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Abstract. Consider a semi-algebraic function f : Rn → R, which is continuous around

a point x̄ ∈ Rn. Using the so–called tangency variety of f at x̄, we first provide necessary

and sufficient conditions for x̄ to be a local minimizer of f, and then in the case where x̄

is an isolated local minimizer of f, we define a “tangency exponent” α∗ > 0 so that for

any α ∈ R the following four conditions are always equivalent:

(i) the inequality α ≥ α∗ holds;

(ii) the point x̄ is an α-order sharp local minimizer of f ;

(iii) the limiting subdifferential ∂f of f is (α − 1)-order strongly metrically subregular

at x̄ for 0; and

(iv) the function f satisfies the  Lojaseiwcz gradient inequality at x̄ with the exponent

1− 1
α .

Besides, we also present a counterexample to a conjecture posed by Drusvyatskiy and

Ioffe in [Math. Program. Ser. A, 153(2):635–653, 2015].

1. Introduction

Optimality conditions form the foundations of mathematical programming both theo-

retically and computationally (see, for example, [6, 12, 13, 27, 29, 34]).

To motivate the discussion, consider a function f : Rn → R, which is continuous around

a point x̄ ∈ Rn. It is well known that if x̄ is a local minimizer of f then 0 belongs to the

limiting subdifferential ∂f(x̄) of f at x̄ (see the next section for definitions and notations).

The converse is known to be true for convex functions, but it is false in the general case.

On the other hand, when f is a polynomial function, Barone-Netto defined in [5] a finite

family of smooth one-variable functions that can be used to test if x̄ is a local minimizer

of f. Inspired by this result, under the assumption that f is a semi-algebraic function,

we construct a finite sequence of real numbers, say {a1, . . . , ap}, so that the following

statements hold:

• the point x̄ is a local minimizer of f if, and only if, ak ≥ 0 for all k = 1, . . . , p;

• the point x̄ is an isolated local minimizer of f if, and only if, ak > 0 for all

k = 1, . . . , p.
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It is essential to mention that there is no gap between these necessary and sufficient

conditions. Furthermore, the sequence {a1, . . . , ap} does not invoke any second-order

subdifferential of f. In fact, as we can see in Sections 3 and 4, this sequence constructed

based on the so-called tangency variety of f at x̄ which is defined purely in subdifferential

terms. Moreover, in the case where x̄ is an isolated local minimizer of f, we determine

a “tangency exponent” α∗ > 0 such that for all α ∈ R the following two statements are

equivalent:

• the inequality α ≥ α∗ is valid;

• the point x̄ is an α-order sharp local minimizer of f.

The latter means that there exist constants c > 0 and ε > 0 such that

f(x) ≥ f(x̄) + c‖x− x̄‖α for all x ∈ Bε(x̄).

It is well-known that second-order growth conditions (i.e., the case of α = 2) play an

important role in nonlinear optimization, both for convergence analysis of algorithms and

for perturbation theory (see, for example, [12, 31, 34]). Under the assumptions that

f is convex and x̄ is a (necessarily isolated) local minimizer of f, Aragón Artacho and

Geoffroy [2] first proved that x̄ is a 2-order sharp local minimizer of f if and only if the

limiting subdifferential ∂f is strongly metrically subregular at x̄ for 0 in the sense that

there exist constants c > 0 and ε > 0 such that

mf (x) ≥ c ‖x− x̄‖ for all x ∈ Bε(x̄), (1)

where mf (x) denotes the minimal norm of subgradients v ∈ ∂f(x). Afterward, relaxing

the convexity of f to the assumption that f is semi-algebraic, Drusvyatskiy and Ioffe

[15] proved that the corresponding equivalence still holds. Furthermore, the authors

conjecture that a second-order growth condition at a not necessarily isolated minimizer

entails (not necessarily strong) subregularity of the limiting subdifferential. We provide

a counterexample to this conjecture, see Example 4.2.

Replacing ‖x− x̄‖ in (1) by ‖x− x̄‖β with some constant β ∈ R, one can consider the

following β-order strong metric subregularity of ∂f at x̄ for 0: there exist constants c > 0

and ε > 0 such that

mf (x) ≥ c ‖x− x̄‖β for all x ∈ Bε(x̄) \ {x̄}.

(Note that we exclude x̄ here because β may be negative; for example, the limiting subd-

ifferential of the continuous function R→ R, x 7→
√
|x|, is strongly metrically subregular

of order β = −1
2

at x̄ = 0 for 0). Metric regularity and (strong) metric subregularity

are becoming an important and active area of research in variational analysis and opti-

mization theory. For more details, we refer the reader to the books [14, 25, 29] and the

survey [23, 24] with references therein. Recently, under the assumptions that f is convex,

x̄ is a local minimizer of f, and that α > 1, Zheng and Ng [36], and independently, Mor-

dukhovich and Ouyang [30] showed that x̄ is an α-order sharp local minimizer of f if and
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only if the limiting subdifferential ∂f is (α− 1)-order strong metric subregularity at x̄ for

0.

In other lines of development, Bolte, Daniilidis, and Lewis [9] showed that if f is

subanalytic and x̄ is a critical point of f (i.e., mf (x̄) = 0), then f satisfies the  Lojaseiwcz

gradient inequality at x̄ with an exponent θ ∈ [0, 1), which means that there exist constants

c > 0 and ε > 0 such that

mf (x) ≥ c |f(x)− f(x̄)|θ for all x ∈ Bε(x̄) \ {x̄}.

It is worth emphasizing that the convergence behavior of many first-order methods can

be understood using the  Lojasiewicz gradient inequality and its associated exponent; see,

for example, [1, 4, 11, 17, 28].

Motivated by the aforementioned works, we show that if f is semi-algebraic and x̄ is an

isolated local minimizer of f, then for any α ≥ α∗, the following statements are equivalent:

• the point x̄ is an α-order sharp minimizer of f.

• the limiting subdifferential ∂f is (α− 1)-order strongly metrically subregular at x̄

for 0.

• the function f satisfies the  Lojaseiwcz gradient inequality at x̄ with the exponent

1− 1
α
.

Note that, for a special value of α, these three equivalences were proved by Gwoździewicz

[19] (with f being an analytic function) and by the author [32] (with f being a continuous

subanalytic function).

To be concrete, we study only semi-algebraic functions. Analogous results, with es-

sentially identical proofs, also hold for functions definable in a polynomially bounded

o-minimal structure (see [35] for more on the subject). However, to lighten the exposi-

tion, we do not pursue this extension here.

The rest of this paper is organized as follows. Section 2 contains some preliminaries

from variational analysis and semi-algebraic geometry widely used in the proofs of the

main results given below. The tangency variety, which plays an important role in this

study, is presented in Section 3. The main results are given in Section 4. Finally, several

examples are provided in Section 5.

2. Preliminaries

Throughout this work we shall consider the Euclidean vector space Rn endowed with

its canonical scalar product 〈·, ·〉 and we shall denote its associated norm ‖ · ‖. The closed

ball (resp., the sphere) centered at x̄ ∈ Rn of radius ε will be denoted by Bε(x̄) (resp.,

Sε(x̄)). When x̄ is the origin of Rn we write Bε instead of Bε(x̄).

For a function f : Rn → R, we define the epigraph of f to be

epif := {(x, y) ∈ Rn × R | y ≥ f(x)}.
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A function f : Rn → R is said to be lower semi-continuous (or lsc for short) at x if the

inequality lim infx′→x f(x′) ≥ f(x) holds.

2.1. Normals and subdifferentials. Here we recall the notions of the normal cones to

sets and the subdifferentials of real-valued functions used in this paper. The reader is

referred to [29, 33] for more details.

Definition 2.1. Consider a set Ω ⊂ Rn and a point x ∈ Ω.

(i) The regular normal cone (known also as the prenormal or Fréchet normal cone)

N̂(x; Ω) to Ω at x consists of all vectors v ∈ Rn satisfying

〈v, x′ − x〉 ≤ o(‖x′ − x‖) as x′ → x with x′ ∈ Ω.

(ii) The limiting normal cone (known also as the basic or Mordukhovich normal cone)

N(x; Ω) to Ω at x consists of all vectors v ∈ Rn such that there are sequences

xk → x with xk ∈ Ω and vk → v with vk ∈ N̂(xk; Ω).

If Ω is a manifold of class C1, then for every point x ∈ Ω, the normal cones N̂(x; Ω)

and N(x; Ω) are equal to the normal space to Ω at x in the sense of differential geometry;

see [33, Example 6.8].

Definition 2.2. Consider a function f : Rn → R and a point x ∈ Rn.

(i) The limiting and horizon subdifferentials of f at x are defined respectively by

∂f(x) :=
{
v ∈ Rn

∣∣ (v,−1) ∈ N
(
(x, f(x)); epif

)}
,

∂∞f(x) :=
{
v ∈ Rn

∣∣ (v, 0) ∈ N
(
(x, f(x)); epif

)}
.

(ii) The nonsmooth slope of f at x is defined by

mf (x) := inf{‖v‖ | v ∈ ∂f(x)}.

By definition, mf (x) = +∞ whenever ∂f(x) = ∅.

In [29, 33] the reader can find equivalent analytic descriptions of the limiting subdiffer-

ential ∂f(x) and comprehensive studies of it and related constructions. For convex f, this

subdifferential coincides with the convex subdifferential. Furthermore, if the function f is

of class C1, then ∂f(x) = {∇f(x)} and so mf (x) = ‖∇f(x)‖. The horizon subdifferential

∂∞f(x) plays an entirely different role–it detects horizontal “normal” to the epigraph–and

it plays a decisive role in subdifferential calculus; see [33, Corollary 10.9] for more details.

Theorem 2.1 (Fermat rule). Consider an lsc function f : Rn → R and a closed set

Ω ⊂ Rn. If x̄ ∈ Ω is a local minimizer of f on Ω and the qualification condition

∂∞f(x̄) ∩N(x̄; Ω) = {0}

is valid, then the inclusion 0 ∈ ∂f(x̄) +N(x̄; Ω) holds.
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2.2. Semi-algebraic geometry. Now, we recall some notions and results of semi-algebraic

geometry, which can be found in [7, 35].

Definition 2.3. A subset S of Rn is called semi-algebraic, if it is a finite union of sets of

the form

{x ∈ Rn | fi(x) = 0, i = 1, . . . , k; fi(x) > 0, i = k + 1, . . . , p},

where all fi are polynomials. In other words, S is a union of finitely many sets, each

defined by finitely many polynomial equalities and inequalities. A function f : S → R is

said to be semi-algebraic, if its graph

{(x, y) ∈ S × R | y = f(x)}

is a semi-algebraic set.

A major fact concerning the class of semi-algebraic sets is its stability under linear

projections (see, for example, [7]).

Theorem 2.2 (Tarski–Seidenberg Theorem). The image of any semi-algebraic set S ⊂ Rn

under a projection to any linear subspace of Rn is a semi-algebraic set.

Remark 2.1. As an immediate consequence of the Tarski–Seidenberg Theorem, we get

semi-algebraicity of any set {x ∈ A : ∃y ∈ B, (x, y) ∈ C}, provided that A,B, and C

are semi-algebraic sets in the corresponding spaces. Also, {x ∈ A : ∀y ∈ B, (x, y) ∈ C}
is a semi-algebraic set as its complement is the union of the complement of A and the

set {x ∈ A : ∃y ∈ B, (x, y) 6∈ C}. Thus, if we have a finite collection of semi-algebraic

sets, then any set obtained from them with the help of a finite chain of quantifiers is also

semi-algebraic. In particular, for a semi-algebraic function f : Rn → R, it is easy to see

that the nonsmooth slope mf : Rn → R is a semi-algebraic function.

The following three well-known lemmas will be of great for us; see, for example, [21,

Theorem 1.8, Theorem 1.11, and Lemma 1.7].

Lemma 2.1 (Monotonicity Lemma). Let f : (a, b) → R be a semi-algebraic function.

Then there are finitely many points a = t0 < t1 < · · · < tk = b such that the restriction

of f to each interval (ti, ti+1) are analytic, and either constant, or strictly increasing or

strictly decreasing.

Lemma 2.2 (Curve Selection Lemma). Consider a semi-algebraic set S ⊂ Rn and a point

x̄ ∈ Rn that is a cluster point of S. Then there exists an analytic semi-algebraic curve

φ : (0, ε)→ Rn with limt→0+ φ(t) = x̄ and with φ(t) ∈ S for t ∈ (0, ε).

Lemma 2.3 (Growth Dichotomy Lemma). Let f : (0, ε)→ R be a semi-algebraic function

with f(t) 6= 0 for all t ∈ (0, ε). Then there exist constants a 6= 0 and α ∈ Q such that

f(t) = atα + o(tα) as t→ 0+.
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In the sequel we will make fundamental use of Hardt’s semi-algebraic triviality. We

present a particular case–adapted to our needs–of a more general result: see [7, 22, 35]

for the statement in its full generality.

Theorem 2.3 (Hardt’s semi-algebraic triviality). Let S be a semi-algebraic set in Rn

and f : S → R a continuous semi-algebraic map. Then there are finitely many points

−∞ = t0 < t1 < · · · < tk = +∞ such that f is semi-algebraically trivial over each

the interval (ti, ti+1), that is, there are a semi-algebraic set Fi ⊂ Rn and a semi-algebraic

homeomorphism hi : f
−1(ti, ti+1)→ (ti, ti+1)×Fi such that the composition hi with the pro-

jection (ti, ti+1)×Fi → (ti, ti+1), (t, x) 7→ t, is equal to the restriction of f to f−1(ti, ti+1).

We will also need the following lemma, whose proof follows immediately from [15,

Lemma 2.10] (see also [10, Proposition 4]).

Lemma 2.4. Consider an lsc semi-algebraic function f : Rn → R and a semi-algebraic

curve φ : [a, b] → Rn. Then for all but finitely many t ∈ [a, b], the mappings φ and f ◦ φ
are analytic at t and satisfy

v ∈ ∂f(φ(t)) =⇒ 〈v, φ̇(t)〉 = (f ◦ φ)′(t),

v ∈ ∂∞f(φ(t)) =⇒ 〈v, φ̇(t)〉 = 0.

Proof. Thanks to the Monotonicity Lemma 2.1, both the mappings φ and f◦φ are analytic

on [a, b] except at finitely many t ∈ [a, b].

Let c be the supremum of real numbers T ∈ [a, b] such that for all but finitely many

t ∈ [a, T ], we have

(f ◦ φ)′(t) = 〈v, φ̇(t)〉 for all v ∈ ∂f(φ(t)),

〈v, φ̇(t)〉 = 0 for all v ∈ ∂∞f(φ(t)).

An application of [15, Lemma 2.10] yields c > a. We must prove that c = b. Suppose that

this is not the case. Replacing the interval [a, b] by the interval [c, b] and applying [15,

Lemma 2.10] again, we find a small real number ε > 0 such that for any t ∈ (c, c+ ε), the

following relations hold:

(f ◦ φ)′(t) = 〈v, φ̇(t)〉 for all v ∈ ∂f(φ(t)),

〈v, φ̇(t)〉 = 0 for all v ∈ ∂∞f(φ(t)),

thus contradicting the definition of c. The proof is complete. �

3. Tangencies

From now on, let f : Rn → R be a non-constant semi-algebraic function, which is

continuous around a point x̄ ∈ Rn. Using the so–called tangency variety of f at x̄ we

define finite sets of real numbers that can be used to test if f has a local minimizer at
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x̄ and if f has an α-order sharp local minimizer at x̄. Let us begin with the following

definition (see also [21]).

Definition 3.1. The tangency variety of f at x̄ is defined as follows:

Γ(f) := {x ∈ Rn | ∃λ ∈ R such that λ(x− x̄) ∈ ∂f(x)}.

By the Tarski–Seidenberg Theorem 2.2, Γ(f) is a semi-algebraic set. Moreover, thanks

to the Fermat rule (Theorem 2.1), we can see that for any t > 0, the tangency variety Γ(f)

contains the set of minimizers of the optimization problem minx∈St(x̄) f(x); in particular,

x̄ is a cluster point of Γ(f).

Applying Hardt’s triviality Theorem 2.3 for the continuous semi-algebraic function

Γ(f)→ R, x 7→ ‖x− x̄‖,

we find a constant ε > 0 such that the restriction of this function on Γ(f) ∩ Bε(x̄) \ {x̄}
is a topological trivial fibration. Let p be the number of connected components of a fiber

of this restriction. Then Γ(f) ∩ Bε(x̄) \ {x̄} has exactly p connected components, say

Γ1, . . . ,Γp, and each such component is a semi-algebraic set. Moreover, for all t ∈ (0, ε)

and all k = 1, . . . , p, the sets Γk ∩ St(x̄) are connected. Corresponding to each Γk, let

fk : (0, ε)→ R, t 7→ fk(t),

be the function defined by fk(t) := f(x), where x ∈ Γk ∩ St(x̄).

Lemma 3.1. For all ε > 0 small enough, the following statements hold:

(i) All the functions fk are well-defined and semi-algebraic.

(ii) Each the function fk is either constant or strictly monotone.

Proof. (i) Fix k ∈ {1, . . . , p} and take any t ∈ (0, ε). We will show that the restriction of

f on Γk ∩ St(x̄) is constant. To see this, let φ : [0, 1] → Rn be a smooth semi-algebraic

curve such that φ(τ) ∈ Γk ∩ St(x̄) for all τ ∈ [0, 1]. By definition, we have

‖φ(τ)− x̄‖ = t and λ(τ)(φ(τ)− x̄) ∈ ∂f(φ(τ))

for some λ(τ) ∈ R. Moreover, in view of Lemma 2.4, for all but finitely many τ ∈ [a, b],

the mappings φ and f ◦ φ are analytic at τ and satisfy

v ∈ ∂f(φ(τ)) =⇒ 〈v, φ̇(τ)〉 = (f ◦ φ)′(τ).

Therefore

(f ◦ φ)′(τ) = 〈λ(τ)
(
φ(τ)− x̄

)
, φ̇(τ)〉

=
λ(τ)

2

d‖φ(τ)− x̄‖2

dτ
= 0.

So f is constant on the curve φ.
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On the other hand, since the set Γk ∩ St(x̄) is connected semi-algebraic, it is path

connected. Hence, any two points in Γk∩St(x̄) can be joined by a piecewise smooth semi-

algebraic curve (see [21, Theorem 1.13]). It follows that the restriction of f on Γk ∩ St(x̄)

is constant and so the function fk is well-defined. Finally, by the Tarski–Seidenberg

Theorem 2.2, fk is semi-algebraic.

(ii) By decreasing ε (if necessary) and applying the Monotonicity Lemma 2.1, it is not

hard to get this item. �

For each t ∈ (0, ε), the sphere St(x̄) is a nonempty compact semi-algebraic set. Hence,

the function

ψ : (0, ε)→ R, t 7→ ψ(t) := min
x∈St(x̄)

f(x),

is well-defined, and moreover, it is semi-algebraic because of the Tarski–Seidenberg The-

orem 2.2 (see the discussion in [21, Section 1.6]). The following lemma is simple but

useful.

Lemma 3.2. For ε > 0 small enough, the following statements hold:

(i) The functions ψ and f1, . . . , fp are either coincide or disjoint.

(ii) ψ(t) = mink=1,...,p fk(t) for all t ∈ (0, ε).

(iii) ψ ≡ fk for some k ∈ {1, . . . , p}.

Proof. (i) This is an immediate consequence of the Monotonicity Lemma 2.1.

(ii) Without loss of generality, assume x̄ = 0 and f(x̄) = 0. Applying the Curve

Selection Lemma 2.2 and shrinking ε (if necessary), we find an analytic semi-algebraic

curve φ : (0, ε)→ Rn such that ‖φ(t)‖ = t and (f ◦ φ)(t) = ψ(t) for all t. By Lemma 2.4,

then we have for any t ∈ (0, ε),

v ∈ ∂∞f(φ(t)) =⇒ 〈v, φ̇(t)〉 = 0.

Observe

〈φ(t), φ̇(t)〉 =
1

2

d

dt
‖φ(t)‖2,

and hence the qualification condition

∂∞f(φ(t)) ∩N
(
φ(t);St(x̄)

)
= {0}

holds for all t ∈ (0, ε). Consequently, since φ(t) minimizes f subject to ‖x‖ = t, applying

the Fermat rule (Theorem 2.1), we deduce that φ(t) belongs to Γ(f). Therefore,

ψ(t) = min
x∈St(x̄)

f(x) = min
x∈Γ(f)∩St(x̄)

f(x) = min
k=1,...,p

min
x∈Γk∩St(x̄)

f(x) = min
k=1,...,p

fk(t),

where the third equality follows from the fact that

Γ(f) ∩ St(x̄) =

p⋃
k=1

Γk ∩ St(x̄).

(iii) This follows from Items (i) and (ii). �
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4. Main results

Recall that f : Rn → R is a non-constant semi-algebraic function, which is continuous

around a point x̄ ∈ Rn. As in the previous section, we associate to the function f a finite

number of functions f1, . . . , fp of a single variable. Let

K := {k | fk is not constant}.

Note that fk ≡ f(x̄) for all k 6∈ K. By the Growth Dichotomy Lemma 2.3, we can write

for each k ∈ K,

fk(t) = f(x̄) + akt
αk + o(tαk) as t→ 0+,

where ak ∈ R, ak 6= 0, and αk ∈ Q, αk > 0. It is convenient to define ak = 0 for k 6∈ K. As

we can see the “tangency coefficients” ak and the “tangency exponents” αk play important

roles in Theorems 4.1 and 4.2 below.

We now arrive to the first main result of this section. This result provides necessary

and sufficient conditions for optimality of nonsmooth semi-algebraic functions.

Theorem 4.1 (Necessary and sufficient conditions for optimality). With the above nota-

tions, the following statements hold:

(i) The point x̄ is a local minimizer of f if, and only if, ak ≥ 0 for all k = 1, . . . , p.

(ii) The point x̄ is an isolated local minimizer of f if, and only if, ak > 0 for all

k = 1, . . . , p.

Proof. Recall that

ψ(t) := min
x∈St(x̄)

f(x) for t ≥ 0.

By definition, it is easy to see that x̄ is a local minimizer (resp., an isolated local minimizer)

of f if, and only if, for all t > 0 small enough, we have ψ(t) ≥ f(x̄) (resp., ψ(t) > f(x̄)).

This observation, together with Lemma 3.2, implies easily the desired conclusion. �

Remark 4.1. Very recently, using tangency varieties, Guo and Pha.m [18] proposed a

computational and symbolic method to determine the type (local minimizer, maximizer

or saddle point) of a given isolated critical point, which is degenerate, of a multivariate

polynomial function.

We know from  Lojasiewicz’s inequality [21, Theorem 1.14] that x̄ is an isolated local

minimizer of f if, and only, if there exists a real number α > 0 such that x̄ is an α-order

sharp local minimizer of f. A characteristic of this number α in terms of the “tangency

exponents” of f is given in Theorem 4.2 below. To this end, let

α∗ := max
k∈K

αk > 0.

The second main result of this section reads as follows.
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Theorem 4.2 (Isolated local minimizers). With the above notations, assume that x̄ ∈ Rn

is an isolated local minimizer of f. Then for any α ∈ R, the following statements are

equivalent:

(i) The inequality α ≥ α∗ holds.

(ii) The point x̄ is an α-order sharp local minimizer of f, i.e., there exist constants

c > 0 and ε > 0 such that

f(x) ≥ f(x̄) + c ‖x− x̄‖α for all x ∈ Bε(x̄).

(iii) The limiting subdifferential ∂f of f is (α− 1)-order strongly metrically subregular

at x̄ for 0, i.e., there exist constants c > 0 and ε > 0 such that

mf (x) ≥ c ‖x− x̄‖α−1 for all x ∈ Bε(x̄) \ {x̄}.

(iv) The function f satisfies the  Lojaseiwcz gradient inequality at x̄ with the exponent

1− 1
α
, i.e., there exist constants c > 0 and ε > 0 such that

mf (x) ≥ c |f(x)− f(x̄)|1−
1
α for all x ∈ Bε(x̄) \ {x̄}.

In order to prove Theorem 4.2 below, we need the following result which can be seen

as a nonsmooth version of the Bochnack– Lojasiewicz inequality [8].

Lemma 4.1. There exist constants c > 0 and ε > 0 such that

mf (x)‖x− x̄‖ ≥ c|f(x)− f(x̄)| for all x ∈ Bε(x̄).

Proof. Without loss of generality, we may assume that x̄ = 0 and f(x̄) = 0.

Arguing by contradiction, suppose that the lemma is false, that is

lim inf
x→x̄

mf (x)‖x‖
|f(x)|

= 0.

In light of the Curve Selection Lemma 2.2, we find a non-constant analytic semi-algebraic

curve φ : (0, ε)→ Rn with limt→0+ φ(t) = 0 such that (f ◦ φ)(t) 6= 0 and

lim
t→0+

mf (φ(t))‖φ(t)‖
|(f ◦ φ)(t)|

= 0.

Since f is continuous at x̄, it holds that

lim
t→0+

(f ◦ φ)(t) = 0.

By the Growth Dichotomy Lemma 2.3, we can write

φ(t) = atα + o(tα) and (f ◦ φ)(t) = btβ + o(tβ) as t→ 0+,

for some a ∈ Rn, a 6= 0, α ∈ Q, α > 0, b ∈ R, b 6= 0, and β ∈ Q, β > 0. Then a direct

calculation shows that for all sufficiently small t > 0,

‖φ(t)‖ ' t‖φ̇(t)‖ and |(f ◦ φ)(t)| ' |t(f ◦ φ)′(t)|,
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where A ' B means that A/B lies between two positive constants. On the other hand,

we deduce easily from Lemma 2.4 that

|(f ◦ φ)′(t)| ≤ mf (φ(t))‖φ̇(t)‖.

Therefore,

|(f ◦ φ)(t)| ' |t(f ◦ φ)′(t)| ≤ tmf (φ(t))‖φ̇(t)‖ ' mf (φ(t))‖φ(t)‖.

Consequently, there exists a constant c > 0 such that

c ≤ mf (φ(t))‖φ(t)‖
|(f ◦ φ)(t)|

for all sufficiently small t > 0. Letting t tend to zero in this inequality, we arrive at a

contradiction. �

Proof of Theorem 4.2. Without loss of generality, assume x̄ = 0 and f(x̄) = 0.

By Theorem 4.1, K = {1, . . . , p} and ak > 0 for all k ∈ K. Recall that

ψ(t) := min
x∈St(x̄)

f(x).

In light of Lemma 3.2, we can write

ψ(t) = a∗t
α∗ + o(tα∗) as t→ 0+, (2)

where a∗ := min{ak | k ∈ K and αk = α∗}. In particular, for any real number c ∈ (0, a∗)

there exists ε ∈ (0, 1) such that

ψ(t) ≥ c tα∗ for all t ∈ [0, ε]. (3)

(i) ⇔ (ii): Assume that α ≥ α∗. From (3) we have for all x ∈ Bε(x̄),

f(x) ≥ ψ(‖x‖) ≥ c ‖x‖α∗ ≥ c ‖x‖α,

which proves (ii).

Conversely, assume that there exist constants c′ > 0 and ε′ > 0 such that

f(x) ≥ c′‖x‖α for all x ∈ Bε′(x̄).

Then for all t ∈ [0, ε] we have

ψ(t) = min
x∈St(x̄)

f(x) ≥ c′tα.

Combining this with (2) we get α ≥ α∗.

(iv) ⇒ (iii) ⇒ (ii): Clearly, the condition (iii) holds provided that both the conditions

(ii) and (iv) hold. So it suffices to show the implications (iii) ⇒ (ii) and (iv) ⇒ (ii).

Note that the minimum in the definition of ψ is attained. In view of the Curve Selection

Lemma 2.2, there is an analytic semi-algebraic curve φ : (0, ε)→ Rn such that ‖φ(t)‖ = t

11



and (f ◦ φ)(t) = ψ(t) for all t. Applying Lemma 2.4 and shrinking ε (if necessary), we

have for any t ∈ (0, ε),

v ∈ ∂f(φ(t)) =⇒ 〈v, φ̇(t)〉 = ψ′(t), (4)

v ∈ ∂∞f(φ(t)) =⇒ 〈v, φ̇(t)〉 = 0.

In particular, as in the proof of Lemma 3.2, we have φ(t) ∈ Γ(f), i.e., there is a real

number λ(t) satisfying

λ(t)φ(t) ∈ ∂f(φ(t)). (5)

By definition, then

‖λ(t)φ(t)‖ ≥ mf (φ(t)).

Furthermore, it follows from (4) and (5) that

ψ′(t) = λ(t)〈φ(t), φ̇(t)〉 = λ(t)
1

2

d

dt
‖φ(t)‖2 = λ(t)t.

Consequently,

|ψ′(t)| = |λ(t)t| = ‖λ(t)φ(t)‖ ≥ mf (φ(t)).

Therefore, if the condition (iii) holds, then |ψ′(t)| ≥ c tα−1, while if the condition (iv)

holds, then |ψ′(t)| ≥ c (ψ(t))1− 1
α ; in both the cases, we get α ≥ α∗ and so ψ(t) ≥ c′tα for

some constant c′ > 0. Therefore the condition (ii) holds.

(ii) ⇒ (iv): Our assumption implies the existence of constants c > 0 and ε > 0 such

that

f(x) ≥ c ‖x‖α for all x ∈ Bε(x̄).

On the other hand, applying Lemma 4.1, we deduce that there exist constants c′ > 0 and

ε′ > 0 such that

‖x‖mf (x) ≥ c′|f(x)| for all x ∈ Bε′(x̄).

Therefore, the inequality (
1

c
f(x)

) 1
α

mf (x) ≥ c′|f(x)|

holds for all x near x̄, from which the desired conclusion follows. �

From [15, Example 3.2] we know that the implication (ii) ⇒ (iii), and hence the impli-

cation (ii) ⇒ (iv), of Theorem 4.2 may easily fail in absence of continuity. The following

example shows that the implication (iii) ⇒ (iv) of Theorem 4.2 also may fail in absence

of continuity.
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Example 4.1. Consider the lsc, semi-algebraic function f : R→ R defined by

f(x) :=

1 + x2 if x < 0,

x2 otherwise.

Observe that f is not continuous at x̄ = 0 and that 0 is a 2-order sharp local minimizer

of f. A simple computation shows that

mf (x) = 2|x| for all x ∈ R,

and so the condition (iii) of Theorem 4.2 holds with α = 2. However, it is easy to check

that f does not satisfy the condition (iv) of Theorem 4.2.

Remark 4.2. Consider an lsc function f : Rn → R, which has a (not necessarily isolated)

local minimum at x̄ ∈ Rn. It is well-known (see [2, 3, 16, 15, 30, 36]) that the existence

of constants c > 0 and ε > 0 such that

mf (x) ≥ c dist
(
x, (∂f)−1(0)

)
for all x ∈ Bε(x̄)

implies the existence of constants c′ > 0 and ε′ > 0 satisfying

f(x) ≥ f(x̄) + c′ dist
(
x, (∂f)−1(0)

)2
for all x ∈ Bε′(x̄),

where dist
(
x, (∂f)−1(0)

)
stands for the Euclidean distance from x to (∂f)−1(0). In [16,

Remark 3.4], Drusvyatskiy and Ioffe conjectured that the converse is also true for semi-

algebraic functions. The next example shows that this conjecture does not hold in general.

Example 4.2. Let f : R2 → R, (x, y) 7→ f(x, y), be the continuous semi-algebraic function

defined by f(x, y) := |x2 − y4|. A direct calculation shows that

∂f(x, y) =


{(2x,−4y3)} if x2 − y4 > 0,

{(−2x, 4y3)} if x2 − y4 < 0,

{(2(2t− 1)x,−4(2t− 1)y3) | t ∈ [0, 1]} otherwise.

In particular, we have

f−1(0) = (∂f)−1(0) = {(x, y) ∈ R2 | x2 − y4 = 0}.

Furthermore, according to Kuo’s work [26] (see also [20]), we find a constant c > 0 such

that

f(x, y) ≥ c dist((x, y), f−1(0))2 = c dist
(
(x, y), (∂f)−1(0)

)2

for all (x, y) near (0, 0) ∈ R2. On the other hand, it is not hard to check that

mf (0, t) = 4t3 and dist
(
(0, t), (∂f)−1(0)

)
' t2 as t→ 0,

and so

lim
t→0

mf (0, t)

dist
(
(0, t), (∂f)−1(0)

) = 0.
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Therefore, there is no constant c′ > 0 such that the inequality

mf (x, y) ≥ c′ dist
(
(x, y), (∂f)−1(0)

)
holds for all (x, y) near (0, 0).

We finish this section with the following corollary.

Corollary 4.1. Under the assumptions of Theorem 4.2, suppose that α ≥ α∗. Then for

any constant c ∈ (0, a∗) there exists ε > 0 such that

f(x) ≥ f(x̄) + c‖x− x̄‖α for all x ∈ Bε(x̄),

where a∗ := min{ak | k ∈ K and αk = α∗}.

Proof. This follows immediately from the argument given at the beginning of the proof

of Theorem 4.2. �

5. Examples

In this section we provide examples to illustrate our main results. For simplicity we

consider the case where f is a polynomial function in two variables (x, y) ∈ R2. By

definition, then

Γ(f) :=

{
(x, y) ∈ R2 | y∂f

∂x
− x∂f

∂y
= 0

}
.

Example 5.1. Let f(x, y) := 3x2 + 2y3. The tangency variety Γ(f) is given by the

equation:

xy(6− 6y) = 0.

Hence, for any ε ∈ (0, 1), the set Γ(f) ∩ Bε \ {(0, 0)} has four connected components:

Γ±1 := {(0,±t) | t ∈ (0, ε]} ,

Γ±2 := {(±t, 0) | t ∈ (0, ε]} .

Consequently,

f±1 := f |Γ±1 = ±2t3,

f±2 := f |Γ±2 = 3t2.

It follows that K = {±1,±2} and

a±1 = ±2 and a±2 = 3.

Therefore, by Theorem 4.1, the origin is not a local minimizer of f.
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Example 5.2. Let f(x, y) := x2. The tangency variety Γ(f) is given by the equation:

2xy = 0.

Hence, for any ε > 0, the set Γ(f) ∩ Bε \ {(0, 0)} has four connected components:

Γ±1 := {(0,±t) | t ∈ (0, ε]} ,

Γ±2 := {(±t, 0) | t ∈ (0, ε]} .

Consequently,

f±1 := f |Γ±1 = 0,

f±2 := f |Γ±2 = t2.

It follows that K = {±2} and

a±1 = 0 and a±2 = 1.

Therefore, by Theorem 4.1, the origin is a non-isolated local minimizer of f.

Example 5.3. Let f(x, y) := 2x2+y4. The tangency variety Γ(f) is given by the equation:

xy(4− 4y2) = 0.

Hence, for any ε ∈ (0, 1), the set Γ(f) ∩ Bε \ {(0, 0)} has four connected components:

Γ±1 := {(0,±t) | t ∈ (0, ε]} ,

Γ±2 := {(±t, 0) | t ∈ (0, ε]} .

Consequently,

f±1 := f |Γ±1 = t4,

f±2 := f |Γ±2 = 2t2.

It follows that K = {±1,±2} and

a±1 = 1 and a±2 = 2,

α±1 = 4 and α±2 = 2.

By Theorems 4.1 and 4.2, the origin is an α-order sharp local minimizer of f for all

α ≥ maxk=±1,±2 αk = 4.

6. Conclusions

This paper considers local minimizers of semi-algebraic functions. In terms of the

tangency variety, we have presented necessary and sufficient conditions for optimality.

We have also showed relationships between generalized notions of sharp minima, strong

metric subregularity and the  Lojasiewicz gradient inequality; these relations may easily

fail when the minimizer in question is not isolated. The constrained case will be studied

in future research.
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