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Abstract. Many real-world decision-making problems can be modeled as network design problems, espe-
cially on networks with capacity requirements on links. In network design problems, decisions are made on
installation of flow transfer capacities on the links and routing of flow from a set of source nodes to a set
of sink nodes through the links. Many network design problems of this type that have been studied involve
different types of capacity sizes (modules), which we refer to as the multi-module capacitated network design
(MMND) problem. In this paper, we present a new family of inequalities for MMND through polyhedral
analysis of a mixed integer set closely related to MMND. We show that various classes of cutset inequal-
ities in the literature are special cases of these inequalities. We also study the strength of this family of
inequalities and identify conditions under which they are facet-defining. These inequalities are then tested
on MMND problem instances, and our computational results show that this family of inequalities are very
effective for solving MMND problems. Generalizations of these inequalities for some variants of MMND are
also discussed.
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1 Introduction

More and more decision-making problems in today’s world, ranging from distribution networks of online
retailers to data networks of cloud providers, have been modeled as capacitated network design problems. In
the capacitated network design problem, decisions are made on installation of flow transfer capacities on the
links and routing of flow from a set of source nodes to a set of sink nodes through the links of the network.
The objective is to minimize the cost of installing capacities and transferring the flow from source nodes to
sink nodes.

Telecommunication networks are prime examples of capacitated networks and a major motivation to
study capacitated network design in the literature. In these networks, the nodes are clients, servers or any
device that broadcasts, receives, or distributes signals or data. The end-users of the network have certain
demand for speed which is measured by bit-rates. In order to satisfy such demand to ensure the quality of
service, telecommunication service providers install transmission facilities such as fiber-optic cables between
the nodes of the network to transmit signals or data. Such transmission facilities each have a certain capacity
on the maximum bit rate they are able to transmit, known as its bandwidth. Similar analogies for flow and
capacity can be found in other applications, such as transportation networks and power grid networks.

In many applications, the flow transfer capacities are available in the form of modules of different sizes.
Each module size has a predetermined cost. The cost structure usually follows economy of scale, i.e., a
unit of capacity costs less in larger modules compared to smaller ones. Examples of such capacities in
telecommunication networks are fiber-optic cables of different bandwidths. Typically, a set of cable types
with different bandwidths are available to procure [13], and the cost of procuring cables constitutes a major
part of the total cost for network design. In such situations, the decision-making about installing capacities
becomes more complicated than the case where we have only a single-sized capacity module, as we need
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to determine the composition of capacity modules of different sizes to be installed on each link. In this
paper, we are interested in this type of problems, referred to as the multi-module capacitated network design
(MMND) problem.

MMND can be defined on directed or undirected networks and formulated as mixed integer programs
(MIPs). On a directed network, the MIP is formulated as follows:

let G := (V,A) be a directed graph, where V and A are the set of nodes and arcs of G, respectively.
For any non-empty U,W ⊂ V , let δ(U,W ) denote the set of arcs from the nodes in U to the nodes in W .
For any v ∈ V , let δ+(v) := δ(V \ {v}, v) and δ−(v) := δ(v, V \ {v}) be the set of arcs that have v as their
head and tail, respectively. Assume we have M differently sized capacity modules, indexed by 1, . . . ,M . Let
C1, . . . , CM > 0 be the sizes of these capacity modules, respectively. Without loss of generality, we assume
that C1 > C2 > . . . > CM . The cost of installing one capacity module t, t = 1, . . . ,M on arc a is fat . We
assume there is a single type of commodity with multiple sources and multiple sinks over the network. A
demand dv is associated with each node such that

∑
v∈V dv = 0. For sink nodes we have dv > 0 and for all

other nodes we have dv ≤ 0. Given the unit cost of flow along arc a ∈ A, denoted by ha, and the pre-installed
capacity on arc a ∈ A, denoted by ga, MMND on a directed network can be formulated as the following
mixed integer program:

min
∑
a∈A

(haxa +
M∑
t=1

fat y
a
t ) (1)∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv, v ∈ V (2)

xa ≤
M∑
t=1

Cty
a
t + ga, a ∈ A (3)

(x, y) ∈ R|A|+ × ZM |A|+ , (4)

where the flow variable xa is the number of flow units to be transferred along arc a ∈ A, and the capacity
variable yat is the number of capacity module t to be installed on arc a ∈ A, t = 1, . . . ,M . We refer to the
problem defined by (1)-(4) as the directed MMND.

For undirected networks, two types of MMND problems have been studied, which we refer to as the
undirected MMND and the bidirected MMND. Let H := (V,E) be an undirected graph, where E is the
set of (undirected) edges. For each edge e ∈ E, we introduce a pair of anti-parallel (directed) arcs e+ and
e−. Let A be the set of all such arcs, i.e., A := {e+ = ij, e− = ji : e = (i, j) ∈ E}. For any v ∈ V , δ+(v)
and δ−(v) are defined similarly to those in the directed MMND. In both models, let the capacity variable
yet be the number of capacity module t to be installed on edge e ∈ E, t = 1, . . . ,M , and the flow variables
xe+ , xe− be the number of flow units to be transferred along the arcs e+ and e− corresponding to e. Let ha
denote unit flow cost on arc a ∈ A, fet denote the cost of installing one capacity module t on edge e ∈ E,
and ge denote the pre-installed capacity on edge e ∈ E. In the undirected MMND, the summation of flows
in both directed arcs corresponding to an edge is bounded by the edge capacity. Therefore, this problem is
formulated as follows:

min
∑
a∈A

haxa +
∑
e∈E

M∑
t=1

fet y
e
t (5)∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = dv, v ∈ V (6)

xe+ + xe− ≤
M∑
t=1

Cty
e
t + ge, e ∈ E (7)

(x, y) ∈ R2|E|
+ × ZM |E|+ . (8)

In the bidirected MMND, the flow in each of the two arcs corresponding to an edge is bounded by the edge
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capacity. Therefore, this problem is formulated by (5), (6), (8) and the following constraint

max{xe+ , xe−} ≤
M∑
t=1

Cty
e
t + ge, e ∈ E (9)

instead of (7). The bidirected MMND can be transformed to the directed MMND where the capacities on
the forward and backward arcs between a pair of nodes are the same. See [22, 23] for more details on these
problems.

Telecommunication networks have had a significant role in motivating the study of MMND and its
variants in the MIP literature from different perspectives; see for example [8, 9, 10, 12, 14, 19, 20, 22, 23, 24].
A considerable number of studies have addressed the MIP formulations of MMND from the cutting plane
perspective [8, 9, 12, 19, 20, 22, 23]. In these studies, the so-called cutset inequalities are among the most
effective classes of inequalities for network design problems. This class of inequalities are derived for the
convex hull of a certain relaxation of directed/undirected/bidrected MMND, called the cutset polyhedron for
the respective problem (see Section 2 for more details).

Magnanti and Mirchandani [19] studied the cutset inequalities that include only capacity variables for the
undirected MMND with M ≤ 3, where the module sizes are divisible, i.e., C2|C1 and C3|C2. Bienstock and
Günlük [8] proposed the flow-cut-set inequalities to include flow variables for the bidirected MMND with
M = 2 divisible capacity modules. Chopra et al. [9] presented the cut-set inequalities for directed MMND
with M ≤ 2 divisible capacity modules. Atamtürk [2] generalized the cut-set inequalities to the multifacility
cut-set inequalities for the directed MMND with any M (not necessarily divisible) capacity modules. Raack
et al. [22, 23] generalized the multifacility cut-set inequalities for the undirected and the bidrected MMND.
Table 1 summarizes some pertinent features of the aforementioned studies.

Table 1: Summary of major relevant studies on network design problems

Reference
Problem

M* n*
Inequalities

type* Name in reference Name in this paper

[19] u ≤ 3, div ≤ 2 cutset 1&2-step capacity cutset

[8] b 2, div 1 flow-cut-set 1-step flow cutset

[9] d ≤ 2, div 1 cut-set 1-step cutset

[2] d any 1 multifacility cut-set 1-step cutset

[23] d,u,b any 1 flow cutset 1-step cutset

This paper d,u,b any any - n-step cutset

*: “d”, “u”, and “b” denote directed, undirected, and bidirected, respectively. “div” means only divisible module sizes were studied.

M denotes the number of capacity modules in the problem and n is the number of capacity modules used to derive the inequality.

Almost all aforementioned cutset inequalities were derived, or can be shown to be derivable, by applying
the traditional mixed integer rounding (MIR), referred to as the 1-step MIR, on the base inequalities formed
by certain aggregation and relaxation of the defining constraints of the corresponding cutset polyhedron (see
[21] and [26] for more details on 1-step MIR inequalities). More precisely, the cutset inequalities in [8, 23]
were derived using 1-step MIR, and the cutset inequalities in [2, 9, 19], although not derived directly using
1-step MIR, can be easily shown that can be derived using 1-step MIR as well.

We note that in derivation of most of the aforementioned inequalities, the information of only one of the
capacity modules is used (as noted in Table 1), even though information of all of the capacity modules is
important for MMND. The only exception is the cutset facet for the 3-module problem in [19] involving only
capacity variables, which, as we will show later, can be derived using 2-step MIR inequalities.

Motivated by this observation, in this paper, we develop cutset inequalities for MMND using the infor-
mation of all the capacity modules for any number of capacity modules, show their theoretical strength, and
demonstrate they are computationally very effective in solving MMND, especially compared to cutset in-
equalities derived based on the information of a single capacity module. In developing these inequalities, we
employ the n-step MIR theory. Kianfar and Fathi [16] presented the n-step MIR inequalities for the mixed
integer knapsack set (see Section 2 for more details). The (1-step) MIR inequalities [21, 26] and the 2-step
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MIR inequalities [11] are special cases of the n-step MIR inequalities for n = 1 and 2, respectively. Gener-
alizations of the n-step MIR inequalities have been shown to be facet-defining for several generalizations of
the mixed integer knapsack set [3, 6, 7, 17, 25]. Inequalities derived based on the n-step MIR theory and
its generalizations have been previously proven to be effective cuts for the single node capacitated network
design problem [15] and the multi-module lot-sizing (MMLS) problem [5, 6, 25].

Our contributions in this paper are as follows:

� We propose a new family of valid inequalities for MMND, referred to as the n-step cutset inequalities,
for any integer n ≤ M . The n-step cutset inequality uses the information of n capacity modules.
As a result, our inequalities can use the information of any desired number of capacity modules, and
particularly, all the capacity modules when n = M . For the directed MMND, we show that the cut-set
inequality in [9] and the multifacility cut-set inequality in [2, 23] are special cases of the n-step cutset
inequality.

� We introduce the n-step flow cutset inequality and the n-step capacity cutset inequality as special cases
of the n-step cutset inequality. We show that the n-step cutset inequality, the n-step flow cutset
inequality, and the n-step capacity cutset inequality are facet-defining under certain conditions for the
directed cutset polyhedron. Based on a result in [23], these inequalities are also facet-defining for the
convex hull of the directed MMND.

� We design a cutting plane algorithm to add n-step cutset inequalities to MMND problem instances.
Each iteration of the cutting plane algorithm calls a polynomial time separation heuristic to progres-
sively generate a violated cut if any, followed by a cut selection procedure.

� We show that the n-step cutset, flow cutset, and capacity cutset inequalities, applied using our cutting
plane algorithm and separation heuristic, are computationally very effective in solving directed MMND
instances. For our 2-module problem instances, the average total solution time (including cut genera-
tion) with 2-step cutset cuts added was 0.35 times that of CPLEX 12.7 in its default setting. This time
was also 0.59 times the solution time when only 1-step cutset cuts (which only use the information of
a single capacity module) were added. With the 2-step cutset cuts, the number of branch-and-bound
nodes was 0.23 times the number of nodes with default CPLEX and 0.38 times that with only 1-step
cutset cuts. For the 3-module problem instances, the average total solution time with 3-step cutset
cuts added was 0.45 times that of CPLEX in its default setting, 0.45 times the solution time when
only 1-step cutset cuts were added, and 0.56 times the solution time when only 2-step cutset cuts were
added. With the 3-step cutset cuts, the number of branch-and-bound nodes was 0.32 times the number
of nodes with default CPLEX, 0.42 times that with only 1-step cutset cuts, and 0.55 times that with
only 2-step cutset cuts.

� We generalize the n-step cutset inequalities for the undirected MMND and the bidirected MMND
problems. The generalized n-step cutset inequalities can be shown to be facet-defining for the convex
hulls of the undirected and the bidirected MMND, as well as their respective cutset polyhedra. We
show that the cutset inequality in [19] and the flow-cut-set inequality in [8] are special cases of the
n-step cutset inequalities for the undirected MMND and the bidirected MMND, respectively.

� We discuss the generalization the n-step cutset inequalities for all types of MMND with more than one
commodities.

The rest of this paper is organized as follows: in Section 2 we provide a brief background on the cutset
inequalities as well as the n-step MIR inequalities as needed for this paper. In Section 3 we introduce the
n-step cutset inequality and prove its validity for MMND problems. In Section 4 we prove these inequalities
are facet-defining under certain conditions, and in Section 5, we present our computational experiments
showing their effectiveness in solving MMND problems. In Section 6 we present generalizations of the n-step
cutset inequalities to the undirected and bidirected MMND. In Section 7 we discuss generalizations of the
n-step cutset inequalities to MMND problems in multi-commodity scenarios. We conclude in Section 8.
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2 Necessary background

In this section, we first briefly review the cutset inequalities previously discussed in the literature, and then
follow by a review of the n-step MIR theory to the extent that is required in this paper.

2.1 Cutset inequalities

Let Xd, Xu, and Xb be the convex hulls of the set of feasible solutions to the directed, undirected, and
bidirected MMND, respectively, i.e.,

Xd := conv{(x, y) : (x, y) satisfies (2), (3), and (4)},
Xu := conv{(x, y) : (x, y) satisfies (6), (7), and (8)},
Xb := conv{(x, y) : (x, y) satisfies (6), (8), and (9)}.

As mentioned in Section 1, cutset inequalities for the directed, undirected, and bidirected MMND are
in fact valid inequalities for certain relaxations of Xd, Xu, and Xb, respectively, which are referred to as
the cutset polyhedron for the respective problem [2]. For the directed MMND, the cutset polyhedron is
defined as follows. Let U ⊂ V be a non-empty strict subset of V and U := V \ U . Also, let A+

U := δ(U,U),
A−U := δ(U,U), and AU := A+

U ∪A
−
U .

Let dU =
∑
v∈U dv. Without loss of generality, we assume dU ≥ 0, because if dU < 0, then from∑

v∈V dv = 0, we have
∑
v∈U dv > 0, in which case we can switch U and U . The cutset polyhedron

corresponding to the partition (U,U) for the directed MMND is defined as

P dU := conv

ß
(x, y) ∈ R|AU |

+ × ZM |AU |
+ : (10)∑

a∈A+
U

xa −
∑
a∈A−U

xa = dU , (11)

xa ≤
M∑
t=1

Cty
a
t + ga, a ∈ AU

™
, (12)

where (11) is obtained by aggregating (2) over v ∈ U . Notice that P dU is a relaxation of Xd. Therefore any
valid inequality for P dU is also valid for Xd.

For the undirected MMND, the cutset polyhedron can be similarly defined for a partition (U,U) of V . Let
EU be the set of edges crossing the partition. Also, recall that for the undirected case, a pair of anti-parallel
(directed) arcs e+ and e− are introduced for each edge e ∈ E, and A := {e+ = ij, e− = ji : e = (i, j) ∈ E}.
A+
U , A−U , AU , and dU are defined similarly to the directed MMND case. The cutset polyhedron for the

undirected MMND is defined as

PuU := conv

ß
(x, y) ∈ R|AU |

+ × ZM |EU |
+ : (13)∑

a∈A+
U

xa −
∑
a∈A−U

xa = dU , (14)

xe+ + xe− ≤
M∑
t=1

Cty
e
t + ge, e ∈ EU

™
. (15)

Naturally, for the bidirected MMND, the cutset polyhedron P bU is the same as PuU except that (15) is replaced
with

max{xe+ , xe−} ≤
M∑
t=1

Cty
e
t + ge, e ∈ EU . (16)

Magnanti and Mirchandani [19] considered the undirected MMND problem having a single source vs ∈ V
with supply dvs < 0, a single sink vt ∈ V with demand dvt = −dvs , and dv = 0 for v ∈ V \ {vs, vt},
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for M ≤ 3 divisible capacity modules (this problem was referred to as the network loading problem in
[19]). No pre-installed capacities were assumed. For M = 3, the capacity modules were assumed to be
(C1, C2, C3) = (λC,C, 1), where C and λ are positive integers.

Defining p0 := dU−C bdU/Cc and p1 := (dU−λC bdU/λCc−p0)/C, the following inequalities were shown
to be valid and facet-defining for the convex hull of this particular form of 3-module undirected MMND:∑

e∈EU

Å
ye3 + p0y

e
2 + λp0y

e
1

ã
≥ p0

°
dU
C

§
, (17)

∑
e∈EU

Å
ye3 + min(p1C + p0, C)ye2 + (p1C + p0)ye1

ã
≥ (p1C + p0)

°
dU
λC

§
, (18)

∑
e∈EU

Å
ye3 + p0y

e
2 + p0(p1 + 1)ye1

ã
≥ p0(p1 + 1)

°
dU
λC

§
. (19)

These inequalities were referred to as the cutset inequalities in [19]. We refer to (17) and (18) as 1-step
capacity cutset inequalities and (19) as the 2-step capacity cutset inequality in this paper. It was shown
in [19] that for certain cost vectors, adding these inequalities to the linear programming relaxation of the
network loading problem yields integer optimal solutions.

Bienstock and Günlük [8] studied the bidirected MMND problem assuming M = 2 and (C1, C2) = (C, 1).
Given a partition (U,U) of V , let E⊂ be a subset of EU . Each edge e ∈ E⊂ can be represented by its two
antiparallel arcs e+ and e−. Let A⊂ be the set of all such arcs, i.e., A⊂ := {e+ = ij, e− = ji : e = (i, j) ∈ E⊂}.
Let A+

⊂ ⊆ A⊂ be the set of arcs that have tails in U and heads in U and A−⊂ := A⊂ \ A+
⊂. Defining

dU :=
∑
v∈U dv and p0 := dU −

∑
e∈E⊂ g

e − C
ö
(dU −

∑
e∈E⊂ g

e)/C
ù
, they introduced the flow-cut-set

inequality of the form ∑
a∈A+

U\A
+
⊂

xa +
∑
e∈E⊂

(ye2 + p0y
e
1) ≥ p0

°
dU
C

§
. (20)

They showed that the flow-cut-set inequalities define facets of the convex hull of the 2-module bidirected
MMND under certain conditions. We refer to these inequalities as the 1-step flow cutset inequalities in this
paper.

Chopra et al. [9] studied the directed MMND problem with the same single-source and single-sink
assumption as that in [19]. This problem assumed M ≤ 2 capacity modules and no pre-installed capacities.
For M = 2, the capacity modules were assumed to be (C1, C2) = (C, 1). They showed that the 1-module
directed MMND problem is NP-hard, and the 2-module directed MMND problem is NP-hard even when the
flow costs ha = 0 for all a ∈ A. For a given partition (U,U) of V such that the source vs ∈ U and the sink
vt ∈ U , let dU and p0 be defined the same as those in [19]. For A+

⊂ ⊆ A+
U and A−⊂ ⊆ A−U , they showed the

following inequality is valid for the 2-module directed MMND:∑
a∈A+

U\A
+
⊂

xa −
∑
a∈A−⊂

xa +
∑
a∈A+

⊂

Å
ya2 + p0y

a
1

ã
+
∑
a∈A−⊂

Å
(C − p0)ya1 + ya2

ã
≥ p0

°
dU
C

§
. (21)

(21) was referred to as the cut-set inequality in [9]. We refer to (21) as the 1-step cutset inequality in this
paper.

Atamtürk [2] studied P dU directly (assuming no pre-installed capacities). The cut-set inequality (21) was
generalized to the multifacility cut-set inequality for P dU with any fixed number of modules. For A+

⊂ ⊆ A+
U

and A−⊂ ⊆ A−U , the multifacility cut-set inequality has the form

M∑
t=1

φ+
s (Ct)

∑
a∈A+

⊂

yat +

M∑
t=1

φ−s (Ct)
∑
a∈A−⊂

yat +
∑

a∈A+
U\A

+
⊂

xa −
∑
a∈A−⊂

xa ≥ ps
°
dU
Cs

§
, (22)

where for some s ∈ {1, . . . ,M}, ps := dU − Cs bdU/Csc, φ+
s (Ct) := min

{
Ct − bCt/Csc

(
Cs − (dU −

Cs bdU/Csc)
)
, dCt/Cse

(
dU−Cs bdU/Csc

)}
, φ−s (Ct) := min

{
Ct−bCt/Csc

(
dU−Cs bdU/Csc

)
, dCt/Cse

(
Cs−

(dU − Cs bdU/Csc)
)}

.
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Atamtürk [2] showed that the multifacility cut-set inequalities define facets of P dU under certain conditions.
Raack et al. [22, 23] generalized these results for the undirected and the bidirected MMND. They also
provided conditions under which facet-defining inequalities of P dU , PuU , and P bU are also facet-defining for Xd,
Xu, and Xb, respectively.

2.2 n-step MIR inequalities

In this section, we briefly review the n-step MIR inequalities. Kianfar and Fathi [16] developed the n-step
MIR inequalities for the mixed integer knapsack set

PMIK =
{

(z, ε) ∈ Z|I|+ × R+ :
∑
t∈I

atzt + ε ≥ b0
}
,

where at, b0 ∈ R. Given n ∈ {1, . . . , |I|}, let α = {α1, α2, . . . , αn} be a sequence of real numbers such that
α1 > α2 > . . . > αn > 0 (the same assumption holds wherever α is defined throughout the rest of this
paper). For any r ∈ R, define the recursive reminders

r(k) := r(k−1) − αk

ú
r(k−1)

αk

ü
, k = 1, . . . , n, (23)

where r(0) := r. Define
∑l
k(.) := 0 and

∏l
k(.) := 1 if k > l for any k, l ∈ Z. The n-step MIR inequality for

PMIK is ∑
t∈I

µnα,b0(at)zt + ε ≥ µnα,b0(b0), (24)

where for any r ∈ R, the n-step MIR function is defined as

µnα,b0(r) =


b0

(n)
m∑
k=1

n∏
l=k+1

†
b0

(l−1)

αl

£ ö
r(k−1)

αk

ù
+ b0

(n)
n∏

l=m+2

†
b0

(l−1)

αl

£ †
r(m)

αm+1

£
if r ∈ Lnm;m = 0, 1, . . . , n− 1,

b0
(n)

n∑
k=1

n∏
l=k+1

†
b0

(l−1)

αl

£ ö
r(k−1)

αk

ù
+ r(n) if r ∈ Lnn,

(25)

where R is partitioned by

Lnm = {r ∈ R : r(k) < b0
(k), k = 1, . . . ,m, r(m+1) ≥ b0(m+1)} for m = 0, . . . , n− 1;

Lnn = {r ∈ R : r(k) < b0
(k), k = 1, . . . ,n}.

(26)

Kianfar and Fathi [16] showed that (24) is valid for PMIK if the n-step MIR conditions

αk

¢
b0

(k−1)

αk

•
≤ αk−1, k = 2, . . . , n (27)

hold, and is facet-defining for the convex hull of PMIK under several additional conditions (see Corollary 1
of [3] and Theorem 10 of [15]).

3 n-step cutset inequalities

In this section, we introduce a new family of valid inequalities for Xd and P dU . We refer to them as the
n-step cutset inequalities.

Theorem 1 Let (U,U) be a partition of V and P dU be the corresponding cutset polyhedron. For A+
⊂ ⊆ A+

U

and A−⊂ ⊆ A−U , define D := dU −
∑
a∈A+

⊂
ga +

∑
a∈A−⊂

ga. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn},
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if the n-step MIR conditions (27) are satisfied, i.e., αk
⌈
D(k−1)/αk

⌉
≤ αk−1, k = 2, . . . , n, the n-step cutset

inequality

M∑
t=1

µnα,D(Ct)
∑
a∈A+

⊂

yat +

M∑
t=1

(
Ct + µnα,D(−Ct)

) ∑
a∈A−⊂

yat +
∑

a∈A+
U\A

+
⊂

xa −
∑
a∈A−⊂

xa ≥ µnα,D(D)−
∑
a∈A−⊂

ga (28)

is valid for P dU .

Proof. Rewrite the flow conservation constraint of P dU (11) as∑
a∈A+

⊂

xa +
∑

a∈A+
U\A

+
⊂

xa −
∑
a∈A−⊂

xa −
∑

a∈A−U\A
−
⊂

xa = dU .

Relaxing xa, a ∈ A+
⊂ using the capacity constraints (12) and xa, a ∈ A−U \ A

−
⊂ using the nonnegativity

constraints xa ≥ 0, we have

M∑
t=1

Ct
∑
a∈A+

⊂

yat +
∑

a∈A+
U\A

+
⊂

xa −
∑
a∈A−⊂

xa ≥ dU −
∑
a∈A+

⊂

ga. (29)

Adding and subtracting the capacity constraints (12) for a ∈ A−⊂, (29) can be rewritten as

M∑
t=1

Ct
∑
a∈A+

⊂

yat +

M∑
t=1

(−Ct)
∑
a∈A−⊂

yat +
∑

a∈A+
U\A

+
⊂

xa +
∑
a∈A−⊂

(

M∑
t=1

Cty
a
t + ga − xa) ≥ D. (30)

Now the expression
∑
a∈A+

U\A
+
⊂
xa+

∑
a∈A−⊂

(
∑M
t=1 Cty

a
t +ga−xa) is non-negative and can be treated as ε in

PMIK . Also, D can be treated as b0 in PMIK . Let I+ := {1, . . . ,M}. For t ∈ I+, the expression
∑
a∈A+

⊂
yat

is a non-negative integer and can be treated as zt in PMIK , and Ct can be treated as at in PMIK . Similarly,
let I− := {1, . . . ,M}, then for t ∈ I−, the expression

∑
a∈A−⊂

yat can be treated as zt in PMIK , and (−Ct)
can be treated as at in PMIK . Let I = I+ ∪ I−, then (30) can be rewritten as the defining inequality of
PMIK . Since by assumption the n-step MIR conditions hold, by applying the n-step MIR inequality and
replace zt, at, ε, and b0 with their aforementioned corresponding expressions, the resulting inequality is valid
for P dU . By reorganizing terms the resulting inequality is (28). �

Remark 1 If α1, . . . , αn are divisible, the n-step MIR conditions (27) are automatically satisfied regardless
of the value of D.

Remark 2 The n-step cutset inequality is also valid for a variant of P dU with variable capacities, where (12)
is replaced by the constraints xa ≤ Caya+ga, a = 1, . . . ,M . This can be shown by rewriting these constraints
as xa ≤

∑
t∈AU

Cty
a
t + ga, yat = 0 for t 6= a, and thus constructing an instance of P dU with additional

constraints. A special case of such variant with A−U = ∅ is discussed in [3, 18].

Special cases We illustrate several special cases of the n-step cutset inequalities (28) by setting different
values of n, α, A+

⊂, and A−⊂.

� Cut-set inequality. The cut-set inequality (21) in [9] is obtained by setting n = 1, α = C1 in (28).

� Multifacility cut-set inequality. For the multifacility cut-set inequality (22) in [2], we note that
although the functions φ+

s (·) and φ+
s (·) depend on the values of all the capacity modules C1, . . . , CM ,

they can be derived using 1-step MIR, a single-parameter theory. Given s ∈ {1, . . . ,M}, this inequality
can be obtained by setting n = 1 and α = Cs in (28). To see this, we substitute n = 1 and α = Cs
into the n-step MIR function (25), and we have that for any r ∈ R+,

µ1
Cs,D(r) =


D(1)

†
r
Cs

£
=
†
r
Cs

£(
D − Cs

ö
D
Cs

ù)
if r(1) ≥ D(1),

D(1)
ö
r
Cs

ù
+ r(1) = r −

ö
r
Cs

ù(
Cs − (D − Cs

ö
D
Cs

ù
)
)

if r(1) < D(1),
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and

µ1
Cs,D(−r) =


D(1)

†
−r
Cs

£
= −

(
D − Cs

ö
D
Cs

ù) ö
r
Cs

ù
if (−r)(1) ≥ D(1),

D(1)
ö
−r
Cs

ù
+ (−r)(1)

= Cs
†
r
Cs

£
−r−

(
D − Cs

ö
D
Cs

ù)†
r
Cs

£
if (−r)(1)

< D(1).

Substituting the above 1-step MIR function values into (28) results in the multifacility cut-set inequal-
ity (22).

� n-Step flow cutset inequality. By setting A−⊂ = ∅ in (28), we get

M∑
t=1

µnα,D(Ct)
∑
a∈A+

⊂

yat +
∑

a∈A+
U\A

+
⊂

xa ≥ µnα,D(D). (31)

We refer to (31) as the n-step flow cutset inequality. A similar inequality can be obtained for the
bidirected MMND, of which the flow-cut-set inequality (20) in [8] is a special case (see Section 6).

� n-Step capacity cutset inequality. By setting A+
⊂ = A+

U and A−⊂ = ∅ in (28), we get

M∑
t=1

µnα,D(Ct)
∑
a∈A+

U

yat ≥ µnα,D(D). (32)

We refer to (32) as the n-step capacity cutset inequality. A similar inequality can be obtained for the
undirected MMND, of which the cutset inequalities (17), (18) and (19) in [19] are special cases (see
Section 6).

Example 1 Consider a directed cutset polyhedron with 3 capacity modules, where

P dU = conv

ß
(x, y) ∈ R4

+ × Z12
+ :

x1 + x2 + x3 − x4 = 50,

xa ≤ 27ya1 + 13ya2 + 6ya3 , a = 1, . . . , 4.

™
In this example, we have (C1, C2, C3) = (27, 13, 6), A+

U = {1, 2}, A−U = {3, 4}, dU = 50, and ga = 0 for
all a ∈ AU . Let A+

⊂ = {2}, A+
U \ A

+
⊂ = {1}, A−⊂ = {3}, and A−U \ A

−
⊂ = {4}. We illustrate the n-step

cutset inequalities and their special cases for 3 combinations of n and α: the 1-step cutset inequalities where
n = 1, α = C1, the 2-step cutset inequalities where n = 2, α = {C1, C2}, and the 3-step cutset inequalities
where n = 3, α = {C1, C2, C3}. We present these inequalities by listing a sequence of points in P dU with
fractional values for y. Each point satisfies all preceding inequalities and is followed by an inequality that
cuts off this fractional point. Only non-zero elements are mentioned for these points.
p0 : x2 = 50, y2

1 = 50/27. The 1-step capacity cutset inequality

23(y1
1 + y2

1) + 13(y1
2 + y2

2) + 6(y1
3 + y2

3) ≥ 46

cuts off p0 by 92/27.
p1 : x2 = 50, y2

1 = 1, y2
2 = 23/13. The 2-step capacity cutset inequality

20(y1
1 + y2

1) + 10(y1
2 + y2

2) + 6(y1
3 + y2

3) ≥ 40

cuts off p1 by 30/13.
p2 : x2 = 50, y2

1 = 1, y2
2 = 1, y2

3 = 10/6. The 3-step capacity cutset inequality

16(y1
1 + y2

1) + 8(y1
2 + y2

2) + 4(y1
3 + y2

3) ≥ 32

9



cuts off p2 by 8/6.
p3 : x2 = 30, y2

1 = 30/27, x1 = 20, y1
1 = 24/27. The 1-step flow cutset inequality

23y2
1 + 13y2

2 + 6y2
3 + x1 ≥ 46

cuts off p3 by 12/27.
p4 : x2 = 41, y2

1 = 30/27, y2
2 = 14/13, x1 = 9, y1

1 = 6/13. The 2-step flow cutset inequality

20y2
1 + 10y2

2 + 6y2
3 + x1 ≥ 40

cuts off p4 by 3/13.
p5 : x2 = 47, y2

1 = 1, y2
2 = 1, y2

3 = 7/6, x1 = 3, y1
1 = 5/24. The 3-step flow cutset inequality

16y2
1 + 8y2

2 + 4y2
3 + x1 ≥ 32

cuts off p5 by 1/3.
p6 : x2 = 54, y2

1 = 2, x3 = 4, y3
1 = 4/27. The 1-step cutset inequality

23y2
1 + 13y2

2 + 6y2
3 + 4y3

1 + 4y3
2 + 4y3

3 + x1 − x3 ≥ 46

cuts off p6 by 92/27.
p7 : x2 = 67, y2

1 = 2, y2
2 = 1, x3 = 17, y3

2 = 17/13. The 2-step cutset inequality

20y2
1 + 10y2

2 + 6y2
3 + 7y3

1 + 4y3
2 + 4y3

3 + x1 − x3 ≥ 40

cuts off p7 by 23/13.
p8 : x2 = 56, y2

1 = 2, y2
3 = 2/6, x3 = 6, y3

3 = 1. The 3-step cutset inequality

16y2
1 + 8y2

2 + 4y2
3 + 11y3

1 + 6y3
2 + 4y3

3 + x1 − x3 ≥ 32

cuts off p8 by 2/3.

4 Facet-defining n-step cutset inequalities

In this section, we study the facet-defining properties of the n-step cutset inequalities. Specifically, we
give sufficient conditions under which the n-step cutset inequality (28), the n-step flow cutset inequality
(31), and the n-step capacity cutset inequality (32) are facet-defining for P dU as well as Xd. Let (U,U)
be a partition of V and P dU be the corresponding cutset polyhedron. Given A+

⊂ ⊆ A+
U , A−⊂ ⊆ A−U , let

D := dU−
∑
a∈A+

⊂
ga+

∑
a∈A−⊂

ga. In order to prove the results, we define the following points and directions.

Notice that for all directions and points we illustrate below, only nonzero values are mentioned.

Definition 1 Let i, j, ξ, ω be indices of arcs. Define the following points :

(a) For any i ∈ A+
⊂, j ∈ A+

U \A
+
⊂, the points Ai,jl , l = 1, . . . , n:

yit =

ú
D(t−1)

αt

ü
, t = 1, . . . , l, xi =

l∑
t=1

αt

ú
d(t−1)

αt

ü
+ gi,

xi′ = gi
′
, i′ ∈ A+

⊂ \ {i} ∪A−⊂, y
j
l = 1, xj = D(l),

and the points Ai,jl , l = n+ 1, . . . ,M :

yit =


ö
d(t−1)

αt

ù
, t = 1, . . . , n,

1, t = l,
xi =

n∑
t=1

αt

ú
D(t−1)

αt

ü
+ min{Cl, D(n)}+ gi,

xi′ = gi
′
, i′ ∈ A+

⊂ \ {i} ∪A−⊂, yjn = 1, xj = max{0, D(n) − Cl}.
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(b) For any i ∈ A+
⊂, the points Bil , l = 1, . . . , n:

yit =


ö
D(t−1)

αt

ù
, t = 1, . . . , l − 1,†

D(t−1)

αt

£
, t = l,

xi = D + gi, xi′ = gi
′
, i′ ∈ A+

⊂ \ {i} ∪A−⊂,

and the points Bil , l = n+ 1, . . . ,M :

yit =


ö
D(t−1)

αt

ù
, t = 1, . . . , n,

1, t = l,
xi = D + gi, xi′ = gi

′
, i′ ∈ A+

⊂ \ {i} ∪A−⊂.

(c) For any i ∈ A+
⊂, ξ ∈ A−⊂, ω ∈ A−U \A

−
⊂, the points Ci,ξ,ωl , l = 2, . . . , n:

yit =



ö
D(t−1)

αt

ù
+ 1, t = 1,ö

D(t−1)

αt

ù
, t = 2, . . . , n+ 1− l,†

D(t−1)

αt

£
− 1, t = n+ 2− l,

xi =

n+2−l∑
t=1

αt

ú
D(t−1)

αt

ü
+ α1 + gi,

xi′ = gi
′
, i′ ∈ A+

⊂ \ {i}, y
ξ
l = 1, xξ = αl + gξ, xξ′ = gξ

′
, ξ′ ∈ A−⊂ \ {ξ},

yωn+2−l = 1, xω = α1 − αl −D(n+2−l).

(d) For any i ∈ A+
⊂, ω ∈ A−U \A

−
⊂, the point F i,ω:

yi1 =

°
D

α1

§
, xi = α1

°
D

α1

§
+ gi, xi′ = gi

′
, i′ ∈ A+

⊂ \ {i},

yω1 = 1, xω = α1

°
D

α1

§
−D,xξ = gξ, ξ ∈ A−⊂.

(e) For any i ∈ A+
⊂, j ∈ A+

U \A
+
⊂, ξ ∈ A−⊂, the point Gi,j,ξ:

yit =


ö
D(t−1)

αt

ù
+ 1, t = 1,ö

D(t−1)

αt

ù
, t = 2, . . . , n,

xi =

n∑
t=1

αt

ú
D(t−1)

αt

ü
+ α1 + gi,

xi′ = gi
′
, i′ ∈ A+

⊂ \ {i}, yjn = 1, xj = D(n), yξ1 = 1, xξ = α1 + gξ,

xξ′ = gξ
′
, ξ′ ∈ A−⊂ \ {ξ}.

(f) For any i ∈ A+
⊂, ξ ∈ A−⊂, the point Hi,ξ:

yit =


ö
D(t−1)

αt

ù
+ 1, t = 1,ö

D(t−1)

αt

ù
, t = 2, . . . , n,

xi =

n∑
t=1

αt

ú
D(t−1)

αt

ü
+ α1 + gi,

xi′ = gi
′
, i′ ∈ A+

⊂ \ {i}, y
ξ
1 = 1, xξ = α1 −D(n) + gξ,

xξ′ = gξ
′
, ξ′ ∈ A−⊂ \ {ξ}.

(g) For i ∈ AU , t = 1, . . . , n, the direction E it where yit = 1.

Next, we provide several intermediate results that will be used to prove the main result of this section.

Proposition 1 Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, for any r ∈ R,

(a) r =
∑t
k=1 αk

ö
r(k−1)

αk

ù
+ r(t), t = 1, . . . , n,
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(b) r ≤
∑t
k=1 αk

ö
r(k−1)

αk

ù
+ αt+1

†
r(t)

αt+1

£
, t = 1, . . . , n− 1.

Lemma 1 Let
∑0
t=1(·) := 0 and

∏0
t=1(·) := 1. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, for any

r ∈ R,

(a)
l−1∑
t=1

n∏
k=t+1

†
r(k−1)

αk

£ ö
r(t−1)

αt

ù
+

n∏
k=l

†
r(k−1)

αk

£
=

n∏
k=1

†
r(k−1)

αk

£
, l = 1, . . . , n,

(b)
n∑
t=1

n∏
k=t+1

†
r(k−1)

αk

£ ö
r(t−1)

αt

ù
=

n∏
k=1

†
r(k−1)

αk

£
− 1.

Proof. See Lemma 6 of [25]. �

Lemma 2 Given n ∈ {1, . . . ,M}, α = {α1, α2, . . . , αn}, and D ∈ R such that D(n) > 0, for any r ∈ R such
that 0 < r ≤ α1,

(a) If D(s) ≤ r ≤ αt, t ∈ {1, . . . , n}, then µnα,D(r) = D(n)
n∏

k=t+1

⌈
D(k−1)/αk

⌉
.

(b) If 0 < r ≤ D(n), then µnα,D(r) = r.

(c) If r = α1, then µnα,D(−r) = −D(n)
n∏
k=2

⌈
D(k−1)/αk

⌉
.

(d) If D(s) ≤ α1 − r ≤ αt for some t ∈ {2, . . . , n}, then µnα,D(−r) =

D(n)
n∏

k=t+1

⌈
D(k−1)/αk

⌉
−D(n)

n∏
k=2

⌈
D(k−1)/αk

⌉
.

Proof. See Appendix. �
Now we are ready to present the main results of this section.

Theorem 2 Let (U,U) be a partition of V and P dU be the corresponding cutset polyhedron. For A+
⊂ ⊆ A+

U

and A−⊂ ⊆ A−U , let D := dU −
∑
a∈A+

⊂
ga +

∑
a∈A−⊂

ga. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, the

n-step cutset inequality (28) is facet-defining for P dU if

(a) n = M,α = {C1, . . . , CM},

(b) D(n+2−t) < α1 − αt ≤ αn+2−t for t = 2, . . . , n,D(n) > 0,

(c) D(t−1)

αt
<
†
D(t−1)

αt

£
≤ αt−1

αt
, t = 2, . . . , n,

(d) A+
⊂ 6= ∅, A+

U \A
+
⊂ 6= ∅, A−⊂ 6= ∅, A−U \A

−
⊂ 6= ∅.

Proof. Define
∏n
k=n+2(·) := 0 and

∏n
k=n+1(·) := 1. Consider the hyperplane corresponding to (28). By

substituting values of the n-step MIR function (25) corresponding to the ones of Lemma 2 under conditions
(a) and (b), the hyperplane can be rewritten as

n∑
t=1

D(n)
n∏

k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

n∑
t=1

Å
αt +D(n)

n∏
k=n+3−t

¢
D(k−1)

αk

•
−D(n)

n∏
k=2

¢
D(k−1)

αk

•ã ∑
a∈A−⊂

yat

+
∑

a∈A+
U\A

+
⊂

xa −
∑
a∈A−⊂

xa = D(n)
n∏
k=1

¢
D(k−1)

αk

•
−
∑
a∈A−⊂

ga.

(33)
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Let
n∑
t=1

∑
a∈AU

βat y
a
t +

∑
a∈AU

πaxa = θ (34)

be a hyperplane passing through the face of P dU defined by (33). We prove (34) must be a scalar multiple of
(33) plus the flow balance equality (11).

For any i ∈ (A+
U \A

+
⊂)∪ (A−U \A

−
⊂), t = 1, . . . , n, consider the direction E it . E it is an unbounded direction

for both P dU and (33), and hence a direction for the face defined by (34). This implies that βit = 0 for all
i ∈ (A+

U \A
+
⊂) ∪ (A−U \A

−
⊂), t = 1, . . . , n.

Now, for any i ∈ A+
⊂, l = 1, . . . , n, and ω ∈ A−U \A

−
⊂, consider the points Bil and F i,ω. It is easy to check

that Bil and F i,ω are in P dU by Proposition 1, and by (a) of Lemma 1, Bil and F i,ω satisfy (33). Then Bil
and F i,ω must satisfy (34). Now, for any i ∈ A+

⊂ and ω ∈ A−U \ A
−
⊂, by substituting Bi1 and F i,ω into (34)

and subtracting one equality from the other, we have πi(α1 dD/α1e −D) + πω(α1 dD/α1e −D) = 0, which
implies that πi = −πω for i ∈ A+

⊂ and ω ∈ A−U \A
−
⊂. Now, since all points of P dU satisfy flow balance equality

(11), we may add multiples of the flow balance equality to facet-defining inequalities without changing them.
Therefore, without loss of generality, we assume that πγ = 0 for some γ ∈ A+

⊂. This implies that

πi = 0, i ∈ A+
⊂ ∪ (A−U \A

−
⊂). (35)

Next, for any i ∈ A+
⊂, j ∈ A+

U \ A
+
⊂, and ξ ∈ A−⊂, consider the points Gi,j,ξ and Hi,ξ. It is easy to check

that Gi,j,ξ and Hi,ξ are in P dU by Proposition 1, and by (b) of Lemma 1, Gi,j,ξ and Hi,ξ satisfy (33). Then
Gi,j,ξ and Hi,ξ must satisfy (34). Now, for any i ∈ A+

⊂, j ∈ A+
U \A

+
⊂, and ξ ∈ A−⊂, by substituting Gi,j,ξ and

Hi,ξ into (34) and subtracting one equality from the other, we have (πξ + πj)D
(n) = 0, which implies that

πξ = −πj for ξ ∈ A−⊂ and j ∈ A+
U \A

+
⊂. Thus, ∃τ ∈ A+

U \A
+
⊂ such that

πj = πτ , j ∈ A+
U \A

+
⊂, πξ = −πτ , ξ ∈ A−⊂. (36)

Now, for any i ∈ A+
⊂ and j ∈ A+

U \ A
+
⊂, consider the point Ai,jn . It is easy to check that Ai,jn is in P dU by

Proposition 1, and by (b) of Lemma 1, Ai,jn satisfies (33). Then Ai,jn must satisfy (34). For any i ∈ A+
⊂ and

j ∈ A+
U \A

+
⊂, by substituting Ai,jn and Bin into (34) and subtracting one equality from the other, we obtain

βin = πτD
(n), i ∈ A+

⊂. (37)

Now, if we substitute Bin, Bin−1, . . ., Bi1 one after another into (34) and subtract one equality from another,

we obtain βil−1 = βil
⌈
D(l−1)/αl

⌉
for l = n, n− 1, . . . , 2, which implies

βit = πτD
(n)

n∏
k=t+1

¢
D(k−1)

αk

•
, i ∈ A+

⊂, t = 1, . . . , n. (38)

Next, for any i ∈ A+
⊂, j ∈ A+

U \ A
+
⊂, and ξ ∈ A−⊂, consider the points Ai,jn and Hi,ξ. Substituting Ai,jn

and Hi,ξ into (34), and subtracting one equality from the other, we have

βξ1 = πτ

Å
α1 −D(n)

n∏
k=2

¢
D(k−1)

αk

•ã
, ξ ∈ A−⊂. (39)

Next, for any i ∈ A+
⊂, ξ ∈ A−⊂, and ω ∈ A−U \ A

−
⊂, consider the points Ci,ξ,ωl , l = 2, . . . , n. It is easy to

check that Ci,ξ,ωl is in P dU by Proposition 1, and by (a) of Lemma 1, Ci,ξ,ωl satisfy (33). Then Ci,ξ,ωl must

satisfy (34). If we substitute Hi,ξ and Ci,ξ,ω2 into (34) and subtract one equality from the other, we have

βξ2 = βξ1 + πτ
(
α2 − (α1 −D(n))

)
, which implies that

βξ2 = πτ

Å
α2 +D(n) −D(n)

n∏
k=2

¢
D(k−1)

αk

•ã
, ξ ∈ A−⊂. (40)
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If we substitute Hi,ξ and Ci,ξ,ω3 into (34) and subtract one equality from the other, we have βξ3 = βξ1 +
πτ
(
D(n)

⌊
D(n−1)/αn

⌋
− (α1 −D(n) − α3)

)
, which implies

βξ3 = πτ

Å
α3 +D(n)

¢
D(n−1)

αn

•
−D(n)

n∏
k=2

¢
D(k−1)

αk

•ã
, ξ ∈ A−⊂. (41)

By substituting Ci,ξ,ω3 , Ci,ξ,ω4 , . . ., Ci,ξ,ωn one after another into (34) and subtracting one equality from another,
we have

βξl+1=βξl + πτ

Å
D(n)

n∏
k=n+3−l

¢
D(k−1)

αk

•ú
D(n+1−l)

αn+2−l

ü
− αl + αl+1

ã
, l = 3, . . . , n− 1,

which implies

βξl =πτ

Å
αl +D(n)

n∏
k=n+3−l

¢
D(k−1)

αk

•
−D(n)

n∏
k=2

¢
D(k−1)

αk

•ã
, i ∈ A−⊂, l = 3, . . . , n. (42)

By (35)(36)(37)(38)(39)(40) and (42), (34) is reduced to

n∑
t=1

πτD
(n)

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

n∑
t=1

πτ

Å
αt +D(n)

n∏
k=n+3−t

¢
D(k−1)

αk

•
−D(n)

n∏
k=2

¢
D(k−1)

αk

•ã ∑
a∈A−⊂

yat +
∑

a∈A+
U\A

+
⊂

πτxa −
∑
a∈A−⊂

πτxa = θ.

(43)

Finally, by substituting Bin for some i ∈ A+
⊂ into (43), we have

θ = πτ

Å
D(n)

n∏
k=1

¢
D(k−1)

αk

•
−
∑
a∈A−⊂

ga
ã
, (44)

which reduces (43) to

n∑
t=1

πτD
(n)

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

n∑
t=1

πτ

Å
αt +D(n)

n∏
k=n+3−t

¢
D(k−1)

αk

•
−D(n)

n∏
k=2

¢
D(k−1)

αk

•ã ∑
a∈A−⊂

yat +
∑

a∈A+
U\A

+
⊂

πτxa −
∑
a∈A−⊂

πτxa = πτ

Å
D(n)

n∏
k=1

¢
D(k−1)

αk

•
−
∑
a∈A−⊂

ga
ã
.

(45)

(45) is a scalar multiple of (33) (the scalar is πτ ). This completes the proof. �
Next, we give sufficient conditions for the n-step flow cutset inequality (31) to be facet-defining for P dU .

Note that although the n-step flow cutset inequality (31) is a special case of the n-step cutset inequality
(28), their facet-defining conditions are exclusive.

Theorem 3 Let (U,U) be a partition of V and P dU be the corresponding cutset polyhedron. For A+
⊂ ⊆ A+

U ,
let D := dU −

∑
a∈A+

⊂
ga. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, the n-step flow cutset inequality

(31) is facet-defining for P dU if

(a) α = {C1, . . . , Cn},

(b) D(n) > 0,

(c) D(t−1)

αt
<
†
D(t−1)

αt

£
≤ αt−1

αt
, t = 2, . . . , n,

(d) A+
⊂ 6= ∅, A+

U \A
+
⊂ 6= ∅.
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Proof. See Appendix. �
Finally, we give sufficient conditions for the n-step capacity cutset inequality (32) to be facet-defining for

P dU .

Theorem 4 Let (U,U) be a partition of V and P dU be the corresponding cutset polyhedron. Let D :=
dU −

∑
a∈A+

U
ga. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, the n-step capacity cutset inequality (32)

is facet-defining for P dU if

(a) α = {C1, . . . , Cn},

(b) 0 < D(n) ≤ αt, t = 1, . . . ,M ,

(c) D(t−1)

αt
<
†
D(t−1)

αt

£
≤ αt−1

αt
, t = 2, . . . , n.

Proof. See Appendix. �
The n-step cutset inequalities are facet-defining not only for P dU , but also for Xd under additional con-

ditions. This is straightforward by the result of Raack et al. in [22]. Note that this result was presented
for MMND without pre-installed capacities on arcs, i.e., ga = 0 for all a ∈ A, but the same result and proof
hold for MMND with pre-installed capacities.

Lemma 3 ([22]) Let (U,U) be a partition of V . For any V ′ ⊂ V , define G[V ′] := (V ′, AV ′) where AV ′ :=
{a = ij ∈ A : i, j ∈ V ′}. Let

M∑
t=1

∑
a∈A

βat y
a
t +

∑
a∈A

πaxa = θ

be a facet-defining inequality of P dU . Then it is also facet-defining for Xd if both G[U ] and G[U ] are strongly
connected.

By this lemma, together with Theorem 2, Theorem 3, and Theorem 4, we have the following:

Corollary 1 The n-step cutset (resp. flow cutset, capacity cutset) inequality is facet-defining for Xd if
in addition to the conditions in Theorem 2 (resp. Theorem 3, Theorem 4), G[U ] and G[U ] are strongly
connected.

5 Computational results

In this section, we examine the effectiveness of the n-step cutset inequalities on our randomly generated
directed MMND test instances. We illustrate the random graph generation procedure in Section 5.1, the
separation heuristic in Section 5.2, the cutting plane algorithm to add the cuts in Section 5.3, and the setup
and results of our experiments in Section 5.4. In our computations, we assume no pre-installed capacities on
arcs, i.e., ga = 0, a ∈ A.

5.1 Graph generation

Our idea of generating random directed graphs is similar to the ones in [20, 24]. Each graph has 50 nodes,
whose coordinates are uniformly distributed on a 100 × 100 region in the Euclidean plane. We randomly
choose 5 of the nodes to be the sources, and 30 of the nodes to be the sinks. The other 15 nodes are
assigned to be transshipment nodes. Real-life graphs have low arc degree, and arcs with large length should
be avoided [24]. Therefore, we randomly choose an out degree for each sink or transshipment node to be
equal to 2, 3, 4, or 5 with a probability of 0.2, 0.3, 0.3, and 0.2. These probabilities are adjusted for source
nodes to have higher out degree on average, so that sink nodes have higher chances of being reachable from
the source nodes. We set the upper bound of the arc length to be 50. For each node v, we iteratively add a
directed arc from v to the node closest to v if no directed arc from v is present, until the degree requirement
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of v is satisfied, or there are no more nodes within the range of length 50. Then, for each source node, we
check if every other node of the graph can be reached from this source node. If not, we reject this graph
and generate a new one. If a valid graph is generated, we then create an instance of directed MMND by
assigning demand to nodes and creating capacity modules, as discussed in Section 5.4.

5.2 Separation

Given an LP relaxation optimal solution (x̂, ŷ) of a directed MMND instance, the number of n-step cutset
inequalities (28) is exponential with respect to choices of AU , A

+
⊂, A

−
⊂, n, and α. Finding the most violated

inequality with respect to AU , A
+
⊂, A

−
⊂, n, and α simultaneously is an NP-hard problem even for the special

case where M = 1 with a single source and a single sink [2] in the network. In our experiments, we set
specific values for α and n in each run, and we use a simple heuristic to determine AU (see Section 5.3).
Given AU , n, and α, finding the most violated n-step cutset inequality can be done in linear time by setting
A+
⊂ and A−⊂ as follows:

A+
⊂ =

{
a ∈ A+

U :

M∑
t=1

µnα,D(Ct)ŷat ≤ x̂a
}
,

A−⊂ =
{
a ∈ A−U :

M∑
t=1

(Ct + µnα,D(−Ct))ŷat < x̂a

}
.

However, previous computational efforts on cutset inequalities [4, 8, 23] and our tests on the n-step cutset
inequalities suggested the following observations:

� The n-step capacity cutset inequalities contribute the most on reducing time and integrality gap for
network design problems.

� The most violated n-step cutset inequalities do not necessarily perform the best in reducing the solution
time.

Following these observations in our experiments with the n-step cutset inequalities, in this paper, we design
a new separation heuristic that

� prioritizes generating violated n-step capacity cutset inequalities over n-step flow cutset and cutset
inequalities.

� prioritizes generating violated n-step cutset inequalities with the least number of flow variables over
the most violated n-step cutset inequality.

In the separation heuristic, for each given AU , n, and α, we consider generating the n-step capacity cutset
inequality and the n-step cutset inequalities in a hierarchical manner. We first check if the corresponding
n-step capacity cutset inequality is violated by (x̂, ŷ). If so, the separation procedure returns with the n-step
capacity cutset inequality. Notice that the n-step capacity cutset inequality is a special case of the n-step
cutset inequality where A+

⊂ = A+
U , A+

U \A
+
⊂ = ∅, A−⊂ = ∅, and A−U \A

−
⊂ = A−U . Therefore, if the n-step capacity

cutset inequality is not violated, we may construct a violated n-step cutset inequality by progressively moving
the arcs from A+

⊂ to A+
U\A

+
⊂ and from A−U\A

−
⊂ to A−⊂. We choose such arcs based on the following criteria. Let

σ :=
∑M
t=1 µ

n
α,D(Ct)

∑
a∈A+

⊂
ŷat +

∑M
t=1

(
Ct +µnα,D(−Ct)

)∑
a∈A−⊂

ŷat +
∑
a∈A+

U\A
+
⊂
x̂a−

∑
a∈A−⊂

x̂a−µnα,D(D)

be the slack of the n-step cutset inequality. At first, we have σ =
∑M
t=1 µ

n
α,D(Ct)

∑
a∈A+

U
ŷat − µnα,D(D) > 0.

Let wa be the slack for arc a ∈ A+
⊂ ∪ (A−U \A

−
⊂), which is defined as

wa :=

®
x̂a −

∑M
t=1 µ

n
α,D(Ct)ŷat , a ∈ A+

⊂∑M
t=1(Ct + µnα,D(−Ct))ŷat − x̂a, a ∈ A−U \A

−
⊂.

(46)

Let ā = argmina∈A+
⊂∪(A−U\A

−
⊂)wa. If wā ≥ 0 and σ ≥ 0, then we conclude that no violated inequality

can be generated for the current combination of AU , n, and α. If wā < 0, we move the corresponding arc
ā from A+

⊂ to A+
U \ A

+
⊂ if ā ∈ A+

⊂, or from A−U \ A
−
⊂ to A−⊂ if a ∈ A−U \ A

−
⊂. By doing so, the slack σ of the
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resulting n-step cutset inequality is decreased by −wa. We repeat the above process until σ < 0, at which
point the separation procedure returns with a violated n-step cutset inequality, or conclude that no violated
inequality can be generated when wā ≥ 0 and σ ≥ 0. Notice that if A−⊂ = ∅ in the resulting inequality, then
the resulting violated inequality is an n-step flow cutset inequality.

The above cut generating procedure is summarized in Algorithm 1.

Algorithm 1 Separation Heuristic

Input: Current LP relaxation optimal solution (x̂, ŷ), AU , n, and α
Output: Coefficients ηζ = (π, β) ∈ R|A| × RM |A| of a cut

1. Let (π, β) = 0

2. Let βat = µnα,D(Ct), a ∈ A+
U , t = 1, . . . ,M

3. If
∑M
t=1 β

a
t

∑
a∈A+

U
ŷat < µnα,D(D)

Stop and output (π, β)

Else

Let σ =
∑M
t=1 µ

n
α,D(Ct)

∑
a∈A+

U
ŷat − µnα,D(D) and go to 4

4. Let wa be calculated as in (46) for a ∈ A+
⊂ ∪ (A−U \A

−
⊂)

5. While σ ≥ 0

Let ā = argmina∈A+
⊂∪(A−U\A

−
⊂){wa}

If wā ≥ 0

Stop; no cutset cut can be generated

Else

If ā ∈ A+
⊂

Let βāt = 0, t = 1, . . . ,M , πā = 1

Move ā to A+
U \A

+
⊂

Else

Let βāt = Ct + µnα,D(−Ct), t = 1, . . . ,M , πā = −1;

Move ā to A−⊂
Let σ = σ + wā

6. Stop and output (π, β)

5.3 Cutting Plane Algorithm

In our experiments, we add the n-step cutset inequalities using a cutting plane algorithm to tighten the
formulation of the MMND instances and then solve the instances by CPLEX. Each iteration of the cutting
plane algorithm starts with a choice of partition (U,U) of V . For our experiments, we simply considered all
partitions (U,U) of V such that 1 ≤ |U | ≤ 4. This was based on the observation in [2] and our computations
that most of the violated inequalities are generated from uneven partitions. At each iteration, given the LP
relaxation optimal solution (x̂, ŷ), AU corresponding to (U,U), and fixed n and α, the separation procedure
in Section 5.2 was then called and at most one violated n-step cutset inequality was generated.

In our experiments, we noticed that violated n-step cutset inequalities can be found for most combinations
of AU , n and α. Based on previous computational efforts [4, 8, 23] and our experiments, adding too many
n-step cutset inequalities to the formulation may significantly increase the solution time. We limit the
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Algorithm 2 Cutting Plane Algorithm

Input: n and α

1. Let R = ∅

2. Solve LP relaxation and get optimal solution (x̂, ŷ)

3. For each U such that 1 ≤ |U | ≤ 4

Call Algorithm 1 w.r.t. (x̂, ŷ), AU , n, α, and get new cut ζ

For each p ∈ R
Let op = |ηTp ηζ |/(||ηp|| · ||ηζ ||)
If op > threshold

Continue to next iteration of 3

Add cut ζ to formulation

Let R = R ∪ {ζ}
Solve LP relaxation and get optimal solution (x̂, ŷ)

4. Remove inactive cuts w.r.t. (x̂, ŷ)

number of n-step cutset inequalities added to the formulation by using a technique similar to that in [1] to
select a small number of inequalities to add to the formulation. It calculates the orthogonality of the newly
generated cuts with respect to previously added cuts, and aims at selecting a nearly orthogonal subset of
cutting planes, which cut as deep as possible into the current LP relaxation polyhedron.

The cut selection process is as follows. Let ζ be the newly generated n-step cutset inequality, and R
be the set of all previously added cuts to the formulation, indexed by p. Let ηζ and ηp, p ∈ R be the
coefficient vectors of their corresponding inequalities. The orthogonality of ζ with respect to p is calculated
by op = |ηTp ηζ |/(||ηp|| · ||ηζ ||), and the orthogonality of ζ with respect to the set of all previously added cuts
R is defined as oζ = maxp∈R op. We only add the newly generated cut to the formulation if oζ is less than or
equal to a fixed threshold. In our experiments, this threshold was tuned to be 0.3. Practically, given the cut
generated by the separation, we iterate p ∈ R to calculate op, and if op > 0.3, we skip the current iteration
and go to the next iteration with another choice of (U,U).

The LP relaxation problem was reoptimized when a new cut was added to the formulation. Then the next
iteration of the cutting plane algorithm starts with another choice of (U,U) with the updated LP relaxation
optimal solution. This process was repeated for all of our choices of (U,U). Finally, cuts that were inactive
at the final LP relaxation optimal solution were removed.

The cutting plane algorithm is summarized in Algorithm 2.

5.4 Experimental setup and results

We first generated random directed graphs following the steps of Section 5.1. For each valid graph, we created
an instance of MMND by assigning demand to nodes and creating the capacity modules. The demand of
each sink node was chosen from uniform[10, 190]. The negative of the aggregated demand over all sinks was
then randomly split among the sources. The unit flow cost ha for each arc a ∈ A was equal to its length,
rounding down to the nearest integer. For each 2-module MMND instance, we assigned to it one of the 3
sets of capacity modules: (130, 50), (170, 70), and (200, 80). We also assigned to it one of the 2 sets of costs
associated with these capacity modules: (10000, 5000) and (18000, 9000) (we assumed the module cost to
be the same for every arc, i.e., fat = ft, a ∈ A). For each 3-module MMND instance, we assigned to it one
of the 3 sets of capacity modules: (130, 50, 20), (170, 70, 30), and (200, 80, 30). We also assigned to it one
of the 3 sets of costs associated with these capacity modules: (10000, 5000, 2500), (18000, 9000, 5000), and
(25000, 13000, 9000). The summary of the instances is listed in Table 2.

For each 2-module and 3-module MMND instance, we performed several runs. In the first run, we solved
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Table 2: Summary of MMND problem instances

Instance Capacity modules Capacity module costs

2 1 1 (130, 50) (10000, 5000)

2 1 2 (130, 50) (18000, 9000)

2 2 1 (170, 70) (10000, 5000)

2 2 2 (170, 70) (18000, 9000)

2 3 1 (200, 80) (10000, 5000)

2 3 2 (200, 80) (18000, 9000)

3 1 1 (130, 50, 20) (10000, 5000, 2500)

3 1 2 (130, 50, 20) (18000, 9000, 5000)

3 1 3 (130, 50, 20) (25000, 13000, 9000)

3 2 1 (170, 70, 30) (10000, 5000, 2500)

3 2 2 (170, 70, 30) (18000, 9000, 5000)

3 2 3 (170, 70, 30) (25000, 13000, 9000)

3 3 1 (200, 80, 30) (10000, 5000, 2500)

3 3 2 (200, 80, 30) (18000, 9000, 5000)

3 3 3 (200, 80, 30) (25000, 13000, 9000)

it using CPLEX in its default settings. The corresponding results are under label DEF in Table 3 and 4. For
subsequent runs, we added the n-step cutset inequalities to the formulation using the cutting plane algorithm
described in Section 5.3 and solved the instance with the added cuts using CPLEX in its default settings.
We added n-step cutset inequalities with different values for n and α in different runs and compared the
performance of these cuts. For each 2-module MMND instance, two subsequent runs were performed, where
the 1-step cutset inequalities with n = 1, α = C1, and the 2-step cutset inequalities with n = 2, α = {C1, C2},
were added to the formulation, respectively. Their respective results are under labels 1CUT and 2CUT in
Table 3. For each 3-module MMND instance, three subsequent runs were performed, where the 1-step
cutset inequalities with n = 1, α = C1, the 2-step cutset inequalities with n = 2, α = {C1, C2}, and the
3-step cutset inequalities with n = 3, α = {C1, C2, C3}, were added to the formulation, respectively. Their
respective results are under labels 1CUT, 2CUT, and 3CUT in Table 4.

We implemented the instance generation and the cutting plane algorithm in C++, and the instances
were solved by CPLEX 12.7. All the experiments were run on a PC with Intel Core i7 2.50GHz processor
with 4 cores and 16 GB of RAM. The time limit for CPLEX was set to be 2 hours. The results are listed in
Table 3 and 4.

Table 3 summarizes the computational results on the 2-module MMND instances. Each row reports the
average results for 10 instances of the corresponding instance category.

We report the following statistics if applicable: under DEF, the time (in seconds) to solve the instance (T );
the number of branch-and-bound nodes reported by CPLEX (Nodes); the initial integrality gap, calculated
by G0 = 100× (zmip− zlp)/zmip, where zlp and zmip are the optimal objective values of the LP relaxation
and MIP, respectively. For each type of cuts, we report the number of active cuts added to the formulation
(Cuts); the number of branch-and-bound nodes reported by CPLEX after adding the cuts (Nodes); the
percentage of the integrality gap closed by our cuts, i.e., G% = 100× (zcut− zlp)/(zmip− zlp), where zlp,
zcut, and zmip are the optimal objective values of the LP relaxation without the cuts, LP relaxation with
the cuts, and MIP, respectively; the time (in seconds) to generate the customized cuts (TCut); the time (in
seconds) to solve the instance excluding the cut generation time (TOpt); and the total solution time including
the cut generation time (T ). In DEF, T = TOpt.

For 2-module MMND instances, we noticed significant improvement in the time and nodes required to
solve the instances by adding the 2-step cutset inequalities. On average, the gap closed by the 2-step cutset
inequalities was 79.2%. The average total solution time (including cut generation) with our 2-step cutset
cuts was 0.35 times that of CPLEX 12.7 in default settings, and the number of branch-and-bound nodes was
0.23 times that of the default CPLEX. The best performance was on the category with capacity modules
(200, 80) and costs (18000, 9000), where the average total solution time with the 2-step cuts was 0.11 times
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Table 3: Results of computational experiments on 2-module MMND instances

Instance DEF 1CUT 2CUT

TOpt Nodes G0 Cuts TCut TOpt T Nodes G% Cuts TCut TOpt T Nodes G%

2 1 1 458 1713521 17 45 14 106 120 502724 46 83 35 122 154 486370 77

2 1 2 672 2490527 18 46 14 313 327 1520851 46 83 38 390 417 1280358 77

2 2 1 569 2200308 22 44 15 126 142 575316 47 76 40 110 150 472718 79

2 2 2 554 3363122 24 45 15 374 390 1920436 47 77 42 194 236 778173 79

2 3 1 279 1405855 22 50 18 391 408 1375045 51 92 44 56 101 214235 81

2 3 2 762 3425010 24 48 17 536 553 2937331 51 90 44 36 81 131356 82

Table 4: Results of computational experiments on 3-module MMND instances
Instance DEF 1CUT 2CUT 3CUT

TOpt Nodes G0 Cuts TCut TOpt T Nodes G% Cuts TCut TOpt T Nodes G% Cuts TCut TOpt T Nodes G%

3 1 1 953 3184686 15 62 26 1493 1519 3859727 54 82 45 771 816 2539234 57 85 43 223 266 643022 72

3 1 2 804 1121292 17 63 28 1471 1499 3440327 54 91 55 955 1010 1858099 62 89 49 478 527 1209506 73

3 1 3 827 1751619 20 62 26 598 624 1292236 56 94 55 414 469 926358 72 94 47 165 212 356813 75

3 2 1 1105 6626769 14 61 20 476 496 1968267 49 74 36 551 587 2860707 52 84 42 208 250 904037 73

3 2 2 1056 4360067 16 62 22 428 450 1457589 50 82 42 457 499 1655077 59 90 45 344 389 1170541 74

3 2 3 826 1438662 19 64 24 866 889 2164659 53 92 61 783 844 1074849 70 89 44 624 667 1636625 74

3 3 1 31 122339 19 58 20 36 56 128792 52 96 56 41 97 161283 60 88 38 18 57 61685 77

3 3 2 66 306930 21 65 27 58 85 201923 53 99 63 38 102 88630 65 93 40 29 69 70178 77

3 3 3 75 257924 25 69 29 82 112 248610 57 101 67 65 133 149331 74 97 46 79 125 147462 77

that of CPLEX 12.7 in its default settings, and the number of branch-and-bound nodes was 0.04 times that
of the default CPLEX.

Furthermore, in 4 of 6 categories, the 2-step cutset inequalities outperformed the 1-step cutset inequal-
ities in terms of the solution time excluding cut-generation time TOpt, and in 3 of them, the 2-step cutset
inequalities also had advantages in terms of the total solution time T . For all categories, the instances with
the 2-step cutset inequalities required less number of nodes to solve than the instances with the 1-step cutset
inequalities. On average, the total solution time (including cut generation) with our 2-step cutset inequalities
was 0.59 times that with the 1-step cutset inequalities, and the number of branch-and-bound nodes was 0.38
times that with the 1-step cutset inequalities. The integrality gap closed by our 2-step cutset inequalities
was 1.6 times that closed by the 1-step cutset inequalities.

Table 4 summarizes the results on the 3-module MMND instances. For instances with the capacity
modules (200, 80, 30) which were easier to solve, the average total solution time by adding the 3-step cutset
inequalities was slightly worse than that of CPLEX in its default settings because of relatively long cut
generation time. For harder instances, however, the improvement by adding the 3-step cutset inequalities
was significant over CPLEX in its default settings. On average, the total solution time (including cut
generation) with our 3-step cutset inequalities was 0.45 times that of CPLEX 12.7 in default settings, 0.45
times that with only 1-step cutset inequalities added, and 0.56 times that with only 2-step cutset inequalities
added. The number of branch-and-bound nodes with our 3-step cutset inequalities was 0.32 times that of
default CPLEX, 0.42 times that with only 1-step cutset inequalities, and 0.55 times that with only 2-step
cutset inequalities. The gap closed by the 3-step cutset cuts was 74.8%, which was 1.4 times that by the
1-step cutset cuts, and 1.2 times that by the 2-step cutset cuts.

Therefore, we conclude that the 2-step cutset inequalities are effective in solving 2-module MMND in-
stances, and the 3-step cutset inequalities are effective in solving 3-module MMND instances. Moreover,
they are more effective than the n-step cutset inequalities that use information of less number of capacity
modules.

6 n-step cutset inequalities for undirected and bidirected MMND

Our results for the directed MMND can be easily generalized for the undirected and the bidirected MMND.
Given a partition (U,U) of V , let S1, S2 ⊂ EU . Each edge e ∈ EU is represented by its two antiparallel

arcs e+ and e−. Let A1 be the set of such arcs corresponding to edges in S1, A+
1 ⊆ A1 be the set of arcs in

A1 who have tails in U and heads in U , and A−1 := A1 \ A+
1 (and define A2, A

+
2 , and A−2 similarly for S2).
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We have the following.

Theorem 5 Given a partition (U,U) of V , let S1, S2 ⊂ EU . Define D := dU −
∑
e∈S1

ge+
∑
e∈S2

ge. Given

n ∈ {1, . . . ,M}, α = {α1, α2, . . . , αn}, if the n-step MIR conditions (27) are satisfied, i.e., αk
⌈
D(k−1)/αk

⌉
≤

αk−1, k = 2, . . . , n, the n-step cutset inequality

M∑
t=1

µnα,D(Ct)
∑
e∈S1

yet +

M∑
t=1

(
Ct + µnα,D(−Ct)

) ∑
e∈S2

yet +
∑

a∈A+
U\A

+
1

xa −
∑
a∈A−2

xij ≥ µnα,D(D)−
∑
e∈S2

ge (47)

is valid for Xu and Xb.

Proof. We show it for Xu and Xb respectively. For Xu, adding the nonnegativity constraints xa ≥ 0, a ∈
A+
U \A

+
2 to (14), we have ∑

a∈A+
1

xa +
∑

a∈A+
U\A

+
1

xa −
∑
a∈A−2

xa ≥ dU . (48)

The rest of the proof is similar to that of Theorem 1.
For Xb, as mentioned in Section 1, Xb is a special case of Xd where the arcs sharing the same edge have

the same capacity. Therefore the n-step cutset inequality (28) is valid for Xb. Set A+
1 = A+

⊂, A−2 = A−⊂,
S1 = {e : e+ ∈ A+

1 or e− ∈ A+
1 }, and S2 = {e : e+ ∈ A+

2 or e− ∈ A+
2 }. Then (28) becomes (47). �

Remark 3 The n-step flow cutset inequality, obtained by setting S2 = ∅ in (47), is valid for Xu and Xb.
The n-step capacity cutset inequality, obtained by setting S1 = EU and S2 = ∅ in (47), is valid for Xu and
Xb.

Special Cases We illustrate several special cases of the n-step cutset inequalities for Xu and Xb in the
literature.

� Cutset inequality. The cutset inequality (17) is obtained by setting n = 1, α = C2, S1 = EU , and
S2 = ∅ in (47). The cutset inequality (18) is obtained by setting n = 1, α = C1, S1 = EU , and S2 = ∅
in (47). The cutset inequality (19) is in fact a 2-step MIR inequality [11]. This inequality can be
rewritten as

D(2)

¢
D(1)

C2

• ∑
e∈EU

ye1 +D(2)
∑
e∈EU

ye2 +
∑
e∈EU

ye3 ≥ D(2)

¢
D(1)

C2

•°
D

C1

§
. (49)

(49) is obtained by setting n = 2, α = {C1, C2}, S1 = EU , and S2 = ∅ in (47). It was also mentioned in
[19] that for the network loading problem with any number of divisible capacity modules and CM = 1,
(49) can be generalized to

M∑
t=1

D(M−1)
M−1∏
k=t+1

¢
D(k−1)

Ck

• ∑
e∈EU

yet +
∑
e∈EU

yeM ≥ D(M−1)
M−1∏
k=t+1

¢
D(k−1)

Ct

•
. (50)

This inequality is obtained by setting n = M − 1, α = {C1, . . . , CM}, S1 = EU , and S2 = ∅ in (47). To
our knowledge, (49) and (50) are the only inequalities in the family of n-step cutset inequalities where
n > 1 in the literature.

� Flow-cut-set inequality. The flow-cut-set inequality (20) is obtained by setting n = 1, α = C1, and
S2 = ∅ in (47).

We now present the conditions under which the n-step cutset inequalities are facet-defining for PuU and P bU .
Their proofs are similar to that for P dU and are omitted.

Theorem 6 The n-step cutset inequality is facet-defining for PuU and P bU if conditions (a), (b), and (c) of
Theorem 2 hold, and S1 6= ∅, S2 6= ∅, A+

U \A
+
1 6= ∅, A

−
2 6= ∅.
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Theorem 7 The n-step flow cutset inequality is facet-defining for PuU and P bU if conditions (a), (b), and (c)
of Theorem 3 hold, and S1 6= ∅, A+

U \A
+
1 6= ∅.

Theorem 8 The n-step capacity cutset inequality is facet-defining for PuU and P bU if conditions (a), (b), and
(c) of Theorem 4 hold.

Based on a result similar to Lemma 3 for Xu and Xb (see Theorem 3.4 in [23]), we have the following.

Corollary 2 The n-step cutset inequality is facet-defining for Xu (resp. Xb) if it is facet-defining for PuU
(resp. P bU ), and the graphs induced by U and U are connected.

7 Multi-commodity directed MMND problem

Understanding the polyhedral structure of MMND motivates us to study the multi-commodity MMND
problem (MCMMND). Multi-commodity networks often arise in the backbone of telecommunication networks
[4]. In this section, we discuss how to generalize the n-step cutset inequalities for directed, undirected, and
bidirected MCMMND.

For MCMMND, the network structures and the capacity modules can be defined similarly to those of
MMND. Instead of a single commodity of demand, MCMMND have a set of commodities Q. Each commodity
is identified by a single-source-single-sink pair of nodes, i.e., for each q ∈ Q, there is a single sink node vqt ∈ V
with demand dq > 0 and a single source node vqs ∈ V with supply −dq.

For the directed MCMMND, let hqa be the unit cost of flow along arc a ∈ A for commodity q ∈ Q. The
mixed integer programming formulation for the directed MCMMND is

min
∑
a∈A

(
∑
q∈Q

hqax
q
a +

M∑
t=1

fat y
a
t ) (51)

∑
a∈δ+(v)

xqa −
∑

a∈δ−(v)

xqa = dqv, v ∈ V, q ∈ Q (52)

∑
q∈Q

xqa ≤
M∑
t=1

Cty
a
t + ga, a ∈ A (53)

(x, y) ∈ R|Q||A|+ × ZM |Q||A|+ , (54)

where xqa is now the number of flow units transferred along arc a for commodity q. Let Y d be the convex
hull of the set defined by (52)-(54). Given a partition (U,U) of V , the corresponding cutset polyhedron is

P
d

U := conv

ß
(x, y) ∈ R|Q||EU |

+ × ZM |EU |
+ : (55)∑

a∈A+
U

xqa −
∑
a∈A−U

xqa = dqU , q ∈ Q (56)

∑
q∈Q

xqa ≤
M∑
t=1

Cty
a
t + ga, a ∈ AU

™
, (57)

where dqU :=
∑
v∈U d

q
v.

We present generalization of the n-step cutset inequality for the directed MCMMND in our next theorem.

Theorem 9 Let (U,U) be a partition of V . For K ⊆ Q, A+
⊂ ⊆ A+

U , and A−⊂ ⊆ A−U , define D :=
∑
q∈K d

q
U −∑

a∈A+
⊂
ga +

∑
a∈A−⊂

ga. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, if the n-step MIR conditions (27)
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are satisfied, i.e., αt
⌈
D

(t−1)
/αt
⌉
≤ αt−1, t = 2, . . . , n, the n-step cutset inequality

M∑
t=1

µn
α,D

(Ct)
∑
a∈A+

⊂

yat +

M∑
t=1

(
Ct + µn

α,D
(−Ct)

) ∑
a∈A−⊂

yat

+
∑

a∈A+
U\A

+
⊂

∑
q∈K

xqa −
∑
a∈A−⊂

∑
q∈K

xqa ≥ µnα,D(D)−
∑
a∈A−⊂

ga
(58)

is valid for Y d and P
d

U .

Proof. By aggregating the flow conservation constraints (56) over q ∈ K, relaxing the capacity constraints

(57) to
∑
q∈K x

q
a ≤

∑M
t=1 Cty

a
t + ga for a ∈ AU , making change of variables xa =

∑
q∈K x

q
a, a ∈ AU , and

letting dU =
∑
q∈K d

q
U , we can construct a directed cutset polyhedron P dU from P

d

U . The n-step cutset

inequality (28) is valid for P dU , and if we rewrite the n-step cutset inequality with xa =
∑
q∈K x

q
a, a ∈ AU

and D = D, the resulting inequality is (58). �
The multi-commodity undirected and bidirected MMND can be defined similarly to the multi-commodity

directed MMND. Let Y u and Y b be the convex hulls of the multi-commodity undirected MMND and the
multi-commodity bidrected MMND, respectively. We present in our next theorem the n-step cutset inequal-
ities for Y u and Y b. The proof is similar to that of Theorem 9 and is thus omitted.

Theorem 10 Let (U,U) be a partition of V . For K ⊆ Q, S1, S2 ⊆ EU , and A+
⊂ ⊆ A+

U , let D :=
∑
q∈K d

q
U −∑

e∈S1
ge +

∑
e∈S2

ge. Given n ∈ {1, . . . ,M} and α = {α1, α2, . . . , αn}, if the n-step MIR conditions (27)

are satisfied, i.e., αt
⌈
D

(t−1)
/αt
⌉
≤ αt−1, t = 2, . . . , n, the n-step cutset inequality

M∑
t=1

µn
α,D

(Ct)
∑
e∈S1

yet +

M∑
t=1

(
Ct + µn

α,D
(−Ct)

) ∑
e∈S2

yet +
∑

a∈A+
U\A

+
1

∑
q∈K

xqa −
∑
a∈A−2

∑
q∈K

xqa ≥ µnα,D(D)−
∑
e∈S2

ge

(59)

is valid for Y u and Y b.

Whether the generalized n-step cutset inequalities are facet-defining for Y d, Y u, and Y b under certain
conditions is an open question and requires further polyhedral study in future research.

8 Concluding remarks

We studied the multi-module capacitated network design problem (MMND) by developing a new family
of inequalities, the n-step cutset inequalities, from cutset polyhedron, the convex hull of a mixed integer
set closely related to MMND. We showed that cutset inequalities previously presented in the literature are
special cases of the n-step cutset inequalities, and we also proved that the n-step cutset inequalities are
facet-defining for the cutset polyhedron as well as the convex hull of MMND under certain conditions. Our
computational results showed that these inequalities are very effective in solving MMND problems.

We are interested in two future directions following this research: the polyhedral structure of the multi-
commodity multi-module capacitated network design problem (MCMMND), and the multi-module survivable
network design problem (MM-SND) where the network is capable of recovering from link failures.

Acknowledgements. This work is supported by the National Science Foundation Grant CMMI-1435526,
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Appendix

Proof of Lemma 2.

(a) See Lemma 1 of [15].

(b) See Lemma 1 of [15].

(c) In this case (−r)(1)
= . . . = (−r)(n)

= 0 and (−r) ∈ Lnn, so µnα,D(−r) = D(n)
n∏
k=2

⌈
D(k−1)/αk

⌉
b−r/α1c =

−D(n)
n∏
k=2

⌈
D(k−1)/αk

⌉
dr/α1e = −D(n)

n∏
k=2

⌈
D(k−1)/αk

⌉
.

(d) This can be proved similarly to Lemma 1 of [15]. Since D(t) ≤ α1−r ≤ αt, (−r)(1)
= . . . = (−r)(t−1)

=

α1 − r. Let ψ be the smallest integer such that (−u)
(ψ+1) ≥ D(ψ+1) holds, and let ψ = n otherwise.

Thus (−r) ∈ Lnψ. By definition D(1) ≥ . . . ≥ D(n), if α1 − r ≥ D(t), then ψ + 1 ≤ t. Thus we have

(−r)(1)
= . . . = (−r)(ψ)

= . . . = (−r)(t−1)
= α1 − r ≤ αt < . . . < αψ < . . . < α1. Then

µnα,D(−r) = D(n)

ψ∑
k=1

n∏
l=k+1

¢
D(l−1)

αl

•ú
(−r)(k−1)

αk

ü
+D(n)

n∏
l=ψ+2

¢
D(l−1)

αl

•¢
(−r)(ψ)

αψ+1

•
= D(n)

n∏
k=2

¢
D(k−1)

αk

•õ−r
α1

û
+D(n)

n∏
l=ψ+2

¢
D(l−1)

αl

•
= −D(n)

n∏
k=2

¢
D(k−1)

αk

•°
r

α1

§
+D(n)

n∏
l=ψ+2

¢
D(l−1)

αl

•
= −D(n)

n∏
k=2

¢
D(k−1)

αk

•
+D(n)

n∏
l=t+1

¢
D(l−1)

αl

•
.

The last equality holds because if ψ ≤ t− 2, then D(t−1) ≤ . . . ≤ D(ψ+1) ≤ α1 − r < αt < . . . < αψ+2,
then

⌈
D(l−1)/αl

⌉
= 1, l = ψ + 2, . . . , t.

Proof of Theorem 3.
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Proof. Let ρ be the index of the last capacity module whose size is larger than D(n), i.e., ρ = max{t ∈
{1, . . . , n} : αt > D(n)}. Then we have αt > D(n), t = n+1, . . . , ρ and αt ≤ D(n), t = ρ+1, . . . ,M . Consider
the hyperplane corresponding to (31). By substituting values of the n-step MIR function (25) corresponding
to the ones of Lemma 2 under conditions (a) and (b), the hyperplane can be rewritten as

n∑
t=1

D(n)
n∏

k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

ρ∑
t=n+1

D(n)
∑
a∈A+

⊂

yat

+

M∑
t=ρ+1

Ct
∑
a∈A+

⊂

yat +
∑

a∈A+
U\A

+
⊂

xa = D(n)
n∏
k=1

¢
D(k−1)

αk

•
.

(60)

Let
M∑
t=1

∑
a∈AU

βat y
a
t +

∑
a∈AU

πaxa = θ (61)

be a hyperplane passing through the face defined by (60). We prove that (61) is a scalar multiple of (60)
plus the flow balance equality (11).

For any i ∈ (A+
U \A

+
⊂)∪A−U , t = 1, . . . ,M , consider the direction E it . E it is an unbounded direction for both

P dU and (60), and hence a direction for the face defined by (61). This implies that βit = 0, i ∈ (A+
U \A

+
⊂)∪A−U ,

t = 1, . . . ,M .
Next, for any i ∈ A+

⊂ and ω ∈ A−U , consider the points Bi1 and F i,ω. It is easy to check that Bi1 and
F i,ω satisfy (60) by (a) of Lemma 1, and by Proposition 1, Bi1 and F i,ω are in P dU . Then Bi1 and F i,ω must
satisfy (61). By substituting Bi1 and F i,ω into (61) and subtracting one equality from the other, we have
(α1 dD/α1e −D)(πi + πj) = 0, which implies that πi = −πj for any i ∈ A+

⊂, ω ∈ A−U .
Now, since all points of P dU satisfy the flow balance equality (11), we may add multiples of the flow

balance equality to facet-defining inequalities without changing them. Therefore, without loss of generality,
we assume that πγ = 0 for some γ ∈ A+

⊂. This implies that

πi = 0, i ∈ A+
⊂ ∪A−U . (62)

Next, for any i ∈ A+
⊂, j ∈ A+

U \ A
+
⊂, consider the points Bin and Ai,jn . It is easy to check that they are

in P dU by Proposition 1, and by (a)(b) of Lemma 1, they satisfy (60). Then they must satisfy (61). By
substituting them into (61), and subtracting one equality from the other, we have βin = D(n)πj . Since this
is true for any j ∈ A+

U \A
+
⊂, this implies that ∃τ ∈ A+

U \A
+
⊂ such that

πj = πτ , j ∈ A+
U \A

+
⊂, β

i
n = D(n)πτ , i ∈ A+

⊂. (63)

Now, for any i ∈ A+
⊂, j ∈ A+

U \ A
+
⊂, consider the points Ai,jn and Ai,jl , l ∈ {n + 1, . . . , ρ}. It is easy to

check that they are in P dU by Proposition 1, and by (a)(b) of Lemma 1, they all satisfy (60). Then they must
satisfy (61). By substituting them into (61), and subtracting one equality from the other, we have

βil = D(n)πτ , i ∈ A+
⊂, l = n+ 1, . . . , ρ. (64)

Next, for any i ∈ A+
⊂, j ∈ A+

U \ A
+
⊂, consider the points Ai,jn and Ai,jl , l ∈ {ρ + 1, . . . ,M}. It is easy to

check they are in P dU by Proposition 1, and by (b) of Lemma 1, they all satisfy (60). Then they must satisfy
(61). By substituting them into (61), and subtracting one equality from the other, we have

βil = Clπτ , i ∈ A+
⊂, l = ρ+ 1, . . . ,M. (65)

Next, for any i ∈ A+
⊂, consider the points Bil , Bil−1, l = 2, . . . , n. It is easy to check that they are in P dU

by Proposition 1, and by (a) of Lemma 1, they all satisfy (60). Then they must satisfy (61). By substituting
them one after another into (61), and subtracting one equality from the other, we have Bil−1 = Bil

⌈
D(l−1)/αl

⌉
,

l = 2, . . . , n. Since βin = D(n)πτ , this implies that

βil = D(n)
n∏

t=l+1

¢
D(t−1)

αt

•
πτ , i ∈ A+

⊂, l = 1, . . . , n. (66)
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So far, (61) has been reduced to

n∑
t=1

D(n)πτ

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

ρ∑
t=n+1

D(n)πτ
∑
a∈A+

⊂

yat

+

M∑
t=ρ+1

Ctπτ
∑
a∈A+

⊂

yat +
∑

a∈A+
U\A

+
⊂

πτxa = θ.

(67)

Finally, by substituting Bi1 for some i ∈ A+
⊂ into (67), we have θ = D(n)πτ

∏n
k=1

⌈
D(k−1)/αk

⌉
, which

reduces (67) to

n∑
t=1

D(n)πτ

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

⊂

yat +

ρ∑
t=n+1

D(n)πτ
∑
a∈A+

⊂

yat

+

M∑
t=ρ+1

Ctπτ
∑
a∈A+

⊂

yat +
∑

a∈A+
U\A

+
⊂

πτxa = D(n)πτ

n∏
k=1

¢
D(k−1)

αk

•
.

(68)

(68) is a scalar multiple of (60) (the scalar is πτ ). This completes the proof. �
Proof of Theorem 4.

Proof. Consider the hyperplane corresponding to (32). By substituting values of the n-step MIR function
(25) corresponding to the ones of Lemma 2 under conditions (a) and (b), the hyperplane can be rewritten as

n∑
t=1

D(n)
n∏

k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

U

yat +

M∑
t=n+1

D(n)
∑
a∈A+

U

yat = D(n)
n∏
k=1

¢
D(k−1)

αk

•
. (69)

Let
M∑
t=1

∑
a∈AU

βat y
a
t +

∑
a∈AU

πaxa = θ (70)

be a hyperplane passing through the face defined by (69). We prove that (70) is a scalar multiple of (69)
plus the flow balance equality (11).

For any i ∈ A−U , t = 1, . . . ,M , consider the direction E it . E it is an unbounded direction for both P dU and
(69), and hence a direction for the face defined by (70). This imples that βit = 0, i ∈ A−U , t = 1, . . . ,M .

Next, for any i ∈ A+
U and ω ∈ A−U , consider the points Bi1 and F i,ω. By similar argument to the proof

of Theorem 3, we have πi = −πj for any i ∈ A+
U and ω ∈ A−U . Now since we may add multiples of the flow

balance equality to facet-defining inequalities without changing them, by similar argument to the proof of
Theorem 3, we have πi = 0, i ∈ AU .

Next, for any i ∈ A+
U , consider the points Bil , l = 1, . . . , n. By similar argument to the proof of Theorem

3, if we substitute Bin and Bin−1 into (70) and subtract one equality from the other, we have βin−1 =⌈
d(n−1)/αn

⌉
βin. If we substitute Bin, Bin−1, . . ., Bi1 one after another into (70) and subtract one equality

from another, we have βil−1 =
⌈
D(l−1)/αl

⌉
βil , l = 2, . . . , n, which implies βil =

∏n
k=l+1

⌈
D(k−1)/αk

⌉
βin,

i ∈ A+
U , l = 1, . . . , n.

Next, for any i ∈ A+
U , consider the points Bil , l = n + 1, . . . ,M . By similar arguments to the proof of

Theorem 3, Bil satisfy (70). By substituting Bin and Bil into (70) and subtracting one equality from the other,
we have βil = βin, i ∈ A+

U , l = n+ 1, . . . ,M .
Now, if |A+

U | = 1, (70) is reduced to

n∑
t=1

βin

n∏
k=t+1

¢
D(k−1)

αk

•
yit +

M∑
t=n+1

βiny
i
t = θ (71)
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where {i} = A+
U . Otherwise if |A+

U | > 1, then for any i, j ∈ A+
U , if we substitute the points Bi1 and Bj1 into

(70) and subtract one equality from the other, we have βi1 = βj1. Therefore βil = βjl , l = 1, . . . ,M . Since
our choices of i and j are arbitrary, ∃τ ∈ A+

U such that βil = βτl , l = 1, . . . ,M for any i ∈ A+
U . Then (70) is

reduced to
n∑
t=1

βτn

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

U

yat +

M∑
t=n+1

βτn
∑
a∈A+

U

yat = θ, (72)

of which (71) is a special case.

Finally, if we substitute Bτ1 into (72), we have θ =
n∏
k=1

⌈
D(k−1)/αk

⌉
βτn, which reduces (72) to

n∑
t=1

βτn

n∏
k=t+1

¢
D(k−1)

αk

• ∑
a∈A+

U

yat +

M∑
t=n+1

βτn
∑
a∈A+

U

yat = βτn

n∏
k=1

¢
D(k−1)

αk

•
. (73)

(73) is a scalar multiple of (69) (the scalar is βτn/D
(n)). This completes the proof. �

28


