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ABSTRACT

We analyze a problem of dynamic logistics planning given uncertain demands for a multi-location

production-inventory system with transportable modular production capacity. In such systems,

production modules provide capacity, and can be moved from one location to another to pro-

duce stock and satisfy demand. We formulate a dynamic programming model for a planning

problem that considers production and inventory decisions, and develop suboptimal lookahead

and rollout policies that use value function approximations based on geographic decomposition.

Mixed-integer programming formulations are provided for several single-period optimization

problems that define these policies. These models generalize a formulation for the single-period

newsvendor problem, and in some cases the feasible region polyhedra contain only integer ex-

treme points allowing efficient solution computation. A computational study with stationary

demand distributions, which should benefit least from mobile capacity, provides an analysis of

the effectiveness of these policies and the value that mobile production capacity provides. For

problems with 20 production locations, the best suboptimal policies produce on average 13%

savings over fixed capacity allocation policies when the costs of module movement, holding, and

backordering are accounted for. Greater savings result when the number of locations increases.

KEYWORDS

mobile modular production, joint inventory control and capacity logistics, approximate

dynamic programming, rollout heuristic

1. Introduction

Mobile manufacturing capacity is an emerging innovation in the chemical process industry and

in the additive manufacturing industry. E-commerce giant Amazon has recently been granted a
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patent for mobile additive manufacturing in a make-to-order setting (Geek Wire, 2018). Bayer,

a pharmaceutical and agricultural chemicals company, has developed a containerized production

unit that operates an intensified continuous batch process for fertilizer production, and has shown

that mobile production units require lower setup costs than fixed facilities (F3, 2014). Pfizer

is conducting a large-scale collaborative research project on miniaturized modular production

technology for oral drugs (Pfizer, 2015). Novartis has developed a refrigerator-sized on-demand

pharmacy that can produce common drugs (Novartis, 2016). Supply chain systems that rely on

mobile and modular production capacity may have many benefits, including:

• a smaller total capacity investment due capacity sharing (via production module move-

ment);

• a faster response to time-dependent demands for time-sensitive or perishable products by

producing locally;

• an alternative strategy for handling uncertain spatial demand variation by relocating ca-

pacity inexpensively; and

• an ability to conduct reconnaissance of new markets for products using recoverable pro-

duction capacity.

To develop a better understanding of supply chain systems that rely on mobile and modular

production capacity, this paper explores a dynamic production-inventory planning problem in

this emerging context. Suppose that product demands arise in a number of locations, and that

each location can host one or more transportable production units referred to hereafter as mod-

ules. A fleet of production modules is available and is deployed across the system. The module

counts at each location will be referred to as the capacity configuration, and this configuration

can be altered by moving modules. We introduce the mobile modular production and inventory

problem (MMPIP) which seeks to determine an optimal policy for managing capacity configu-

rations, production, and inventory over a finite planning horizon to serve uncertain demands.

In addition to the typical trade-off between inventory and shortage costs, there exist trade-offs

with the cost of relocating modules.

We define an initial base problem in this study, and for simplicity assume that demand in

one location cannot be satisfied by production in another location either directly or via trans-

shipment. This modeling choice was made to focus squarely on capacity movement. There also

may be some supply chain systems where production must be local. We focus on a make-to-stock
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inventory system, and note that in one of the important applications in chemical manufactur-

ing that holding inventory is typical and that the time required for production is significantly

larger than the time taken for demand fulfillment. Finally, we study cases where location-wise

demands are stationary and independent. Such settings should provide the least value for mobile

production capacity, but are useful to demonstrate the primary modeling ideas.

Successful operation of a production system with transportable, modular capacity depends

on other important considerations that will not be specifically addressed here. For example,

effective inbound logistics systems for the inputs to production must be available in each location,

and must be rapidly scalable with allocated production capacity. Similarly, outbound distribution

systems must also accommodate potentially changing production rates. Efficient movement and

rapid setup and breakdown of the mobile production modules is also necessary for such systems

to be effective.

We organize this paper into the following sections. Section 2 provides a formal problem

definition and a formulation using a Markov decision process (MDP), and Section 3 places the

research in the context of related literature. Section 4 presents bounds on the optimal cost

function. In Section 5, we propose various heuristics for finding sub-optimal model solutions.

Section 6 provides a numerical study of computational experiments using the heuristics on three

different sets of instances. We summarize our findings and conclude the paper in Section 7.

2. Problem Description

Consider a production-inventory system facing uncertain demands at a set of L locations, op-

erated over a finite time horizon. Each location can produce and store inventory of product to

meet its demand over time, with unmet demand backlogged. At any time, a fleet of homogeneous

production modules is available and distributed across the system, with some units installed in

place and the others moving between locations. Production capacity at each location is limited

by the number of production modules present. The objective is to determine module movement,

production, and inventory decisions over time to minimize total system costs.

Consider a decision model with a planning horizon T discretized into T − 1 consecutive,

equal-duration decision periods, {1, . . . , T − 1}. Each location i must satisfy or backlog demand

Di(t) during epoch t. Let Y (t) be the total number of production modules available in the fleet

at time t, and suppose that each module can produce a maximum of G units of product per time

period. Finally, let αij be the time that a module is unable to produce when moved from location

i to j, measured in fractional periods. Then, in each period two types of primary decisions are
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made: module movement decisions to relocate capacity, and production decisions to use installed

modules at each location. When combined with observed demand, production decisions imply

changes to inventory positions at locations.

Our models assume the following sequence of events in each period, as depicted in Figure 1.

First, module movement decisions are determined and executed, yielding a new capacity config-

uration. Next, production decisions are determined and executed, yielding a post-replenishment

inventory state for each location. Finally, uncertain demands are observed and the inventory

state is updated after filling or backlogging demands. Costs are incurred for module movement,

production, inventory holding, and demand backlogging.

Figure 1. Sequence of events within a period

In this paper, we define a simple initial problem that we denote the mobile modular pro-

duction and inventory problem (MMPIP). The MMPIP specifically models systems of the type

introduced above with the following additional assumptions:

• Location demands are modeled as discrete random variables, and are independent and

stationary across locations and time periods;

• Total available capacity is constant throughout the planning horizon, such that Y (t) = Y

for all t;

• Module movement costs are time-invariant, linear, and separable in the number of modules

moved between location pairs;

• Module movements require no movement or setup time such that αij = 0 for all pairs of
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locations i and j, and thus modules moved during period t are immediately available for

production at a new location in that period;

• Production costs are linear in the number of units produced, and per period inventory

holding costs and backordering costs are linear in the number of units; and

• Production decisions executed during period t create new items available for immediate

use in period t.

In the next subsection, we present a detailed formulation for the MMPIP.

2.1. Formulation

We formulate the MMPIP as a Markov decision process (MDP) for a finite horizon with T

periods. Decisions are made in the first T − 1 epochs, T = {1, . . . , T − 1}, and epoch T models

the end state. At every decision epoch t ∈ T , the state vector is comprised of 2L components:

the number of modules, ui(t), before modules are moved and the inventory position, si(t), before

production at each location i. The action vector at t is comprised of L2 components: the number

of modules to move, ∆M
ij (t), from location i to location j 6= i and the production quantity, qi(t),

at each location i. Let Di(t) be the discrete demand random variable for location i in period t,

where stationarity implies that the probability mass function for Di(t) is given by Pi for all time

periods t.

Module movement decisions outbound from location i in period t are limited by its inventory

of modules, ui(t). The production decision at each location i in period t is limited by the capacity

provided by the post-movement module state, ui(t + 1). Note that this coupling of production

decisions to module movement decisions defines the extension that this model proposes to single-

location inventory control models.

Costs are incurred for actions as follows. Module movement costs are linear in the number

of modules moved between locations i and j, and given by KM
ij ∆M

ij (t). Production and inven-

tory costs are separable by location i, and follow the usual form found in base stock models.

Production costs are linear, and given by ciqi(t). Holding costs accrue for each unit of positive

inventory position at the end of period t, hi(si(t) + qi(t) − Di(t))
+ where (y)+ ≡ max(y, 0).

Similarly, backorder costs accrue for each unit of negative inventory position, and are given by

bi(Di(t)−si(t)−qi(t))+. We assume no costs associated with any state in the final horizon period

T .

If we let ξ(t) = ({ui(t)}, {si(t)}) represent the complete state variable tuple, we can formu-

late the MDP as follows:
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Vt(ξ(t)) = min
∆M
ij (t):∑

j ∆M
ij (t)≤ui(t)

min
∀i qi(t):

qi(t)≤Gui(t+1)

ED
[∑

i

{∑
j

KM
ij ∆M

ij (t)

+ciqi(t) + hi(si(t) + qi(t)−Di(t))
+

+bi(Di(t)− si(t)− qi(t))+ + Vt+1 (ξ(t+ 1))

}]
, ∀ ξ(t), ∀ t ∈ T (1)

where ξ(t) = (s1(t), s2(t), ..., sL(t), u1(t), u2(t), ..., uL(t)), ∀ t ∈ T

si(t+ 1) = si(t) + qi(t)−Di(t), ∀ i ∈ {1, . . . , L}, ∀ t ∈ T

ui(t+ 1) = ui(t)−
∑
j

∆M
ij (t) +

∑
k

∆M
ki (t), ∀ i ∈ {1, . . . , L}, ∀ t ∈ T∑

i

ui(1) = Y

VT (ξ(T )) = 0 ∀ ξ(T ). (2)

where Vt(ξ(t)) is the expected cost-to-go function of MMPIP from decision epoch t to the end

of the horizon. Extending this formulation and the solution approaches presented in this paper

to include a per-period discount rate is straightforward.

This MDP formulation uses a state space whose cardinality is exponential in the number

of locations L. The space of possible movement decisions each period is similarly large, and thus

finding exact optimal solutions to this model will not be possible except for the smallest instances.

We therefore will develop heuristic solution methods for identifying high-quality suboptimal

designs.

3. Related Literature

The emergence of reconfigurable, mobile, decentralized/distributed manufacturing units has gen-

erated significant interest in the manufacturing/process industry in recent years (Bi et al., 2008;

Clausen et al., 2015; Kessler and Bruell, 2015; Koren, 2010; Lier and Grünewald, 2011; Lier et al.,

2013,1; Rogers and Bottaci, 1997; Wörsdörfer and Lier, 2017; Wörsdörfer et al., 2017). Reconfig-

urable or mobile modular production systems are characterized by transformability : scalability,

adaptability (modularity, universality, compatibility), and mobility (Lier and Grünewald, 2011;

Wörsdörfer et al., 2017). Marcotte et al. and Marcotte and Montreuil (2016) present mathemat-

ical models for make-to-stock and make-to-order scenarios of hyperconnected mobile production.

The MMPIP model considers both dynamic capacity allocation and also joint inventory

management across multiple locations. When demands are deterministic, dynamic capacity al-

location can be viewed as a special case of the dynamic facility location problem (DFLP).

The DFLP is the problem of determining locations and opening schedules for multiple facilities
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(equivalently, units of capacity) over the planning horizon (Jena et al., 2015). Wörsdörfer and

Lier (2017) model a special case of the MMPIP, a mobile modular production-inventory problem

with deterministic demands, as a DFLP. A DFLP with modular capacities is presented in (Jena

et al., 2015), which provides a good review of DFLP literature. Shifting a module in the MMPIP

is equivalent to opening a facility at the new location and closing one at the old location in the

DFLP. Ghiani et al. (2002) present a capacitated DFLP with multiple facilities in the same site

for which Melo et al. (2005) allow transfer of capacity between sites. The mobile facility rout-

ing problem with deterministic demands (Halper and Raghavan, 2011) is a DFLP with mobile

facilities with duration-based capacity.

The feature of managing mobile capacity and controlling inventory under uncertain de-

mands over all the locations is missing in the DFLP literature. In order to manage the mobile

modular production-inventory system effectively, it is necessary to consider inventory and ca-

pacity management simultaneously. Hence, the MMPIP cannot be treated as a special case of

existing DFLP models.

In the context of joint capacity and inventory decision-making, Angelus and Porteus (2002)

study a make-to-stock production system with the ability to buy and sell capacity and prove

that a target interval policy is optimal in two cases (with and without carryover of inventory).

Simultaneously planning inventory actions and capacity change decisions at a single location

is also studied in (Bradley and Glynn, 2002; Rajagopalan and Swaminathan, 2001). Qiu and

Sharkey (2013) jointly plan the location and inventory of a single facility facing spatially dis-

tributed deterministic demand, in the context of managing a collection of ships that serves as a

military base at sea. Iyer and Jain (2004) analyze priority-based operating rules for a production

inventory system in which two locations with low and high demand variabilities choose to pool

their capacities.

We represent the MMPIP using a Markov decision process (MDP) model which for

realistically-sized problems is computationally intractable. Hence, our focus is on finding good

heuristics that rely on techniques that such as value function approximations (Powell, 2007, Ch.

10) and rollout methods (Goodson et al., 2017). For a rollout heuristic to be effective, the compu-

tation of the guidance mechanism must be tractable (Bertsekas et al., 1997; Ryzhov et al., 2012;

Secomandi, 2001; Tesauro and Galperin, 1996). In the next sections, we will develop tractable

heuristics for the model using these techniques.
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4. Bounds on the Optimal Expected Cost Function

In this section, we develop two lower bounds for the optimal expected cost function of the

MMPIP, specified by (1) and (2). We denote them as the perfect information relaxation (PIR)

and the most flexible system (LB) lower bounding functions respectively. Related to the most

flexible system bound, we also develop an upper bound based on a fixed module configuration.

4.1. Perfect Information Relaxation: Lower Bound (PIR)

The structure of the recursion in (1) ensures that decisions made in time period t do not anticipate

the outcomes of Di(τ) for τ ≥ t. A common approach for developing a lower bound for Vt(ξ(t)) is

to relax this condition, and to solve a deterministic planning problem for each possible demand

trajectory defined by outcomes of ({Di(t)}, {Di(t+ 1)}, ..., {Di(T − 1)}). A lower bound on the

optimal expected cost is then given by the average of the resultant optimal objective functions

for the demand trajectories considered. The deterministic planning problems are solved by value

iteration for each trajectory, solving the deterministic case of (1) and (2) with the expectation

removed.

Since the number of demand trajectories may be very large for longer horizon problems

with many production locations, this PIR bound can be approximated by computing an average

over a Monte Carlo sample of trajectories. We note that bounds of this type (sometimes also

called a posteriori bounds) are quite common for dynamic programming models, but we have

found that they are weak for MMPIP problem instances. We note that PIR bounds for problems

in which capacity is fixed at locations in advance also tend to be weak. The weakness of PIR

bounds for the MMPIP does lead to a natural conjecture: there may be significant value to move

production modules in response to specific demand trajectories, and therefore solving MMPIP

problems effectively may lead to significant value beyond systems with fixed installed capacity.

Through our computational analysis, we will find later that it is indeed the case.

4.2. Most Flexible System: Lower Bound (LB)

We now present a lower bound for the MMPIP that we have found to be much tighter than

the PIR in computational experiments. A mobile modular production system is highly flexible,

since the capacity configuration can be altered during the time horizon. Module movement costs,

however, mitigate the value of this flexibility. An approach to developing lower bounds, which

we now take, is to assume that production capacity can be allocated to locations immediately

in any period, and without module movement costs, in response to the current vector inventory

state.
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Since lower bounds of this type do not depend on the current capacity configuration, we

specify a lower bounding function Ṽ Lt ({si(t)}), where

Ṽ Lt ({si(t)}) ≤ Vt ({si(t)}, {ui(t)}) ∀ {ui(t)}.

We compute Ṽ Lt recursively using a simpler dynamic program, where we assume that the lowest-

cost capacity configuration can be used for each possible inventory state, as follows:

Ṽ Lt ({si(t)}) = min
{ui(t+1)}∑
i ui(t+1)=Y

min
qi(t)≤Gui(t+1)∀i

ED
∑
i∈I

[
hi(si(t) + qi(t)−Di(t))

+

+bi(Di(t)− si(t)− qi(t))+ + Ṽ Lt+1 ({si(t) + qi(t)−Di(t)})
]
, ∀ t ∈ T ,

Ṽ LT ({si(T )}) = 0∀ {si(T )}.

Note that it remains computationally expensive to compute the bounding function Ṽ Lt in general.

It is more difficult than solving L independent inventory management problems. Since the total

number of modules defines total production capacity, it is necessary in most instances to decide

which locations, given a current inventory state, should be prevented from selecting an optimal

unconstrained production value by restricting their capacities. However, it requires significantly

less computation than solving the MMPIP problem to optimality. Consider solving both prob-

lems by value iteration. The number of capacity configurations possible is O
(
(Y +L)L−1

)
, since

the number of ways to allocate Y modules to L locations is given by
(
Y+L−1
L−1

)
. Thus, at each

epoch, for a given vector inventory state, value iteration for MMPIP requires O
(
(Y + L)L−1

)
times more effort than solving for LB.

4.3. Fixed Capacity System: Upper Bound (UB)

A conventional production system with stationary capacity at all locations can be viewed as a

mobile modular production system where the capacity configuration is fixed for the planning

horizon. Given a fixed capacity configuration, an upper bound on the optimal expected cost given

an initial inventory state can be determined by solving L independent, constrained inventory

management problems. More specifically, let Ṽ F
t ({si(t)}, {ui}) be the optimal cost-to-go function

of the multilocation fixed system with capacity configuration {ui} fixed from t until the end of

the planning horizon, given initial inventory position state {si(t)}. Let V F
i,t(s, C) be the optimal

cost-to-go function of the single location inventory control problem with production capacity C

and initial inventory position s at location i at time epoch t. When there are ui modules at i,
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then C = Gui. To determine this upper bound, we use the following optimality equations:

Ṽ F
t ({si(t)}, {ui}) =

L∑
i=1

V F
i,t(si(t), Gui)

=

L∑
i=1

min
qi(t)≤Gui

ED
[
hi(si(t) + qi(t)−Di(t))

+

+ bi(Di(t)− si(t)− qi(t))+ + V F
i,t((si(t) + qi(t)−Di(t), Gui)

]
∀ {si(t)},∀t ∈ T

Ṽ F
T ({si(T )}, {ui}) =0 ∀ {si(T )}.

We note that the computation of Ṽ F
t (·, {ui}) can be decoupled across locations. Let Q be the

cardinality of the inventory position state space for each location. Given capacity configuration

{ui}, for each location at each epoch computing the cost function above requires O
(
QGui

)
steps, and thus the total computational effort at each epoch is O

(
QGY

)
. Again, this effort is

significantly smaller than the corresponding O
(
QL(Y +L)L−1GY

)
effort required for computing

the optimal value function for MMPIP at each epoch for a given capacity configuration.

If we use this upper bounding approach beginning at the initial time epoch 1, we can

also compute the minimum (UBmin) and the maximum (UBmax) possible expected total cost

of a fixed system, given an initial inventory state of zero at all locations. Define the capacity

configuration that corresponds to UBmin as umin = arg min{ui} Ṽ
F

1 (0, {ui}). Determining UBmin

and umin requires comparing O
(
(Y +L)L−1

)
capacity configurations, or solving a multiple choice

knapsack problem (Ibaraki et al., 1978; Sinha and Zoltners, 1979) as presented below:

min
∑L

i=1

∑Y
y=0 V

F
i,1(0, Gy)ziy

s.t.
∑L

i=1

∑Y
y=0 yziy = Y∑Y

y=0 ziy = 1 ∀ i ∈ {1, . . . , L}

ziy ∈ {0, 1} ∀ i ∈ {1, . . . , L}, y ∈ {0, . . . , Y }

The idea of the knapsack formulation is to add one item for each location, where the size of

the item is its number of assigned modules and the knapsack size is Y . The cost of adding item

iy to the knapsack is the expected cost-to-go at epoch 1 for location i with y modules. In the

multiple choice problem, a set of constraints ensures that exactly one item is chosen from each

class of items (location). We note that the computational effort to solve this integer program in
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practice is much smaller than that required to determine the cost-to-go values for all locations

and capacity levels.

We will see later fixed system configurations beginning at some time period can play the

role of a base heuristic within rollout approaches for determining good (but suboptimal) dynamic

policies for the MMPIP problem. Additionally, fixed system bounds will be used as benchmarks

to assess the value addition created by mobile modular production systems and to evaluate the

performance of heuristics for the MMPIP.

5. Heuristics

Since the MMPIP is characterized by a state space whose size is exponential in the number of

locations, L, and the length of the horizon, T , the model suffers from a curse of dimensional-

ity. Hence, we seek suboptimal policies for the problem constructed using approximate dynamic

programming techniques, such as rollout algorithms and decomposition-based approaches, that

do not require complete characterization of the optimal expected cost function. Following the

terminology presented in Goodson et al. (2017), a one-step rollout algorithm is a value function

approximation approach in which the decision at the current epoch is determined by approxi-

mating the cost-to-go by the expected cost of implementing a base policy for states beginning

in the next epoch. We propose a decomposition-based rollout algorithm, RF, that approximates

the cost-to-go function by assuming that the capacity configuration does not change again after

decisions made in current epoch, and that an optimal inventory control policy is used for future

replenishment decisions given this fixed capacity. Since this rollout can still be computationally

expensive, we also present an alternative one-step lookahead policy, LAF, that approximates

the expected cost of the optimal RF rollout. A one-step lookahead policy is a suboptimal policy

obtained by minimizing the sum of the immediate cost for the current period and an approx-

imation of the cost-to-go function for the remaining horizon (Bertsekas, 2000, Chapter 6). In

addition to these two core heuristics, we also develop additional value function approximation

policies that can be used for special case problem instances with L = 2 locations.

5.1. Myopic Policy (MP)

In a myopic policy, we ignore the cost-to-go in the next epoch, and thus Vt+1({si(t+ 1)}, {ui(t+

1)}) ≈ 0 for all system states. The myopic action in the current epoch can found by solving

an integer linear program (IP) that extends the classic formulation for the discrete demand

distribution newsvendor model. Let the set of demand outcomes from stationary distribution Pi

at every location i be {dki }, where for notational convenience k indexes the outcomes in Ki. Given
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the current state ({si}, {ui}) of module allocation and inventory positions, the IP formulation

(3) is given by:

MMPIP-MP. min

L∑
i=1

 L∑
j=1

KM
ij ∆M

ij +

M∑
k=1

pki (hir
k
i + bio

k
i )


rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}

0 ≤ qi ≤ G

ui −∑
j

∆M
ij +

∑
l

∆M
li

 ∀ i ∈ {1, . . . , L}
∑
j

∆M
ij ≤ ui ∀ i ∈ {1, . . . , L}

qi,∆
M
ij ∈ Z+ ∀ i, j; rki , oki ∈ Z+ ∀ k, ∀ i. (3)

The decision variables are the module movements {∆M
ij }, the replenishment quantities {qi},

and the positive and negative parts of post-decision, post-information inventory position {rki }

and {oki } respectively. MMPIP-MP minimizes the immediate cost of module movement and

inventory holding or backordering. The first two constraints characterize a newsvendor problem.

The third constraint ensures that the post-module movement production capacity is not exceeded

at each location. The last constraint prevents removing more modules than those available at

any location.

The formulation for the single location discrete demand distribution newsvendor model is

proved to be a linear program (Chen et al., 2014). We now present analogous structural results

on the integer program MMPIP-MP to enable increased computational efficiency.

Theorem 5.1. For integer values of G, dki , ui, and si for all k ∈ Ki and i ∈ {1, . . . , L},

(a) the integrality constraints on {oki }, {rki }, and {qi} for all k ∈ Ki, i ∈ {1, . . . , L} in the integer

program MMPIP-MP are redundant.

(b) when capacity per module G = 1, the linear programming relaxation of the integer program

MMPIP-MP has an integral optimal solution.

Proof of Theorem 5.1 is provided in Appendix A.1. Theorem 5.1(a) implies that it is suffi-

cient to impose integrality constraints on the variables {∆M
ij } only. Theorem 5.1(b) presents a

condition, namely G = 1, under which, all the integrality constraints are redundant and thus

the MMPIP-MP can be solved by its linear programming relaxation. This implies fast compute
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times when G = 1 even for relatively large values of L and T .

5.2. Rollout of Fixed Future (RF)

In this rollout heuristic, the base heuristic assumes that beginning in the next period modules will

be fixed at their current locations until the end of the horizon. Thus, this approach approximates

the flexible capacity production system with one in which flexibility is only available for the

current period. We propose integer linear program (4) to determine the optimal one-step decisions

for this rollout, given the current state ({si}, {ui}) of module allocation and inventory positions.

This problem is an extension of the integer program for the myopic single-period action selection

problem.

In (4), the objective is to minimize movement cost, expected inventory cost at all locations,

and the expected optimal fixed future cost. Note that since the capacity state is fixed beginning

in the next period, it is possible to decompose the optimal cost-to-go function by location, and

to only require the local production capacity and inventory state as inputs to the precomputed

functions V F
i,t+1(s, C). Thus, in addition to the {qi} and {{∆M

ij }} decision variables used in

the myopic integer program, binary variables zi(∆
M , q) are specified that take value 1 if ∆M

modules are transferred to location i, and then used in the current period to produce q items

(note that q ≤ G(ui + ∆M ) and that ∆M may be negative). The first two constraints again

are used to compute single-period underage or overage units. The next three constraints ensure

that only one set of module movement and production decisions is made for each location, and

that the module movement variables result in the selected capacity state for each location i. The

formulation is provided here:
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MMPIP-RF. min

L∑
i=1

[ L∑
j=1

KM
ij ∆M

ij +

M∑
k=1

pki {hirki + bio
k
i }

+

L∑
i=1

Y−ui∑
∆M=−ui

G(ui+∆M )∑
x=0

zi(∆
M , q)

∑
k

pki V
F
i,t+1

(
si + q − dki , G(ui + ∆M )

)]
rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}
Y−ui∑

∆M=−ui

G(ui+∆M )∑
q=0

zi(∆
M , q) = 1 ∀ i ∈ {1, . . . , L}

−
∑
j

∆M
ij +

∑
l

∆M
li =

Y−ui∑
∆M=−ui

G(ui+∆M )∑
q=0

∆M zi(∆
M , q) ∀ i ∈ {1, . . . , L}

qi =

Y−ui∑
∆M=−ui

G(ui+∆M )∑
q=0

qzi(∆
M , q) ∀ i ∈ {1, . . . , L}

zi(∆
M , q) ∈ {0, 1}, ∀ q ∈ {0, . . . , G(ui + ∆M )},

∆M ∈ {−ui, . . . , Y − ui}, i ∈ {1, . . . , L}

qi, ∆M
ij ∈ Z+, ∀ i, j ∈ {1, . . . , L}; rki , o

k
i ∈ Z+ ∀ k ∈ Ki,∀ i ∈ {1, . . . , L}. (4)

It should be clear that the integer program (4) includes a large number of binary variables for

larger values of L, Y , and G; the variable count grows at O(GY 2L). Furthermore, before the

formulation can be used, it is necessary to compute the function lookup tables V F
i,t+1(s, C) for

each possible module change ∆M
i ∈ {−ui, . . . , Y − ui} and inventory state s at all locations

using the approach described earlier. We also note that (4) is a potentially useful model when

V F
i,t+1(s, C) is an approximate value function, decoupled by location, developed using any al-

ternative approach and not necessarily limited to the case where these functions represent the

optimal cost-to-go of the single location fixed capacity problem.

5.3. Lookahead with Approximate Fixed Future (LAF)

The complete rollout heuristic RF can be computationally expensive since the integer program

becomes difficult in practice for larger problems. We therefore now develop an approximation of

RF that is more computationally tractable. To do so, we approximate the single location cost

function by the average of two piecewise linear and convex functions. Doing so bypasses the

computationally expensive cost function lookup table modeling required in the RF heuristic.

In this method, at every epoch decisions are made under the assumption that the cost-to-go
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function is approximated by the following expression:

Vt+1({si(t+ 1)}, {ui(t+ 1)}) ≈
(
Ṽ F
t+1({s̄i(t+ 1)}, {ui(t)}) + Ṽ F

t+1({si(t)}, {ui(t+ 1)})
)
/2,

where s̄i(t+ 1) = si(t) + qi(t)−
[
E[Di(t)]

]
and

[
a
]

rounds a to the nearest integer.

We can model this cost approximation using the optimal cost-to-go function of the fixed

system by leveraging the structural properties which establish that cost-to-go function of a

capacitated single location inventory control problem is convex in inventory position for a fixed

capacity level and convex in capacity level for a fixed inventory position (Aviv and Federgruen,

1997). This result implies that V F
i,t(si, Gi) is piecewise linear (due to discrete inventory state

space) and convex in si for a fixed Gi. Thus, it can be represented as max{γijsi + γ̂ij : (γij , γ̂
i
j) ∈

Γit(ui)}, ∀i ∈ {1, . . . , L}. Similarly, for a fixed si, the function V F
i,t(si, Gi) is piecewise linear and

convex in ui (since Gi = Gui) that can be expressed as max{θijui + θ̂ij : (θij , θ̂
i
j) ∈ Θi

t(si)}, ∀i ∈

{1, . . . , L}.

This approximation is again implemented by modifying the integer program (3), as follows:

MMPIP-LAF. min

L∑
i=1

 L∑
j=1

KM
ij ∆M

ij +

M∑
k=1

pki {hirki + bio
k
i }+ (ζi + ηi)/2


ζi ≥ γij(si + qi −

[
E[Di(t)]

]
) + γ̂ij , ∀ (γij , γ̂

i
j) ∈ Γit+1(ui), i ∈ {1, . . . , L}

ηi ≥ θijyi + θ̂ij , ∀ (θij , θ̂
i
j) ∈ Θi

t+1(si), i ∈ {1, . . . , L}

rki ≥ si + qi − dki , ∀ k ∈ Ki, i ∈ {1, . . . , L}

oki ≥ dki − si − qi, ∀ k ∈ Ki, i ∈ {1, . . . , L}

0 ≤ qi ≤ Gyi ∀ i ∈ {1, . . . , L}

ui −
∑
j

∆M
ij +

∑
l

∆M
li = yi ∀ i ∈ {1, . . . , L}

qi, yi,∆
M
ij ∈ Z+, ∀ i, j; rki , oki ∈ Z+ ∀ k ∈ Ki,∀ i ∈ {1, . . . , L};

ηi, ζi ∈ R ∀ i ∈ {1, . . . , L}. (5)

In addition to the decision variables described in the implementation of MP, ζi and ηi represent

the single location future costs at i expressed as a function of next period’s inventory when

capacity is held at the initial level of Gui, and as a function of new capacity when inventory is

held at the initial level of si respectively. The number of integer variables required to represent

the future cost-to-go is significantly lower by O(GY 2L) in MIP (5) when compared with IP (4).
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This reduces the computational effort required to solve this MIP dramatically. Furthermore,

when module capacity G = 1, this MIP reduces to a linear program.

Theorem 5.2. For integer values of G, dki , ui, and si for all k ∈ Ki and i ∈ {1, . . . , L}, when

capacity per module G = 1, the linear programming relaxation of the mixed integer program

MMPIP-LAF has an optimal solution where decision variables q, y, w, r, and o are integral.

Proof of Theorem 5.2 is presented in Appendix A.2.

5.4. L = 2 Heuristics

The suboptimal policies proposed in the prior sections rely on approximating the future value

function with a form that decomposes by location. In this section, we explore suboptimal policies

and solution heuristics that no longer have this feature to understand how much incremental

value may be gained. For computational tractability, we focus on small problem instances with

L = 2 production locations.

5.4.1. Lookahead with Fixed or Purchasable Most Flexible Future (LFP)

The cost function computation of the lower bound LB presented in Section 4.2 is coupled across

locations and has severe computational drawbacks for larger values of L. For fewer locations,

however, it may serve as a useful basis for a heuristic. Since the lower bound assumes that

modules can be moved without cost, we call this case the most flexible future. In this section, we

investigate a value function approximation that blends this lower bound with the fixed future

upper bound a suboptimal lookahead policy.

We denote the blending heuristic LFP, denoting a lookahead with a fixed future capacity

or a “purchasable” most flexible future capacity. The LFP assumes that the decision-maker

chooses the best action at the current decision epoch by assuming that she has a choice between

(i) keeping capacity fixed for the remainder of the planning horizon and (ii) making a one-time

payment now for an unlimited number of future module movements. That is, the cost-to-go

function in Eq. 1 is approximated as follows:

Vt+1({si(t+ 1)}, {ui(t+ 1)}) ≈ min

{
Ṽ F
t+1({si(t+ 1)}, {ui(t+ 1)}), κF (t) + Ṽ Lt+1({si(t+ 1)})

}
,

where Ṽ F
t+1 as usual can be decomposed into

∑L
i=1 V

F
i,t+1(si(t+ 1), ui(t+ 1)).

To use this approach, it is necessary to define a mobility purchase cost κF (t). We use the

following definition, which works well in practice:

κF (t) =
1

2
K
M

(T − t)P
(
{D1 = dmax

1 } ∪ {D2 = dmax
2 }

)
, ∀ t ∈ T .
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This value is an approximation of the expected cost of preventing a single period stockout by

moving modules; a decision maker should be willing to pay at least this cost in return for an

unlimited number of module movements in future periods. Let K
M

be the average (directed)

cost of moving a module between the locations. The likelihood of a stockout is approximated

by the probability of the maximum demand occurring at either location. Finally, the expression

assumes that roughly half of the time a potential stock-out will be addressed by the movement

of a production modules. Again, it is possible to use different cost expressions here but this value

created good results in our computational study.

We note that if the mobility purchase cost κF (t) is very large, the LFP policy is equivalent

to RF. On the other hand, if mobility purchase cost κF (t) = 0 ∀ t ∈ T , we denote the resulting

suboptimal policy as lookahead with most flexible future (RLB). Under the RLB policy, decisions

are made each period assuming that in the next period there will be no additional cost of module

movements.

5.4.2. Lookahead with Iteratively Updated Cost-to-go (LIU)

The policy LIU is defined by a simulation-based optimization method. The method seeks an

approximate characterization of the expected cost function in the form of a lookup table cov-

ering the complete discrete state space of MMPIP. Once again, since such a method becomes

intractable for larger values of L, we develop and test this heuristic policy only for systems with

L = 2.

In each pass of the algorithm presented in Appendix B of the Appendix, the initial estimate

of the cost-to-go function is set to the cost-to-go function of the fixed capacity system. Demand

outcomes are generated for all periods from the given stationary demand distributions by Monte-

Carlo simulation. The state at t = 1, ξ(1), has zero inventory at all locations and the best fixed

module configuration umin. At every epoch t at the current state in the sample trajectory, a

new iterate is created by approximating the cost-to-go of the current state. The new iterate is

determined by blending the current approximation of the current state cost-to-do with a new

estimate created by finding the expected cost of an optimal single-period action when using the

current cost-to-go approximation at epoch t+ 1. This approximation approach is repeated and

cost-to-go functions updated along N sample trajectories. The heuristic policy induced by the

final estimate of the cost-to-go function is referred to as LIU.

Let αn be the blending coefficient used in the nth iteration of the approach (for trajectory

n). The condition
∑∞

n=1 αn → ∞ prevents premature stalling of the algorithm (Powell, 2007,
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Ch. 11). Additionally, the condition
∑∞

n=1 α
2
n < ∞ ensures fast convergence of the iterates by

limiting their variance. We test three blending coefficients, namely, a constant (0.5), 1/(n+ 1),

and 1/ (number of visits to a particular state), where n is the trajectory counter. We note that

although the constant coefficient violates the second condition, it performs better in practice

than the other two candidates. Thus, we present computational results only for the constant

blending coefficient.

6. Computational Study

We now present a computational study of these ideas. The study is designed both to assess the

quality of the suboptimal policies developed in this paper for the MMPIP and also to build an

initial understanding of the value of production capacity mobility in supply chain systems. This

study focuses only on instances where location demand processes are characterized by stationary

parameters, and where demand outcomes are independent across locations.

The study uses three sets of instances:

(1) Set 1 is a set of 1280 instances with L = 2 locations with sufficiently small values of other

parameters that allow the computation of the exact optimal solution cost (OPT) by value

iteration.

(2) Set 2 is a set of 720 L = 2 instances with larger values of the module fleet size Y , planning

horizon T , and capacity per module G than Set 1.

(3) Set 3 is a set of 540 instances with L ≥ 2.

The detailed designs of these three sets of instances are presented in Appendix C of the Appendix.

To evaluate the suboptimal policies determined by our heuristics, we compute the average total

cost of implementing each policy on 50 random demand sample paths. Sample average cost is

compared to the optimal total expected cost for each instance in Set 1. For Sets 2 and 3, sample

average cost is compared to the expected optimal total cost of the best fixed capacity system

configuration given by UBmin.

6.1. Results for Set 1

We first determine optimal solutions for each of the instances in Set 1, all of which have only two

production locations and short planning horizons of no greater than 15 decision epochs. We note

that sometimes optimal policies for stationary policies are unlikely to prescribe any movement

of production modules during the horizon. However, in roughly half of the instances (595 of the

1280), the optimal policy leads to at least one module movement in at least one of the 50 sample
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Figure 2. Module movements induced by optimal policies for Instance Set 1

Figure 2a presents histograms that depict the total number of module movements induced

by optimal policies for all instances and trajectories considered with planning horizon lengths

T = 10 and T = 15 during specific decision epochs. Note that movements are observed in both

early and late decision epochs, but that end effects tend to decrease the number of movements

at both the beginning and the end of the planning horizon. This is especially true in the initial

decision epoch when modules are already positioned optimally for a fixed capacity system. We

additionally solved a single instance with a longer planning horizon of T = 100 decision epochs,

and depict the sum of module movements per epoch over the 50 sample trajectories in Figure

2b. We note that the figure demonstrates that performance metrics for problems with longer

planning horizons are less impacted by end effects (initial capacity configuration and inventory

levels, and zero value of end-of-horizon inventory); module movements are somewhat evenly

dispersed across the epochs in the decision horizon.

We label each instance of Set 1 as (AB,CD) where A,B ∈ {L,H} respectively indicate
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the levels of expected demand at locations 1 and 2 and C,D ∈ {L,H} indicate the levels of

coefficient of variation (CV) at locations 1 and 2 respectively. For either location, the level of

expected demand is considered high (H) if it is greater than or equal to 0.3GY and low (L)

otherwise (recall that total system production capacity is GY ). Likewise, coefficient of variation

is high(H) if it is greater than or equal to 0.5 and low (L) otherwise. In Figure E1 of Appendix E

of the Appendix, we observe that instances with high expected demand at both locations exhibit

the most module movements. In such problems, total demand in a period may frequently exceed

capacity and create an incentive to relocate modules to decrease backorder costs. Instances

with high variation at both locations and high expected demand at either location follow next.

Instances with opposite expected demand and variation levels at the two locations exhibit a

moderate number of module movements. The lowest number of movements is observed when

both locations have low expected demand and/or low coefficients of variation. As expected, the

relative magnitudes of expected demands and coefficients of variation play a significant role in

the number of module movements observed in an instance. Table 1 summarizes the usefulness

Table 1. Usefulness of mobile modular production for Instance Set 1

low ED at both low, high EDs high ED at both Overall

high CV at both Little Great Greatest Great
low, high CVs Little Moderate Greatest Moderate
low CV at both Least Little Greatest Moderate

Overall Little Moderate Greatest

of mobile modular production determined by the percentage of instances exhibiting any module

movement in each subset as “Least” for [0, 10)%, “Little” for [10, 20)%, “Moderate” for [20, 45)%,

“Great” for [45, 70)%, and “Greatest” for [70, 100]%. We observe that there is greater benefit

in instances with high coefficients of variation (CV) and expected demands (ED). Another key

takeaway is that high expected demand induces more module movement than high coefficient

of variation; as total expected demand approaches total system capacity, module movements

become more valuable for correcting poor inventory position. The subset of instances of Set 1

which have high expected demand at both locations (and hence are expected to show a higher

tendency of module movement than the other instances) will be referred to as the HH instances

of Set 1.

In Table 2, we summarize the quality of the lower and upper bounds given varying total

number of modules Y , length of horizon T , backorder unit cost b, holding unit cost h, and

movement unit cost K
M

for Set 1. PIR is a consistently weak lower bound for all T , and grows
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Table 2. Variation of bound quality compared to optimal objective with varying T , Y , b, h, and K
M

for Instance Set 1

T PIR LB UBmax UBmin

5 0.224 0.946 4.8 1.021
7 0.228 0.938 6.5 1.033
10 0.221 0.930 9.2 1.062
15 0.199 0.931 13.2 1.086

(a) T

Y PIR LB UBmax UBmin

3 0.520 0.871 4.2 1.119
5 0.221 0.923 7.4 1.059
7 0.105 0.961 9.6 1.020
10 0.026 0.990 12.4 1.004

(b) Y

b PIR LB UBmax UBmin

1 0.218 0.938 6.4 1.036
2 0.218 0.934 10.5 1.065

(c) b

h PIR LB UBmax UBmin

0.5 0.234 0.927 10.5 1.060
1 0.201 0.945 6.4 1.041

(d) h

K
M

PIR LB UBmax UBmin

0.5 0.181 0.960 8.6 1.079
5 0.255 0.912 8.2 1.021
Overall 0.218 0.936 8.4 1.050

(e) K
M

weaker for larger values of Y . It is not particularly surprising that the PIR bounds are so weak

in this setting, since perfect information allows a planner to avoid all cost sources by eliminating

inventory holding, backordering, and module movements when possible with optimally-selected

production quantities. This is especially true when Y grows larger; in such instances, the large

number of modules allows a substantial fraction of capacity to remain fixed in place and module

movements under perfect information become even more rare. We note that the PIR bounds,

although bad, are significantly better for HH instances (Table E1 in Section E of the Appendix).

For these instances, the optimal policy under uncertainty generates decisions closer to those that

would result under a perfect information assumption. Since these instances also result in more

module movement, a natural hypothesis is that problem instances where good solutions require

many module movements will benefit less overall from complete information than instances where

module movements are rare even under uncertainty.

The lower bound derived by assuming the most flexible module relocation system (LB) is a

much tighter bound. We note that the performance of both LB and UBmin deteriorates slightly

with increasing T . This behavior is expected, and is likely due primarily to end-of-horizon effects.

Both of these measures improve with a larger module fleet size Y . There are two reasons: first,

correct base capacity can be installed with more precise control at each location and second, the

refined production capacity control enabled by the larger fleet provides added benefit. It is also

not unexpected that the policy created for LB moves modules more than a policy that incurs a

cost for these moves; this tends to increase the optimality gap at higher movement and backorder
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rates K
M

, b, and lower holding rate h (Table 2). On the other hand, when b is low or K
M

is

high, optimal policies do not move modules very frequently and thus the upper bound given by

UBmin grows tighter. The cost of the worst fixed configuration, UBmax, provides a benchmark

for the quality of more intelligent configurations and dynamic policies. The weak performance

of these upper bounds also show that if stationary demand forecasts were highly inaccurate,

very poor fixed system configurations could result with costs 5 to 13 times those from smarter

configurations.

Table E2 in Section E of the Appendix presents results that demonstrate the value of

mobile production capacity for Instance Set 1 by comparing costs with mobile modules to costs

incurred by operating a system with capacity fixed in place. Optimal costs are separated into

components for moving modules, backordering demand, and holding inventory, and compared for

the fixed capacity policies and optimal policies. Considering only the HH instances, a significant

reduction (18% on average and 30% for T = 15) in the cost due to backordering is observed

when production capacity is mobile.

Figure 3 compares the performance of various heuristics on set 1 instances, and specifically

the HH instances. In each of the sub-figures of Figure 3, the ratios of the heuristic costs for

policies MP, RF, RLB, LFP, and LIU to OPT are presented. The performance of MP improves

with increase in Y and declines for larger horizon lengths. RLB performs better than MP at all

levels of Y and T with an overall average of 1.02 times OPT. RF outperforms RLB leading to

an overall average gap of 1% over OPT. LFP’s performance is always similar to or better than

that of LIU. For the L = 2 problem, LFP leads to the lowest gap above OPT of 0.3% on average

and it improves with increase in Y . Although it performs quite well, LFP requires significantly

more computational effort than MP, RLB, or RF.

When only HH instances are considered, the performance of the proposed heuristics remains

good although the gaps are slightly higher. Since HH instances require more module movements

in optimal solutions, this performance degradation is not unexpected. We now discuss the module

movements prescribed by these heuristics comparatively. All instances with module movements

prescribed by MP and RLB have module movements prescribed by the optimal policy as well.

However, MP and RLB are more conservative than the optimal policy and exhibit movement in

only 66% and 74% of the instances where the optimal policy prescribes movements. This result is

intuitive as MP does not account for the sustained future benefit after moving modules and RLB

would not be eager to shift modules in the present due to its assumption of no costs for future
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Figure 3. Performance of heuristics compared to optimal policies with varying T and Y for Instance Set 1

module movements. RF and LFP show movement in most (more than 97%) of the instances that

show movement by the optimal policy, indicating good policy performance of these heuristics.

All the heuristics yield better results for low b and high h (see Table E3b of the Appendix). For

high K
M

, LIU, RF, and LFP perform well but MP and RLB are closer to optimality when K
M

is low, as expected (see Table E3b of the Appendix).

Focusing on the HH subset of Set 1, we note that bounds LB and UBmin are worse on

HH instances than on the overall set, again emphasizing that these instances require module

movements to achieve low costs. We observe that the optimality gap of each heuristic on HH

instances is higher than the overall average although the magnitude of the gap itself is still within

8%. Figure 3 shows that LFP outperforms all the heuristics and is closely followed by RF.
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6.2. Results for Set 2

This set consists of 720 two location instances with relatively higher values of horizon length

T and module fleet size Y , along with more spread in backorder cost b, module movement cost

K, and production capacity per module G. We compare the performance of the heuristics MP,

RLB, RF, LFP, and LIU and the lower bound LB with UBmin.
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Figure 4. Module movement totals given varying G for Instance Set 2

Figure 4 totals the number of module movements prescribed by the different heuristic

policies at different module capacity levels across the instances. MP was the most conservative

policy for all values of G sinces its goal is to minimize immediate costs only. RF restricted

movements at higher capacity levels since it assumes that modules cannot be moved again in

the future. RLB moved modules more frequently compared to MP and RF since it assumes that

the cost of recourse from poor capacity configurations is zero. It is not surprising to note that

LFP exhibits a movement count that falls between RF and RLB, since LFP blends both lower

and upper bounds in its future cost estimate.

Although we do not present these results in a figure, we note that UBmax increases with

increasing T , G, and b but decreases with an increase in Y , as expected. The average ratio

between UBmax and UBmin was 13.9 for G = 1 but increases 20.1 for G = 3, again motivating

that poor initial capacity configurations can be very expensive. Figure 5 summarizes overall

heuristic performance for instances in Set 2 when Y , G, K
M

, and b are varied, while Figure 6a

summarizes performance with varying T . LB is tighter for higher G and Y , and lower b, K
M

, and

T , which is expected as mobile modularity is not fully utilized in these situations due to lower

incentives for movement. We note that RF and LFP again performed much closer to optimality

and significantly better than MP, LIU, and RLB.

The best heuristic LFP delivered an average cost reduction of about 4% compared to
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Figure 5. Overall performance of heuristics compared to UBmin with varying Y , G, K
M

, and b for Instance Set 2

the fixed configuration UBmin on Set 2. Focusing on the HH instances of Set 2 (see Figure

6b), we note a 5% average advantage over fixed systems for LFP, which is close to RF(4.8%),

and higher than RLB (4%), LIU (3%), and MP (−0.4%). LFP yielded 9% savings over UBmin

when the horizon length is 20. These results provide additional confirmation that the proposed

heuristics are effective for problems with L = 2 production locations even when underlying

demand distibutions are stationary.

6.3. Results for Set 3

This set consists of 540 L ≥ 2 instances generated by the procedure described in Section C of the

Appendix. We study the performance of the suboptimal policies generated by three heuristics:

the the myopic policy (MP), the lookahead with approximate fixed future (LAF), and the rollout
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Figure 6. Heuristic performance compared to UBmin with varying T for Instance Set 2

of fixed future (RF). The initial inventory state of the system is zero inventory at all locations.

Two different initial capacity states are compared, where the first assumes that modules are

located in the configuration umin that minimizes the expected total cost of a fixed capacity

system and the second assumes modules are allocated to locations in a configuration usimple that

depends on the mean and variance of demand at each location (see Section D of the Appendix

for details).

Table 3. Average computation time in sec-
onds for T = 15 instances with varying L for

Instance Set 3

L UBmin MP LAF RF
(per instance) (per trajectory)

2 0.08 0.05 0.08 0.21
3 0.23 0.07 0.13 0.33
5 0.87 0.10 0.21 0.74
10 7.30 0.23 0.48 3.6
20 96.0 0.77 1.30 33.7

The computations for the study on Set 3 are performed on a single server of an Intel Xeon

Processor E5-2670 workstation. We first examine the computation times required for finding the

best upper bound UBmin (one-time and offline) and for determining the heuristic policies MP,

LAF, and RF (Table 3) on T = 15 instances. We note that LAF is significantly faster than RF

and is comparable to MP in the order of magnitude of seconds required. Figure 7 shows that

as L increases the effort required to implement RF increases dramatically and that LAF is on

average 35 times faster than RF for L = 20. Additionally, we note that using LAF takes less than

twice the effort required for implementing the naive MP policy, even when L is high. Thus, LAF

presents notable computational advantages over RF. Figure 8 demonstrates the performance
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Figure 7. Average computational effort relative to MP with varying L for Instance Set 3

of heuristic polciies for Instance Set 3 with varying L, T , K
M

, and b. We note that LAF and

RF perform almost identically, suggesting that the approximation of fixed future proposed in

LAF achieves almost identical savings as RF with a remarkable improvement in computational

efficiency. LAF and RF outperform UBmin by 4 to 9% and the savings increase with L on average.

Also, smaller savings are obtained for higher Y for any given L, since fewer modules are moved

between locations due to greater availability of capacity at each location. MP results in average

costs that are sometimes higher than UBmin also, indicating that naive heuristic policies may not

outperform systems with fixed capacity installations. Figure 8a demonstrates that both RF and

LAF are able to create more value when the number of locations L grows, but that the marginal

improvement decreases with L. Table E4 in Appendix E of the Appendix depicts the varying

quality of the policies found by RF and LAF with varying L and Y . Figure 8c confirms the

intuition that with increasing K
M

, LAF and RF are not able to generate as much benefit over a

fixed capacity configuration. MP appears to be more sensitive to higher values of K
M

, as moves

made for immediate cost benefits may induce additional movements to the escape the poor state

that was reached. As the backorder cost b increases, there is greater use of mobility of production

capacity (Figure 8d). In Figure 8b, we again see that longer horizons yield more accumulated

benefit for mobile production. Motivated by this observation, we present the performance of the

heuristics with varying L for the longest horizon, T = 15, in Figure 9b. We observe a significant

average value addition ranging between 9 to 16%.

We finally compare the performance of both fixed capacity systems and mobile modular

production systems operated with our heuristics when the initial capacity configuration is op-

timized versus when it is set heuristically. Configuration usimple is determined with a simple

approach that is based on each location’s expected demand and variability (see Figure 9), while
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Figure 8. Performance of heuristics with varying L, T , K
M

, and b when capacity initialized to umin for Instance Set 3
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Figure 9. Performance of heuristics with varying T and L when initialized to umin and usimple for Instance Set 3

umin is the optimal fixed configuration that leads to lowest cost when capacity is fixed. In Figure

9a, we note that the gap between the implementations of RF with two different initial con-
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figurations reduces as the horizon grows longer. We may infer that the difference in heuristic

performance is due to the amortization of a one time movement cost incurred to switch from

subsequent poor states induced by usimple to better states potentially induced by umin. The fixed

system configured to usimple costs about 25% more than UBmin when the length of the horizon

T is 15 (Figure 9b). However, setting the initial state to usimple instead of umin leads to only

about 2% decrease in the gaps of LAF and RF at T = 15. This observation establishes that

the mobile modular system is indeed very resilient compared to fixed systems since it is able

to retrieve most of the savings over fixed systems even with suboptimal initial configurations

(about 25-30% savings over the fixed system configured to usimple). These observations indicate

that LAF and RF perform robustly irrespective of the initial capacity configuration.

7. Conclusion

In this paper, we introduced the multilocation mobile modular production and inventory prob-

lem and presented efficient and effective techniques for determining effective operating policies

based on approximate dynamic programming. The heuristic policies generate significant value

addition over fixed capacity systems, providing evidence of the efficiency, practicality, and re-

siliency of mobile modular production systems. Our heuristics perform very close to the optimal

solution for L = 2 and significantly better than fixed capacity systems for L ≥ 2. Through

our computational study, we demonstrate the cost-effectiveness and resilience of mobile modular

systems in comparison to fixed systems. The heuristics RF and LFP mimic the optimal policy

very closely for L = 2 and the heuristic LAF achieves excellent results and remarkable compu-

tational efficiency for L ≥ 2. Future work will focus on systems with non-stationary demand

with parameters that must be learned over time. Additionally, future models may also allow

inventory transshipment between production locations as an alternative to module movements

as well as module movement lead times.
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Appendix A. Proofs of Theorems

We present the proofs of Theorem 5.1 and Theorem 5.2 in Section A.1 and Section A.2 respec-

tively.

A.1. Proof of Theorem 5.1

Proof. (a) Since the newsvendor constraint matrices are totally unimodular (TU) already, their

rows can be separated into partitions suitably to satisfy (Nemhauser and Wolsey, 1988,

Theorem 2.7, III.1). Total unimodularity is retained in the presence of location-wise capacity

constraints when G = 1. Hence, the constraint matrix of MMPIP-MP is TU when G =

1. Since the right hand side is integral, the polyhedron of the IP presented here for the

implementation of the myopic policy MP is integral.

(b) The objective function of each of the L newsvendor problems is given by

∑
k∈K

pki

{
hi(si + qi − dki )+ + bi(d

k
i − si − qi)+

}
.

We note that hiP (Di ≤ dmi )−biP (Di > dmi ) is the slope of the newsvendor objective function

in the interval dmi ≤ qi + si ≤ dm+1
i . As the function is convex, its slope is decreasing from

left to right and increasing from right to left. The current problem involves re-allocation of

capacity followed by replenishment. In the one period problem, a module movement from

location i to location j occurs if

i. the available capacity is greater than the unconstrained optimal order quantity at the

sending location i, or

ii. if the positive gain per unit at the receiving location j, hjP (Dj ≤ dnj ) − bjP (Dj >

dnj ), is higher than the (absolute value of) loss at the sending location i, hiP (Di ≤

dmi ) − biP (Di > dmi ). The movement is feasible only if hiP (Di ≤ dmi ) − biP (Di >

dmi ) + hjP (Dj ≤ dnj )− bjP (Dj > dnj ) > KM
ij /G. The movement will be beneficial until

this inequality is reversed when either sj + qj or si + qi reach a slope change point,

namely, a demand outcome (which is integral for this problem setup). Since the starting

inventory (si or sj) is an integer and the order-up-to level at one of the locations is

integral, it follows that the amount of effective potential inventory increment/decrement

at the locations is integral and hence the other order-up-to level is also integral. This

mechanism is in action for all module shifts induced by the cost structure and hence,

irrespective of the integrality of {{∆M
ij }}, for all i, replenishment quantity qi will be
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take integer values even without integrality constraints.

A.2. Proof of Theorem 5.2

Proof. MMPIP-LAF is different from MMPIP-MP in the objective function that now contains

ζi and ηi terms additionally. The constraints now include the description of the ζi and ηi terms

as the maximum over piecewise linear facets of sets of convex curves. As these inventory and

capacity curves have with integer slope transition points, the minimization of
∑L

i=1(ζi + ηi)/2

ensures that the yi’s and qi’s will still be integers along with the constraints of MMPIP-MP.

Having integer values for yi ensures that ∆M
ij ’s are integers as yi’s are placeholder variables.

Integer values of qi’s guarantees that rki and oki are integers as rki + oki = si + qi − dki and dki ’s

are integers. Hence, MMPIP-LAF can be solved as a linear program.

Appendix B. Algorithm for LIU

In this section, we present Algorithm 1 for implementing the heuristic LIU. Algorithm 1 is the

Algorithm 1: Approximate Value Iteration over finite horizon: LIU

Step 1. Initialization:

a. Initialize V
0
t (ξ(t)) for all states ξ(t).

b. Choose an initial state ξ(1).
c. Set n = 1.

Step 2. Choose a sample path dn.
Step 3. For t = 1, . . . , T − 1 do:

a. Solve v̂nt = mina∈A(ξn(t)) ED
(
Ct(ξ

n(t), a,D) + V
n−1
t+1 (f(ξn(t), a,D))

)
and let ant be a minimizer.

b. Blending: V
n
t (ξn(t)) = αnv̂

n
t + (1− αn)V

n−1
t (ξn(t)).

c. Greedy trajectory following: ξn(t+ 1) = f(ξn(t), ant , d
n(t)).

Step 4. Let n = n+ 1. If n < N , go to step 2.

value function approximation algorithm used to implement LIU.

Appendix C. Instance Sets for Computational Study

In the section, we describe the procedures to generate the three instance sets used in our com-

putational study.

C.1. Set 1

This set contain L = 2 instances. We fix G = 1 and c = 0. For each combination of the parameters

Y ∈ {3, 5, 7, 10}, T ∈ {5, 7, 10, 15}, b ∈ {1, 2}, h ∈ {0.5, 1}, and K
M ∈ {0.5, 5}, we generate 10

demand distributions in the following fashion. For each of the two stations:
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• set the expected total demand to αGY , where α = 0.75,

• randomly obtain the fraction of expected demand at station 1 as β ∈ [0.2, 0.8], setting the

expected demands to µ1 = βµ; µ2 = (1− β)µ,

• randomly generate three distinct samples each from {0, . . . , dγµ1e} and {0, . . . , dγµ2e},

where γ = 1.1, and sort them to obtain the vector of demand outcomes, and

• randomly generate three numbers from {1, 2, 3, 4, 5, 6} and obtain probabilities from them

by dividing each by their sum.

Thus, we generate a total of 4× 4× 2× 2× 2× 10 = 1280 instances.

C.2. Set 2

This set contains L = 2 instances. We fix h = 1 and c = 0. For each combination of the

parameters Y ∈ {5, 10, 15, 20}, T ∈ {5, 10, 15, 20}, G ∈ {1, 2, 3}, b ∈ {1, 2, 3}, and K
M ∈

{1, 3, 5}, we generate 5 demand distributions in the following fashion. For each of the two stations:

• set expected total demand to αGY , where α = 0.8,

• randomly obtain the fraction of expected demand at station 1: β ∈ [0.2, 0.8], setting the

expected demands to µ1 = βµ; µ2 = (1− β)µ,

• randomly generate three distinct samples each from {0, . . . , dγµ1e} and {0, . . . , dγµ2e},

where γ = 1.5, and sort them to obtain the vector of demand outcomes, and

• randomly generate three numbers from {1, 2, 3, 4, 5, 6} and obtain probabilities from them

by dividing each by their sum.

Thus, we generate a total of 4× 4× 3× 3× 3× 5 = 2160 instances.

C.3. Set 3

We fix the following parameters: G = 1, c = 0, and h = 1. For each combination of the parameters

L ∈ {2, 3, 5, 10, 20}, Y ∈ {d1.9Le, d2.4Le}, T ∈ {5, 10, 15}, b ∈ {2, 3}, and K
M ∈ {1, 2, 3}, we

generate 3 demand distributions in the following fashion. For each of the L locations:

• randomly generate three distinct samples each from {0, 1, 2, 3} and sort them to obtain

the vector of demand outcomes and

• randomly generate three numbers and obtain probabilities from them by dividing each by

their sum.

Thus, we generate a total of 5× 2× 3× 2× 3× 3 = 540 instances.

Appendix D. A Simple Strategy for Module Allocation usimple

The module allocation strategy usimple is given below:
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(1) Assign {bρicY } to each location i where, ρi = σi∑L
j=1 σj

× β + µi∑L
j=1 µj

× (1 − β), β =∑L
j=1

zασj∑L
j=1(zασj+µj)

, and zα = 1.64 for a 95% service level.

(2) If
∑L

i=1bρiY c < Y , then allocate the remaining modules in the decreasing order of coeffi-

cient of variation, σi/µi, of locations.

Appendix E. Additional Figures and Tables in Computational Study

We present additional figures and tables that complement the narrative of the paper.

0 0.5 1

T=5, 7

(LL,LL)
(LL,LH)
(LL,HH)
(LH,LL)
(LH,LH)
(LH,HL)
(LH,HH)
(HH,LL)
(HH,LH)
(HH,HH)

T=5

T=7

0 0.5 1

T=10, 15

(LL,LL)
(LL,LH)
(LL,HH)
(LH,LL)
(LH,LH)
(LH,HL)
(LH,HH)
(HH,LL)
(HH,LH)
(HH,HH)

T=10

T=15

0 0.2 0.4 0.6 0.8 1

Overall

(LL,LL)
(LL,LH)
(LL,HH)
(LH,LL)
(LH,LH)
(LH,HL)
(LH,HH)
(HH,LL)
(HH,LH)
(HH,HH)

Figure E1. Effect of variability of demand on movement tendency for Instance Set 1

Table E1. Variation of bounds compared to OPT for HH instances with varying T , Y , and K
M

for Instance Set 1

T PIR LB UBmax UBmin

5 0.498 0.900 3.9 1.040
7 0.482 0.893 5.9 1.072
10 0.521 0.866 6.5 1.142
15 0.499 0.855 9.8 1.217

(a) T

Y PIR LB UBmax UBmin

3 0.626 0.865 3.9 1.148
5 0.490 0.859 7.1 1.112
7 0.246 0.917 11.3 1.057
10 0.061 0.975 16.0 1.012

(b) Y

b PIR LB UBmax UBmin

1 0.500 0.883 5.0 1.086
2 0.500 0.874 8.1 1.148

(c) b

h PIR LB UBmax UBmin

0.5 0.525 0.861 7.7 1.132
1 0.472 0.898 5.3 1.101

(d) h

K
M

PIR LB UBmax UBmin

0.5 0.437 0.928 6.8 1.180
5 0.560 0.831 6.3 1.056
Overall 0.500 0.879 6.6 1.117

(e) K
M
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Table E2. Value addition of optimal mobile modular production

system over fixed system with varying Y , T , K
M

, h, and b for

Instance Set 1

All HH Instances

Y ∆K −∆B −∆H ∆K −∆B −∆H
3 0.049 0.182 -0.011 0.055 0.223 -0.019
5 0.025 0.093 -0.010 0.044 0.170 -0.019
7 0.012 0.033 -0.001 0.026 0.097 -0.011
10 0.003 0.009 -0.002 0.008 0.033 -0.004

T ∆K −∆B −∆H ∆K −∆B −∆H
5 0.012 0.038 -0.005 0.025 0.075 -0.011
7 0.020 0.061 -0.004 0.035 0.123 -0.014
10 0.027 0.098 -0.010 0.057 0.221 -0.027
15 0.029 0.121 -0.004 0.065 0.304 -0.015

K
M

∆K −∆B −∆H ∆K −∆B −∆H
0.5 0.026 0.112 -0.005 0.046 0.248 -0.021
5 0.019 0.047 -0.007 0.044 0.113 -0.012

h ∆K −∆B −∆H ∆K −∆B −∆H
0.5 0.025 0.093 -0.007 0.048 0.199 -0.017
1 0.019 0.065 -0.005 0.041 0.158 -0.017

b ∆K −∆B −∆H ∆K −∆B −∆H
1 0.020 0.061 -0.005 0.041 0.139 -0.012
2 0.024 0.097 -0.006 0.049 0.220 -0.021

Overall 0.022 0.079 -0.006 0.045 0.179 -0.017

Table E3. Performance of heuristics relative to OPT with varying b, h, and K
M

LIU MP RF RLB LFP

b
1 1.020 1.066 1.014 1.032 1.005
2 1.030 1.076 1.022 1.056 1.007

h
0.5 1.028 1.068 1.019 1.049 1.007
1 1.022 1.075 1.017 1.039 1.005

K
M 0.5 1.037 1.052 1.027 1.009 1.004

5 1.013 1.090 1.009 1.078 1.008

Overall 1.025 1.071 1.018 1.044 1.006

(a) for HH instances of Instance Set 1,

LIU MP RF RLB LFP

b
1 1.009 1.031 1.006 1.016 1.002
2 1.016 1.034 1.013 1.023 1.003

h
0.5 1.014 1.032 1.010 1.022 1.003
1 1.011 1.033 1.009 1.018 1.003

K
M 0.5 1.020 1.023 1.015 1.005 1.003

5 1.005 1.042 1.004 1.034 1.003

Overall 1.013 1.033 1.010 1.020 1.003

(b) for Instance Set 1.

Table E4. Performance of heuristics compared to UBmin with varying L and Y when initialized to
umin for Instance Set 3

L 2 3 5 10 20 Overall

Y 4 5 6 8 10 12 19 24 38 48

MP 0.96 0.97 0.96 1 0.94 1 0.93 1 0.93 1 0.97
LAF 0.914 0.96 0.913 0.99 0.866 0.974 0.851 0.973 0.834 0.985 0.93
RF 0.908 0.961 0.897 0.986 0.86 0.965 0.848 0.97 0.829 0.981 0.92
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