
An almost cyclic 2-coordinate descent method for
singly linearly constrained problems

Andrea Cristofari∗

∗Department of Mathematics,
University of Padua,

Via Trieste, 63, 35121 Padua, Italy
E-mail: andrea.cristofari@unipd.it

Abstract. A block decomposition method is proposed for minimizing a (possibly non-
convex) continuously differentiable function subject to one linear equality constraint and
simple bounds on the variables. The proposed method iteratively selects a pair of coordinates
according to an almost cyclic strategy that does not use first-order information, allowing us
not to compute the whole gradient of the objective function during the algorithm. Using first-
order search directions to update each pair of coordinates, global convergence to stationary
points is established for different choices of the stepsize under an appropriate assumption
on the level set. In particular, both inexact and exact line search strategies are analyzed.
Further, linear convergence rate is proved under standard additional assumptions. Numerical
results are finally provided to show the effectiveness of the proposed method.

Keywords. Block coordinate descent methods. Block decomposition methods. Linear
convergence rate. SVM.

MSC2000 subject classifications. 90C06. 90C30. 65K05.

1 Introduction

Block coordinate descent methods, also known as block decomposition methods, are algo-
rithms that iteratively update a suitably chosen subset of variables, usually referred to as
working set, trough an appropriate optimization step. Numerous variants of block coordinate
descent methods have been proposed in the literature that essentially differ from each other
in two aspects: the working set selection and the optimization step (see, e.g., [31] and the
references therein for an overview of block coordinate descent methods in unconstrained op-
timization). In the last decades, block coordinate descent methods gained great popularity,
especially to address large structured problems, such as those arising in machine learning,
where classical algorithms may not be so efficient and, sometimes, even not applicable for
computational reasons. Moreover, block coordinate descent methods are well suited for par-
allelization, allowing to exploit modern computer architectures.

In this paper, we are concerned with the minimization of a continuously differentiable
function subject to one linear equality constraint and simple bounds on the variables. Many

1

mailto:andrea.cristofari@unipd.it

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

relevant problems can be formulated in this way, such as, e.g., Support Vector Machine
training, the continuous quadratic knapsack problem, resource allocation problems, the page
rank problem, the Chebyshev center problem and the coordination of multi-agent systems.

In the literature, most of the block coordinate descent methods proposed for this class
of problems use gradient information to identify a subset of variables that violate some
optimality condition and guarantee, once updated, a certain decrease in the objective func-
tion [26, 11, 13, 24, 9, 14, 1]. Other methods select variables in order to satisfy an appro-
priate descent condition with a decreasing tolerance [12], or follow a Gauss-Seidel (cyclic)
strategy [16]. Different working set selection rules, based on sufficient predicted descent, have
also been studied in [30]. Moreover, a Jacobi-type algorithm has been devised in [15] and a
class of parallel decomposition methods for quadratic objective functions has been proposed
in [18].

In addition to the above algorithms, different versions of random coordinate descent
methods have been proposed in [19, 20, 28, 25, 21], characterized by the fact that the working
set is randomly chosen from a given probability distribution. From a theoretical point of view,
random coordinate descent methods have good convergence properties, given in expectation,
and they turn out to be efficient also in practice. In particular, since random coordinate
descent methods do not use first-order information to choose the working set, the whole
gradient of the objective function does not need to be computed during the iterations, leading
to good performances when the objective function has cheap partial derivatives.

In our method, a working set of two coordinates is iteratively chosen according to the
following almost cyclic strategy: one coordinate is selected in a cyclic manner, while the
other one is obtained by considering the distance of each variable from its nearest bound
in some points produced by the algorithm. We see that this working set selection rule does
not use first-order information. So, similarly as in random coordinate descent methods, the
whole gradient of the objective function does not need to be computed during the algorithm
and high efficiency is still achieved when the partial derivatives of the objective function are
cheap. Anyway, differently from random coordinate descent methods, the proposed algorithm
has deterministic convergence properties.

More in detail, once a pair of coordinates is selected in the working set, our algorithm
performs a minimization step by moving along a first-order search direction with a certain
stepsize. We first give a general condition on the stepsize that guarantees global convergence
to stationary points, under the assumption that every point of the level set has at least one
component strictly between the lower and the upper bound. Note that this assumption is
automatically satisfied in many cases: e.g., when the feasible set is the unit simplex, or when
at least one variable has no bounds. Then, we describe some practical ways to compute the
stepsize, considering different classes of objective functions: the Armijo line search can be
used for general non-convex objective functions, overestimates of the Lipschitz constant can
be used for objective functions with Lipschitz continuous gradient, and the exact line search
can be used when the objective function is strictly convex.

We also show that the proposed method converges linearly under standard additional
assumptions. In particular, two different results are given: asymptotic linear convergence
rate is proved when there are finite bounds on some (or all) of the variables, while non-
asymptotic linear convergence rate is proved when there are no bounds on the variables.

2

A. Cristofari

Lastly, experimental simulations performed on different classes of test problems show
promising results of the proposed algorithm in comparison with other block coordinate de-
scent methods.

The rest of the paper is organized as follows. In Section 2, we introduce the notation
and recall some preliminary results. In Section 3, we present the algorithm and carry out
the convergence analysis. In Section 4, we describe some practical line search strategies.
In Section 5, we analyze the convergence rate of the algorithm. In Section 6, we show the
numerical results. Finally, we draw some conclusions in Section 7.

2 Preliminaries and notation

Let us introduce the notation. Given a vector x ∈ Rn, we indicate by xi the ith entry of x.
We denote by ei ∈ Rn the vector made of all zeros except for the ith entry that is equal to 1.
Given a function f : Rn → R, the gradient of f is indicated by ∇f , the ith partial derivative
of f is indicated by ∇if and the Hessian matrix of f is indicated by ∇2f . The derivative of
a function f : R → R is denoted by ḟ . The Euclidean norm of a vector x ∈ Rn is indicated
by ‖x‖.

Throughout the paper, we focus on the following singly linearly constrained problem with
lower and upper bounds on the variables:

min f(x)
n∑
i=1

xi = b

li ≤ xi ≤ ui, i = 1, . . . , n,

(1)

where f : Rn → R is a continuously differentiable function, b ∈ R and, for all i = 1, . . . , n, we
have li < ui, with li ∈ R∪{−∞} and ui ∈ R∪{∞}. By slight abuse of standard mathematical
notation, we allow variable bounds to be infinite.

Note that every problem of the form

min {ω(s) :
n∑
i=1

aisi = b, l̄i ≤ si ≤ ūi, i = 1, . . . , n}

with ω : Rn → R, b ∈ R and ai 6= 0, l̄i < ūi, i = 1, . . . , n, can be rewritten as in (1) via
the following variable transformation: xi = aisi, i = 1, . . . , n, thus considering the objective
function f(x) := ω

(
(x1/a1), . . . , (xn/an)

)
and setting the lower and the upper bound on x

according to the above transformation.

From now on, we denote the feasible set of problem (1) by F . Throughout the paper, we
assume that F 6= ∅. Moreover, the terms variable and coordinate will be used interchangeably
to indicate each xi, i = 1, . . . , n.

Finally, let us recall the following characterization of stationary points of problem (1),
which can be easily derived from KKT conditions.

3

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Proposition 1. A feasible point x∗ of problem (1) is stationary if and only if there exists
λ∗ ∈ R such that, for all i = 1, . . . , n,

∇if(x∗)


≥ λ∗, if x∗i = li,

= λ∗, if x∗i ∈ (li, ui),

≤ λ∗, if x∗i = ui.

(2)

3 The Almost Cyclic 2-Coordinate Descent (AC2CD) method

In this section, we present the algorithm for solving problem (1) and we analyze its conver-
gence properties to stationary points.

3.1 Description of the algorithm

The proposed Almost Cyclic 2-Coordinate Descent (AC2CD) method is a block decomposi-
tion method that iteratively performs a minimization step with respect to a working set of
two coordinates, chosen by an almost cyclic strategy (note that two is the smallest number
of variables that can be updated to maintain feasibility). A remarkable feature of AC2CD
is that the working set selection rule does not use first-order information, allowing us not to
compute the whole gradient of the objective function during the algorithm.

To describe the proposed method, we have to distinguish between outer iterations, indi-
cated by the integer k, and inner iterations, indicated by the pair of integers (k, i), where
k = 0, 1, . . . and i = 1, . . . , n. Each outer iteration k starts with a feasible point, denoted
by xk, and has n inner iterations (k, 1), . . . , (k, n). Each inner iteration (k, i) starts with a
feasible point, denoted by zk,i, and produces the successive (feasible) zk,i+1 by performing
a minimization step with respect to a suitably chosen pair of coordinates. Outer and inner
iterations are linked by the following relation:

zk,1 = xk and xk+1 = zk,n+1, ∀ k ≥ 0.

Namely, each cycle of inner iterations (k, 1), . . . , (k, n) starts from xk and returns the succes-
sive xk+1.

To be more specific, given any xk produced by the algorithm, first we choose a variable
index j(k) ∈ {1, . . . , n} (as to be described later). Then, in the cycle of inner iterations
(k, 1), . . . , (k, n), we adopt the following rule to choose the working set: one variable index is
selected in a cyclic manner, following an arbitrary order with no repetition, while the second
variable index remains fixed and equal to j(k). Since only one variable index is selected in a
cyclic manner, we name this working set selection rule almost cyclic.

From now on, for every inner iteration (k, i) we denote by pki the variable index of the
working set that is selected in a cyclic manner. So, each minimization step is performed
with respect to the two coordinates zk,i

pki
and zk,ij(k). In this minimization step, we compute the

first-order search direction dk,i = [∇j(k)f(zk,i) − ∇pki f(zk,i)](epki
− ej(k)). Clearly, we have

dk,ih = 0 for all h ∈ {1, . . . , n} \ {pki , j(k)}. Then, we set

zk,i+1 = zk,i + αk,idk,i,

4

A. Cristofari

where αk,i ∈ R is a feasible stepsize (which will be described later on).
Now, we explain how to choose the index j(k) at the beginning of an outer iteration k.

Roughly speaking, xkj(k) must be “sufficiently far” from its nearest bound. Formally, for each

index h ∈ {1, . . . , n}, let us define the operator Dh : F → [0,∞)∪ {∞} that takes as input a
feasible point x and returns the distance of xh from its nearest bound:

Dh(x) := min{xh − lh, uh − xh}. (3)

So, for a given xk, we choose j(k) as any index that satisfies

Dj(k)(x
k) ≥ τDk, (4)

where τ ∈ (0, 1] is a fixed parameter and

Dk := max
h=1,...,n

Dh(xk). (5)

In other words, the distance between xkj(k) and its nearest bound must be greater than or

equal to a certain fraction (equal to τ) of the maximum distance between each component
of xk and its nearest bound.

In Algorithm 1, we report the scheme of AC2CD. Hereinafter, we indicate

gk,i := ∇j(k)f(zk,i)−∇pki f(zk,i) and dk,i := gk,i(epki
− ej(k)), (6)

as they are defined at steps 6 and 7 of Algorithm 1. Note that

∇f(zk,i)Tdk,i = −[∇j(k)f(zk,i)−∇pki f(zk,i)]2 = −(gk,i)2, (7)

i.e., dk,i is a descent direction at zk,i if gk,i 6= 0 (equivalently, every nonzero dk,i is a descent
direction at zk,i).

Remark 1. For the sake of simplicity, within each outer iteration k of AC2CD we consider
n inner iterations, but they actually are n− 1, since no pair of coordinates is updated when
pki = j(k).

Now, let us focus on the computation of the stepsize αk,i (step 8 of Algorithm 1). First,
for any inner iterate zk,i we define ᾱk,i as the largest feasible stepsize along the direction dk,i.
Since the equality constraint is clearly satisfied by the choice of dk,i, by simple calculations
we obtain

ᾱk,i =


(1/gk,i) min{upki − z

k,i

pki
, zk,ij(k) − lj(k)}, if gk,i > 0,

(1/|gk,i|) min{zk,i
pki
− lpki , uj(k) − z

k,i
j(k)}, if gk,i < 0,

0, if gk,i = 0.

(8)

In particular, the choice to define ᾱk,i = 0 when gk,i = 0 is for convenience of exposition (and
without loss of generality), since it implies that ᾱk,i = 0 if dk,i = 0 (equivalently, dk,i 6= 0 if
ᾱk,i > 0).

A general rule for the computation of the stepsize αk,i is stated in the following Stepsize
Condition 1 (SC 1). As to be shown, this rule can be easily satisfied in practice by different line
search strategies and guarantees global convergence to stationary points under an appropriate
assumption on the level set.

5

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Algorithm 1 Almost Cyclic 2-Coordinate Descent (AC2CD) method

0 Given x0 ∈ F and τ ∈ (0, 1]

1 For k = 0, 1, . . .

2 Choose a variable index j(k) ∈ {1, . . . , n} that satisfies (4)

3 Choose a permutation {pk1, . . . , pkn} of {1, . . . , n}
4 Set zk,1 = xk

5 For i = 1, . . . , n

6 Let gk,i = ∇j(k)f(zk,i)−∇pki f(zk,i)

7 Compute the search direction dk,i = gk,i(epki
− ej(k))

8 Compute a feasible stepsize αk,i and set zk,i+1 = zk,i + αk,idk,i

9 End for

10 Set xk+1 = zk,n+1

11 End for

SC (Stepsize Condition) 1. It must hold that

(i) f(zk,i+i) ≤ f(zk,i), with zk,i+1 ∈ F , for every inner iteration (k, i);

(ii) if {f(xk)} converges, then lim
k→∞
‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n;

(iii) for every pair of indices ı̂, ̂ ∈ {1, . . . , n} and every convergent subsequence
{zk,̂ı}K⊆{0,1,...} such that pkı̂ is constant for all k ∈ K and j(k) = ̂ for all k ∈ K, if

a real number ξ > 0 exists such that lim inf
k→∞
k∈K

ᾱk,̂ı = ξ, then lim
k→∞
k∈K

∇f(zk,̂ı)Tdk,̂ı = 0.

Let us spend a few words on the meaning of SC 1. Point (i) requires that every inner
iterate is feasible and does not increase the objective value. Point (ii) is a condition usually
needed for convergence of block decomposition methods, requiring that the distance of two
successive inner iterates goes to zero. Finally, point (iii) requires that the directional deriva-
tives converge to zero over appropriate subsequences when, for sufficiently large k, the largest
feasible stepsizes are bounded from below by a positive constant over the same subsequences.

Let us conclude this section by stating the following lemma, which will be useful in the
sequel. It shows that, if points (i)–(ii) of SC 1 are satisfied, then every limit point of {xk} is
a limit point of {zk,i} for every fixed i = 1, . . . , n.

Lemma 1. Let {xk} be a sequence of points produced by AC2CD that satisfies points (i)–(ii)
of SC 1, and let {xk}K⊆{0,1,...} be a subsequence converging to x̄. Then,

lim
k→∞
k∈K

zk,i = x̄, i = 1, . . . , n.

6

A. Cristofari

Proof. For i = 1 the result is trivial, since zk,1 = xk for all k. For any i ∈ {2, . . . , n}, we have
zk,i − zk,1 =

∑i−1
t=1 z

k,t+1 − zk,t, and then

‖zk,i − xk‖ = ‖zk,i − zk,1‖ ≤
i−1∑
t=1

‖zk,t+1 − zk,t‖. (9)

By continuity of f , we have {f(xk)}K → f(x̄). By point (i) of SC 1, we also have f(xk+1) =
f(zk,n+1) ≤ f(zk,n) ≤ . . . ≤ f(zk,1) = f(xk) for all k ≥ 0, and then, lim

k→∞
f(xk) = f(x̄).

Therefore, using point (ii) of SC 1, we can write lim
k→∞
‖zk,t+1 − zk,t‖ = 0 for all t = 1, . . . , n.

Combining this relation with (9), we get

lim
k→∞
‖zk,i − xk‖ = 0. (10)

Moreover, ‖zk,i − x̄‖ = ‖zk,i − xk + xk − x̄‖ ≤ ‖zk,i − xk‖ + ‖xk − x̄‖. Then, the result is
obtained by combining this inequality with (10) and the fact that {xk}K → x̄.

3.2 Convergence to stationary points

In this subsection, we are concerned with the convergence analysis of AC2CD.
For a given starting point x0, let us first define the level set

L0 := {x ∈ F : f(x) ≤ f(x0)}.

To prove global convergence of AC2CD to stationary points, we need the following assump-
tion, which requires that every point of L0 has at least one component strictly between the
lower and the upper bound.

Assumption 1. ∀x ∈ L0, ∃ i ∈ {1, . . . , n} : xi ∈ (li, ui).

Let us discuss the role played by this assumption, when combined with SC 1, in the
convergence analysis of AC2CD. First, it guarantees that, for every outer iteration k ≥ 0,
at least one pair of coordinates can be updated if and only if xk is non-stationary. Indeed,
every xk remains in L0 by point (i) of SC 1 and, by the rule used to choose the index j(k),
if Assumption 1 holds we have

lj(k) < xkj(k) < uj(k), ∀ k ≥ 0.

So, from the stationarity conditions (2), it is straightforward to verify that a variable index
pki exists such that ∇f(zk,i)Tdk,i < 0 with ᾱk,i > 0 if and only if xk is non-stationary, that
is, at least one pair of coordinates can be updated during the inner iterations if and only if
xk is non-stationary.

Second, as to be shown in the proof of Theorem 1, if Assumption 1 holds we can prove
that {∇j(k)f(xk)} converges, over certain subsequences, to the KKT multiplier λ∗ defined
as in (2). So, for sufficiently large k, we can measure the stationarity violation for each
coordinate xkh by ∇hf(xk) − ∇j(k)f(xk) and guarantee that, at the limit, each coordinate
satisfies (2).

7

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Let us also remark that Assumption 1 is automatically satisfied in many cases, for example
when F is the unit simplex, or when at least one variable has no bounds, that is, if an index
i ∈ {1, . . . , n} exists such that li = −∞ and ui = ∞. Further, in [14], where the same
assumption is used, it is shown that, for the Support Vector Machine training problem, this
assumption is satisfied if the smallest eigenvalue of ∇2f is sufficiently large and the starting
point x0 is such that f(x0) < 0 (see Appendix B in [14] for more details).

Now, we are ready to show that, under Assumption 1, AC2CD converges to stationary
points.

Theorem 1. Let Assumption 1 hold and let {xk} be a sequence of points produced by AC2CD
that satisfies SC 1. Then, every limit point of {xk} is stationary for problem (1).

Proof. Let x∗ be a limit point of {xk} and let {xk}K⊆{0,1,...} be a subsequence converging to
x∗. From the instructions of the algorithm, x∗ is a feasible point. Moreover, from Lemma 1
we can write

lim
k→∞
k∈K

zk,i = x∗, i = 1, . . . , n. (11)

By continuity of f , we have that {f(xk)}K converges to f(x∗). Since {f(xk)} is monotonically
non-increasing (by point (i) of SC 1) we have that {f(xk)} converges to f(x∗). Therefore,
by point (ii) of SC 1 it follows that

lim
k→∞
‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n. (12)

Using the fact that the set of indices {1, . . . , n} is finite, there exist an index ̂ ∈ {1, . . . , n}
and a further infinite subsequence, that we still denote by {xk}K without loss of generality,
such that

lim
k→∞
k∈K

xk = x∗ and j(k) = ̂, ∀ k ∈ K.

We first want to show that a real number ρ > 0 exists such that

min{zk,i̂ − l̂, u̂ − z
k,i
̂ } ≥ ρ, i = 1, . . . , n, ∀ sufficiently large k ∈ K. (13)

To this extent, by Assumption 1 we have that an index h̄ ∈ {1, . . . , n} exists such that
x∗
h̄
∈ (lh̄, uh̄). So, using the operator Dh defined as in (3), a positive real number ρ exists

such that Dh̄(x∗) ≥ (4/τ)ρ, where τ ∈ (0, 1] is the parameter defined at step 0 of Algorithm 1,
used to compute j(k). Since {xk}K → x∗, by continuity of Dh we have that Dh̄(xk) ≥ (2/τ)ρ
for all sufficiently large k ∈ K. Using the definition of Dk given in (5), we obtain

Dk ≥ (2/τ)ρ, ∀ sufficiently large k ∈ K.

By the rule used to choose the index j(k), we can write

D̂(z
k,1) = D̂(x

k) ≥ τDk ≥ 2ρ, ∀ sufficiently large k ∈ K.

The above relation, combined with (12), implies that D̂(z
k,i) ≥ ρ, i = 1, . . . , n, for all

sufficiently large k ∈ K. Equivalently, (13) holds.

8

A. Cristofari

Now, we want to show that the stationarity conditions (2) are satisfied at x∗ with

λ∗ = ∇̂f(x∗). (14)

Reasoning by contradiction, assume that this is not true. Then, there exists an index
t̂ ∈ {1, . . . , n} \ {̂} that violates (2). Using again the fact that the set of indices {1, . . . , n}
is finite, there also exist an index ı̂ ∈ {1, . . . , n} and a further infinite subsequence, that we
still denote by {xk}K without loss of generality, such that pkı̂ is constant and equal to t̂ for
all k ∈ K. Since also j(k) is constant (and equal to ̂) for all k ∈ K, we thus obtain

pkı̂ = t̂ and j(k) = ̂, ∀ k ∈ K.

By (11) and the continuity of ∇f , it follows that {∇f(zk,i)}K is bounded for all i = 1, . . . , n.
So, a real number T exists such that

‖∇f(zk,i)‖ ≤ T, i = 1, . . . , n, ∀ k ∈ K.

Therefore,
|gk,̂ı| = |∇̂f(zk,̂ı)−∇t̂f(zk,̂ı)| ≤ 2T, ∀ k ∈ K. (15)

Since we have assumed t̂ to violate (2) with λ∗ defined as in (14), one of the following three
cases must hold.

(i) x∗
t̂
∈ (lt̂, ut̂) and |∇̂f(x∗) − ∇t̂f(x∗)| > 0. Taking into account (11), a real number

ζ > 0 exists such that

min{zk,̂ı
t̂
− lt̂, ut̂ − z

k,̂ı

t̂
} ≥ ζ, ∀ sufficiently large k ∈ K, (16)

|gk,̂ı| = |∇̂f(zk,̂ı)−∇t̂f(zk,̂ı)| ≥ ζ, ∀ sufficiently large k ∈ K. (17)

From (13), (15), (16), (17) and the definition of ᾱk,i given in (8), we obtain

ᾱk,̂ı ≥ min
{ ζ

2T
,
ρ

2T

}
> 0, ∀ sufficiently large k ∈ K.

Therefore, by point (iii) of SC 1 we get

0 = lim
k→∞
k∈K

∇f(zk,̂ı)Tdk,̂ı = lim
k→∞
k∈K

−
[
∇̂f(zk,̂ı)−∇t̂f(zk,̂ı)

]2
,

where the second equality follows from (7). We thus obtain a contradiction with (17).

(ii) x∗
t̂

= lt̂ and ∇t̂f(x∗) < ∇̂f(x∗). Taking into account (11), we have

ut̂ − z
k,̂ı

t̂
≥
ut̂ − lt̂

2
, ∀ sufficiently large k ∈ K, (18)

and a real number ζ > 0 exists such that

gk,̂ı = ∇̂f(zk,̂ı)−∇t̂f(zk,̂ı) ≥ ζ, ∀ sufficiently large k ∈ K. (19)

9

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

From (13), (15), (18), (19) and the definition of ᾱk,i given in (8), we obtain

ᾱk,̂ı ≥ min
{ut̂ − lt̂

4T
,
ρ

2T

}
> 0, ∀ sufficiently large k ∈ K.

Therefore, by point (iii) of SC 1 we get

0 = lim
k→∞
k∈K

∇f(zk,̂ı)Tdk,̂ı = lim
k→∞
k∈K

−
[
∇̂f(zk,̂ı)−∇t̂f(zk,̂ı)

]2
,

where the second equality follows from (7). We thus obtain a contradiction with (19).

(iii) x∗
t̂

= ut̂ and ∇t̂f(x∗) > ∇̂f(x∗). This is a verbatim repetition of the previous case,
which again leads to a contradiction.

We can thus conclude that x∗ is a stationary point.

4 Computation of the stepsize

In this section, we describe some practical ways to compute the stepsize in order to satisfy
SC 1. We consider different classes of objective functions: general non-convex functions,
those with Lipschitz continuous gradient and strictly convex functions.

4.1 General non-convex objective functions

When the objective function is non-convex, a common way to compute the stepsize is using
an inexact line search. Here, we consider the Armijo line search, which is now described.
Given any inner iterate zk,i and the direction dk,i, first we choose a trial feasible stepsize ∆k,i

and then we obtain αk,i by a backtracking procedure. In particular, we set

αk,i = (δ)c ∆k,i, (20)

where c is the smallest nonnegative integer such that

f(zk,i + ∆k,i(δ)cdk,i) ≤ f(zk,i) + γ∆k,i(δ)c∇f(zk,i)Tdk,i (21)

and δ ∈ (0, 1), γ ∈ (0, 1) are fixed parameters.

For what concerns the choice of ∆k,i, first it must be feasible, that is, ∆k,i ≤ ᾱk,i.
Moreover, as to be shown in the proof of the following proposition, ∆k,i must be bounded
from above by a finite positive constant to satisfy point (ii) of SC 1. Namely, we require that
∆k,i ≤ Ak,i, where Ak,i is any scalar satisfying 0 < Al ≤ Ak,i ≤ Au < ∞, with Al and Au
being fixed parameters. In conclusion, in the Armijo line search we set ∆k,i = min{ᾱk,i, Ak,i}.
In the next proposition, we show that a stepsize computed in this way satisfies SC 1.

Proposition 2. Let δ ∈ (0, 1), γ ∈ (0, 1) and 0 < Al ≤ Au <∞. Then, SC 1 is satisfied by
computing, at every inner iteration (k, i), the stepsize αk,i as in (20), where c is the smallest
nonnegative integer such that (21) holds, ∆k,i = min{ᾱk,i, Ak,i} and Ak,i ∈ [Al, Au].

10

A. Cristofari

Proof. We first observe that, at every inner iteration (k, i), there exists a nonnegative integer
c satisfying (21), since, from (7), we have ∇f(zk,i)Tdk,i < 0 for all dk,i 6= 0.

Point (i) of SC 1 immediately follows from (21) and the fact that αk,i ≤ ∆k,i, with ∆k,i

feasible. Now, we prove point (ii) of SC 1. We first show that a real number σ > 0 exists
such that, for all k ≥ 0, we have

f(zk,i+1) ≤ f(zk,i)− σ‖zk,i+1 − zk,i‖2, i = 1, . . . , n. (22)

From (20) and (21), for all k ≥ 0 we can write

f(zk,i+1) ≤ f(zk,i) + γαk,i∇f(zk,i)Tdk,i, i = 1, . . . , n. (23)

Using (7), we obtain

f(zk,i+1) ≤ f(zk,i)− γαk,i(gk,i)2, i = 1, . . . , n. (24)

Moreover, zk,i+1 − zk,i = αk,igk,i(epki
− ej(k)), and then, ‖zk,i+1 − zk,i‖2 = 2(αk,i)2(gk,i)2.

Using this equality in (24), and recalling that αk,i ≤ Au <∞, we have that

f(zk,i+1) ≤ f(zk,i)− γ

2Au
‖zk,i+1 − zk,i‖2, i = 1, . . . , n.

Therefore, (22) holds with σ = γ/(2Au) for all k ≥ 0. So, point (ii) of SC 1 is satisfied by
combining (22) with the fact that f(xk+1) = f(zk,n+1) ≤ f(zk,n) ≤ . . . ≤ f(zk,1) = f(xk) for
all k ≥ 0.

Now, we prove that also point (iii) of SC 1 holds. Let {zk,̂ı}K , ı̂, ̂ and ᾱk,̂ı be defined as
in point (iii) of SC 1. Rearranging the terms in (23), we can write

f(zk,̂ı)− f(zk,̂ı+1) ≥ γαk,̂ı|∇f(zk,̂ı)Tdk,̂ı|, ∀ k ∈ K. (25)

Moreover, since {zk,̂ı}K converges and f(xk+1) = f(zk,n+1) ≤ f(zk,n) ≤ . . . ≤ f(zk,1) =
f(xk) for all k ≥ 0, by continuity of f we have that {f(xk)} converges, implying that

lim
k→∞

[f(zk,i+1)− f(zk,i)] = 0, i = 1, . . . , n. (26)

Combining (25) and (26), we obtain

lim
k→∞
k∈K

αk,̂ı|∇f(zk,̂ı)Tdk,̂ı| = 0. (27)

Proceeding by contradiction, we assume that it does not hold that

lim
k→∞
k∈K

∇f(zk,̂ı)Tdk,̂ı = 0. (28)

Since {zk,̂ı}K converges, then it is bounded and, by continuity of ∇f and the definition of the
direction dk,i, also

{
∇f(zk,̂ı)

}
K

and {dk,̂ı}K are bounded. So, if (28) does not hold, there

11

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

exist further infinite subsequences, that we still denote by {zk,̂ı}K ,
{
∇f(zk,̂ı)

}
K

and {dk,̂ı}K
without loss of generality, such that

lim
k→∞
k∈K

zk,̂ı = z̃ ∈ Rn, lim
k→∞
k∈K

dk,̂ı = d̃ ∈ Rn (29)

and
lim
k→∞
k∈K

∇f(zk,̂ı)Tdk,̂ı = ∇f(z̃)T d̃ = −η ∈ R, (30)

with η > 0. From (27) and (30), we get

lim
k→∞
k∈K

αk,̂ı = 0. (31)

Since Ak,̂ı ≥ Al > 0 for all k ≥ 0 and ᾱk,̂ı ≥ ξ/2 > 0 for all sufficiently large k ∈ K, using
the definition of ∆k,̂ı we obtain

∆k,̂ı ≥ min{ξ/2, Al} > 0, ∀ sufficiently large k ∈ K.

Consequently, by (31), an outer iteration k̄ ∈ K exists such that

αk,̂ı < ∆k,̂ı, ∀ k ≥ k̄, k ∈ K.

The above relation implies that (21) is satisfied with c > 0 for all k ≥ k̄, k ∈ K. Therefore,

f

(
zk,̂ı +

αk,̂ı

δ
dk,̂ı
)
> f(zk,̂ı) + γ

αk,̂ı

δ
∇f(zk,̂ı)Tdk,̂ı, ∀ k ≥ k̄, k ∈ K. (32)

By the mean value theorem, we can write

f

(
zk,̂ı +

αk,̂ı

δ
dk,̂ı
)

= f(zk,̂ı) +
αk,̂ı

δ
∇f(βk,̂ı)Tdk,̂ı, (33)

where βk,̂ı = zk,̂ı + θk,̂ı
αk,̂ı

δ
dk,̂ı and θk,̂ı ∈ (0, 1). Using (32) and (33), we obtain

∇f(βk,̂ı)Tdk,̂ı > γ∇f(zk,̂ı)Tdk,̂ı, ∀ k ≥ k̄, k ∈ K. (34)

Since θk,̂ı ∈ (0, 1), and taking into account (29) and (31), it follows that {βk,̂ı}K → z̃. So,
passing to the limit in (34), we have that ∇f(z̃)T d̃ ≥ γ∇f(z̃)T d̃. Using (30), we obtain
−η ≥ −γη, contradicting the fact that η > 0 and γ ∈ (0, 1). Then, point (iii) of SC 1
holds.

4.2 Objective functions with Lipschitz continuous gradient

In this subsection, we consider the case where∇f is Lipschitz continuous over F with constant
L. Namely, we assume that

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ F .

First, let us recall a result due to Beck [1], which will be useful in the sequel.

12

A. Cristofari

Lemma 2. Let us assume that ∇f is Lipschitz continuous over F with constant L. For any
point z ∈ F and any pair of indices i, j ∈ {1, . . . , n}, define the function

φi,j,z(t) := f
(
z + t(ei − ej)

)
, t ∈ Ii,j,z,

where Ii,j,z is the interval that comprises the feasible stepsizes. Namely,

Ii,j,z := {t ∈ R : z + t(ei − ej) ∈ F}. (35)

Then, every φ̇i,j,z is Lipschitz continuous over Ii,j,z with constant Li,j ≤ 2L, that is,

|φ̇i,j,z(t)− φ̇i,j,z(s)| ≤ Li,j |t− s|, ∀ z ∈ F , ∀ t, s ∈ Ii,j,z. (36)

Proof. See Section 3 in [1].

Now, let L̄i,j be some positive overestimates of Li,j , with Li,j being the Lipschitz constants
defined in Lemma 2. Namely,

L̄i,j ≥ Li,j , such that L̄i,j > 0, i, j = 1, . . . , n. (37)

We will show that these overestimates can be used to compute, in closed form, a stepsize
satisfying SC 1. In particular, for a given fixed parameter γ ∈ (0, 1), at every inner iteration
(k, i) we can set

αk,i = min

{
ᾱk,i,

2(1− γ)

L̄pki ,j(k)

}
. (38)

As to be pointed out in the proof of the following proposition, this stepsize can be seen
as a particular case of the Armijo stepsize defined in Proposition 2. Note also that, since
Li,j ≤ 2L, every positive overestimate of 2L can be used in (38).

Proposition 3. Let us assume that ∇f is Lipschitz continuous over F with constant L and
let γ ∈ (0, 1). Then, SC 1 is satisfied by computing, at every inner iteration (k, i), the stepsize
αk,i as in (38).

Proof. Let i, j ∈ {1, . . . , n} be any pair of indices and consider inequality (36). Observing
that 0 ∈ Ii,j,z for every feasible z, and using known results on functions with Lipschitz
continuous gradient (see, e.g., [23]), we can write

φi,j,z(t) ≤ φi,j,z(0) + t φ̇i,j,z(0) +
Li,j
2
t2, ∀ z ∈ F , ∀ t ∈ Ii,j,z.

Since φ̇i,j,z(t) = ∇if
(
z + t(ei − ej)

)
−∇jf

(
z + t(ei − ej)

)
, it follows that

f
(
z + t(ei − ej)

)
≤ f(z) + t[∇if(z)−∇jf(z)] +

Li,j
2
t2, ∀ z ∈ F , ∀ t ∈ Ii,j,z. (39)

To prove the assertion, it is sufficient to show that αk,i, defined as in (38), is a particular
case of the Armijo stepsize defined in Proposition 2. To this extent, we can set Ak,i = 2(1−
γ)/L̄pki ,j(k) (all these quantities are positive and finite) and, by (38), we obtain αk,i = ∆k,i,

13

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

with ∆k,i defined as in Proposition 2. So, all we need is to prove that (21) holds with c = 0
for this choice of ∆k,i. Namely, we want to show that

f(zk,i + ∆k,idk,i) ≤ f(zk,i) + γ∆k,i∇f(zk,i)Tdk,i. (40)

Since ∆k,i ≤ ᾱk,i, and taking into account the definition of dk,i given in (6), we have that

zk,i + ∆k,idk,i = zk,i + ∆k,igk,i(epki
− ej(k)) ∈ F ,

that is, ∆k,igk,i ∈ Ipki ,j(k),zk,i by definition (35). Therefore, using (39) with i and j replaced

by pki and j(k), respectively, z = zk,i and t = ∆k,igk,i, we obtain

f(zk,i + ∆k,idk,i) ≤ f(zk,i)−∆k,i(gk,i)2 +
L̄pki ,j(k)

2
(∆k,i)2(gk,i)2

= f(zk,i) + ∆k,i∇f(zk,i)Tdk,i
(

1−
L̄pki ,j(k)

2
∆k,i

)
,

where the equality follows from (7). Since 0 ≤ ∆k,i ≤ 2(1− γ)/L̄pki ,j(k), we get (40).

Remark 2. As appears from the proof of Proposition 3, the stepsize given in (38) satisfies
SC 1 by using, for every pair of indices i, j ∈ {1, . . . , n}, a positive constant L̄i,j ≥ Li,j,
where it is sufficient that Li,j satisfies (39). In particular, a case of interest is when we have
a (possibly non-convex) separable objective function f(x) =

∑n
i=1 fi(xi) where each fi : R→ R

has a Lipschitz continuous derivative with constant Li. In this case, Proposition 3 holds even
with L̄i,j replaced by L̄i + L̄j in (38), where L̄i and L̄j are two positive overestimates of Li
and Lj, respectively. This follows from the fact that, in this case, (39) holds even with Li,j
replaced by Li + Lj, since, by Lipschitz continuity of ḟ1, . . . , ḟn, we have

f
(
z + t(ei − ej)

)
= fi(zi + t) + fj(zj − t) +

∑
h6=i,j

fh(zh)

≤ f(z) + t[ḟi(zi)− ḟj(zj)] +
Li + Lj

2
t2

= f(z) + t[∇if(z)−∇jf(z)] +
Li + Lj

2
t2.

Now, let us analyze the case where the objective function is quadratic of the following
form: f(x) = 1

2x
TQx − qTx, with Q ∈ Rn×n symmetric and q ∈ Rn. Denoting by Qi,j the

element of Q in position (i, j), we have (again from [1])

Li,j = |Qi,i +Qj,j − 2Qi,j |, i, j ∈ {1, . . . , n}.

So, at every inner iteration (k, i), we can easily obtain (a positive overestimate of) Lpki ,j(k)

in order to compute the stepsize αk,i as in (38).
Moreover, if (dk,i)TQdk,i > 0 for a given direction dk,i, we can write

0 <
1

Qpki ,pki
+Qj(k),j(k) − 2Qpki ,j(k)

= −∇f(zk,i)Tdk,i

(dk,i)TQdk,i
∈ Argmin

α∈R
f(zk,i + αdk,i).

14

A. Cristofari

It follows that, when (dk,i)TQdk,i > 0, we can set γ = 1/2, L̄pki ,j(k) = Lpki ,j(k) and the stepsize

given in (38) is the exact stepsize, i.e., it is the feasible minimizer of f(zk,i + αdk,i) with
respect to α.

Vice versa, if (dk,i)TQdk,i ≤ 0 for a given direction dk,i, we can exploit the fact that the
greatest objective decrease along dk,i is achieved by setting αk,i as large as possible, since

f(zk,i + αdk,i) = f(zk,i) + α∇f(zk,i)Tdk,i +
1

2
α2(dk,i)TQdk,i, ∀α ∈ R. (41)

So, we can set αk,i = min{ᾱk,i, Au}, with 0 < Au < ∞ being a (large) fixed parame-
ter. Using (41), it is easy to see that also this stepsize is a particular case of the Armijo
stepsize defined in Proposition 2 (indeed, for every nonnegative value of ∆k,i, the Armijo
condition (21) is satisfied by c = 0).

4.3 Strictly convex objective functions

Let us consider a strictly convex objective function. In this case, we can satisfy SC 1 by
computing, at every inner iteration (k, i), the stepsize αk,i by an exact line search, that is,

αk,i ∈ Argmin {f(zk,i + αdk,i) : α ∈ [0, ᾱk,i]}. (42)

To ensure that the above minimization is well defined at every inner iteration, we assume
that L0 is compact.

Proposition 4. Let us assume that f is strictly convex and L0 is compact. Then, SC 1 is
satisfied by computing, at every inner iteration (k, i), the stepsize αk,i as in (42).

Proof. Point (i) of SC 1 immediately follows from the definition of αk,i. Since f(xk+1) =
f(zk,n+1) ≤ f(zk,n) ≤ . . . ≤ f(zk,1) = f(xk) and each zk,i lies in the compact set L0,
it follows that {f(xk)} converges. So, to prove point (ii) of SC 1 we have to show that
lim
k→∞
‖zk,i+1 − zk,i‖ = 0, i = 1, . . . , n. Arguing by contradiction, assume that this is not true.

Then, there exist a real number ρ > 0, an index ı̂ ∈ {1, . . . , n} and an infinite subsequence
{zk,̂ı}K⊆{0,1,...} such that ‖zk,̂ı+1 − zk,̂ı‖ ≥ ρ for all k ∈ K. Since every point zk,i lies in the

compact set L0, there also exist a further infinite subsequence, that we still denote by {zk,̂ı}K
without loss of generality, and two distinct points z′, z′′ ∈ Rn such that

lim
k→∞
k∈K

zk,̂ı = z′ and lim
k→∞
k∈K

zk,̂ı+1 = z′′. (43)

As αk,i is obtained by an exact line search, we can write

f(zk,̂ı+1) ≤ f
(
zk,̂ı +

1

2
αk,̂ıdk,̂ı

)
= f

(zk,̂ı + zk,̂ı+1

2

)
≤ 1

2
f(zk,̂ı) +

1

2
f(zk,̂ı+1) ≤ f(zk,̂ı),

(44)

where the second inequality follows from the convexity of f and the last inequality follows
from the fact that f(zk,̂ı+1) ≤ f(zk,̂ı). Moreover, since {f(xk)} converges, a real number f̄
exists such that

lim
k→∞

f(zk,i) = f̄ , i = 1, . . . , n. (45)

15

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

By continuity of the objective function, we can write

lim
k→∞
k∈K

f(zk,̂ı) = f(z′) = f̄ and lim
k→∞
k∈K

f(zk,̂ı+1) = f(z′′) = f̄ .

So, passing to the limit in (44), we obtain f̄ ≤ f
(z′ + z′′

2

)
≤ f̄ , that is, f

(z′ + z′′

2

)
=

f̄ . Adding to the left-hand side of this equality the two quantities
(1

2
f̄ − 1

2
f(z′)

)
and(1

2
f̄ − 1

2
f(z′′)

)
, that are both equal to zero, we get

f
(z′ + z′′

2

)
=

1

2
f(z′) +

1

2
f(z′′),

contradicting the fact that f is strictly convex and z′ 6= z′′. Then, point (ii) of SC 1 holds.
Finally, point (iii) of SC 1 can be proved by the same arguments used in the proof of

Proposition 2 for the Armijo stepsize, just observing that the objective decrease achieved
by the exact line search is greater than or equal to the one achieved by the Armijo line
search.

5 Convergence rate analysis

In this section, we show that the convergence rate of AC2CD is linear under standard addi-
tional assumptions.

The key to prove linear convergence rate of AC2CD is to show a relation between the
points produced by AC2CD and the points produced by the classical coordinate descent
method applied to an equivalent transformed problem. Then, linear convergence rate follows
from the well known properties of the classical coordinate descent method proved by Luo
and Tseng [17] and by Beck and Tetruashvili [2].

In particular, here we give two results. The first one is more general and states that,
eventually, {f(xk)} converges linearly to the optimal value of problem (1), that is, C ∈ [0, 1)
exists such that f(xk+1)− f(x∗) ≤ C[f(xk)− f(x∗)] for all sufficiently large k, with x∗ being
the optimal solution of problem (1). The second result is for the case where there are no
bounds on the variables and establishes a non-asymptotic linear convergence rate, that is,
the above inequality holds for every k ≥ 0.

Let us start by showing the general result. First, we need a specific rule to compute the
index j(k) in order to ensure that it remains constant from a certain outer iteration k̂. In
particular, we initialize AC2CD with τ ∈ (0, 1) (step 0 of Algorithm 1) and, from a certain
k ≥ 1, we adopt the following rule: j(k) = j(k − 1) if this choice satisfies (4), otherwise j(k)
is set equal to any index h such that Dh(xk) = Dk, where Dh and Dk are the operators given
in (3) and (5), respectively. Namely,

j(k)

= j(k − 1), if this choice satisfies (4),

∈ Argmax
h=1,...,n

Dh(xk), otherwise.
(46)

We can state the following intermediate lemma.

16

A. Cristofari

Lemma 3. Let Assumption 1 hold and let τ ∈ (0, 1). Let {xk} be a sequence of points
produced by AC2CD, where j(k) is computed as in (46) from a certain k ≥ 1. Let us also
assume that limk→∞{xk} = x∗ ∈ Rn.

Then, there exist a variable index ̄ and an outer iteration k̂ such that j(k) = ̄ for all
k ≥ k̂. Moreover, x∗̄ ∈ (l̄, u̄).

Proof. Let j∗ ∈ Argmaxh=1,...,nDh(x∗). From Assumption 1, we have Dj∗(x∗) > 0.

First, we prove that there exist a variable index ̄ and an outer iteration k̂ such that
j(k) = ̄ for all k ≥ k̂. Arguing by contradiction, assume that this is not true. Since the
set of indices {1, . . . , n} is finite, there exist two indices j1, j2 ∈ {1, . . . , n} and two infinite
subsequences {xk}K1 and {xk}K2 such that{

j(k − 1) 6= j1,

j(k) = j1,
∀ k ∈ K1, and

{
j(k − 1) = j1,

j(k) = j2,
∀ k ∈ K2.

Since j(k) is computed as in (46) from a certain k ≥ 1, it follows that

Dj1(xk) = Dk ≥ Dj∗(xk), ∀ sufficiently large k ∈ K1,

Dj1(xk) < τDk = τDj2(xk), ∀ sufficiently large k ∈ K2.

By continuity of the operator Dh, we can write

Dj1(x∗) = lim
k→∞
k∈K1

Dj1(xk) ≥ lim
k→∞
k∈K1

Dj∗(xk) = Dj∗(x∗),

Dj1(x∗) = lim
k→∞
k∈K2

Dj1(xk) ≤ τ lim
k→∞
k∈K2

Dj2(xk) = τDj2(x∗).

Combining these two inequalities, and recalling that Dj∗(x∗) > 0, we obtain

0 < Dj∗(x∗) ≤ τDj2(x∗).

This is contradiction, since Dj∗(x∗) ≥ Dj2(x∗) and τ ∈ (0, 1). So, a variable index ̄ and an

outer iteration k̂ exist such that j(k) = ̄ for all k ≥ k̂.
To prove that x∗̄ ∈ (l̄, u̄), assume by contradiction that D̄(x

∗) = 0. Since j(k) is

computed as in (46) from a certain k ≥ 1 and j(k) = ̄ for all k ≥ k̂, for all sufficiently large
k we have D̄(x

k) ≥ τDk ≥ τDj∗(xk). By continuity of the operator Dh, we obtain

0 = D̄(x
∗) = lim

k→∞
D̄(x

k) ≥ τ lim
k→∞

Dj∗(xk) = τDj∗(x∗),

which leads to a contradiction, since Dj∗(x∗) > 0 and τ ∈ (0, 1). Therefore, x∗̄ ∈ (l̄, u̄).

Now, we are ready to show that, eventually, {f(xk)} converges linearly to f(x∗) under
the following assumption.

Assumption 2. It holds that

• f is strictly convex twice continuously differentiable over Rn;

17

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

• the optimal solution of problem (1), denoted by x∗, exists;

• ∇2f(x∗) � 0.

Note that Assumption 2 implies that L0 is compact (see Lemma 9.1 in [29]). Therefore,
if also Assumption 1 holds and SC 1 is satisfied, then {xk} converges to the optimal solution
x∗. As a further consequence, under Assumption 2 we can compute the stepsize by an exact
line search to satisfy SC 1 (see Proposition 4).

Theorem 2. Let Assumption 1 and 2 hold, and let τ ∈ (0, 1). Let {xk} be a sequence of
points produced by AC2CD, where j(k) is computed as in (46) from a certain k ≥ 1 and the
stepsize is computed as indicated in Proposition 4.

Then, a real number C ∈ [0, 1) and an outer iteration k̄ exist such that

f(xk+1)− f(x∗) ≤ C[f(xk)− f(x∗)], ∀ k ≥ k̄.

Proof. Without loss of generality, we assume that n > 1 (otherwise the feasible set is either
empty or a singleton). Let ̄ and k̂ be the variable index and the outer iteration defined in
Lemma 3, respectively. Namely, j(k) = ̄ for all k ≥ k̂. To simplify the notation, without
loss of generality we assume that

pkn = ̄, ∀ k ≥ k̂, and ̄ = n. (47)

Let us consider the following variable transformation:

xi =


yi, i ∈ {1, . . . , n} \ {̄},
b−

∑
h6=̄

yh, i = ̄. (48)

Equivalently, we can write

x = My + w, (49)

where, recalling that ̄ = n,

M =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

−1 −1 . . . −1

 ∈ Rn×(n−1) and w =


0

0
...

0

b

 ∈ Rn. (50)

Note that the columns of M are linearly independent and, for every point x ∈ Rn such
that

∑n
i=1 xi = b, the linear system x = My + w has a unique solution given by yi = xi,

i = 1, . . . , n− 1.

Now, since x∗n ∈ (ln, un) (by Lemma 3) and f is strictly convex, in problem (1) we can
remove the bound constraints on the variable xn and x∗ is still the unique optimal solution.

18

A. Cristofari

Consequently, by defining the function ψ : Rn−1 → R as ψ(y) := f
(
My + w

)
, we can recast

problem (1) as follows:

min ψ(y)

li ≤ yi ≤ ui, i = 1, . . . , n− 1.
(51)

We observe that, for every feasible point y of problem (51), the corresponding x obtained
by (49) satisfies both the equality constraint

∑n
i=1 xi = b and the bound constraints li ≤

xi ≤ ui, i = 1, . . . , n− 1 (the bound constraints on xn are ignored for the reasons explained
above).

An optimal solution y∗ of problem (51) exists, is unique and is given by y∗i = x∗i , i =
1, . . . , n − 1. Indeed, this y∗ clearly satisfies x∗ = My∗ + w and ψ(y∗) = f(x∗). So, if a
feasible point ỹ 6= y∗ of problem (51) existed such that ψ(ỹ) ≤ ψ(y∗), it would mean that
Mỹ + w 6= My∗ + w (since the columns of M are linearly independent) and f(Mỹ + w) ≤
f(My∗ + w) = f(x∗). But this is not possible, since Mỹ would be feasible for problem (1)
after removing the bound constraints on xn, and we said above that x∗ is still the unique
optimal solution of problem (1) even if we remove the bound constraints on xn.

Now, for any k ≥ k̂ and for any i = 1, . . . , n, let us define yk,i as the unique vector
(feasible for problem (51)) satisfying

zk,i = Myk,i + w, (52)

which is given by
yk,ih = zk,ih , h = 1, . . . , n− 1. (53)

For all k ≥ k̂, without loss of generality we can consider only the first n− 1 inner iterations
in AC2CD. Indeed, by (47) we are assuming that pkn = ̄ for all k ≥ k̂, and then, no pair
of coordinates is updated in the inner iteration (k, n) for all k ≥ k̂ (see Remark 1). Let us
consider any inner iteration (k, i), with k ≥ k̂ and i ∈ {1, . . . , n− 1}. We want to show that

zk,i + αdk,i = My

∣∣∣∣∣∣∣∣ypki =yk,i
pk
i

−α∇
pk
i
ψ(yk,i)

yh=yk,ih , h=1,...,n−1, h 6=pki

+ w, ∀α ∈ R. (54)

In other words, (54) says that moving zk,i along dk,i with a certain stepsize α corresponds, in
the y space, to moving the pki th coordinate of yk,i along −∇pki ψ(yk,i) with the same stepsize

α, keeping all the other coordinates of yk,i fixed. To prove that (54) holds, we use again the
fact that, for all α ∈ R, the linear system zk,i+αdk,i = My+w has a unique solution y given
by yh = zk,ih + αdk,ih , h = 1, . . . , n− 1. Then, (54) is equivalent to writing

zk,i
pki

+ αdk,i
pki

= yk,i
pki
− α∇pki ψ(yk,i), (55a)

zk,ih + αdk,ih = yk,ih , h = 1, . . . , n− 1, h 6= pki . (55b)

Since dk,ih = 0 for all h /∈ {pki , ̄}, and we are assuming that ̄ = n, (55b) immediately follows

from (53). To obtain (55a), we use (53) again to write yk,i
pki

= zk,i
pki

. Thus, we only need to

19

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

show that dk,i
pki

= −∇pki ψ(yk,i). This follows from the relation ∇ψ(y) = MT∇f(My + w),

that, combined with (52) and the definition of M given in (50), yields to

∇pki ψ(yk,i) = ∇pki f(Myk,i + w)−∇̄f(Myk,i + w)

= ∇pki f(zk,i)−∇̄f(zk,i) = −dk,i
pki
.

Therefore, (55) holds, implying that (54) holds too. Using α = αk,i in (55), for all k ≥ k̂ we
can write

zk,i+1

pki
= yk,i

pki
− αk,i∇pki ψ(yk,i), i = 1, . . . , n− 1,

zk,i+1
h = yk,ih , h = 1, . . . , n− 1, h 6= pki , i = 1, . . . , n− 1.

Using (53) (with i replaced by i+ 1) in the above relations, for all k ≥ k̂ we obtain

yk,i+1

pki
= yk,i

pki
− αk,i∇pki ψ(yk,i), i = 1, . . . , n− 1, (56a)

yk,i+1
h = yk,ih , h = 1, . . . , n− 1, h 6= pki , i = 1, . . . , n− 1. (56b)

We see that, for all k ≥ k̂, the vectors yk,1, . . . , yk,n are the same that would be generated by
a coordinate descent algorithm applied to problem (51). In particular, for all k ≥ k̂, every
yk+1,1 is obtained from yk,1 by selecting one coordinate at a time by a Gauss-Seidel (or cyclic)
rule and moving it with a certain stepsize.

Now we want to show that, for all sufficiently large k, each stepsize αk,i is the same that
would be obtained by performing an exact line search in the updating scheme (56), applied

to problem (51). First observe that there exists k̃ ≥ k̂ such that zk,i̄ ∈ (l̄, u̄), i = 1, . . . , n,

for all k ≥ k̃, as x∗̄ ∈ (l̄, u̄) and {zk,i} → x∗, i = 1, . . . , n. Therefore, since an exact line
search is used in AC2CD, for all i = 1, . . . , n we can write

αk,i ∈ Argmin
α∈R

{f(zk,i + αdk,i) : zk,i
pki

+ αdk,i
pki
∈ [lpki

, upki
]}, ∀ k ≥ k̃. (57)

In other words, for all k ≥ k̃, the constraints zk,i̄ + αdk,i̄ ∈ [l̄, u̄] with respect to α are not
necessary for the computation of the stepsize in AC2CD. Combining (57) with (54), we get
that, for all k ≥ k̃, each αk,i is the optimal solution of the following one-dimensional problem:

min
α∈R

ψ(y)

ypki
= yk,i

pki
− α∇pki ψ(yk,i)

yh = yk,ih , h = 1, . . . , n− 1, h 6= pki ,

lpki
≤ yk,i

pki
− α∇pki ψ(yk,i) ≤ upki .

(58)

In particular, the last bound constraints in (58) follow from those in (57), using (55a).
Therefore, for all k ≥ k̃, each αk,i is the stepsize that would be obtained by performing an
exact line search in the coordinate descent scheme (56), applied to problem (51).

20

A. Cristofari

So, according to the results established by Luo and Tseng [17], eventually {ψ(yk,1)}
converges linearly to the optimal value of problem (51) if the following three conditions hold:
(i) ψ is strictly convex twice continuously differentiable over Rn−1, (ii) the optimal solution
y∗ of problem (51) exists, (iii) ∇2ψ(y∗) � 0. The second point has already been proved
before, while the other two points follow by combining Assumption 2 with the fact that the
columns of M are linearly independent and x∗ = My∗+w. We conclude that a real number
C ∈ [0, 1) and an outer iteration k̄ ≥ k̃ exist such that

ψ(yk+1,1)− ψ(y∗) ≤ C[ψ(yk,1)− ψ(y∗)], ∀ k ≥ k̄.

Since ψ(y∗) = f(x∗), ψ(yk,1) = f(zk,1) = f(xk) and ψ(yk+1,1) = f(zk+1,1) = f(xk+1), we get
the result.

Now, we focus on the case where there are no bounds on the variables, i.e., li = −∞ and
ui = ∞ for all i = 1, . . . , n. In this case, a non-asymptotic linear convergence rate can be
achieved by using the stepsize defined in Proposition 3 (with γ = 1/2). To obtain this result,
we need the following assumption.

Assumption 3. It holds that

• f is strongly convex over Rn with constant µ;

• ∇f is Lipschitz continuous over Rn with constant L;

• the optimal solution of problem (1), denoted by x∗, exists.

Also in this case, we need to maintain the index j(k) fixed throughout the algorithm. In
particular, now we require j(k) to be equal to any index ̄ ∈ {1, . . . , n} for all k ≥ 0 (note
that any choice of ̄ is acceptable, since there are no bounds on the variables).

Theorem 3. Let us assume that there are no bounds on the variables in problem (1), i.e.,
li = −∞ and ui = ∞ for all i = 1, . . . , n, and let Assumption 3 hold. Given any index
̄ ∈ {1, . . . , n}, let {xk} be a sequence of points produced by AC2CD, where j(k) = ̄ for all
k ≥ 0 and the stepsize is computed as indicated in Proposition 3, with γ = 1/2.

Then, a real number C ∈ [0, 1) exists such that

f(xk+1)− f(x∗) ≤ C[f(xk)− f(x∗)], ∀ k ≥ 0. (59)

In particular, considering the constants Li,j defined in Lemma 2 and the constants L̄i,j
used for the stepsize computation, we have

C = 1− µ

2L̄max
̄

[
1 + (n− 1)(

∑
i 6=̄ Li,̄)

2/(L̄min
̄)2

] , (60)

where L̄min
̄ := min

i 6=̄
L̄i,̄ and L̄max

̄ := max
i 6=̄

L̄i,̄.

21

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Proof. Following the same line of arguments as in the proof of Theorem 2, without loss of
generality we assume that n > 1 and that (47) holds for all k ≥ 0. Then, we consider the
variable transformation x = My + w given in (48), (49) and (50) to define the function
ψ : Rn−1 → R as ψ(y) := f

(
My + w

)
. We obtain that problem (1) is equivalent to the

following problem (which is now unconstrained since there are no bounds on the variables):

min
y∈Rn−1

ψ(y). (61)

An optimal solution y∗ of problem (61) exists, is unique and is given by y∗i = x∗i , i =
1, . . . , n − 1, satisfying x∗ = My∗ + w and ψ(y∗) = f(x∗). Moreover, for any k ≥ 0 and for
any i = 1, . . . , n, let us define yk,i as in (52)–(53). We have that (56) holds for all k ≥ 0.
Namely, for all k ≥ 0, every yk+1,1 is obtained from yk,1 by selecting one coordinate at a time
by a Gauss-Seidel (or cyclic) rule and moving it with a certain stepsize.

Now, let us consider the stepsize αk,i. By hypothesis, it is computed as described in
Proposition 3, with γ = 1/2, using the constants Li,j and L̄i,j as they are defined in Lemma 2
and in (37), respectively. Since there are no bounds on the variables, for every dk,i 6= 0 we
have ᾱk,i =∞. Then,

αk,i =

{
1/L̄pki ,̄

if dk,i 6= 0,

0, otherwise.

We want to show that L1,̄, . . . , Ln−1,̄ are the coordinatewise Lipschitz constants of ∇ψ over
Rn−1. Namely, for every i = 1, . . . , n− 1 and for all y ∈ Rn−1, we want to show that∣∣∇iψ(y(α)

)
−∇iψ(y)

∣∣ ≤ Li,̄|α|, ∀α ∈ R, (62)

where y(α) ∈ Rn−1 is defined as follows:

y(α)i = yi + α,

y(α)h = yh, h = 1, . . . , n− 1, h 6= i.

Recalling that ̄ = n and the definition of M given in (50), first observe that ∇iψ(y) =

∇f
(
My+w

)T
(ei− e̄) and ∇iψ

(
y(α)

)
= ∇f

(
My(α) +w

)T
(ei− e̄) = ∇f

(
My+w+α(ei−

e̄)
)T

(ei − e̄). Thus,∣∣∇iψ(y(α)
)
−∇iψ(y)

∣∣ =∣∣∇f(My + w + α(ei − e̄)
)T

(ei − e̄)−∇f(My + w)T (ei − e̄)
∣∣.

Considering the functions φi,j,z defined in Lemma 2, we have that φ̇i,j,z(α) = ∇f
(
z + α(ei −

ej)
)T

(ei − ej). Therefore, from Lemma 2 we get∣∣∇iψ(y(α)
)
−∇iψ(y)

∣∣ = |φ̇i,̄,My+w(α)− φ̇i,̄,My+w(0)| ≤ Li,̄|α|

and then (62) holds.
So, for all k ≥ 0 and all i = 1, . . . , n − 1 such that dk,i 6= 0, each stepsize αk,i is

the reciprocal of an overestimate of Lpki ,̄
, where Lpki ,̄

is the pki th coordinatewise Lipschitz

22

A. Cristofari

constant of ∇ψ. According to the results stated by Beck and Tetruashvili [2] (see Theorem
3.9 in [2]), {ψ(yk,1)} has a non-asymptotic linear convergence rate if the following three
conditions hold: (i) ψ is strongly convex over Rn−1, (ii) ∇ψ is Lipschitz continuous over
Rn−1, (iii) the optimal solution y∗ of problem (61) exists. The third point has already been
proved before. The first point follows from Assumption 2 and the fact that the columns of
M are linearly independent. The second point follows from the fact that L1,̄, . . . , Ln−1,̄ are
the coordinatewise Lipschitz constants of ∇ψ over Rn−1. In particular, using known results
(see Lemma 2 in [22]) and the fact that ̄ = n, we can write

‖∇ψ(y′)−∇ψ(y′′)‖ ≤
n−1∑
i=1

Li,̄ ‖y′ − y′′‖

=
∑
i 6=̄

Li,̄ ‖y′ − y′′‖, ∀ y′, y′′ ∈ Rn−1.

(63)

Therefore, a real number C ∈ [0, 1) exists such that

ψ(yk+1,1)− ψ(y∗) ≤ C[ψ(yk,1)− ψ(y∗)], ∀ k ≥ 0. (64)

Then, we get (59) by using the fact that ψ(y∗) = f(x∗), ψ(yk,1) = f(zk,1) = f(xk) and
ψ(yk+1,1) = f(zk+1,1) = f(xk+1).

Now, we prove (60). First observe that, by Theorem 3.9 in [2], the constant C appearing
in (64) is given by

C = 1− µψ

2L̄max
̄

[
1 + (n− 1)(Lψ)2/(L̄min

̄)2
] ,

where µψ and Lψ are the strong convexity constant of ψ over Rn−1 and the Lipschitz constant
of ∇ψ over Rn−1, respectively, while L̄min

̄ and L̄max
̄ are defined as in the assertion of the

theorem. Using (63), we can upper bound Lψ with
∑

i 6=̄ Li,̄. Therefore, to obtain (60), we
only have to show that

µψ = µ, (65)

i.e., we have to show that ψ is strongly convex over Rn−1 with constant µ. Using the fact
that f is strongly convex over Rn with constant µ, for any y′, y′′ ∈ Rn−1 and for all θ ∈ [0, 1]
we can write

ψ(θy′ + (1− θ)y′′) = f
(
M(θy′ + (1− θ)y′′) + w

)
= f

(
θ(My′ + w) + (1− θ)(My′′ + w)

)
≤ θf(My′ + w) + (1− θ)f(My′′ + w)+

− µ

2
θ(1− θ)‖My′ + w −My′′ − w‖2

= θψ(y′) + (1− θ)ψ(y′′)− µ

2
θ(1− θ)‖M(y′ − y′′)‖2.

Denoting by λmin(MTM) the smallest eigenvalue of MTM , we also have ‖M(y′ − y′′)‖2 =
(y′ − y′′)TMTM(y′ − y′′) ≥ λmin(MTM)‖y′ − y′′‖2, and then,

ψ(θy′ + (1− θ)y′′) ≤ θψ(y′) + (1− θ)ψ(y′′)− µ

2
λmin(MTM)θ(1− θ)‖y′ − y′′‖2. (66)

23

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Note that MTM has all entries equal to 1, except for those on the diagonal that are equal
to 2. Namely,

MTM = I(n−1)×(n−1) + 1(n−1)×(n−1),

where I(n−1)×(n−1) is the (n − 1) dimensional identity matrix and 1(n−1)×(n−1) is the (n −
1)× (n−1) matrix made of all ones. It follows that λmin(MTM) = 1+0 = 1, that, combined
with (66), implies that ψ is strongly convex over Rn−1 with constant µ. Then, (65) holds
and the result is obtained.

Let us conclude this section by discussing the relation between AC2CD and the classical
coordinate descent method. As appears from the proofs of Theorem 2 and Theorem 3, this
relation is crucial to obtain linear convergence rate of AC2CD and it also provides further
insight into the proposed method.

Indeed, for every k ≥ 0, a cycle of inner iterations (k, 1), . . . , (k, n) in AC2CD can be seen
as a cycle of iterations of the classical coordinate descent method, with cyclic selection rule,
applied to an equivalent transformed problem. In particular, for every k ≥ 0 we can use the
variable transformation given in (48), (49) and (50), with ̄ replaced by j(k), to define the
function ψ(y) := f

(
My+w

)
and recast (1) as an equivalent problem. Note that, in absence

of any information on j(k), the resulting equivalent transformed problem

• can change from k to k + 1, as j(k) can change;

• has bound constraints li ≤ yi ≤ ui, i ∈ {1, . . . , n} \ {j(k)}, plus the constraints lj(k) ≤
b−

∑
i 6=j(k) yi ≤ uj(k), where the latter follow from the constraints lj(k) ≤ xj(k) ≤ uj(k)

in (1).

Then, in the proofs of Theorem 2 and Theorem 3, we obtain a linear convergence rate by
exploiting the rule used to compute j(k) that, together with other standard assumptions,
guarantees that j(k) = ̄ for all k ≥ k̂ and x∗̄ ∈ (l̄, u̄) (for problems with no bounds on the

variables, we have k̂ = 0). In this way, for all sufficiently large k, the equivalent transformed
problem remains the same and the constraints lj(k) ≤ b−

∑
i 6=j(k) yi ≤ uj(k) can be ignored.

It also follows that quickly identifying the index ̄ in problems with finite bounds on the
variables may benefit the algorithm. Then, it may be useful combining AC2CD with some
strategies to predict which variables are at the bounds in the final solution, such es, e.g.,
those proposed in [11, 6, 27, 8].

Finally, the approach of transforming (1) into an equivalent simply constrained problem
has some connections with the method proposed by Bertsekas in [3] for solving problems with
linear inequality constraints. In particular, at every iteration, the algorithm proposed in [3]
selects a subset of n indices that comprises all those corresponding to the binding constraints.
Then, assuming linear independence of these constraints, a linear variable transformation is
used to obtain a new problem with a first block of box constraints, plus a second block of
general linear inequality constraints which are not binding at the current point and can be
ignored for the computation of the search direction, obtained by a Newton strategy. So, the
main difference between AC2CD and the method proposed in [3] is that, for every k ≥ 0,
we perform a cycle of inner iterations to update one coordinate at a time in the equivalent
transformed problem.

24

A. Cristofari

6 Numerical results

In this section, we present the numerical results of AC2CD on some structured problems
where the computation of the partial derivatives of the objective function is cheap with
respect to the computation of the whole gradient. The codes were written in Matlab (version
R2017b) and the experiments were run on an Intel(R) Core(TM) i7-7500U with 16 GB RAM
memory.

First, we considered the Chebyshev center problem and the linear Support Vector Machine
(SVM) training problem, which both can be written as

min f(x) =
1

2
xTQTQx− qTx,

n∑
i=1

xi = 1

li ≤ xi ≤ ui, i = 1, . . . , n,

(67)

for some Q ∈ Rm×n, q ∈ Rn, li ∈ R∪{−∞} and ui ∈ R∪{∞}, i = 1, . . . , n. On these convex
quadratic problems, we compared AC2CD with the following block decomposition methods:

• Random Coordinate Descent (RCD) [20], which, at every iteration, randomly selects
two distinct variables from a given probability distribution and updates them by min-
imizing a quadratic model of the objective function;

• Maximal Violating Pair (MVP) [26, 9], which, at every iteration, selects the two vari-
ables that most violate the stationarity conditions (2) and moves them by using an
appropriate stepsize that, in our case, is computed by an exact line search.

Note that RCD, like AC2CD, does not need to compute the whole gradient of the objective
function for choosing the working set. On the other hand, MVP exploits a Gauss-Southwell
(or greedy) strategy which requires to calculate the whole vector ∇f(xk) at each iteration k.

Then, we focused on problems with strongly convex objective function and no bounds on
the variables, for which non-asymptotic linear convergence rate of AC2CD has been proved
in Section 5. In this case, we compared our algorithm with two versions of RCD that were
proposed in [21] for problems of the following form:

min f(x) =
n∑
i=1

fi(xi),

n∑
i=1

xi = 0,

(68)

where each fi : R → R is convex and has a Lipschitz continuous derivative with constant
Li > 0. In our experiments, we considered the same test problems used in [21, 32], which are
of the form of (68), with strongly convex fi, i = 1, . . . , n.

25

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Lastly, we considered the following non-convex problems:

min f(x) =
1

2
xTQTDQx− qTx,

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n,

(69)

for some Q ∈ Rm×n, D ∈ Rm×m and q ∈ Rn, choosing D as a diagonal matrix so that QTDQ
is indefinite. On these problems, AC2CD is still compared with RCD (whose analysis for the
non-convex case can be found in [25]) and MVP with exact line search (whose analysis for
non-convex problems over the unit simplex can be found in [4], just observing that, for this
class of problems, MVP coincides with the so called pairwise Frank-Wolfe method).

Finally, to have a fair comparison between AC2CD and RCD, in the following results we
consider an outer iteration of RCD as made of n inner iterations, each of them involving a
minimization step with respect to a pair of coordinates.

6.1 Implementation issues

In this subsection, we describe some implementation details concerning

• the computation of {pk1, . . . , pkn} at step 3 of Algorithm 1,

• the computation of the derivatives of the objective function in each algorithm,

• the termination criterion used in each algorithm.

As regards the first point, a permutation {pk1, . . . , pkn} of {1, . . . , n} was randomly com-
puted at the beginning of every outer iteration k of AC2CD (it is known that, in coordinate
descent methods with cyclic selection rules, periodically shuffling the ordering of the variables
may speed up convergence in practice [7, 31]).

For what concerns the derivatives computation, this operation is straightforward for prob-
lem (68), given the separable structure of the objective function. More attention is needed for
problems (67) and (69), since, due to the possibly excessive dimension of Q, in these problems
the Hessian matrices QTQ and QTDQ were not stored. For what concerns problems (67),
using some ideas from [10, 20] we introduced the vector r(x) := Qx, updating it during the
iterations of each considered algorithm, so that

∇if(x) = Qi
T r(x)− qi, i = 1, . . . , n, (70)

where Qi is the ith column of Q. We see that computing any partial derivative has a cost
O(m) and we have an extra cost O(2m) to update the vector r(x) (since the considered
algorithms can move two variables at a time). These costs can also reduce when Q is sparse.
Similarly, for what concerns problems (69), we introduced the vector r(x) := DQx and (70)
still holds (in this case we have a cost O(3m) to update r(x), due to the presence of the
diagonal matrix D).

26

A. Cristofari

It is worth observing that, in AC2CD and RCD, both variables included in the working
set at the beginning of an inner iteration may be at the lower or at the upper bound. In
this case, the minimization step is not performed in practice (since the two variables cannot
be moved), and then, the partial derivatives of the objective function do not need to be
computed. So, by inserting a simple check in the scheme of AC2CD and RCD, we avoided
to compute the partial derivatives of the objective function when not necessary.

For what concerns the termination criterion used in AC2CD, let us first rewrite the
stationarity conditions (2) in an equivalent form:

min
i : xi<ui

{∇if(x)} − max
i : xi>li

{∇if(x)} ≥ 0.

Exploiting some ideas from [10], the termination criterion used in AC2CD tries to approxi-
mately satisfy the above relation without the need of computing the whole gradient of the
objective function, in order to preserve efficiency. To this extent, at the beginning of every
outer iteration k we first set Gkmin = ∞ and Gkmax = −∞. Then, at every inner iteration

(k, i) we update Gkmin and Gkmax as follows: for each variable zk,ih included in the working

set, if zk,ih < uh then we update Gkmin ← min{Gkmin,∇hf(zk,i)}, and if zk,ih > lh then we up-
date Gkmax ← max{Gkmax,∇hf(zk,i)}. So, AC2CD was stopped at the end of the first outer
iteration k satisfying

Gkmin −Gkmax ≥ −ε, (71)

where ε is a scalar that was set to 10−1. Since ∇pki f(zk,i) and ∇j(k)f(zk,i) are not computed

when both zk,i
pki

and zk,ij(k) are at the lower or at the upper bound, for the reasons explained

above, we also added a final check after that (71) is satisfied, evaluating all those components
of ∇f(xk) that were skipped, if any.

For the convex problems considered in our experiments, we used the final objective value
fAC2CD returned by AC2CD as benchmark for termination of RCD and MVP. Namely, RCD
and MVP were stopped when they produced a point xk satisfying

f(xk)− fAC2CD

1 + |fAC2CD|
≤ ν, (72)

where ν is a scalar that was set to 10−6. Clearly, a termination criterion based on (72) can-
not be used when the objective function is non-convex, since the algorithms may converge to
different stationary points. So, for the non-convex problems (69), the same termination crite-
rion used in AC2CD was also used in RCD (recall that we consider an outer iteration of RCD
as made of n inner iterations), while MVP, that computes ∇f(xk) at each iteration k, was
stopped when it produced a point xk such that mini=1,...,n{∇if(xk)}−maxi : xi>0{∇if(xk)} ≥
−10−1.

6.2 Chebyshev center

Given a finite set of vectors v1, . . . , vn ∈ Rm, the Chebyshev center problem consists in
finding the smallest ball that encloses all the given points. It arises in many fields, such as
mechanical engineering, biology, environmental science and computer graphics (see [33] and

27

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

the references therein for more details). The Chebyshev center problem can be formulated
as the following convex standard quadratic problem:

min f(x) =

n∑
i=1

n∑
j=1

(vi)T vjxixj −
n∑
i=1

‖vi‖2xi

n∑
i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.

Nine synthetic data sets were created by randomly generating each component of the
samples v1, . . . , vn from a standard normal distribution, using n = 40000, 60000, 80000 and
m = 0.01n, 0.05n, 0.1n for every fixed n. The nine data sets are listed below:

(i) n = 40000, m = 400;
(ii) n = 40000, m = 2000;
(iii) n = 40000, m = 4000;
(iv) n = 60000, m = 600;
(v) n = 60000, m = 3000;
(vi) n = 60000, m = 6000;

(vii) n = 80000, m = 800;
(viii) n = 80000, m = 4000;

(ix) n = 80000, m = 8000.

For each data set, a randomly chosen vertex of the unit simplex was used as starting point.
In AC2CD, for all k ≥ 1 the index j(k) was computed as in (46), with τ = 0.9 (for k = 0 we
set j(k) ∈ Argmaxh=1,...,nDh(xk)), and the stepsize was computed as described in the last
part of Subsection 4.2 for quadratic objective functions, with γ = 1/2 and Au = 1012. In
RCD, an O(1) procedure was used at each inner iteration to randomly choose, from a uniform
distribution, the pair of distinct variables to be updated. In particular, this procedure first
randomly generates a real number r from a uniform distribution on (0, n(n−1)

2), and then sets

i = 1 +
⌊
(
√

1 + 8brc+ 1)/2
⌋

and j = 1 +
⌊
brc − (i− 2)(i− 1)/2

⌋
, where b·c denotes the floor

operation.
In Table 1, we report the results for each algorithm in terms of final objective value,

number of (outer) iterations and CPU time in seconds. To analyze how fast the objective
function decreases in the three considered algorithms, in Figure 1 we plot the normalized
optimization error Ek versus the CPU time. Coherently with the termination criterion used
in the experiments, Ek is computed as the left-hand side of (72).

We see that, on all the considered data sets, AC2CD outperforms RCD both in CPU time,
by a factor between 2 and 14, and in the number of outer iterations, by a factor between
60 and 247. Looking at Figure 1 more in detail, we observe that AC2CD and RCD are
comparable in the first iterations, but AC2CD is able to compute a solution with higher
precision in a smaller amount of time. In comparison with MVP, we observe that AC2CD is
slightly slower on the data sets with m = 0.01n, i.e., data sets (i), (iv) and (vii). On all the
other data sets, on average AC2CD is more than 2 times faster than MVP in CPU time.

28

A. Cristofari

0 7 14
10-6

10-4

10-2

100

0 6 12
10-6

10-4

10-2

100

0 12 24
10-6

10-4

10-2

100

0 15 30
10-6

10-4

10-2

100

0 14 28
10-6

10-4

10-2

100

0 20 40
10-6

10-4

10-2

100

0 25 50
10-6

10-4

10-2

100

0 30 60
10-6

10-4

10-2

100

0 35 70
10-6

10-4

10-2

100

Figure 1: Normalized optimization error (y axis) versus CPU time in seconds (x axis) for
AC2CD, RCD and MVP on Chebyshev center problems. The y axis is in logarithmic scale
and, for each algorithm, the normalized optimization error is computed as the left-hand side
of (72).

29

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Table 1: Results of AC2CD, RCD and MVP on Chebyshev center problems. For each
algorithm, the first column indicates the final objective value, the second column indicates
the number of (outer) iterations and the third column indicates the CPU time in seconds.

Data

set

AC2CD RCD MVP

Obj
Outer Time

Obj
Outer Time

Obj Iter
Time

iter (s) iter (s) (s)

(i) −492.77 27 1.43 −492.77 4520 15.26 −492.77 183 0.98

(ii) −2191.46 26 2.65 −2191.46 2103 11.95 −2191.46 218 4.95

(iii) −4254.52 25 8.02 −4254.52 1501 24.78 −4254.52 281 12.62

(iv) −716.28 31 2.69 −716.28 6160 31.31 −716.28 168 1.92

(v) −3228.41 26 7.19 −3228.40 2225 27.45 −3228.40 308 15.48

(vi) −6314.02 24 13.59 −6314.01 1602 40.61 −6314.01 365 36.42

(vii) −933.28 30 3.86 −933.28 7391 52.48 −933.28 202 3.73

(viii) −4267.89 27 16.83 −4267.89 2563 58.99 −4267.89 368 32.50

(ix) −8370.25 25 21.00 −8370.24 1743 58.22 −8370.24 421 75.95

6.3 Linear SVM

Linear Support Vector Machine [5] is a popular technique for data classification, which aims
at separating a given set of samples by a hyperplane. Formally, let v1, . . . , vn ∈ Rm be a
finite set of vectors and a1, . . . , an ∈ {−1,+1} be the corresponding labels. To train a linear
SVM, we can solve the following convex quadratic problem:

min f(x) =
1

2

n∑
i=1

n∑
j=1

aiaj(vi)T vjxixj −
n∑
i=1

xi

n∑
i=1

aixi = 0

0 ≤ xi ≤ C, i = 1, . . . , n,

where C is a positive parameter, set to 1 in our experiments. As mentioned in Section 2, the
above problem can be easily rewritten as in (1).

Eight data sets were downloaded from the LIBSVM [6] webpage https://www.csie.

ntu.edu.tw/~cjlin/libsvmtools/datasets. They are listed below:

(i) gisette (n = 6000, m = 5000);
(ii) rcv1 (n = 20242, m = 47236);
(iii) a9a (n = 32561, m = 123);
(iv) w8a (n = 49749, m = 300);
(v) ijcnn1 (n = 49990, m = 22);
(vi) real sim (n = 72309, m = 20958);

(vii) webspam (n = 350000, m = 254);
(viii) covtype (n = 581012, m = 54).

30

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

A. Cristofari

Table 2: Results of AC2CD, RCD and MVP on linear SVM training problems. For each
algorithm, the first column indicates the final objective value, the second column indicates
the number of (outer) iterations and the third column indicates the CPU time in minutes.

Data

set

AC2CD RCD MVP

Obj
Outer Time

Obj
Outer Time

Obj Iter
Time

iter (min) iter (min) (min)

(i) −0.67 35 4.67 −0.67 97 9.54 −0.67 3199 1.60

(ii) −1745.37 29 25.79 −1745.36 101 65.45 −1745.36 6642 0.87

(iii) −11432.18 392 3.63 −11432.17 4961 27.19 −11432.17 76973 1.44

(iv) −1486.57 491 13.26 −1486.57 7398 31.99 −1486.57 40957 0.92

(v) −8589.43 101 0.45 −8589.42 2623 4.35 −8589.42 17013 0.36

(vi) −5344.92 39 86.01 −5344.91 284 436.74 −5344.91 21505 4.63

(vii) −69448.61 60 9.79 −69448.55 2298 414.86 −69448.55 62436 41.59

(viii) −337942.88 200 25.23 −337942.55 3029 378.62 −337942.55 936104 328.81

For each data set, we used as starting point a vector made of all zeros except for two
randomly chosen variables that were set strictly between the lower and the upper bound. In
AC2CD, the index j(k) and the stepsize were computed as described before for the Chebyshev
center problem. In RCD, the working set was randomly chosen at each inner iteration by
the same O(1) procedure used for the Chebyshev center problem.

The results for each algorithm are reported in Table 2 in terms of final objective value,
number of (outer) iterations and CPU time in minutes. On the first six data sets, which
have less than 105 samples, we see that MVP has the lowest CPU time, but AC2CD still
outperforms RCD. In particular, on these problems AC2CD is on average faster than RCD
by a factor of almost 5 in CPU time and by a factor larger than 11 in the number of outer
iterations. On the two largest data sets, having more than 105 samples, AC2CD achieves
the best performances. In particular, considering the CPU time, on data set (vii) AC2CD is
more than 42 times faster than RCD and more than 4 times faster than MVP, while on data
set (viii) AC2CD is about 15 times faster than RCD and about 13 times faster than MVP.

6.4 Problems with no bounds on the variables

The last convex test problems in our experiments are of the form of (68). We considered the
same class of objective functions used in [21, 32], that is,

fi(x) =
1

2
ai(xi − ci)2 + log

(
1 + exp(bi(xi − di))

)
, i = 1, . . . , n,

where ai > 0, i = 1, . . . , n, and bi, ci, di ∈ R, i = 1, . . . , n. It is possible to show that each fi
is strongly convex with constant ai and has a Lipschitz continuous derivative with constant
Li = ai + (1/4)b2i (see [21, 32]).

Six artificial problems were created. The first three have the following dimension:
(i) n = 5000, (ii) n = 10000, (iii) n = 20000, with ai randomly generated from a

31

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

uniform distribution on (0, 15) and bi, ci, di randomly generated from a uniform distribution
on (−15, 15). The last three problems have the same dimension as the previous ones, i.e.,
(iv) n = 5000, (v) n = 10000, (vi) n = 20000, but with ai randomly generated from a
uniform distribution on (0, 2), bi randomly generated from a uniform distribution on (−2, 2)
and ci, di randomly generated from a uniform distribution on (−10, 10).

In all of these problems, the zero vector was used as starting point. In AC2CD, the
index j(k) was maintained fixed for all k ≥ 0 and was chosen as an element of the set
Argmaxi=1,...,n 1/Li, while the stepsize was computed as described in Proposition 3, with
γ = 1/2 and L̄i,j replaced by Li + Lj , i, j = 1, . . . , n (see Remark 2).

Our algorithm was compared with two versions of RCD proposed in [21], using blocks
made of two variables and different probability distributions (studied in [21]), which are now
described. Denoting by pij the probability to select a pair of distinct variable indices (i, j)
at any inner iteration of RCD, we first used a uniform distribution, i.e., all pij have the same
value, and then we used probabilities that depend on the Lipschitz constants, i.e., each pij is
equal to (L−1

i +L−1
j)/

∑
h,t=1,...,n

h6=t
(L−1

h +L−1
t). We name the two resulting algorithms RCDunif

and RCDLips, respectively. More in detail, to choose the working set at any inner iteration, in
RCDunif we used the sameO(1) procedure described before for the Chebyshev center problem,
while in RCDLips we used the random generator proposed by Nesterov in [22], adjusted for
our purposes. It requires to randomly generate one real number from a uniform distribution
on (0, 1) and perform O(ln(n(n−1)

2)) operations on some vectors (whose preliminary definition
has a cost that has not been included in the final statistics).

In Table 3, we report the results for each algorithm in terms of final objective value,
number of outer iterations and CPU time in seconds. We see that, on the first three problems,
RCDunif achieves the best performances: in terms of CPU time it is faster than AC2CD by a
factor of about 1.5, but AC2CD is almost 13 times faster than RCDLips on average. On the
last three problems, in terms of CPU time AC2CD outperforms both RCDunif and RCDLips

by an average factor of about 2 and 15, respectively. Moreover, we observe that the number
of outer iterations of AC2CD and RCDLips is similar on all the considered problems, but the
amount of time needed to converge is remarkably different, with AC2CD being much faster.
This is due to the procedure used in RCDLips to randomly generate, at each inner iteration,
a pair of variable indices from a Lipschitz-dependent probability distribution.

6.5 Non-convex problems

To test how AC2CD works when the objective function is non-convex, we finally considered
problems of the form of (69). Each problem was created by the following procedure: first the
elements of Q and those of q were randomly generated from a standard normal distribution
and from a uniform distribution on (0, 1), respectively; then the diagonal elements of D were
set to 1, except for a prefixed number of them that were randomly chosen and set to negative
values randomly generated from a uniform distribution on (−1, 0).

More in detail, we generated three problems by fixing n = m = 7000 and considering a
number of negative diagonal elements of D equal to 0.35m, 0.5m and 0.65m, respectively.
The three problems are summarized below:

(i) n = m = 7000, nneg = 2450, npos = 4550, λmin = −9.19 · 103, λmax = 2.18 · 104;

32

A. Cristofari

Table 3: Results of AC2CD, RCDunif and RCDLips on singly linearly constrained problems
with no bounds on the variables. For each algorithm, the first column indicates the final
objective value, the second column indicates the number of outer iterations and the third
column indicates the CPU time in seconds.

Problem

AC2CD RCDunif RCDLips

Obj
Outer Time

Obj
Outer Time

Obj
Outer Time

iter (s) iter (s) iter (s)

(i) 166966.56 40614 87.42 166966.73 29625 58.64 166966.73 40115 1001.08

(ii) 336590.16 7738 33.61 336590.50 5969 23.84 336590.50 7251 414.50

(iii) 671944.75 46216 387.71 671945.42 34181 275.61 671945.42 43710 5711.38

(iv) 14510.90 96 0.19 14510.91 180 0.37 14510.92 101 2.57

(v) 30792.48 484 1.94 30792.51 1011 4.11 30792.51 481 27.76

(vi) 58864.11 882 6.69 58864.16 1507 12.31 58864.16 888 117.41

(ii) n = m = 7000, nneg = 3500, npos = 3500, λmin = −1.13 · 104, λmax = 1.90 · 104;
(iii) n = m = 7000, nneg = 4550, npos = 2450, λmin = −1.30 · 104, λmax = 1.60 · 104;

where nneg denotes the number of negative eigenvalues of QTDQ, npos denotes the number
of positive eigenvalues of QTDQ, λmin denotes the smallest eigenvalue of QTDQ and λmax

denotes the largest eigenvalue of QTDQ. Since in the non-convex case the final objective
value found by an algorithm can depend on the starting point, for each problem we considered
10 different starting points, randomly chosen among the vertices of the unit simplex.

The procedures used to compute the stepsize and the index j(k) in AC2CD, and that
used to choose the working set in RCD, were the same described before for the Chebyshev
center problem.

In Table 4, we report the results for each algorithm in terms of final objective value, num-
ber of (outer) iterations and CPU time in seconds. For each problem, we use the acronyms sp
1, . . . , sp 10 to distinguish the results obtained with the 10 considered starting points, while
avg indicates the results averaged over the 10 runs. We first observe that, for problems (ii)
and (iii), the final objective values found by AC2CD are on average smaller than those found
by RCD and MVP, while we have the opposite situation for problem (i). We also see that
there is a notable difference between AC2CD and RCD in both CPU time and the number
of outer iterations, especially on problem (iii). Finally, in comparison with MVP, we note
that AC2CD is on average faster on problems (i) and (ii), but it is slower on problem (iii).

7 Conclusions

In this paper, a block coordinate descent method has been presented for minimizing a con-
tinuously differentiable function subject to one linear equality constraint and simple bounds
on the variables. In the proposed method, the working set is chosen according to an almost
cyclic strategy that does not use first-order information. So, the whole gradient of the objec-
tive function does not need to be computed during the algorithm, leading to high efficiency

33

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

Table 4: Results of AC2CD, RCD and MVP on non-convex problems. For each algorithm,
the first column indicates the final objective value, the second column indicates the number
of (outer) iterations and the third column indicates the CPU time in seconds.

Problem

AC2CD RCD MVP

Obj
Outer Time

Obj
Outer Time

Obj Iter
Time

iter (s) iter (s) (s)

(i)− sp 1 −3.10 925 110.90 −3.07 3473 135.45 −3.12 51768 715.26

(i)− sp 2 −3.11 493 57.91 −3.06 4670 172.26 −3.00 9496 131.18

(i)− sp 3 −3.09 582 67.56 −3.14 6585 231.34 −3.05 24364 336.40

(i)− sp 4 −2.99 278 33.01 −3.10 2896 108.96 −3.06 30712 424.11

(i)− sp 5 −3.07 507 59.29 −3.13 3139 113.96 −3.06 31679 437.19

(i)− sp 6 −3.03 411 48.16 −3.13 3563 128.45 −3.06 21713 300.07

(i)− sp 7 −2.97 472 55.40 −3.14 4325 153.75 −3.22 47542 657.03

(i)− sp 8 −3.14 650 75.42 −3.04 1776 67.81 −3.22 32163 444.68

(i)− sp 9 −3.05 444 51.85 −3.14 2606 94.93 −3.10 30057 415.61

(i)− sp 10 −3.09 474 55.45 −3.09 4199 149.46 −3.10 19097 263.63

(i)− avg −3.06 523.60 61.49 −3.10 3723.20 135.63 −3.10 29859.10 412.52

(ii)− sp 1 −7.91 996 94.34 −8.19 11696 126.07 −7.46 2597 35.35

(ii)− sp 2 −7.80 738 69.55 −7.61 9323 100.88 −7.69 4206 57.38

(ii)− sp 3 −7.37 202 19.27 −7.44 3533 40.79 −7.87 2698 36.58

(ii)− sp 4 −7.69 292 27.83 −7.56 16032 168.96 −7.41 5122 69.61

(ii)− sp 5 −7.71 445 42.15 −7.69 12016 126.37 −7.53 8379 114.22

(ii)− sp 6 −7.53 512 48.44 −7.20 5140 61.16 −7.71 3804 51.84

(ii)− sp 7 −7.87 390 36.97 −8.07 23649 252.05 −7.71 3015 40.83

(ii)− sp 8 −7.63 284 27.11 −7.46 6617 71.65 −7.56 11563 157.08

(ii)− sp 9 −8.05 389 36.78 −7.65 16883 187.66 −7.53 5112 69.51

(ii)− sp 10 −7.58 764 72.03 −7.80 5020 59.14 −7.61 5694 77.43

(ii)− avg −7.72 501.20 47.45 −7.67 10990.90 119.47 −7.61 5219.00 70.98

(iii)− sp 1 −56.61 32 2.54 −56.77 48600 65.35 −44.98 44 0.59

(iii)− sp 2 −51.07 37 3.02 −50.38 12031 26.98 −54.02 19 0.25

(iii)− sp 3 −72.15 51 4.30 −48.97 58935 125.35 −55.15 59 0.78

(iii)− sp 4 −53.08 32 2.57 −54.34 19085 41.03 −48.57 27 0.37

(iii)− sp 5 −53.35 138 11.63 −56.94 19784 35.11 −44.35 29 0.39

(iii)− sp 6 −41.55 120 10.15 −47.77 48053 58.37 −58.46 100 1.33

(iii)− sp 7 −70.33 80 6.92 −71.63 17600 68.96 −71.63 13 0.18

(iii)− sp 8 −54.30 74 6.30 −52.52 26160 27.18 −54.20 20 0.27

(iii)− sp 9 −67.51 16 1.23 −71.77 15153 36.87 −51.24 73 0.98

(iii)− sp 10 −61.52 60 4.79 −56.74 8267 9.33 −47.67 57 0.75

(iii)− avg −58.15 64.00 5.34 −56.78 27366.80 49.45 −53.03 44.10 0.59

34

A. Cristofari

when the problem dimension is large and the partial derivatives of the objective function are
cheap. Global convergence to stationary points has been established under an appropriate
assumption on the level set, and linear convergence rate has been proved under standard
additional assumptions. Promising numerical results have been obtained on different classes
of test problems.

There are a number of open questions that indicate directions in which this work can be
extended and that can represent challenging tasks for future research. First, it would be worth
investigating if, by suitably modifying the working set selection rule or adding conditions to
the stepsize, global convergence can be obtained without Assumption 1. Other interesting
questions would be how to generalize the proposed method to problems with more than one
linear equality constraint, and how to adjust our approach to realize a parallel algorithmic
scheme (for example, by a Jacobi-type approach). We wish to report further results in the
future.

References

[1] A. Beck. The 2-coordinate descent method for solving double-sided simplex constrained
minimization problems. Journal of Optimization Theory and Applications, 162(3):892–
919, 2014.

[2] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM journal on Optimization, 23(4):2037–2060, 2013.

[3] D. P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM Journal on control and Optimization, 20(2):221–246, 1982.

[4] I. M. Bomze, F. Rinaldi, and S. Rota Bulò. First-order methods for the impatient:
support identification in finite time with convergent Frank-Wolfe variants. Optimization
Online, 2018.

[5] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

[7] K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale
l2-loss linear support vector machines. Journal of Machine Learning Research, 9(Jul):
1369–1398, 2008.

[8] A. Cristofari, M. De Santis, S. Lucidi, and F. Rinaldi. An Active-Set Algorithmic
Framework for Non-Convex Optimization Problems over the Simplex. arXiv preprint
arXiv:1703.07761, 2018.

[9] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order infor-
mation for training support vector machines. Journal of machine learning research, 6:
1889–1918, 2005.

[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordi-
nate descent method for large-scale linear svm. In Proceedings of the 25th international
conference on Machine learning, pages 408–415. ACM, 2008.

[11] T. Joachims. Making large-scale support vector machine learning practical. In

35

An almost cyclic 2-coordinate descent method for singly linearly constrained problems

B. Schölkopf, C. J. Burges, and A. J. Smola, editors, Advances in Kernel Methods –
Support Vector Learning, B, pages 169–184. MIT Press, 1999.

[12] I. V. Konnov. Selective bi-coordinate variations for resource allocation type problems.
Computational Optimization and Applications, 64(3):821–842, 2016.

[13] C.-J. Lin. On the convergence of the decomposition method for support vector machines.
IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

[14] C.-J. Lin, S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. Decomposition algorithm
model for singly linearly-constrained problems subject to lower and upper bounds. Jour-
nal of Optimization Theory and Applications, 141(1):107–126, 2009.

[15] G. Liuzzi, L. Palagi, and M. Piacentini. On the convergence of a Jacobi-type algorithm
for Singly Linearly-Constrained Problems Subject to simple Bounds. Optimization Let-
ters, 5(2):347–362, 2011.

[16] S. Lucidi, L. Palagi, A. Risi, and M. Sciandrone. A convergent decomposition algorithm
for support vector machines. Computational Optimization and Applications, 38(2):217–
234, 2007.

[17] Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for
convex differentiable minimization. Journal of Optimization Theory and Applications,
72(1):7–35, 1992.

[18] A. Manno, L. Palagi, and S. Sagratella. Parallel decomposition methods for linearly
constrained problems subject to simple bound with application to the SVMs training.
Computational Optimization and Applications, 71(1):115–145, 2018.

[19] I. Necoara. Random coordinate descent algorithms for multi-agent convex optimization
over networks. IEEE Transactions on Automatic Control, 58(8):2001–2012, 2013.

[20] I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimization
problems with composite objective function and linear coupled constraints. Computa-
tional Optimization and Applications, 57(2):307–337, 2014.

[21] I. Necoara, Y. Nesterov, and F. Glineur. Random block coordinate descent methods for
linearly constrained optimization over networks. Journal of Optimization Theory and
Applications, 173(1):227–254, 2017.

[22] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[23] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[24] L. Palagi and M. Sciandrone. On the convergence of a modified version of SVM light
algorithm. Optimization methods and Software, 20(2-3):317–334, 2005.

[25] A. Patrascu and I. Necoara. Efficient random coordinate descent algorithms for large-
scale structured nonconvex optimization. Journal of Global Optimization, 61(1):19–46,
2015.

[26] J. C. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines. In B. Schölkopf, C. J. Burges, and A. J. Smola, editors, Advances in
Kernel Methods – Support Vector Learning, pages 185–208. MIT Press, 1998.

[27] A. Raj, J. Olbrich, B. Gärtner, B. Schölkopf, and M. Jaggi. Screening Rules for Convex
Problems. arXiv preprint arXiv:1609.07478, 2016.

[28] S. Reddi, A. Hefny, C. Downey, A. Dubey, and S. Sra. Large-scale randomized-coordinate

36

A. Cristofari

descent methods with non-separable linear constraints. arXiv preprint arXiv:1409.2617,
2014.

[29] P. Tseng. Descent methods for convex essentially smooth minimization. Journal of
optimization theory and applications, 71(3):425–463, 1991.

[30] P. Tseng and S. Yun. A coordinate gradient descent method for linearly constrained
smooth optimization and support vector machines training. Computational Optimization
and Applications, 47(2):179–206, 2010.

[31] S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

[32] L. Xiao and S. Boyd. Optimal scaling of a gradient method for distributed resource
allocation. Journal of optimization theory and applications, 129(3):469–488, 2006.

[33] S. Xu, R. M. Freund, and J. Sun. Solution methodologies for the smallest enclosing
circle problem. Computational Optimization and Applications, 25(1-3):283–292, 2003.

37

	Introduction
	Preliminaries and notation
	The Almost Cyclic 2-Coordinate Descent (AC2CD) method
	Description of the algorithm
	Convergence to stationary points

	Computation of the stepsize
	General non-convex objective functions
	Objective functions with Lipschitz continuous gradient
	Strictly convex objective functions

	Convergence rate analysis
	Numerical results
	Implementation issues
	Chebyshev center
	Linear SVM
	Problems with no bounds on the variables
	Non-convex problems

	Conclusions

