 1, which

has a violation of (n− 1)− [−(n− 1) + 1] = 2n− 3. Therefore, the constraint
∑n−1

k=1 xk ≤

−(n− 1) + 1 =−n+ 2 is set at equality for the rest of the algorithm, and DRAP(1, n) is

divided into DRAP-NC(1, n− 1) and DRAP-NC(n,n).

Since
∑n−1

k=1 xk =−n+ 2 and
∑n

k=1 xk = n, the problem DRAP-NC(n,n) is as follows:

min x2n (8a)

s.t. xn = 2n− 2, (8b)

− 2n≤ xn ≤ 2n,xn ∈Z. (8c)

It has a trivial optimal solution x∗n = 2n− 2.

Author: Article Short Title
18 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

The problem DRAP-NC(1, n− 1) is reduced to the following:

min
n−1∑
i=1

x2i (9a)

s.t.

n−1∑
k=1

xk =−n+ 2, (9b)

(−1)ii≤
i∑

k=1

xk ≤ (−1)ii+ 1, ∀i∈ [n− 2], (9c)

− 2n≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n− 1]. (9d)

We solve DRAP-NC(1, n−1) similarly by first relaxing the nested constraints. An optimal

solution for its relaxation DRAP(1, n − 1) is x∗1 = . . . = x∗n−2 = −1 and x∗n−1 = 0. The

mostly violated nested constraint in (9c) under this optimal solution is the (n − 2)-th

lower bound constraint n− 2 ≤
∑n−2

k=1 xk, which has a violation of (n− 2)− [−(n− 2)] =

2n − 4. Therefore, the constraint n − 2 ≤
∑n−2

k=1 xk is set at equality for the rest of the

algorithm, and the problem DRAP-NC(1, n− 1) is divided into DRAP-NC(1, n− 2) and

DRAP-NC(n− 1, n− 1).

The problem DRAP-NC(n − 1, n − 1) has a trivial optimal solution. The problem

DRAP-NC(1, n− 2) is reduced to the following:

min
n−2∑
i=1

x2i (10a)

s.t.
n−2∑
k=1

xk = n− 2, (10b)

(−1)ii≤
i∑

k=1

xk ≤ (−1)ii+ 1, ∀i∈ [n− 3], (10c)

− 2n≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n− 2]. (10d)

DRAP-NC(1, n− 2) has the same structure and coefficients as DRAP-NC(1, n) with two

less variables and nested bound constraints. It could be solved recursively as discussed

before. Thus DCA only fixes one variable at each level of the recursion tree, and the depth

of the recursion tree will be Ω(n) for this instance.

Now we look at the running time of Algorithm 2 in solving the relaxation DRAP(1, n)

with B = 2n2 + n. Algorithm 2 needs to run Ω(log B
n

) iterations of Θ(n) operations at

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 19

Line 7, so its running time is Ω(n log B
n

). Therefore the overall running time of DCA for

this instance will be Ω(n2 log B
n

) = Ω(max{n2 log B
n
, n2}). Combining this fact with Propo-

sition 4, we have the following result.

Theorem 3. The worst-case time complexity of Algorithm 1 is Θ(max{n2 log B
n
, n2}).

We would like to point out that the analysis above is based on the worst-case scenario,

which means the estimation that the running time of DCA grows proportionally with the

maximum of n2 log B
n

and n2 may be too conservative. As will be shown by the analysis

in the rest of this section and the computational experiments in Section 6, our algorithm

could be much more efficient than this asymptotic upper bound.

5.1. An example beyond the worst-case analysis

The previous section shows that the worst-case time complexity of DCA is

Θ(max{n2 log B
n
, n2}), which is much worse than the time complexity O(n logn logB) of

MDA (Vidal et al. 2018). This comparison, however, does not tell the full story of the

efficiency of the two algorithms. The running time of DCA is much more dependent on the

instance, similar to the fact that the actual running time of a branch-and-bound algorithm

depends heavily on the particular integer program it solves. DCA could be very efficient

for some instances, as illustrated below.

min
n+1∑
i=1

x2i −Mxn+1 (11a)

s.t.
n+1∑
i=1

xi = n, (11b)

i≤
i∑

k=1

xk ≤ i+ 1, ∀i∈ [n], (11c)

0≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n+ 1]. (11d)

The constant M in the objective function is sufficiently large such that the optimal solution

of the problem with the objective (11a) and constraints (11b) and (11d) is x∗1 = . . .= x∗n = 0

and x∗n+1 = n. This could be achieved, for example, by setting M = 100n2. To solve this

instance, DCA only needs two recursions and solves three DRAP subproblems; on the

other hand, MDA needs 1 + dlogne recursions and solves Θ(n) DRAP subproblems.

Author: Article Short Title
20 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

To see this, by slightly abusing the notation, we call problem (11) DRAP-NC(1, n+ 1).

Observe that it has a unique optimal solution x∗1 = . . .= x∗n = 1 and x∗n+1 = 0. When apply-

ing DCA to this instance, we first solve its relaxation without the nested constraints (11c),

which we called DRAP(1, n+ 1). The optimal solution is x∗1 = . . .= x∗n = 0 and x∗n+1 = n.

The nested constraint n≤
∑n

k=1 xk has the largest violation under this optimal solution.

Then we set
∑n

k=1 xk = n for the rest of the algorithm, and divide the problem into two sub-

problems DRAP-NC(1, n) and DRAP-NC(n+1, n+1). The two subproblems are described

as follows.

DRAP-NC(1, n):

min

n∑
i=1

x2i (12a)

s.t.
n∑
k=1

xk = n, (12b)

i≤
i∑

k=1

xk ≤ i+ 1, ∀i∈ [n− 1], (12c)

0≤ xi ≤ 2n,xi ∈Z, ∀i∈ [n]. (12d)

DRAP-NC(n+ 1, n+ 1):

min x2n+1−Mxn+1 (13a)

s.t. xn+1 = 0, (13b)

0≤ xn+1 ≤ 2n,xn+1 ∈Z. (13c)

The subproblem DRAP-NC(n+ 1, n+ 1) has a trivial optimal solution x∗n+1 = 0. On the

other hand, to solve the subproblem DRAP-NC(1, n), DCA first solves its relaxation with-

out the nested constraints, DRAP(1, n). Observe that DRAP(1, n) has a unique optimal

solution x∗1 = . . . = x∗n = 1, which does not violated any nested constraint. Therefore, we

obtain the optimal solution to the original problem DRAP-NC(1, n+ 1) by solving three

DRAP subproblems in two recursions.

In comparison, MDA needs to solve Θ(n) DRAP subproblems at 1 + dlogne recursions

to solve DRAP-NC(1, n+ 1). To see this, at each recursion, MDA breaks down a DRAP-

NC instance into two subproblems of equal size, and each subproblem is further divided

recursively until the subproblem has exactly one variable, which is then solved trivially.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 21

Using optimal solutions of the two subproblems of smaller sizes, MDA generates stronger

variable bounds for DRAP-NC subproblems of larger sizes (at one level higher in the

recursion tree). Vidal et al. (2018) showed that the nested bound constraints become

redundant with the new variable bounds and each DRAP-NC subproblem can be reduced

to solving four DRAP problems. Since MDA always divides the problem evenly, the depth

of the recursion tree for an instance with n variables will be 1 + dlogne and the total

number of calls to the DRAP subroutine will be Θ(n).

We hope that the instance above could provide some insight on why the worst-case

analysis sometimes overestimates the running time of DCA: DCA only divides the problem

when necessary, i.e., when the intermediate solution found violates some nested bound

constraint. The number of recursions may be significantly fewer than Ω(n) in the worst

case.

6. Numerical experiments

In this section, we evaluate the performance of DCA through two sets of experiments

involving DRAP-NC instances with different types of convex objectives. The first exper-

iment is a sanity test on the correctness of DCA. We apply DCA to a set of DRAP-NC

instances with linear objectives, and compare its output with the output of a state-of-the-

art optimization solver Gurobi (Gurobi Optimization 2019). For all the test instances we

generate, the two approaches always produce the same optimal solutions. In the second

experiment, we apply DCA to solve DRAP-NC instances with three classes of nonlinear

objectives motivated by applications like project crashing (Foldes and Soumis 1993) and

vessel fuel minimization (Ronen 1982). We compare the results of DCA with those of

MDA. Note that in Vidal et al. (2018), MDA was only implemented for continuous RAP-

NC instances, and bisection search was used to solve the RAP relaxation. For MDA to

solve DRAP-NC, DRAP relaxations need to be solved. For a fair comparison with DCA,

we implement MDA on our own, replacing bisection search with Hochaum’s scaling-based

algorithm for the DRAP subproblem. All programs are coded in Java and the experiments

are conducted on a desktop computer with an AMD 3700X CPU, 32 gigabyte memory, a

Windows 10 operating system, and Gurobi 9.0.2. The time limit is set to 1200 seconds for

each instance. To accurately report the solution time for instances that are solved in less

than one millisecond, we solve each each such instance 100 times and report the average

running time. All the code related to the implementation of our algorithm and numerical

experiments are available at an online repository https://github.com/qqqhe/dca.

https://github.com/qqqhe/dca

Author: Article Short Title
22 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

6.1. Test instance generation

The parameters in the constraints (1b) to (1d) of all test instances are generated in the

same way as follows.

• The variable upper bound di’s are drawn from a discrete uniform distribution over the

set {1,2, . . . , Vb}, where Vb is a parameter we could change.

• The bounds ai’s and bi’s in the nested constraints are generated following a similar

procedure of generating RAP-NC instances in Vidal et al. (2018), in order to guarantee

the feasibility of an instance. In particular, we first generate two sequences of integers

{vi}ni=0 and {wi}ni=0 as follows.

v0 =w0 = 0,

vi = vi−1 +Xv
i ,

wi =wi−1 +Xw
i ,

where Xw
i and Xv

i are drawn independently from a discrete uniform distribution over

the set [0 : di]. Then set ai = min{vi,wi} and bi = max{vi,wi} for i ∈ [n]. Finally, we

set B = max{an, bn}.

By changing the values of the pair (n,Vb), we are able to generate DRAP-NC instances

of different sizes. As for how the objective function is generated for each instance, we will

defer the details to each of the sections below.

6.2. DRAP-NC with linear objectives

In the first experiment, we set the function fi(x) in (1a) to be fi(x) = pix, where pi is drawn

from a uniform distribution over [−1,1]. We use the procedure described in Section 6.1

to generate constraints of the test instances. We choose n = 2i × 100 for i ∈ [5 : 15] and

Vb ∈ {10,100}. For each (n,Vb) pair, we generate 10 instances, so there are 11×2×10 = 220

test instances for the first experiment.

We apply DCA and Gurobi to solve each instance, and compare their optimal solutions.

Normally Gurobi will have a difficult time in solving mixed-integer linear programs with

millions of integer variables, but in this case we can use Gurobi’s linear programming (LP)

solver. The reason is that the coefficient matrix in the constraints of DRAP-NC is totally

unimodular, so DRAP-NC with a linear objective can be solved as a linear program by

ignoring the integrality constraints (1e). This greatly reduces the solution time of Gurobi.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 23

We also notice that the following formulation trick further reduces the solution time of

Gurobi’s LP solver significantly. By introducing new variables yi =
∑i

k=1 xk − ai for i ∈

[n− 1], we could reformulate DRAP-NC as follows:

min
n∑
i=1

fi(xi)

s.t. xn + yn−1 =B− an−1,

x1− y1 = a1,

xi + yi−1− yi = ai− ai−1, ∀i∈ [2 : n− 1],

0≤ yi ≤ bi− ai, ∀i∈ [n− 1],

0≤ xi ≤ di, ∀i∈ [n].

Such formulation has a more sparse coefficient matrix than that of the original formula-

tion (1). We observe that Gurobi is on average thirty to one hundred times faster in solving

the new formulation than the original formulation.

Both DCA and Gurobi solve the 220 test instances very efficiently, in less than a minute

for each instance. The optimal solutions obtained by both approaches are exactly the

same for each instance. This validates the correctness of the DCA. We also summarize the

running time of both approaches in Table 1 and Figure 1. The running time is averaged

over 10 instances for each (n,Vb) pair.

3.5 4 4.5 5 5.5 6 6.5 7

0

10

20

30

40

50

60

70

80

Linear Objectives with VarBound = 10

3.5 4 4.5 5 5.5 6 6.5 7

0

50

100

150

200

250

300

350

Linear Objectives with VarBound = 100

Figure 1 Solution time of DCA and Gurobi for instances with linear objectives.

Author: Article Short Title
24 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Parameters DCA Gurobi Parameters DCA Gurobi

n Vb Time (s) Time (s) n Vb Time (s) Time (s)

3,200 10 0.006 0.023 3,200 100 0.004 0.045

6,400 10 0.008 0.036 6,400 100 0.010 0.144

12,800 10 0.019 0.066 12,800 100 0.016 0.479

25,600 10 0.035 0.128 25,600 100 0.038 1.738

51,200 10 0.082 0.261 51,200 100 0.092 6.365

102,400 10 0.164 0.564 102,400 100 0.182 22.246

204,800 10 0.331 1.288 204,800 100 0.402 44.614

409,600 10 0.697 2.866 409,600 100 0.903 65.143

819,200 10 1.836 6.175 819,200 100 1.803 75.158

1,638,400 10 4.164 17.736 1,638,400 100 3.940 164.917

3,276,800 10 9.375 78.826 3,276,800 100 9.263 322.344

Table 1 Solution statistics of DCA and Gurobi for instances with linear objectives.

It can be seen that the LP solver of Gurobi is able to solve instances with more than three

million variables in less than six minutes, but DCA is on average 20 times faster. From

Figure 1, we can see that the running time of DCA grows much slower than that of Gurobi

with the problem size n.

6.3. DRAP-NC with nonlinear objectives

In the following, we test the performance of DCA on DRAP-NC instances with three classes

of convex nonlinear objectives used in the computational experiments for MDA in Vidal

et al. (2018): [F], [CRASH], and [FUEL].

[F] :fi(x) =
x4

4
+ pix, (15)

[CRASH] :fi(x) = ki +
pi
x
, (16)

[FUEL] :fi(x) = pi× ci×
(ci
x

)3
. (17)

We report two solution statistics of both DCA and MDA on these instances: running time

and the total number of DRAP subproblems solved. We report the second statistics due

to the fact that both DCA and MDA spend most of the solution time on solving DRAP

subproblems. The total number of DRAP subproblems solved could shed some light on

the different running time of both algorithms.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 25

6.3.1. DRAP-NC with objectives [F] In each instance, the function fi(x) has the form

fi(x) = x4

4
+ pix, where pi is drawn from a uniform distribution over [−1,1]. We use the

procedure described in Section 6.1 to generate constraints of the test instances. We fix the

parameter Vb to be 100 and set n= 2i×100 for i∈ [3 : 16]. For each value of n, we generate

10 instances, so there are 14×10 = 140 instances. The average running time as well as the

average number of DRAP subproblems solved are reported in Table 2 and Figure 2.

Parameters Time (s) Average number of DRAPs solved

n DCA MDA Ratio DCA MDA Ratio

800 0.01 0.03 33% 107.2 6,396 1.68%

1,600 0.02 0.04 50% 115.4 12,796 0.90%

3,200 0.03 0.09 33% 146.6 25,596 0.57%

6,400 0.08 0.21 38% 308.2 51,196 0.60%

12,800 0.17 0.48 35% 305.4 102,396 0.30%

25,600 0.40 1.10 36% 373.0 204,796 0.18%

51,200 0.98 2.47 40% 807.8 409,596 0.20%

102,400 2.25 5.64 40% 966.8 819,196 0.12%

204,800 5.46 12.80 43% 1510.8 1,638,396 0.09%

409,600 16.84 29.01 58% 2903.6 3,276,796 0.09%

819,200 34.78 68.37 51% 3364.4 6,553,596 0.05%

1,638,400 91.65 164.43 56% 5411.6 13,107,196 0.04%

3,276,800 205.40 397.91 52% 5724.4 26,214,396 0.02%

6,553,600 535.65 964.45 56% 11250.4 52,428,796 0.02%

Table 2 Solution statistics of DCA and MDA for instances with objectives [F].

Author: Article Short Title
26 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

200

400

600

800

1000

[F] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

5

6
10
7 Number of subproblems solved

Figure 2 The growth of running time and the number of DRAP subproblems solved for instances with

objectives [F].

It can be seen that the average running time DCA is no more than 58% of the average

running time of MDA for the same set of instances. As shown in Table 2, the ratio between

the average running time of DCA and that of MDA does not seem to change much as n

grows. This indicates that the running time of both algorithms grows at a similar rate with

the instance size. This observation does not quite match the time complexity difference

between the two algorithms, which suggests the running time of DCA could grow much

faster with the problem size n than MDA. As we discussed in the introduction, we hypoth-

esize that this discrepancy is mainly caused by the worst-case analysis of the complexity

of DCA. As shown by the proof of Proposition 4, the quadratic growth of running time

only happens when we have to fix n− 1 nested bound constraints at equality. Then DCA

will have n recursions and the number of DRAP subproblems will grow linearly with n.

But the number of recursions needed for some instance may be significantly fewer than n.

This is indeed observed in our experiment for all test instances. As Table 2 shows, the

average number of DRAP subproblems solved by DCA grows much more slowly than n.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 27

For the largest n= 6,553,600, the number of DRAPs solved by DCA is almost negligible

compared to that by MDA.

Finally, we observe that the number of DRAPs solved by MDA are the same for instances

of the same size. This is due to the design of MDA, which recursively divides the problem

into two subproblems with even size until the subproblem contains only one variable. This

indicates that MDA solves many DRAP subproblems with a few number of variables. This

also explains that despite the much larger number of DRAPs solved by MDA, its overall

solution time is comparable to that of DCA.

6.3.2. DRAP-NC with objectives [CRASH] [CRASH] is a convex cost function that

appears in the context of project crashing (Foldes and Soumis 1993). In each instance,

the function fi(x) has the form fi(x) = ki + pi
x

, where pi and ki are drawn independently

from a uniform distribution over [0,1]. We set n = 2i × 100 for i ∈ [3 : 16] and Vb = 100.

Other parameters are generated in the same way as in the instances with objectives [F]. We

generate 10 instances for each value of n, and 140 instances in total. The average running

time as well as the average number of DRAP subproblems solved are reported in Table 3

and Figure 3.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

200

400

600

800

1000

1200

[CRASH] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

5

6
10
7 Number of subproblems solved

Figure 3 The growth of running time and the number of DRAP subproblems solved for instances

with objectives [CRASH].

Author: Article Short Title
28 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

Parameters Time (s) Average number of DRAPs solved

n DCA MDA Ratio DCA MDA Ratio

800 0.01 0.03 33% 113.0 6,396 1.77%

1,600 0.02 0.05 40% 125.4 12,796 0.98%

3,200 0.04 0.10 40% 230.4 25,596 0.90%

6,400 0.10 0.23 43% 280.0 51,196 0.55%

12,800 0.24 0.50 48% 565.0 102,396 0.55%

25,600 0.55 1.17 47% 749.8 204,796 0.37%

51,200 1.12 2.72 41% 631.2 409,596 0.15%

102,400 2.83 6.02 47% 1447.4 819,196 0.18%

204,800 6.97 13.57 51% 2224.0 1,638,396 0.14%

409,600 20.39 30.65 67% 3221.4 3,276,796 0.10%

819,200 47.39 71.72 66% 3471.2 6,553,596 0.05%

1,638,400 127.78 174.57 73% 7757.8 13,107,196 0.06%

3,276,800 294.26 423.09 70% 9618.2 26,214,396 0.04%

6,553,600 684.16 1051.07 65% 10924.6 52,428,796 0.02%

Table 3 Solution statistics of DCA and MDA for instances with objectives [CRASH].

The performance of DCA and MDA for the instances with objectives [CRASH] is sim-

ilar to their performance for the instances with objectives [F]. The running time of both

algorithms grows at a similar pace with the instance size, with the average running time of

DCA no more than 73% of that of MDA for the same set of instances. The average number

of DRAP instances solved by DCA grows much slower with n, which again implies that

the worst-case running time is a very conservative estimate for this set of instances.

6.3.3. DRAP-NC with objectives [FUEL] [FUEL] is a convex function used to mea-

sure fuel consumption in vessel speed optimization (Ronen 1982, He et al. 2017). In each

instance, the function fi(x) has the form fi(x) = pi× ci× (ci
x

)3, where pi and ci are drawn

independently from a uniform distribution over [0,1]. We set n = 2i × 100 for i ∈ [3 : 16]

and Vb = 100. Other parameters are generated in the same way as in the instances with

objectives [F]. We generate 10 instances for each value of n, and 140 instances in total.

The average running time as well as the average number of DRAP subproblems solved are

reported in Table 4 and Figure 4.

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 29

Parameters Time (s) Average number of DRAPs solved

n DCA MDA Ratio DCA MDA Ratio

800 0.01 0.03 33% 136.2 6,396 2.13%

1,600 0.02 0.05 40% 176.0 12,796 1.38%

3,200 0.05 0.11 45% 246.0 25,596 0.96%

6,400 0.11 0.25 44% 286.6 51,196 0.56%

12,800 0.26 0.57 46% 490.8 102,396 0.48%

25,600 0.58 1.29 45% 674.6 204,796 0.33%

51,200 1.44 2.80 51% 1387.8 409,596 0.34%

102,400 3.34 6.50 51% 1805.8 819,196 0.22%

204,800 8.76 14.97 59% 1950.4 1,638,396 0.12%

409,600 23.83 33.54 71% 3119.0 3,276,796 0.10%

819,200 54.56 80.23 68% 3810.2 6,553,596 0.06%

1,638,400 135.96 187.81 72% 7338.4 13,107,196 0.06%

3,276,800 303.03 445.49 68% 9568.6 26,214,396 0.04%

6,553,600 698.21 1060.27 66% 14551.8 52,428,796 0.03%

Table 4 Solution statistics of DCA and MDA for instances with objectives [FUEL].

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

200

400

600

800

1000

1200

[FUEL] Cost Objectives with VarBound = 100

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0

1

2

3

4

5

6
10
7 Number of subproblems solved

Figure 4 The growth of running time and the number of DRAP subproblems solved for instances

with objectives [FUEL].

Author: Article Short Title
30 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

The performance of DCA and MDA for the instances with objectives [FUEL] is again

very similar to their performance for the instances with objectives [F] and [CRASH]. The

running time of both algorithms grows at a similar pace with the instance size, with the

average running time of DCA no more than 72% of that of MDA for the same set of

instances. As the instance size grows, the average number of DRAP subproblems solved

by DCA is negligible compared to that by MDA.

From the experiment above, we observe that the performance of DCA is very similar

in the three classes of instances: the average running time grows slower than n2 and the

average number of DRAP subproblems solved grows slowly with n. In addition, the per-

formance of DCA does not seem to be affected by the form of the convex costs. This is not

surprising since DCA does not use any information of the function form.

7. Conclusions and future work

In the paper, we proposed a simple and efficient exact algorithm to solve the discrete

resource allocation problem with nested bound constraints. This algorithm first solves the

problem by relaxing the nested bound constraints, and then recursively divides the prob-

lem into two smaller subproblems of the same type by fixing a mostly violated bound

constraint at equality. This simple technique turns out to be very effective in solving large-

sized instances. The worst-case time complexity of our algorithm is Θ(max{n2 log B
n
, n2}),

worse than that of the current best algorithm MDA, but the running time of our algorithm

is no more than 73% of the running time of MDA on all the instances we tested. An impor-

tant direction to explore is whether this infeasibility guided divide-and-conquer framework

could be extended to resource allocation problems with other types of constraints, such

as the generalized upper-bound constraints, tree constraints, or more general submodular

constraints studied in Hochbaum (1994). Another direction worth exploring is how DCA

could assist the design of exact algorithms for more complex problems such as the joint

vehicle routing and speed optimization problem (Fukasawa et al. 2018). The current most

efficient exact algorithms for these types of problems usually employ a branch-and-price

framework and the biggest challenge is how to design an efficient algorithm for the pricing

problem. It would be interesting to see how DCA could help solve the pricing problem.

Acknowledgments

Author: Article Short Title
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 31

We are extremely grateful to Thibaut Vidal for proposing an initial version of Instance (6) and sharing

the implementation details of MDA. His comments on an earlier version of our algorithm helped improve

the quality of our manuscript greatly. We also thank the editorial team and anonymous referees for many

insightful comments and suggestions. This work was done while the second author was at the Sun Yat-sen

University.

References

Ahuja RK, Hochbaum DS (2008) Solving linear cost dynamic lot-sizing problems in O(n logn) time. Opera-

tions Research 56(1):255–261.

Bektaş T, Laporte G (2011) The pollution-routing problem. Transportation Research Part B: Methodological

45(8):1232–1250.

Brucker P (1984) An O(n) algorithm for quadratic knapsack problems. Operations Research Letters 3(3):163–

166.

Chu W, Keerthi SS (2007) Support vector ordinal regression. Neural Computation 19(3):792–815.

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms (The MIT Press), 3rd

edition.

Dyer M, Kayal N, Walker J (1984) A branch and bound algorithm for solving the multiple-choice knapsack

problem. Journal of Computational and Applied Mathematics 11(2):231–249.

Federgruen A, Groenevelt H (1986a) The greedy procedure for resource allocation problems: Necessary and

sufficient conditions for optimality. Operations Research 34(6):909–918.

Federgruen A, Groenevelt H (1986b) Optimal flows in networks with multiple sources and sinks, with appli-

cations to oil and gas lease investment programs. Operations Research 34(2):218–225.

Foldes S, Soumis F (1993) PERT and crashing revisited: Mathematical generalizations. European Journal of

Operational Research 64(2):286–294.

Frederickson GN, Johnson DB (1982) The complexity of selection and ranking in X +Y and matrices with

sorted columns. Journal of Computer and System Sciences 24(2):197–208.

Fukasawa R, He Q, Santos F, Song Y (2018) A joint vehicle routing and speed optimization problem.

INFORMS Journal on Computing 30(4):694–709.

Galil Z, Megiddo N (1979) A fast selection algorithm and the problem of optimum distribution of effort.

Journal of the ACM 26(1):58–64.

Groenevelt H (1991) Two algorithms for maximizing a separable concave function over a polymatroid feasible

region. European Journal of Operational Research 54(2):227–236.

Gross O (1956) A Class of Discrete Type Minimization Problems (RM-1644, Rand Corporation).

Gurobi Optimization (2019) The Gurobi optimizer. http://www.gurobi.com.

http://www.gurobi.com

Author: Article Short Title
32 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

He Q, Zhang X, Nip K (2017) Speed optimization over a path with heterogeneous arc costs. Transportation

Research Part B: Methodological 104:198–214.

Hijazi H, Bonami P, Ouorou A (2014) An outer-inner approximation for separable mixed-integer nonlinear

programs. INFORMS Journal on Computing 26(1):31–44.

Hochbaum DS (1994) Lower and upper bounds for the allocation problem and other nonlinear optimization

problems. Mathematics of Operations Research 19(2):390–409.

Ibaraki T, Katoh N (1988) Resource Allocation Problems: Algorithmic Approaches (MIT press).

Katoh N, Shioura A, Ibaraki T (2013) Resource allocation problems. Handbook of Combinatorial Optimiza-

tion 2897–2988.

Koopman BO (1953) The optimum distribution of effort. Journal of the Operations Research Society of

America 1(2):52–63.

Kramer R, Subramanian A, Vidal T, Lućıdio dos Anjos FC (2015) A matheuristic approach for the pollution-

routing problem. European Journal of Operational Research 243(2):523–539.

Kronqvist J, Bernal DE, Lundell A, Grossmann IE (2019) A review and comparison of solvers for convex

minlp. Optimization and Engineering 20:397–455.

Kronqvist J, Lundell A, Westerlund T (2018) Reformulations for utilizing separability when solving convex

minlp problems. Journal of Global Optimization 71(3):571–592.

Neyman J (1934) On the two different aspects of the representative method: the method of stratified sampling

and the method of purposive selection. Journal of the Royal Statistical Society 97(4):558–625.

Patriksson M (2008) A survey on the continuous nonlinear resource allocation problem. European Journal

of Operational Research 185(1):1–46.

Patriksson M, Strömberg C (2015) Algorithms for the continuous nonlinear resource allocation problem—new

implementations and numerical studies. European Journal of Operational Research 243(3):703–722.

Rockafellar RT (1970) Convex Analysis (Princeton University Press).

Ronen D (1982) The effect of oil price on the optimal speed of ships. Journal of the Operational Research

Society 33(11):1035–1040.

van der Klauw T, Gerards ME, Hurink JL (2017) Resource allocation problems in decentralized energy

management. OR Spectrum 39(3):749–773.

Vidal T (2018) Personal communication.

Vidal T, Gribel D, Jaillet P (2018) Separable convex optimization with nested lower and upper constraints.

INFORMS Journal on Optimization 1(1):71–90.

Vidal T, Jaillet P, Maculan N (2016) A decomposition algorithm for nested resource allocation problems.

SIAM Journal on Optimization 26(2):1322–1340.

	Introduction
	Literature review
	An infeasibility guided divide-and-conquer algorithm
	Step 6 of Algorithm 1

	Proof of Theorem 2
	Time complexity of Algorithm 1
	An example beyond the worst-case analysis

	Numerical experiments
	Test instance generation
	DRAP-NC with linear objectives
	DRAP-NC with nonlinear objectives
	DRAP-NC with objectives [F]
	DRAP-NC with objectives [CRASH]
	DRAP-NC with objectives [FUEL]

	Conclusions and future work

