
A class of derivative-free CG projection methods

for nonsmooth equations with an application to

the LASSO problem

Min Sun1,2, Maoying Tian3

1. School of Management, Qufu Normal University,

Shandong, 276826, P. R. China, E-mail:ziyouxiaodou@163.com

2. School of Mathematics and Statistics, Zaozhuang University,

Shandong, 277160, P. R. China

3. Department of Physiology, Shandong Coal Mining Health School,

Shandong, 277011, P. R. China, E-mail:hfmaoying@163.com

Abstract. In this paper, based on a modified Gram-Schmidt (MGS) process, we

propose a class of derivative-free conjugate gradient (CG) projection methods for non-

smooth equations with convex constraints. Two attractive features of the new class of

methods are: (i) its generated direction contains a free vector, which can be set as any

vector such that the denominator of the direction does not equal to zero; (ii) it adopts a

new line search which can reduce its computing cost. The new class of methods includes

many efficient iterative methods for the studied problem as its special cases. When the

underlying mapping is monotone, we establish its global convergence and convergence

rate. Finally, preliminary numerical results about the LASSO problem show that the

new class of methods is promising compared to some existing ones.

Keywords: Monotone constrained equations, derivative-free method, global conver-

gence, the LASSO problem.

1 Introduction

Derivative-free projection methods are a class of very popular and widely used methods for solving

the nonsmooth equations with convex constraints as follows

F (x∗) = 0, x∗ ∈ X , (1)

where F : X → Rm is a continuous monotone mapping (not necessarily smooth), i.e.,

(x− y)⊤(F (x)− F (y)) ≥ 0, ∀x, y ∈ X , (2)
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and the set X ⊆ Rn is a nonempty closed convex set. Obviously, problem (1) containsm independent

nonlinear equations and n unknown variables. Then it is called an over-determined system when

m > n and an under-determined system when m < n in the literature. In this paper, we consider the

under-determined problem (1) with m ≪ n, which often permits infinite solutions, and we assume

that the solution set of problem (1), denoted by X ∗, is nonempty throughout this paper.

Problem (1) serves as a unified model of many mathematical problems encountered in different

disciplines. For example, the famous variational inequality problems (VIPs), which aims to find a

vector x∗ ∈ X such that

(x− x∗)⊤F (x∗) ≥ 0, ∀x ∈ X ,

can be transformed into the following fixed point equations

x∗ = PX [x∗ − βF (x∗)],

where β > 0 is a constant and PX (x) denotes the orthogonal projection of a vector x ∈ Rn onto the

convex set X . Then the solution set of the VIPs coincides with that of problem (1) with

F (x) := x− PX [x− βF (x)], X := Rn.

More applications of problem (1) in economic equilibrium analysis, chemical equilibrium systems,

compressive sensing and control theory can be found in [1, 2, 3, 4, 5, 6] and reference therein.

In the era of big data, the scale of problem (1) is bigger and bigger. Then, the derivative-

free iterative methods for problem (1) which only use the values of the mapping F (x) become

more appealing to practitioners, and during the past few decades, it has been a fascinating area of

research and has drawn continuing interest from both researchers and practitioners. For example,

in the seminal papers [7, 8], Cruz et al. proposed some spectral gradient projection methods and

spectral residual methods for solving problem (1) with X = Rn. The most characteristics of

these methods is that they not only do not need the first order derivative of the mapping F (x)

but also do not need to solve any linear equations, and thus they are suitable to solve large-scale

nonlinear constrained equations (1). Later, Zhang and Zhou [9] developed a spectral gradient

projection method for nonlinear equations, which combines the spectral gradient method [10] with

the projection technique [11]. Subsequently, this method was extended by Yu et al. [12] to solve

problem (1). Other spectral gradient-type methods for problem (1) can be found in [13, 14].

Similar to the spectral gradient method, the conjugate gradient (CG) method is also an effective

first-order iterative method for solving unconstrained optimization problems. Then motivated by

the numerical performance of the spectral gradient-type methods, researchers have tried to extend

the conjugate gradient method to solve problem (1) and proposed some efficient derivative-free

CG-type projection methods. For example, Cheng [15] firstly extended the Polak-Ribière-Polyak

(PRP) method, one of the most efficient conjugate gradient methods for unconstrained optimization
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problem, to solve problem (1) with X = Rn. Later, many other CG methods for unconstrained

optimization problem are extended successfully to solve problem (1), such as the modified PRP

method [16], the modified Fletcher-Reeves method [17, 18], the CG−DESCENT method [4], the

Hestenes-Stiefel method [19] and the hybrid conjugate gradient method [20] etc. For more details

on the derivative-free CG projection methods for problem (1), the interested reader is referred to

[21, 22, 23, 24] and the references therein.

Our concern now is the following: Can we construct a class of derivative-free CG projection

methods which includes some of the above methods as its special cases?

In this paper, we give a positive answer to this question. Motivated and inspired by the works

of Cheng et al. [25], Sun et al. [26, 27] and Feng et al. [28], we will introduce a new class of

derivative-free CG projection methods for problem (1), whose main contribution is as follows: at

the k-th (k ≥ 1) iteration, the direction dk is recursively defined by

dk = −F (xk) + βkdk−1. (3)

Then, in order to ensure the direction dk satisfy the property

F (xk)
⊤dk = −∥F (xk)∥2, (4)

we only need to choose a vector from the subspace Ωk = {v|F (xk)
⊤v = 0} to replace the second

term βkdk−1 of dk, and get

dk = −F (xk) + v, v ∈ Ωk.

For example, if we choose v = 0 ∈ Ωk, we get the steepest descent direction; if we choose

v = βk

(
dk−1 −

F (xk)
⊤dk−1

∥F (xk)∥2
F (xk)

)
∈ Ωk,

which is obviously motivated by the Gram-Schmidt (MGS) process, we get the direction used in

[27, 28].

The remainder of the paper is organized as follows. In Section 2, we collect some definitions and

results for further investigation, and propose a class of derivative-free CG projection methods for

problem (1). In Section 3, we prove the global convergence and convergence rate of the proposed

method. In Section 4, we provide some numerical experiments to illustrate the effectiveness of the

proposed method in solving the LASSO problem. Some conclusions are summarized in the final

section.

2 New method

This section is devoted to devising a new class of derivative-free CG projection methods for problem

(1), and some properties of the proposed method are also presented.
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The projection operator PX [x], which is defined as a mapping from Rn to the nonempty closed

convex subset X :

PX [x] := argmin{∥y − x∥|y ∈ X}, ∀x ∈ Rn.

The projection operator PΩ[x] satisfies the following nice properties [29].

Lemma 2.1 Let X be a closed convex subset of Rn. For any x, y ∈ Rn, the following inequality

holds

∥PX [x]− PX [y]∥ ≤ ∥x− y∥. (5)

Assumption 2.1 The mapping F (x) satisfies the Lipschitz condition, i.e., there exists a constant

L > 0 such that

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ X . (6)

Based on the Gram-Schmidt (GS) orthogonalization method, we first present a modified GS

method as follows: Given two vectors α1, α2 ∈ Rn, then the two vectors β1, β2 defined as β1 = α1,

β2 = α2 − α⊤
2 β1

β⊤
1 v

v,
(7)

are orthogonal, where v ∈ Rn such that β⊤
1 v ̸= 0.

Example 2.1 Given α1 = [1, 1, 2]⊤, α2 = [2, 4, 4]⊤, by the MGS method, we have

(i) if we set v = α1, then β1 = [1, 1, 2]⊤, β2 = [−1/3, 5/3,−2/3]⊤;

(ii) if we set v = [1, 1, 1]⊤, then β1 = [1, 1, 2]⊤, β2 = [−3/2, 1/2, 1/2]⊤;

(iii) if we set v = [1, 2, 1]⊤, then β1 = [1, 1, 2]⊤, β2 = [−4/5,−8/5, 6/5]⊤.

Now we recall the iterative scheme of CG method for solving unconstrained optimization problem

min f(x), x ∈ Rn, (8)

where f : Rn → R is a smooth function, whose gradient ∇f(x) denoted by g(x). The conjugate

gradient method is one of the most efficient methods for solving (8), which generates an iterative

sequence {xk} by

xk+1 = xk + αkdk, k = 0, 1, . . . , (9)

where αk > 0 is the step size determined by some line search, and dk is the search direction defined

by

dk =

 −g(xk), if k = 0,

−g(xk) + βkdk−1, if k ≥ 1.

Here βk is the CG parameter, which is the main difference of different CG methods [30]. Recently,

in the seminar papers [31, 32], Zhang et al. firstly presented two modified CG methods, i.e., the
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modified PRP method and the modified FR method, which satisfy the sufficient descent property

naturally

g(xk)
⊤dk = −∥g(xk)∥2, (10)

i.e.,

g(xk)
⊤(g(xk) + dk) = 0,

and their directions are defined as follows

d1k =

 −g(xk), if k = 0,

−g(xk) + βPRP
k d1k−1 − θ1kyk−1, if k ≥ 1,

where

θ1k =
g(xk)

⊤dk−1

∥g(xk−1)∥2
, βPRP

k =
y⊤k−1g(xk)

∥g(xk−1)∥2
, yk−1 = g(xk)− g(xk−1)

and

d2k =

 −g(xk), if k = 0,

−θ2kg(xk) + βFR
k d2k−1, if k ≥ 1,

where

θ2k =
y⊤k−1dk−1

∥g(xk−1)∥2
, βFR

k =
∥g(xk)∥2

∥g(xk−1)∥2
.

Since d1k and d2k both satisfy the property (10), we have g(xk) + dik ∈ Ω̄k(i = 1, 2), where Ω̄k =

{v|g(xk)
⊤v = 0}. Furthermore, through aborative observation, we find that g(xk)+dik(i = 1, 2) can

be rewritten as the following unified form

g(xk) + dk = βk

(
dk−1 −

g(xk)
⊤dk−1

g(xk)⊤v
v
)
, (11)

where v ∈ Rn such that g(xk)
⊤v ̸= 0. In fact, setting v = yk−1 and g(xk), respectively, we can get

g(xk) + d1k and g(xk) + d2k. Comparing (7) and (11), we can find that (11) is motivated by (7).

Based on the foregoing analysis, we now present a new class of derivative-free CG projection

method for problem (1).

Algorithm 2.1: Derivative-free CG projection method, denoted by the DFCGPM

Step 0. Let parameters C > 0, r ≥ 0, σ > 0, β > 0, 0 < ρ < 1, 0 < γ < 2, tolerance error ε > 0.

Choose an initial point x0 ∈ X , and set k = 0.

Step 1. If ∥F (xk)∥ < ε, then stop; otherwise go to step 2.

Step 2. Compute dk by

dk =

 −F (xk), if k = 0,

−F (xk) + βk

(
dk−1 − F (xk)

⊤dk−1

F (xk)⊤vk
vk

)
, if k ≥ 1,

(12)

where βk is a parameter satisfying

|βk|∥dk−1∥∥vk∥
|F (xk)⊤vk|

≤ C

∥F (xk−1)∥r
, (13)
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and the vector vk ∈ Rn satisfies: (i) if the numerator of βk contains the term F (xk)
⊤vk and the

denominator of βk contains the term vk, then vk can take any vector; (ii) if the numerator of βk

contains the term F (xk)
⊤vk and the denominator of βk does not contain the term vk, then vk can

take any nonzero vector; (iii) if the numerator of βk does not contain the term F (xk)
⊤vk, then vk

can take any vector such that F (xk)
⊤vk ̸= 0.

Step 3. Compute a temporal iterate zk = xk + αkdk, where αk = βρmk with mk being the

smallest nonnegative integer m such that

−⟨F (xk + βρmdk), dk⟩ ≥ σβρm min{1, ∥F (xk + βρmdk)∥}∥dk∥2. (14)

Step 4. If ∥F (zk)∥ < ε, then stop; otherwise compute the new iterate xk+1 by

xk+1 = PX [xk − γξkF (zk)], (15)

where

ξk =
⟨F (zk), xk − zk⟩

∥F (zk)∥2
.

Set k = k + 1 and go to Step 1.

Remark 2.1 The direction defined by (14) satisfies the equality (4), by which and the Cauchy-

Schwartz inequality, we have

∥dk∥ ≥ ∥F (xk)∥. (16)

Remark 2.2 If ∥F (xk)∥ ≤ ε, from xk ∈ X , the iterate xk is an approximate solution of problem

(1). If ∥F (zk)∥ < ε, from the line search (14), we have ∥dk∥ ≤ ε/αk, which together with (16) implies

∥F (xk)∥ ≤ ε/αk, thus the iterate xk also can be viewed as an approximate solution of problem (1).

So the stopping criteria of the DFCGPM is reasonable.

Remark 2.3 From the definitions of dk and βk, for k ≥ 1, it follows that

∥dk∥

≤ ∥F (xk)∥+ |βk|∥dk−1∥+ |βk|
|F (xk)

⊤dk−1|
|F (xk)⊤vk|

∥vk∥

≤ ∥F (xk)∥+ |βk|∥dk−1∥+
|βk|∥dk−1∥
|F (xk)⊤vk|

∥vk∥∥F (xk)∥

≤ ∥F (xk)∥+
C

∥F (xk−1)∥r
|F (xk)

⊤vk|
∥vk∥

+
C

∥F (xk−1)∥r
∥F (xk)∥

≤
(
1 +

2C

∥F (xk−1)∥r
)
∥F (xk)∥.

(17)

Remark 2.4 Generally speaking, to find the smallest nonnegative positive m such that the

inequality (14) holds, we often the trial method. That is, we first set m = 0 in (14), and if it doesn’t

hold, we set m = 1, 2, . . ., until it holds. This indicates that the smaller the right hand-side of (14)

is, the smaller the computing cost of the line search is. Therefore, comparing with the line search in

[9], the right hand-side of (14) incorporates a term min{1, ∥F (xk + βρmdk)∥}, which can decrease

the computing cost of the line search when the iterate xk is far from the solution of problem (1).
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Remark 2.5 The DFCGPM includes many efficient derivative-free CG projection methods as

its special cases.

(i) If we set vk = F (xk) and

βk = βMFR
k :=

∥F (xk)∥2

∥dk−1∥2
,

the direction defined by (12) reduces to the direction used in [18]. Furthermore, we have

|βMFR
k |∥dk−1∥∥F (xk)∥

∥F (xk)∥2
=

∥F (xk)∥
∥dk−1∥

≤ 1,

where the second inequality comes from (16), then the parameter βMFR
k satisfies (13) with C = 1

and r = 0.

(ii) If we set

vk = zk−1 := yk−1 +

(
max

{
0,−

d⊤k−1yk−1

d⊤k−1sk−1

}
+ t∥F (xk−1)∥v

)
sk−1,

and

βk = βMHS
k :=

F (xk)
⊤zk−1

d⊤k−1zk−1
,

where

sk−1 = αk−1dk−1 = zk−1 − xk−1, yk−1 = F (zk−1)− F (xk−1), t > 0, v > 0,

the direction defined by (12) reduces to the direction used in [19]. Furthermore, we have

|βMHS
k |∥dk−1∥∥zk−1∥
|F (xk)⊤zk−1|

≤ ∥zk−1∥
tαk−1∥F (xk−1)∥v∥dk−1∥

≤ M

t∥F (xk−1)∥v
,

where the two inequalities follow from the definition of zk−1 and M > 0 is a constant (see (24) in

[19]), thus the parameter βMHS
k satisfies (13) with C = M/t and r = v > 0.

(iii) If we set vk = yk−1 := F (xk)− F (xk−1) and

βk = βMPRP
k :=

y⊤k−1F (xk)

min{µ∥dk−1∥∥yk−1∥, ∥F (xk−1)∥2}
,

where µ > 0, the direction defined by (12) reduces to the direction used in [21]. Furthermore, we

have
|βMPRP

k |∥dk−1∥∥yk−1∥
|F (xk)⊤yk−1|

≤
|y⊤k−1F (xk)|

µ∥dk−1∥∥yk−1∥
∥dk−1∥∥yk−1∥
|F (xk)⊤yk−1|

≤ 1

µ
,

i.e., the parameter βPRP
k satisfies (13) with C = 1/µ and r = 0.

(iv) If we set vk = F (xk) and

βk = βMP
k :=

(yk−1 − s̄k−1)
⊤F (xk)

d⊤k−1wk−1
,

where

wk−1 = yk−1 + γ̄s̄k−1, γ̄ > 0, yk−1 = F (zk−1)− F (xk−1), s̄k−1 = zk−1 − xk−1 = αk−1dk−1,
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the direction defined by (12) reduces to the direction used in [22]. Furthermore, by the proof of

Theorem 3.1 in [22], we have

|βMP
k | < (L+ 1)∥F (xk)∥

γ̄∥dk−1∥
,

thus
|βMP

k |∥dk−1∥∥F (xk)∥
∥F (xk)∥2

≤ L+ 1

γ̄
,

where the second inequality comes from (16), then the parameter βk satisfies (13) with C = (L+1)/γ̄

and r = 0.

(v) If we set vk = F (xk) and βk satisfies

|βk| < v
∥F (xk)∥
∥dk−1∥

,

where v > 0, the direction defined by (12) reduces to the directions used in [27, 28]. Furthermore,

we have
|βk|∥dk−1∥∥F (xk)∥

∥F (xk)∥2
≤ v,

where the second inequality comes from (16), then the parameter βk satisfies (13) with C = v and

r = 0.

3 Convergence analysis

In this section, we analyze the convergence properties of the DFCGPM under the Assumption 2.1,

including the global convergence and the convergence rate.

In what follows we assume that ∥F (xk)∥ ̸= 0 for all k, namely, the DFCGPM generates two

infinite sequence {xk} and {zk}. The following lemma indicates that the line search (14) is well

defined.

Lemma 3.1 For each integer k ≥ 0, there exists a nonnegative integer mk satisfying the in-

equality (14).

Proof Obviously, if the Armijo line search (14) is executed, we have ∥F (xk)∥ ≥ ε > 0. Now

we prove the lemma by contradiction. Assume that there exists an integer k0 ≥ 0 such that the

inequality (14) does not hold for any nonnegative integer m, so we have the following inequality

−⟨F (xk0 + βk0ρ
mdk0), dk0⟩ < σβk0ρ

m min{1, ∥F (xk0 + βk0ρ
mdk0)∥}∥dk0∥2, ∀m ≥ 0.

Letting m → +∞ on both sides of the above inequality and using the continuity of the mapping

F (x), we get

−⟨F (xk0), dk0⟩ ≤ 0.

This together with the inequality (4) gives ∥F (xk0)∥ = 0, which contradicts the fact ∥F (xk0)∥ ≥ ε.

This completes the proof.
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The following lemma provides a positive lower bound of the step size αk for all k ≥ 0.

Lemma 3.2 Suppose that Assumption 2.1 holds. Let the sequence {xk} be generated by the

DFCGPM. Then, for all k ≥ 0, we have

αk ≥ min

{
β,

ρ∥F (xk)∥2

(L+ σmin{1, ∥F (xk + αkρ−1dk)∥})∥dk∥2

}
. (18)

Proof According to principle of the Armijo line search, if αk ̸= β, the positive number α′
k = αk/ρ

does not satisfy the inequality (14), so we have the following inequality

−⟨F (xk + α′
kdk), dk⟩ < σα′

k min{1, ∥F (xk + α′
kdk)∥}∥dk∥2.

By Assumption 2.1, (4) and (13), we get

∥F (xk)∥2 = −F (xk)
⊤dk

= ⟨F (xk + α′
kdk)− F (xk), dk⟩ − ⟨F (xk + α′

kdk), dk⟩

≤ Lα′
k∥dk∥2 + σα′

k∥F (xk + α′
kdk)∥∥dk∥2

= (L+ σmin{1, ∥F (xk + αkρ
−1dk)∥})αkρ

−1∥dk∥2,

which implies the inequality (18). This completes the proof.

The following lemma is motivated by [33]. For completeness, we give its detail proof.

Lemma 3.3 Let the sequences {xk} and {zk} be generated by the DFCGPM. Then, for any

x∗ ∈ X ∗, there exists a constant c1 > 0 such that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − c1∥xk − zk∥4, (19)

and

lim
k→∞

αk∥dk∥ = 0. (20)

Furthermore, both {xk} and {zk} are bounded.

Proof From the line search (14), it follows that

⟨F (zk), xk − zk⟩ = −αk⟨F (zk), dk⟩ ≥ σmin{1, ∥F (zk)∥}α2
k∥dk∥2 = σmin{1, ∥F (zk)∥}∥xk − zk∥2.

(21)

Since x∗ ∈ X ∗, xk ∈ X and the mapping F (x) is monotone, we get

⟨F (zk), zk − x∗⟩ ≥ ⟨F (x∗), zk − x∗⟩ = 0.

So

⟨F (zk), zk − xk⟩ ≥ ⟨F (zk), x
∗ − xk⟩. (22)
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Then, by (5), (15), (21) and (22), it holds that

∥xk+1 − x∗∥2

≤ ∥xk − γξkF (zk)− x∗∥2

= ∥xk − x∗∥2 − 2γξk⟨F (zk), xk − x∗⟩+ γ2ξ2k∥F (zk)∥2

≤ ∥xk − x∗∥2 − 2γξk⟨F (zk), xk − zk⟩+ γ2ξ2k∥F (zk)∥2

= ∥xk − x∗∥2 − γ(2− γ)
⟨F (zk), xk − zk⟩2

∥F (zk)∥2

≤ ∥xk − x∗∥2 − γ(2− γ)σ2 min{1, ∥F (zk)∥}2
∥xk − zk∥4

∥F (zk)∥2
,

(23)

which implies that the sequence {∥xk − x∗∥} is decreasing and convergent, and thus the sequence

{xk} is bounded, i.e., there exists M1 > 0, such that ∥F (xk)∥ ≤ M1 for all k ≥ 0. If ∥F (zk)∥ ≤ 1,

the inequality (19) holds with c1 = γ(2− γ)σ2. If ∥F (zk)∥ > 1, from (21), it follows that

⟨F (zk), xk − zk⟩ ≥ σ∥xk − zk∥2.

Then, from the Cauchy-Schwartz inequality, the monotonicity of F (x) and the above inequality, we

have

∥F (xk)∥ ≥ ⟨F (xk), xk − zk⟩
∥xk − zk∥

≥ ⟨F (zk), xk − zk⟩
∥xk − zk∥

≥ σ∥xk − zk∥.

This and the boundness of {F (xk)} implies that the sequence {zk} is boundness, and the sequence

{F (zk)} is also boundness, i.e., there exists a constant M2 > 0, such that ∥F (zk)∥ ≤ M2 for all

k ≥ 0. Then, by (23), the inequality (19) holds with c1 = γ(2− γ)σ2/M2
2 .

Furthermore, from (19), it follows that

c1

∞∑
k=0

∥xk − zk∥4 ≤
∞∑
k=0

(∥xk − x∗∥2 − ∥xk+1 − x∗∥2) = ∥x0 − x∗∥2 < +∞.

Thus,

lim
k→∞

αk∥dk∥ = lim
k→∞

∥xk − zk∥ = 0,

which together with the boundness of the sequence {xk} implies that the sequence {zk} is also

bounded. This completes the proof.

Based on the above two lemmas, we now are ready to establish the global convergence of the

DFCGPM.

Theorem 3.1 Let {xk} be the sequence generated by the DFCGPM. Then,

lim
k→∞

inf ∥F (xk)∥ = 0. (24)

Furthermore, the sequence {xk} converges to a solution of problem (1).

Proof We prove the conclusion (24) by using reduction to absurdity. Suppose that (24) doesn’t

hold. Then, there exists a constant ε0 > 0 such that

∥F (xk)∥ ≥ ε0, ∀k ≥ 0.
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By (16), it follows that

∥dk∥ ≥ ∥F (xk)∥ ≥ ε0, ∀k ≥ 0.

This together with (20) implies that

lim
k→∞

αk = 0. (25)

On the other hand, by (20), the boundness of the sequence {xk} and the continuity of F (x), there

exists M3 > 0, such that

∥F (xk + αkρ
−1dk)∥ ≤ M3, ∀k ≥ 0. (26)

Then by the inequality (17), it holds that

∥dk∥ ≤
(
1 +

2C

εr0

)
∥F (xk)∥.

The above two inequalities together with (18) implies that

αk ≥ min

{
β,

ρε2r0
(L+ σmin{1,M3})(εr0 + 2C)2

}
> 0, ∀k ≥ 0,

which contradicts (25). Therefore the conclusion (24) holds. Therefore, there exists an infinite index

set K ⊆ {0, 1, 2, . . .} such that

lim
k→∞,k∈K

∥F (xk)∥ = 0.

Since the sequence {xk} is bounded, it has at least one cluster, saying x̄, and without lose of

generality, we assume that the subsequences {xk : k ∈ K} converges to x̄. By the continuity of the

mapping F (x), it follows that

∥F (x̄)∥ = 0,

which indicates that x̄ is a solution of problem (1). So, setting x∗ = x̄ in (19), we immediately have

∥xk+1 − x̄∥ ≤ ∥xk − x̄∥, ∀k ≥ 0.

Consequently, we obtain the whose sequence {xk} converging to x̄. This completes the proof.

In the remainder of this section, we are going to analyze the convergence rate of the DFCGPM

with r = 0, which needs the following assumption except Assumption 2.1.

Assumption 3.1. For any x∗ ∈ X ∗, there exist two positive constants c2 and c3 such that

c2dist(x,X ∗) ≤ ∥F (x)∥, ∀x ∈ N(x∗, c3), (27)

where dist(x,X ∗) denotes the distance from x to the solution set X ∗, and

N(x∗, c3) = {x ∈ Rn|∥x− x∗∥ ≤ c3}.

The following lemma is adapted from Lemma 6 in Chapter 2 of [34], which can help us establish

the convergence rate of the DFCGPM with r = 0.

11



Lemma 3.4 Let uk > 0 and let

uk+1 ≤ uk − au2
k, a ≥ 0.

Then

uk ≤ u0

1 + aku0
.

Lemma 3.5 Suppose that Assumption 2.1 and Assumption 3.1 hold. Then there exists a

constant c4 > 0 such that

αk ≥ c4, ∀k ≥ 0. (28)

Proof Since r = 0, by setting

c4 = min

{
β,

ρ

(L+ σmin{1,M3})(1 + 2C)2

}
,

the proof follows immediately from the results (17), (18) and (26). This completes the proof.

The following theorem indicates that the sequence {dist(xk,X ∗)} has the O(1/
√
k) convergence

rate.

Theorem 3.2 Suppose that Assumption 2.1 and Assumption 3.1 hold. Then there is a constant

ω1 > 0 such that for sufficiently large k, we have

dist(xk,X ∗) ≤ 1√
ω1k + dist−2(x0,X ∗)

.

Proof From Theorem 3.1, we assume that xk → x̄ ∈ X ∗ as k → ∞. Thus, from the continuity

of the mapping F (x), it holds that

lim
k→∞

F (xk) = F (x̄) = 0.

Then, from (16), (17) and r = 0, we get

lim
k→∞

dk = 0.

So,

lim
k→∞

F (zk) = lim
k→∞

F (xk + αkdk) = 0.

Therefore, for sufficiently large k, min{1, F (zk)} = F (zk). It follows from (19) that

∥xk+1 − x̄k∥2 ≤ ∥xk − x̄k∥2 − c1∥xk − zk∥4. (29)

Now, let us deal with the last term of (29). Let x̄k ∈ X ∗ be the closest solution to xk. Namely,

∥xk − x̄k∥ = dist(xk,X ∗). (30)

It follows from (16), (27) and (28) that

∥xk − zk∥ = αk∥dk∥ ≥ αk∥F (xk)∥ ≥ c2c4dist(xk,X ∗).
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Substituting the above inequality into (29), we have

dist2(xk+1,X ∗)

≤ ∥xk+1 − x̄k∥2

≤ dist2(xk,X ∗)− c1c
4
2c

4
4dist

4(xk,X ∗).

Then, let ω1 = c1c
4
2c

4
4, and by Lemma 3.4, we get

dist(xk,X ∗) ≤ dist(x0,X ∗)√
1 + ω1kdist

2(x0,X ∗)
=

1√
ω1k + dist−2(x0,X ∗)

.

The proof is completed.

Now, let us analyze the O(1/
√
k) convergence rate of the sequence {xk}, which needs the fol-

lowing assumption except Assumption 2.1 and Assumption 3.1.

Assumption 3.2 For any x∗ ∈ X ∗, there exists a constant c3 > 0 such that the mapping F (x)

is strongly monotone with modulus µ > 0 on N(x∗, c3), i.e.,

⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2, ∀x, y ∈ N(x∗, c3). (31)

Theorem 3.3 Suppose that Assumption 2.1, Assumption 3.1 and Assumption 3.2 hold. Then

there is a constant ω2 > 0 such that for sufficiently large k, we have

∥xk − x̄∥ ≤ 1√
ω2k + ∥x0 − x̄∥−2

,

where x̄ ∈ X ∗ is the limit of the sequence {xk}.
Proof Since x̄ ∈ X ∗, it follows from (19) that

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − c1∥xk − zk∥4. (32)

For sufficiently large k, it follows from (31) that

∥F (xk)∥ = ∥F (xk)− F (x̄)∥ ≥ µ∥xk − x̄∥.

This together with (16), (28) implies that

∥xk − zk∥ = αk∥dk∥ ≥ c4∥F (xk)∥ ≥ µc4∥xk − x̄∥.

Combining the above inequality with (32) gives

∥xk+1 − x̄∥2 ≤ ∥xk − x̄∥2 − c1µ
4c44∥xk − x̄∥4,

Then, let ω2 = c1µ
4c44, and by Lemma 3.4 again, we get

∥xk − x̄∥ ≤ ∥x0 − x̄∥√
1 + ω2k∥x0 − x̄∥2

=
1√

ω2k + ∥x0 − x̄∥−2
.

The proof is completed.

13



4 Numerical results

This section reports some numerical results to evaluate the performance of the proposed method on

the least absolute shrinkage and selection operator (denoted by LASSO) problem [35], which can be

formulated as an ℓ1-norm minimization problem:

min
x

1

2
∥Ax− b∥2 + ρ∥x∥1, (33)

where x ∈ Rn, b ∈ Rm, A ∈ Rm×n, and ρ is a nonnegative parameter. In the following, the term

1
2∥Ax− b∥2 is denoted by f(x). For i = 1, 2, . . . , n, the optimality conditions of problem (33) is

∇if(x) + ρsign(xi) = 0, |xi| > 0,

|∇if(x)| ≤ ρ, |xi| = 0,

where sign(t) is the subdifferential of the absolute value function |t| given by the signum function,

that is

∂|t| = sign(t) :=


{−1}, if t < 0,

[−1, 1], if t = 0,

{1}, if t > 0.

Then, the optimality conditions of problem (33) can be further written as a system of nonsmooth

equations as follows [36]:

Hτ (x) = 0, (34)

where Hτ = (Hτ
1 ,H

τ
2 , . . . ,H

τ
n)

⊤ : Rn → Rn, and

Hτ
i (x) = max{τ(∇if(x)− ρ),min{xi, τ(∇if(x) + ρ)}},

and τ ∈ (0, τ∗] is a constant, τ∗ = mini{1/Dii} and Dii is the ith diagonal element of A⊤A. Note

that, Xiao et al. [4] also proposed a nonsmooth equation-based reformulation of problem (33), whose

dimension is twice of the dimension of the nonsmooth equations (34).

In what follows, we will perform a sparse signal recovery experiment to demonstrate the efficiency

of the DFCGPM, and give some comparisons with the related methods, including the spectral

gradient projection method in [12] (denoted by SGPM) and the conjugate gradient method in [4]

(denoted by CGM). The parameters in the three tested methods are listed as follows:

SGPM: r = 10, ρ = 0.35, σ = 0.01, β = 1.

CGM: ρ = 0.35, σ = 0.01, β = 1.

DFCGPM: ρ = 0.35, σ = 0.01, β = 1, γ = 1.9, vk = yk−1 − s̄k−1, τ = τ∗ and

βk = βMP
k :=

(yk−1 − s̄k−1)
⊤F (xk)

d⊤k−1wk−1
,
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with

wk−1 = yk−1 + γ̄s̄k−1, γ̄ > 0, yk−1 = F (zk−1)− F (xk−1), s̄k−1 = zk−1 − xk−1 = αk−1dk−1.

Therefore, the direction dk is defined by

dk =

 −F (xk), if k = 0,

−F (xk) + βMP
k dk−1 − F (xk)

⊤dk−1

d⊤
k−1wk−1

(yk−1 − s̄k−1), if k ≥ 1.

Furthermore, the vector vk and the parameter βk satisfy the condition (13). In fact, it follows from

Assumption 2.1 and the inequality (3.6) in [22] that

|βMP
k |∥dk−1∥∥yk−1 − s̄k−1∥
|F (xk)⊤(yk−1 − s̄k−1)|

=
∥dk−1∥∥yk−1 − s̄k−1∥

|d⊤k−1wk−1|
≤ ∥dk−1∥∥yk−1 − s̄k−1∥

γ̄αk−1∥dk−1∥2
≤ ∥yk−1∥+ ∥s̄k−1∥

γ̄αk−1∥dk−1∥
≤ L∥s̄k−1∥+ ∥s̄k−1∥

γ̄∥s̄k−1∥
=

L+ 1

γ̄
.

In the experiment, we set γ̄ = 10. We stop the iteration if the following condition

∥Hτ (xk)∥ ≤ 10−6 or ∥Hτ (zk)∥ ≤ 10−6

is satisfied or the number of iterations exceeds 1000. We consider a typical LASSO scenario and

generate the synthetic data of problem (33) in the same way as [37]. More specifically, the original

signal x̄ ∈ Rn contains k randomly placed ±1 spikes. The matrix A ∈ Rm×n is the Gaussian matrix

whose elements are generated from shape i.i.d. normal distributions N (0, 1) (family randn(m,n)

in Matlab) then orthonormalizing the rows. Due to the storage limitations of PC, we test a small

size signal with n = 212,m = 211, and the original contains k = 120, 140, 160 randomly non-zero

elements. The restoration accuracy is measured by means of the mean-squared-error (MSE)= 1
n∥x̄−

x∗∥2, where x∗ is the restored signal. The process is started with the initial signal x0 = A⊤b, and

the parameter ρ in problem (33) is set as 0.01∥b∥∞.

All the numerical experiments are performed on an Thinkpad laptop with Intel Core 2 CPU 2.10

GHZ and RAM 4.00 GM. All the programs are written in Matlab R2014a. In the experiment, we

consider the following two cases.

Case 1 The vector b = Ax̄, so no noise is assumed.

Case 2 The vector b = Ax̄+ w with white Gaussian noise of variance 10−4.

Table 1 and Table 2 give the mean squared error of the SGPM of Yu et al. [12], the CGM of

Xiao [4], and the DFCGPM as well as the number of iterations and the execution times.

From the numerical results in Table 1 and Table 2, we see that the DFCGPM is less time

consuming that those of the SGPM [12] and the CGM [4], and thus it performs better than the

latter two methods, which implies that it is computationally efficient for solving the LASSO problem.

To better understanding the performance of the three tested methods, the original signal, ob-

served signal and recovered signals by the three tested methods are plotted in Figure 1 and Figure

2 for problem (33) with free noise or white noise.
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Figure 1: Problem (33) with k = 120,m = 2048, n = 4096 and free noise.
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Figure 2: Problem (33) with k = 120,m = 2048, n = 4096 and white noise.
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Table 1: Numerical results of problem (33) with m = 2048, n = 4096 and free noise

k-sparse signal Methods MSE Iter Times (s)

k=120 SGPM 3.7268e-05 191 4.18

CGM 3.7268e-05 148 7.39

DFCGPM 3.7268e-05 83 2.57

k=140 SGPM 4.4714e-05 213 4.80

CGM 4.4714e-05 157 7.01

DFCGPM 4.4714e-05 89 2.65

k=160 SGPM 4.9841e-05 208 5.51

CGM 4.9841e-05 158 8.68

DFCGPM 4.9841e-05 89 3.15

From the last three subplots in Figure 1 and Figure 2, the three tested methods all successfully

recover the original signal. To further observe the convergence of the three tested methods, in Figure

3 and Figure 4 we visualize the evolution of convergence when the three methods are applied to

solve problem (33).

From Figure 3 and Figure 4, we observe that the DFCGPM converges faster than those of the

SGPM [12] and the CGM [4] before they reach the stable stage.

5 Conclusion

In this paper, we have proposed a class of derivative-free CG projection method for nonsmooth

equations with convex constraints. Under the condition that the underlying mapping is monotone

and Lipschitz continuous, we have established its global convergence, and under additional local

error bound assumption, we have proved its convergence rate. Preliminary numerical results about

the LASSO problem indicate that the proposed method is more efficient than some state-of-the-art

solvers.
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Figure 3: MSE of times for problem (33) with k = 120,m = 2048, n = 4096 and free noise.
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Figure 4: MSE of times for problem (33) with k = 120,m = 2048, n = 4096 and white noise.
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Table 2: Numerical results of problem (33) with m = 2048, n = 4096 and white noise

k-sparse signal Methods MSE Iter Times (s)

k=120 SGPM 9.3172e-05 357 8.05

CGM 9.3172e-05 208 14.18

DFCGPM 9.3172e-05 149 4.26

k=140 SGPM 1.0448e-04 418 9.95

CGM 1.0448e-04 309 34.36

DFCGPM 1.0448e-04 171 5.47

k=160 SGPM 1.0229e-04 415 11.09

CGM 1.0229e-04 283 30.29

DFCGPM 1.0229e-04 169 6.32
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