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Abstract

We present a geometrical analysis on the completely positive programming refor-
mulation of quadratic optimization problems and its extension to polynomial opti-
mization problems with a class of geometrically defined nonconvex conic programs
and their covexification. The class of nonconvex conic programs is described with
a linear objective function in a linear space V, and the constraint set is represented
geometrically as the intersection of a nonconvex cone K ⊂ V, a face J of the convex
hull of K and a parallel translation L of a supporting hyperplane of the nonconvex
cone K. We show that under a moderate assumption, the original nonconvex conic
program can equivalently be reformulated as a convex conic program by replacing
the constraint set with the intersection of J and the hyperplane L. The replacement
procedure is applied to derive the completely positive programming reformulation
of quadratic optimization problems and its extension to polynomial optimization
problems.

Key words. Completely positive reformulation of quadratic and polynomial opti-
mization problems, conic optimization problems, hierarchies of copositivity, faces of the
completely positive cone.
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1 Introduction

Polynomial optimization problems (POPs) is a major class of optimization problems in
theory and practice. Quadratic optimizations problems (QOPs) are, in particular, a
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widely studied subclass of POPs as they include many important NP-hard combinato-
rial problems such as binary QOPs, maximum stable set problems, graph partitioning
problems and quadratic assignment problems. To numerically solve QOPs, a common
approach is through solving their convex conic relaxations such as semidefinite program-
ming relaxations [23, 21] and doubly nonnegative (DNN) relaxations [15, 19, 26, 28]. As
those relaxations provide lower bounds of different qualities, the tightness of the lower
bounds has been a very critical issue in assessing the strength of the relaxations. The
completely positive programming (CPP) reformulation of QOPs, which provides their
exact optimal values, has been extensively studied in theory. More specifically, QOPs
over the standard simplex [9, 10], maximum stable set problems [12], graph partitioning
problems [24], and quadratic assignment problems [25] are equivalently reformulated as
CPPs. Burer’s CPP reformulations [11] of a class of linearly constrained QOPs in non-
negative and binary variables provided a more general framework to study the specific
problems mentioned above. See also the papers [1, 2, 8, 14, 22] for further developments.

Despite a great deal of studies on the CPP relaxation, its geometrical aspects have not
been well understood. The main purpose of this paper is to present and analyze essential
features of the CPP reformulation of QOPs and its extension to POPs by investigating
their geometry. With the geometrical analysis, many existing equivalent reformulations of
QOPs and POPs can be considered in a unified manner and deriving effective numerical
methods for computing tight bounds can be facilitated. In particular, the class of QOPs
that can be equivalently reformulated as CPPs in our framework includes Burer’s class
of linearly constrained QOPs in nonnegative and binary variables [11] as a special case;
see Sections 2.2 and 6.1.

1.1 A geometric framework for the CPP relaxation of QOPs
and its extension to POPs

A nonconvex conic optimization problem (COP), denoted as COP(K0,Q
0), of the form

presented below is the most distinctive feature of our framework for the CPP relaxation of
QOPs and its extension to POPs. Let V be a finite dimensional vector space with the in-
ner product 〈A, B〉 for every pair ofA andB in V. For a cone K ⊂ V, let coK denote the
convex hull of K and K∗ the dual of K, i.e., K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every x ∈ K}.
Let H0 ∈ V, which will be described more precisely in Section 2.2 for QOPs and in Sec-
tion 5 for general POPs. For every cone K0 ⊂ V (not necessarily convex nor closed) and
Q0 ∈ V, we consider the COP given by

COP(K0,Q
0): ζ = inf

{
〈Q0, X〉 : X ∈ K0, 〈H0, X〉 = 1

}
.

Although this problem takes a very simple form, it plays a fundamental role throughout.
A key property is that COP(K0,Q

0) is equivalent to its covexification, COP(coK0,Q
0)

under the following conditions (Theorem 3.2).

Condition I0: COP(K0,Q
0) is feasible and O 6= H0 ∈ K∗0.

Condition II0: inf
{
〈Q0, X〉 : X ∈ K0, 〈H0, X〉 = 0

}
≥ 0.

The only restrictive and essential condition among the conditions is O 6= H0 ∈ K∗0,
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while the others are natural. It means that
{
X ∈ V : 〈H0, X〉 = 0

}
forms a supporting

hyperplane of the cone K0 and that the feasible region of COP(K0,Q0) is described
as the intersection of the nonconvex cone K0 ⊂ V and a parallel translation of the
supporting hyperplane of K0. Condition II0 is necessary to ensure that the optimal
value of COP(coK0,Q

0) is finite. See Figure 1 in Section 3.1 for illustrative examples of
COP(K0,Q

0) which satisfies Condition I0 and II0.

We consider a specific COP(K0,Q
0) with K0 = K∩ J for some cone K ⊂ V and some

face J of coK. Note that K∩J is a nonconvex cone. Since J is a face of coK, we have that
co(K∩ J) = J ((i) of Lemma 3.4). It follows that the equivalence of COP(co(K∩ J),Q0)
and COP(J,Q0) holds trivially. This is another distinctive feature of our geometric
framework.

In this paper, we mainly deal with a class of general POPs of the form:

ζ∗ = inf
{
f0(w) : w ∈ Rn

+, fi(w) = 0 (i = 1, . . . ,m)
}
, (1)

where Rn
+ denotes the nonnegative orthant of the n-dimensional Euclidean space Rn and

fi(w) a real valued polynomial function in w = (w1, . . . , wn) ∈ Rn (i = 0, . . . ,m). When
all fi(w) (i = 0, . . . ,m) are quadratic functions, (1) becomes a class of QOPs considered
in this paper.

The equivalence of COP(co(K∩ J),Q0) and COP(J,Q0) shown above can be applied
to POP (1) by just reducing POP (1) to the form of COP(K ∩ J,Q0). This reduction
is demonstrated in Section 2.2 for QOP cases, and in Section 5 for general POP cases.
For the resulting COP(co(K ∩ J),Q0) to satisfy Conditions I0 and II0 with K0 = K ∩ J,
certain assumptions must be imposed. For example, if the feasible region of POP (1)
is nonempty and bounded, and fi(w) (i = 1, . . . ,m) are nonnegative for every w ≥ 0,
COP(K ∩ J,Q0) can be constructed such that Conditions I0 and II0 are satisfied with
K0 = K ∩ J for some cone K and some face J of coK. Consequently, COP(J,Q0) is
indeed a convex COP reformulation of POP (1) with the same objective value ζ = ζ∗

(Theorem 5.2). Note that coK corresponds the CPP cone when POP (1) is a QOP, while
it corresponds to an extension of the CPP cone for a general POP. Thus, J is a face of
the CPP cone in the QOP case or a face of the extended CPP cone in the general POP
case.

In the convexification from POP (1) to COP(J,Q0), the objective function f0(w) is
relaxed to the linear function 〈Q0, X〉 in X ∈ coK. The problem COP(J,Q0), however,
does not explicitly involve any linear equality in X ∈ coK induced from each equality
constraint fi(w) = 0 (i = 1, . . . ,m). In fact, the feasible region of COP(K ∩ J,Q0)
is geometrically represented in terms of a nonconvex cone K, a face J of coK and a
hyperplane

{
X ∈ V : 〈H0, X〉 = 1

}
. This formulation is essential to derive the convex

COP reformulation COP(J,Q0) of QOPs and POPs in a simple geometric setting.

1.2 Relations to existing works

The geometric framework mentioned in the previous section generalizes the authors’
previous work [1, 2, 3, 4, 19]. A convex reformulation of a nonconvex COP in a vector
space V was also discussed and the results obtained there were applied to QOPs in
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[1, 3, 19] and POPs in [2, 4]. Unlike the current framework, a fundamental difference in
the previous framework lies in utilizing a nonconvex COP of the form

ζ = inf

{
〈Q0, X〉 :

X ∈ K, 〈H0, X〉 = 1,
〈Qp, X〉 = 0 (p = 1, . . . ,m)

}
, (2)

where K ⊂ V denotes a cone, Qp ∈ V (p = 0, . . . ,m) and H0 ∈ V. In [3, 4, 19], they
imposed the assumption that Qp ∈ K∗ (p = 0, . . . ,m) in addition to O 6= H0 ∈ K∗ and
a condition similar to Condition II0. Under this assumption,

J = {X ∈ coK : 〈Qp, X〉 = 0 (p = 1, . . . ,m)} (3)

forms a face of coK (Lemma 2.1). However, the converse is not true. A face J of coK can
be represented as in (3) by some Qp ∈ K∗ (p = 1, . . . ,m) iff it is an exposed face of coK;
hence if J is a non-exposed face of coK, such a representation in terms of some Qp ∈ K∗
(p = 1, . . . ,m) is impossible. Very recently, Zhang [29] showed that the CPP cone with
dimension not less than 5 is not facially exposed, i.e., some of its faces are non-exposed
(see also [6, 13] for geometric properties of the CPP cone). Thus, our framework using
COP(co(K ∩ J),Q0) is more general than the work using (2) in [1, 2, 3, 4, 19].

The class of QOPs that can be reformulated as equivalent CPPs of the form COP(J,Q0)
in our framework covers most of the known classes of QOPs that can be reformulated as
CPPs mentioned above, including Burer’s class [11] of linearly constrained QOPs in non-
negative and binary variables. With respect to extensions to POPs presented in [2, 4, 22],
our geometric framework using COP((K ∩ J,Q0) can be regarded as a generalization of
the framework proposed in [2, 4] where a class of POPs of the form (1) is reduced to
COP (2). In [22], Peña, Vera and Zuluaga introduced the cone of completely positive
tensor as an extension of the completely positive matrix for deriving equivalent convex
relaxation of POPs. The class of POPs that can be convexified using their completely
positive tensor cone is similar to our class that can be reformulated as equivalent CPPs
of the form COP(J,Q0). In fact, one of the two conditions imposed on their class, (i)
of Theorem 4 in [22], corresponds to our condition (30), which was originated from a
hierarchy of copositivity condition proposed in [1]. The other condition using “the hori-
zon cone” in (ii) of Theorem 4 of [22], is different from our condition (31), but they are
similar in nature (see Section 6 of [1]). We should mention, however, that our framework
is quite different form theirs.

The above discussions show the versatility of our geometric framework in that it is
applicable to almost all known equivalent reformulations of QOPs as well as the more
general case of POPs.

1.3 Outline of the paper

After introducing some notation and symbols in Section 2.1, we present how a general
QOP can be reduced to COP(K0,Q

0) in Section 2.2, and present some fundamental prop-
erties of cones and their faces in Section 2.3. We establish the equivalence of COP(K0,Q0)
and its convexification COP(coK0,Q

0) under Conditions I0 and II0 in Section 3.1, and
derive the equivalence of COP(K ∩ J,Q0) and its convexification COP(J,Q0) by taking
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K0 = K ∩ J for some cone K ⊂ V and some face J of coK in Section 3.2. In Sec-
tion 4.1, we introduce a hierarchy of copositivity condition to represent a face J of the
convex hull coK of a cone K ⊂ V as in (3). This connects two forms of a nonconvex
COP, COP(K ∩ J,Q0) and COP (2). In Section 4.2, some sufficient conditions for Qp

(p = 1, . . . ,m) to represent a face J of coK as in (3) are provided. Section 5 discusses
convex COP reformulations of POPs as applications of the results obtained in Sections 3
and 4. We discuss homogenizing polynomials and an extension of the completely positive
cone in Sections 5.1 and 5.2, respectively. We then construct a convex COP reformula-
tion of POP (1) in Sections 5.3 and 5.4. In Section 6, we illustrate how we can apply the
main theorems established in Section 5.4 to QOPs and POPs through examples. Finally,
we conclude the paper in Section 7.

2 Preliminaries

2.1 Notation and symbols

Let Rn denote the n-dimensional Euclidean space consisting of column vectors w =
(w1, . . . , wn), Rn

+ the nonnegative orthant of Rn, Sn the linear space of n× n symmetric
matrices with the inner product 〈A, B〉 =

∑n
i=1

∑n
j=1AijBij, and Sn+ the cone of positive

semidefinite matrices in Sn. Zn denotes the set of integer column vectors in Rn, and Zn+ =
Rn

+∩Zn. cT denotes the transposition of a column vector c ∈ Rn. When R1+n is used, the
first coordinate of R1+n is indexed by 0 and x ∈ R1+n is written as x = (x0, x1, . . . , xn) =
(x0,w) ∈ R1+n with w ∈ Rn. Also each matrix X ∈ S1+n ⊂ R1+n × R1+n has elements
Xij (i = 0, . . . , n, j = 0, . . . , n).

Let V be a finite dimensional linear space with the inner product 〈A, B〉 for every
pair of A and B in V and ‖A‖ = 〈A, A〉1/2 for every A in V. We say that K ⊂ V is a
cone, which is not necessarily convex nor closed, if λA ∈ K for every A ∈ K and λ ≥ 0.
Let coK denote the convex hull of a cone K, and clK the closure of K. S1+n may be
regarded as a special case of a linear space V in the subsequent discussions. Since K is

a cone, we see that coK =
{∑m

p=1X
p : Xp ∈ K (p = 1, . . . ,m) for some m ∈ Z+

}
. The

dual of a cone K is defined as K∗ = {Y ∈ V : 〈Y , X〉 ≥ 0 for every X ∈ K}. From the
definition, we know that K∗ = (coK)∗. It is well-known and also easily proved by the
separation theorem of convex sets that K∗∗ = cl coK, the closure of coK.

We note that a cone K is convex iff X =
∑m

i=1X
i ∈ K whenever X i ∈ K (i =

1, . . . ,m). Let K be a convex cone in a linear space V. A convex cone J ⊂ K is said to
be a face of K if X1 ∈ J and X2 ∈ J whenever X = X1/2 +X2/2 ∈ J, X1 ∈ K and
X2 ∈ K (the standard definition of a face of a convex set), or, if X i ∈ J (i = 1, . . . ,m)
whenever X =

∑m
i=1X

i ∈ J and X i ∈ K (i = 1, . . . ,m) (the equivalent characterization
of a face of a convex cone). The equivalence can be easily shown by induction. A face
J of K is proper if J 6= K, and a proper face J of K is exposed if there is a nonzero
P ∈ K∗ such that J = {X ∈ K : 〈P , X〉 = 0}. A proper face of K is non-exposed, if
it is not exposed. In general, if T (J) denotes the tangent linear space of a face J of K,
then J = K ∩ T (J). Here the tangent linear space T (J) of a face J of K is defined as the
smallest linear subspace of V that contains J. The dimension of a face J is defined as
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the dimension of its tangent linear subspace T (J). We say that P ∈ V is copositive on a
cone K ⊂ V if 〈P , X〉 ≥ 0 for every X ∈ K, i.e., P ∈ K∗.

Let H0 ∈ V. For every K ⊂ V and ρ ≥ 0, let G(K, ρ) =
{
X ∈ K : 〈H0, X〉 = ρ

}
.

In addition, given any P ∈ V, we consider the following conic optimization problem

COP(K,P , ρ): ζ(K,P , ρ) = inf {〈P , X〉 : X ∈ G(K, ρ)} .

Note that we use the convention that ζ(K,P , ρ) = +∞ if G(K, ρ) = ∅, and that
COP(K,P , 1) coincides with COP(K,P ) introduced in Section 1. In the subsequent
sections, we often use ζ(K,P , ρ) with ρ ≥ 0, but COP(K,P , ρ) only for ρ = 1. For
simplicity, we use the notation COP(K,P ) for COP(K,P , 1).

2.2 A class of QOPs with linear equality, complementarity and
binary constraints in nonnegative variables

In this section, we first consider Burer’s class of QOPs which were shown to be equivalent
to their CPP reformulations under mild assumptions (see (7) and (8) below) in [11]. For
the reader who might be more familiar with QOPs than POPs, our purpose here is
to show how our geometrical analysis works for QOPs, before presenting the rigorous
derivation of our convexification procedure for the POP (1).

Let C ∈ Sn, c ∈ Rn, A ∈ R`×n, b ∈ R`, Ibin ⊂ {1, . . . , n} (the index set for binary
variables) and Icomp ⊂ {(j, k) : 1 ≤ j < k ≤ n} (the index set for pairs of complementary
variables). For simplicity of notation, we assume that Ibin = {1, . . . , q} for some q ≥ 0;
if q = 0 then Ibin = ∅. Consider a QOP of the following form:

ζQOP = inf

wTCw + 2cTw :

w ∈ Rn
+,

f1(w) ≡ (Aw − b)T (Aw − b) = 0,
f2(w) ≡

∑
(j,k)∈Icomp

wjwk = 0,

fp+2(w) ≡ wp(1− wp) = 0 (p = 1, . . . , q)

 . (4)

Assume that the feasible region of QOP (4) is nonempty. Note that the multiple com-
plementarity constraints wjwk = 0 ((j, k) ∈ Icomp) in w ∈ Rn

+ is written as the single
equality constraint f2(w) = 0 in w ∈ Rn

+ mainly for simplicity.

Let

Γ1+n =
{
xxT : x ∈ R1+n

+

}
, CPP1+n = coΓ1+n,

COP1+n = (CPP1+n)∗ =
{
Y ∈ S1+n : xTY x ≥ 0 for every x ∈ R1+n

+

}
.

Then, Γ1+n forms a nonconvex cone in S1+n. The convex cones CPP1+n and COP1+n

are known as the completely positive cone and the copositive cone in the literature [7],
respectively. We know that

Γ1+n ⊂ CPP1+n ⊂ S1+n
+ ∩ N1+n ⊂ S1+n

+ ⊂ S1+n
+ + N1+n ⊂ COP1+n = (Γ1+n)∗,

where S1+n
+ denotes the cone of positive semidefinite matrices in S1+n, and N1+n the cone

of matrices with all nonnegative elements in S1+n. The cone S1+n
+ ∩ N1+n is often called

the doubly nonnegative (DNN) cone.
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We now transform QOP (4) to COP(Γ1+n ∩ J,Q0) for some convex cone J ⊂ CPP1+n

and some Q0 ∈ S1+n. Let m = q + 2. We first introduce the following homogeneous
quadratic functions in (x0,w) ∈ R1+n:

f̄0(x) = wTCw + 2x0c
Tw, f̄1(x) = (Aw − bx0)T (Aw − bx0),

f̄2(x) =
∑

(j,k)∈Icomp
wjwk, f̄p(x) = wp−2(x0 − wp−2) (p = 3, . . . ,m).

}
(5)

Then, we can rewrite QOP (4) as

ζQOP = inf
{
f̄0(x) : x = (x0,w) ∈ R1+n

+ , x0 = 1, f̄p(x) = 0 (p = 1, . . . ,m)
}
. (6)

Since each f̄p(x) is a homogeneous quadratic function in x ∈ R1+n, it can be rewritten
as f̄p(x) = 〈Qp, xxT 〉 for some Qp ∈ S1+n (p = 1, . . . , n). As a result, QOP (6) can be
further transformed into

ζQOP = inf

{
〈Q0, X〉 :

X ∈ Γ1+n, 〈H0, X〉 = 1,
〈Qp, X〉 = 0 (p = 1, . . . ,m)

}
,

whereH0 denotes the matrix in S1+n with the (0, 0)th element H0
00 = 1 and 0 elsewhere.

We note that x = (1,w) ∈ R1+n
+ iff xxT ∈ Γ and 〈H0, X〉 = 1. By considering the

convex cone J =
{
X ∈ CPP1+n : 〈Qp, X〉 = 0 (p = 1, . . . ,m)

}
, we can rewrite the above

problem as the COP

ζQOP = inf
{
〈Q0, X〉 : X ∈ Γ1+n ∩ J, 〈H0, X〉 = 1

}
= inf

{
〈Q0, X〉 : X ∈ G(Γ1+n ∩ J, 1)

}
= ζ(Γ1+n ∩ J,Q0, 1),

which is equivalent to QOP (4). Thus, we have derived COP(Γ1+n∩J, Q0) with a convex
cone J ⊂ CPP1+n.

If Conditions I0 and II0 are satisfied with K0 = Γ1+n∩ J, then COP(K0,Q
0) is equiv-

alent to its covexification COP(coK0,Q
0), i.e., ζ(K0,Q

0) = ζ(coK0,Q
0) (Theorem 3.2).

If, in addition, J is a face of CPP1+n, then coK0 = co(Γ1+n∩J) = J (Lemma 3.4). Hence,
COP(Γ1+n ∩ J,Q0) is equivalent to its covexification COP(J,Q0), which forms a CPP
reformulation of QOP (4) such that ζ(J,Q0, 1) = ζQOP.

In Burer [11], the following conditions are imposed on QOP (4) to derive its equivalent
CPP reformulation:

wi ≤ 1 if w ∈ L ≡
{
w ∈ Rn

+ : Aw − b = 0
}

and i ∈ Ibin, (7)

wj = 0 and wk = 0 if w ∈ L∞ ≡
{
w ∈ Rn

+ : Aw = 0
}

and (j, k) ∈ Icomp. (8)

Although his CPP reformulation of QOP (4) is described quite differently from COP(J,Q0),
the conditions (7) and (8) are sufficient not only for J to be a face of CPP1+n but also
for ζ(J,Q0, 1) = ζQOP to hold. This fact will be shown in Section 6.1.

2.3 Fundamental properties of cones and their faces

The following lemma will play an essential role in the subsequent discussions.

7



Lemma 2.1. Let K ⊂ V be a cone. The following results hold.

(i) K∗ = (coK)∗.

(ii) Assume that P ∈ V is copositive on K. Then J = {X ∈ coK : 〈P , X〉 = 0} forms
an exposed face of coK.

(iii) Let J0 = coK. Assume that Jp is a face of Jp−1 (p = 1, . . . ,m). Then J` is a face
of Jp (0 ≤ p ≤ ` ≤ m).

Proof. (i) K∗ ⊃ (coK)∗ follows from the fact that K ⊂ coK. To prove the converse
inclusion, suppose that X ∈ K∗. Choose Y ∈ coK arbitrarily. Then there exist Y i ∈ K
(i = 1, . . . , k) such that Y =

∑k
i=1 Y

i. Since X ∈ K∗ and Y i ∈ K, we have that

〈Y i, X〉 ≥ 0 (i = 1, . . . , k). It follows that 〈Y , X〉 =
∑k

i=1〈Y
i, X〉 ≥ 0. Hence we have

shown that 〈Y , X〉 ≥ 0 for every Y ∈ coK. Therefore X ∈ coK∗.
(ii) Let X = X1/2 + X2/2 ∈ J, X1 ∈ coK and X2 ∈ coK. By the assumption,

〈P , X1〉 ≥ 0 and 〈P , X2〉 ≥ 0. From X = X1/2 + X2/2 ∈ J, we also see that
0 = 〈P , X〉 = 〈P , X1〉/2 + 〈P , X2〉/2. Hence 〈P , X1〉 = 〈P , X2〉 = 0. Therefore
X1 ∈ J and X2 ∈ J, and we have shown that J is a face of coK. Note that J is exposed
by definition.

(iii) We only prove the case where m = 2 since the general case where m ≥ 3 can be
proved by induction. Let X = X1/2 + X2/2 ∈ J2, X1 ∈ J0 and X2 ∈ J0. It follows
from J2 ⊂ J1 that X ∈ J1. Since J1 is a face of J0, we obtain that X1 ∈ J1 and X2 ∈ J1.
Now, since J2 is a face of J1, X1 ∈ J2 and X2 ∈ J2 follow. Thus we have shown that J2
is a face of J0.

3 Main results

Given a nonconvex cone K0 ⊂ V, H0 ∈ V and Q0 ∈ V, the problem COP(K0,Q
0) mini-

mizes the linear objective function 〈Q0, X〉 over the nonconvex feasible region G(K0, 1).
In Section 2.2, we have derived such a nonconvex COP from QOP (4). We will also
see in Section 5 that a general class of POPs can be reformulated as such a nonconvex
COP. By replacing K0 with its convex hull coK0, we obtain COP(coK0,Q

0) that mini-
mizes the same linear objective function over the convex feasible regionG(coK0, 1). Hence
COP(coK0,Q

0) turns out to be a convex conic optimization problem. We call this process
the covexification of COP(K0,Q

0). Since K0 ⊂ coK0, we have that G(coK0, 1) ⊃ G(K0, 1)
and ζ(coK0,Q

0, 1) ≤ ζ(K0,Q
0, 1) hold in general. Hence ζ(coK0,Q

0, 1) provides a lower
bound for the optimal value of the original QOP or POP from which COP(K0,Q

0) is
derived. If ζ(coK0,Q

0, 1) = ζ(K0,Q
0, 1), we call COP(coK0,Q

0) as a convex COP refor-
mulation of COP(K0,Q

0) (and the original QOP or POP). In this case, COP(coK0,Q
0)

solves the original QOP or POP in the sense that ζ(coK0,Q
0, 1) coincides with their

optimal values. The main result of this section is the characterization of the convex COP
reformulation of COP(K0,Q

0).

Throughout this section, we fix a linear space V and H0 ∈ V.
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3.1 A simple conic optimization problem

For every K0 ⊂ V and Q0 ∈ V, we consider COP(K0,Q
0). To ensure ζ(K0,Q

0, 1) =
ζ(coK0,Q

0, 1) in Theorem 3.2, we will assume Conditions I0 and II0 introduced in Sec-
tion 1. We note that the feasibility of COP(K0,Q0) in Condition I0 can be stated as
G(K0, 1) 6= ∅, and Condition II0 as ζ(K0,Q

0, 0) ≥ 0.

Lemma 3.1 and Theorem 3.2 below may be regarded as special cases of Lemma 3.1
and Theorem 3.1 of [3]. Although Lemma 3.1 and Theorem 3.2 can be derived if m = 0
is used in [3], here we present their proofs for the paper to be self-contained.

Lemma 3.1. Let K0 ⊂ V be a cone. Assume that Condition I0 holds. Then,

(i) coG(K0, 0) = G(coK0, 0).

(ii) For every P ∈ V, ζ(K0,P , 0) = ζ(coK0,P , 0).

(iii) For every P ∈ V, ζ(K0,P , 0) =

{
0 if ζ(K0,P , 0) ≥ 0 holds,
−∞ otherwise.

Theorem 3.2. Let K0 ⊂ V be a cone and Q0 ∈ V. Assume that Condition I0 holds.
Then,

(i) G(coK0, 1) = coG(K0, 1) + coG(K0, 0).

(ii) ζ(coK0,Q
0, 1) = ζ(K0,Q

0, 1) + ζ(K0,Q
0, 0).

(iii) ζ(coK0,Q
0, 1) = ζ(K0,Q

0, 1) iff

Condition II0 or ζ(K0,Q
0, 1) = −∞ holds. (9)

Before presenting the proofs of Lemma 3.1 and Theorem 3.2, we show an illustrative
example.

Example 3.3. Let V = R2, d1 = (4, 0), d2 = (4, 2), d3 = (−3, 3) and K0 =
⋃3
i=1

{
λdi : λ ≥ 0

}
.

We consider two cases (see (a) and (b) of Figure 1, respectively).

(a) Let H0 = (0.5, 1), which lies in the interior of K∗0. In this case, we see that
G(K0, 1) = {(−2, 2), (1, 0.5), (2, 0)}, G(coK0, 1) = coG(K0, 1) = the line segment joint-
ing (−2, 2) and (2, 0), and G(K0, 0) = G(coK0, 0) = {0}. Hence ζ(coK0,P , 0) =
ζ(K0,P , 0) = 0 for every P ∈ R2 and Condition II0 holds for every Q0 ∈ R2. Thus
all assertions of Lemma 3.1 and Theorem 3.2 hold.

(b) Let H0 = (0, 1), which lies in the boundary of K∗0. In this case, we see that
G(K0, 1) = {(−1, 1), (2, 1)}, G(coK0, 1) = {(x1, 1) : −1 ≤ x1}, andG(K0, 0) = G(coK0, 0) =
{(x1, 0) : 0 ≤ x1}. Hence (i) and (ii) of Lemma 3.1, and (i) of Theorem 3.2 follow. Take
Q0 = P = (p1, p2) ∈ R2 arbitrarily. If p1 ≥ 0 then ζ(K0,P , 0) = ζ(coK0,P , 0) = 0, and
both COP(K0,P ) and COP(coK0,P ) have a common optimal solution at (−1, 1) with
the optimal value ζ(K0,P , 1) = ζ(coK0,P , 1) = −p1 + p2; hence (iii) of Lemma 3.1,
(ii) and (iii) of Theorem 3.2 hold. Now assume that p1 < 0. Then we see that
ζ(K0,Q

0, 0) = ζ(K0,P , 0) = ζ(coK0,P , 0) = −∞. This implies that (ii) of Lemma 3.1
holds, and that Condition II0 is violated. We also see that ζ(K0,Q

0, 1) = 2p1 + p2. In
this case, (iii) of Theorem 3.2 asserts that ζ(coK0,Q

0, 1) 6= ζ(K0,Q
0, 1). In fact, we have

that −∞ = ζ(coK0,Q
0, 1) < ζ(K0,Q

0, 1) = 2p1 + p2.
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Figure 1: Illustration of COP(K0,Q
0) and COP(coK0,Q

0) under Conditions I0 and
II0, where V = R2, K0 =

⋃3
i=1

{
λdi : λ ≥ 0

}
and G(K0, 1) = {X ∈ K0 : 〈H0, X〉 = 1}

(the feasible region of COP(K0,Q
0)). In case (a) where we take H0 = (0.5, 1) ∈ K∗0,

Condition I0 and Condition II0 are satisfied for any choice of Q0 ∈ R2. In case (b) where
we take H0 = (0, 1) ∈ K∗0, Condition I0 is satisfied, but Condition II0 is satisfied iff the
first coordinate Q0

1 of Q0 ∈ R2 is nonnegative. See Example 3.3 for more details.

Proof of Lemma 3.1. (i) Since G(coK0, 0) is a convex subset of V containing G(K0, 0),
we see that coG(K0, 0) ⊂ G(coK0, 0). To show the converse inclusion, assume that
X ∈ G(coK0, 0). Then there exist X i ∈ K0 (i = 1, 2, . . . , r) such that X =

∑r
i=1X

i.
By Condition I0, we know that 〈H0, X i〉 ≥ 0 (i = 1, 2, . . . , r). Thus, each X i satisfies
X i ∈ K0 and 〈H0, X i〉 = 0, or equivalently X i ∈ G(K0, 0) (i = 1, 2, . . . , r). Therefore,
X =

∑r
i=1 λiX

i ∈ coG(K0, 0).

(ii) Let P ∈ V. We observe that

ζ(K0,P , 0) = inf {〈P , X〉 : X ∈ coG(K0, 0)} (since 〈P , X〉 is linear in X)

= inf {〈P , X〉 : X ∈ G(coK0, 0)} (by (i))

= inf ζ(coK0,P , 0).

(iii) Since the objective function 〈P , X〉 in the description of ζ(K0,P , 0) is linear
and its feasible region G(K0, 0) forms a cone, we know that ζ(K0,P , 0) = 0 or −∞ and
that ζ(K0,P , 0) = 0 iff the objective value is nonnegative for all feasible solutions, i.e.,
ζ(K0,P , 0) ≥ 0 holds.

Proof of Theorem 3.2. (i) To show the inclusion G(coK0, 1) ⊂ coG(K0, 1) + coG(K0, 0),
assume that X ∈ G(coK0, 1). Then there exist X i ∈ K0 ⊂ coK0 (i = 1, 2, . . . , r) such
that

X =
r∑
i=1

X i and 1 = 〈H0, X〉 =
r∑
i=1

〈H0, X i〉.

10



By Condition I0, 〈H0, X i〉 ≥ 0 (i = 1, . . . , r). Let

I+ =
{
i : 〈H0, X i〉 > 0

}
, I0 =

{
j : 〈H0, Xj〉 = 0

}
,

µi = 〈H0, X i〉, Y i = (1/µi)X
i (i ∈ I+), Y =

∑
i∈I+

X i,

µj = 1/ |I0| , Zj = (1/µj)X
j (j ∈ I0), Z =

∑
j∈I0

Xj,

where |I0| denotes the number of elements in I0. Then X = Y +Z, and

µi > 0, Y i ∈ K0, 1 = 〈H0, Y i〉 (i ∈ I+), 1 =
∑
i∈I+

µi, Y =
∑
i∈I+

µiY i,

µj > 0, Zj ∈ K0, 0 = 〈H0, Zj〉 (j ∈ I0), 1 =
∑
j∈I0

µj, Z =
∑
j∈I0

µjZ
j.

Thus, Y i ∈ G(K0, 1) (i ∈ I+), Zj ∈ G(K0, 0) (j ∈ I0), Y ∈ coG(K0, 1), Z ∈ coG(K0, 0)
andX = Y +Z. Therefore, we have shown that G((coK0), 1) ⊂ coG(K0, 1)+coG(K0, 0).
In the discussion above, we have implicitly assumed that I0 6= ∅; otherwise µj (j ∈ I0)
cannot be consistently defined. If I0 = ∅, we can just neglect µj and Zj (j ∈ I0) and
take Z = O. Then all the discussions above remain valid.

To show the converse inclusion, suppose that X = Y +Z for some Y ∈ coG(K0, 1)
and Z ∈ coG(K0, 0). Then we can represent Y ∈ coG(K0, 1) as

Y =

p∑
i=1

λiY
i,

p∑
i=1

λi = 1, λi > 0, Y i ∈ K0, 〈H0, Y i〉 = 1 (i = 1, 2, . . . , p),

and Z ∈ coG(K0, 0) and

Z =

q∑
j=1

λiZ
j,

q∑
j=1

λj = 1, λj > 0, Zj ∈ K0, 〈H0, Zj〉 = 0 (j = 1, 2, . . . , q).

Since coK0 is a convex cone, it follows from Y =
∑p

i=1 λiY
i ∈ coK0 andZ =

∑q
j=1 λjZ

j ∈
coK0 that X = Y +Z ∈ coK0. We also see that

〈H0, X〉 =

p∑
i=1

λi〈H0, Y i〉+

q∑
j=1

λj〈H0, Zj〉 =

p∑
i=1

λi + 0 = 1.

Thus, we have shown that X ∈ G(coK0, 1).

(ii) We see from (i) that

ζ(coK0,Q
0, 1) = inf

{
〈Q0, Y +Z〉 : Y ∈ coG(K0, 1), Z ∈ coG(K0, 0)

}
= inf

{
〈Q0, Y 〉 : Y ∈ coG(K0, 1)

}
+ inf

{
〈Q0, Z〉 : Z ∈ coG(K0, 0)

}
= inf

{
〈Q0, Y 〉 : Y ∈ G(K0, 1)

}
+ inf

{
〈Q0, Z〉 : Z ∈ G(K0, 0)

}
= ζ(K0,Q

0, 1) + ζ(K0,Q
0, 0).
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(iii) “if part”: Assume that Condition II0 holds. Then ζ(K0,Q
0, 0) = 0 follows from

Lemma 3.5. Hence ζ(coK0,Q
0, 1) = ζ(K0,Q

0, 1) by (ii). If ζ(K0,Q
0, 1) = −∞, then

ζ(co K0,Q
0, 1) ≤ ζ(K0,Q

0, 1) = −∞.

“only if part”: Assume that ζ(coK0,Q
0, 1) = ζ(K0,Q

0, 1). By Condition I0, G(K0, 1)
is nonempty. Hence we have ζ(K0,Q

0, 1) < ∞. If ζ(K0,Q
0, 1) = −∞, then we are

done. So suppose that ζ(K0,Q
0, 1) is finite. Then the assumption and (ii) implies that

ζ(K0,Q
0, 0) = 0. Consequently, Condition II0 holds.

Note that by (i) and (ii) of Lemma 3.1, we can replace coG(K0, 0) and ζ(K0,Q
0, 0)

in Theorem 3.2 by G(coK0, 0) and ζ(coK0,Q
0, 0), respectively.

Next, we establish the following lemma which will play an essential role to extend
Lemma 3.1 and Theorem 3.2 to a class of general COPs in the next section.

Lemma 3.4. Let K ⊂ V be a cone. Assume that J is a face of coK. Then,

(i) co(K ∩ J) = J.

(ii) (K ∩ J)∗ = J∗.

Proof. (i) Since J = (coK) ∩ J is a convex set containing K ∩ J, we see co(K ∩ J) ⊂ J.
To show the converse inclusion, let X ∈ J = (coK)∩ J. Then there exist X i ∈ K ⊂ coK
such that X =

∑m
i=1X

i. Since J is a face of coK, we see that X i ∈ J (i = 1, . . . ,m).
Therefore, X i ∈ K ∩ J (i = 1, . . . ,m) and X =

∑m
i=1X

i ∈ co(K ∩ J).

(ii) Since (K ∩ J)∗ = (co(K ∩ J))∗ by Lemma 2.1, (K ∩ J)∗ = J∗ follows from (i).

3.2 A class of general conic optimization problems

For every cone K ⊂ V, every cone J ⊂ V and every Q0 ∈ V, we consider the class of
general COPs of the following form:

COP(K ∩ J,Q0): ζ(K ∩ J,Q0, 1) = inf
{
〈Q0, X〉 : X ∈ G(K ∩ J, 1)

}
= inf

{
〈Q0, X〉 : X ∈ K ∩ J, 〈H0, X〉 = 1

}
.

Obviously, we can handle COP(K ∩ J,Q0) as a special case of COP(K0,Q
0) by taking

K0 = K ∩ J. In particular, we can apply Lemma 3.1 and Theorem 3.2 if we assume
Conditions I0 and II0 for K0 = K∩ J. We further impose the condition that J is a face of
coK, which would provide various interesting structures in COP(K∩ J,Q0) and a bridge
between Theorem 3.2 and many existing results on the convexification of nonconvex
quadratic and polynomial optimization problems. By (ii) of Lemma 3.4, we know that
K∗0 = (K∩ J)∗ = J∗ under the assumption. Thus we can replace Conditions I0 and II0 by
the following Conditions 0J, IJ and IIJ for COP(K ∩ J,Q0).

Condition 0J: J is a face of coK.

Condition IJ: COP(K ∩ J,Q0) is feasible, i.e., G(K ∩ J, 1) 6= ∅, and O 6= H0 ∈ J∗.
Condition IIJ: inf

{
〈Q0, X〉 : X ∈ K ∩ J, 〈H0, X〉 = 0

}
≥ 0, i.e., ζ(K∩J,Q0, 0) ≥ 0.
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Note that Condition 0J is newly added while Conditions IJ and IIJ are equivalent to
Conditions I0 and II0 with K0 = K ∩ J under Condition 0J, respectively.

Let J be a face of coK and K0 = K ∩ J. Then, we know by (i) of Lemma 3.4 that
coK0 = co(K ∩ J) = J. Replacing K0 by K ∩ J and coK0 by J in Lemma 3.1 and in
Theorem 3.2, we obtain the following results in Lemma 3.5 and Theorem 3.6.

Lemma 3.5. Let K ⊂ V be a cone. Assume that Conditions 0J and IJ hold. Then,

(i) coG(K ∩ J, 0) = G(J, 0).

(ii) For every P ∈ V, ζ(K ∩ J,P , 0) = ζ(J,P , 0).

(iii) For every P ∈ V, ζ(K ∩ J,P , 0) =

{
0 if Condition IIJ holds,
−∞ otherwise.

Theorem 3.6. Let K ⊂ V be a cone and Q0 ∈ V. Assume that Conditions 0J and IJ
hold. Then,

(i) G(J, 1) = coG(K ∩ J, 1) + coG(K ∩ J, 0).

(ii) ζ(J,Q0, 1) = ζ(K ∩ J,Q0, 1) + ζ(K ∩ J,Q0, 0).

(iii) ζ(J,Q0, 1) = ζ(K ∩ J,Q0, 1) iff

Condition IIJ or ζ(K ∩ J,Q0, 1) = −∞ holds. (10)

The assertions of Lemma 3.5 and Theorem 3.6 are similar to but more general than
those of Lemma 3.1 and Theorem 3.1 of [3], respectively. The essential difference is that
our results here cover the case where J can be a non-exposed face while those in [3] are
restricted to the case where J is an exposed face of coK which is represented explicitly
as J = {X ∈ coK : 〈Qp, X〉 = 0 (p = 1, . . . ,m)} for some Qp ∈ K∗ (p = 1, . . . ,m).

Suppose that J is a face of coK and that its tangent space T (J) is represented as
T (J) = {X ∈ V : 〈Qp, X〉 = 0 (p = 1, . . . ,m)} for some Qp ∈ V (p = 1, . . . ,m). Then
J = coK ∩ T (J) and the cone J is represented as in (3). Therefore, COP(K ∩ J,Q0)
is equivalent to COP (2) introduced in Section 1. We note, however, that Qp ∈ K∗
(p = 1, . . . ,m) may not be satisfied.

Conversely, suppose that a COP of the form (2) is given. It is interesting to char-
acterize a collection of Qp ∈ V (p = 1, . . . ,m) which induces a face J of coK. Such a
characterization is necessary to construct a class of COPs of the form (2) that can be
reformulated as convex COPs. One sufficient condition (which was assumed in [5, 3, 19])
for J defined by (3) to be a face of coK is that all Qp ∈ V (p = 1, . . . ,m) are copositive on
K. However, this sufficient condition can sometimes be restrictive. For example, we can
replace Qm by −

∑m
p=1Q

p to generate the same J but −
∑m

p=1Q
p is no longer copositive

on K. We also see that this sufficient condition ensures that J defined by (3) is an exposed

face of coK. In fact, in this case, J coincides with
{
X ∈ coK :

∑m
p=1〈Q

p, X〉 = 0
}

. If

J is a non-exposed face of coK, J cannot be represented in terms of any collection of
copositive Qp on K (p = 1, . . . ,m) as in (3). We will investigate such cases in Section 4.
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4 Copositivity conditions

Throughout this section, we fix a linear space V, a cone K ⊂ V and H0 ∈ V. In Section
3.2, we have shown that if J is a face of coK, we can always represent J as in (3) for
some Qp ∈ V (p = 1, . . . ,m). In Section 4.1, we strengthen this equivalence relation
by introducing a hierarchy of copositivity condition and show how we can choose such
Qp ∈ V (p = 1, . . . ,m) to satisfy the condition recursively. The hierarchy of copositivity
condition was originally proposed in Arima, Kim and Kojima [1] as a condition for
characterizing a class of QOPs that are equivalent to their CPP reformulations. Here,
we extend the condition to a more general class of COP(K∩ J,Q0), which includes their
class of QOPs. In Section 4.2, we present some characterizations of the copositivity of
P ∈ V on a face J of coK. They are useful to construct a face J of coK in terms of
Qp ∈ V (p = 1, . . . ,m) as in (3).

4.1 The hierarchy of copositivity condition

Recall that J is an exposed face of coK iff J =
{
X ∈ coK : 〈Q1, X〉 = 0

}
for some

copositive Q1 ∈ V on coK, i.e., Q1 ∈ (coK)∗. The two lemmas below generalize this fact,
assuming implicitly that J can be a non-exposed face of coK. (As we have mentioned in
Section 1, some faces of the CPP cone CPP1+n are non-exposed if n ≥ 5 [29].)

Lemma 4.1. Let J be a proper face of coK. Let J0 = coK. Then there exist sequences
of faces J1, . . . , Jm of coK and Q1, . . . ,Qm ∈ V for some positive integer m such that

O 6= Qp ∈ J∗p−1 ∩ T (Jp−1),
Jp =

{
X ∈ Jp−1 : 〈Qp, X〉 = 0

}
, dimJp−1 > dimJp and Jm = J

}
(11)

(p = 1, . . . ,m).

Proof. Let X be a relative interior point of J with respect to the tangent space T (J)
of J. Since X is a boundary point of the cone J0 = coK with respect to the tan-
gent space T (J0), we can take a supporting hyperplane of J0 at X in the tangent
space T (J0), say,

{
X ∈ T (J0) : 〈Q1, X〉 = 0

}
for some nonzero Q1 ∈ J∗0 ∩ T (J0). Let

J1 =
{
X ∈ J0 : 〈Q1, X〉 = 0

}
, which forms a face of J0 = coK by (ii) of Lemma 2.1.

By construction, J ⊂ J1 ⊂ J0 and dimJ ≤ dimJ1 < dimJ0. If J = J1, T (J) = T (J1)
or X lies in the relative interior of J1 with respect to T (J1), we are done. In general,
suppose that X is a relative boundary point of a face Jp−1 with respect to T (Jp−1)
(1 ≤ p), we can take a supporting hyperplane of Jp−1 at X in the tangent space
T (Jp−1), say

{
X ∈ T (Jp−1) : 〈Qp, X〉 = 0

}
for some nonzero Qp ∈ J∗p−1 ∩ T (Jp−1). Let

Jp =
{
X ∈ Jp−1 : 〈Qp, X〉 = 0

}
. Since dimJp−1 > dimJp, this process terminates in a

finite number of steps to obtain a sequence of faces J1, . . . , Jm of coK and a sequence
Q1, . . . ,Qm ∈ V satisfying (11).

Note that Lemma 4.1 shows that any proper face J of coK can be represented in terms
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of a hierarchy of copositivity condition:

J0 = coK, (12)

Jp =
{
X ∈ Jp−1 : 〈Qpj, X〉 = 0 (j = 1, . . . , qp)

}
for some copositive Qpj ∈ V (j = 1, . . . , qp) on Jp−1 (p = 1, . . . ,m), (13)

J = Jm =
{
X ∈ coK : 〈Qpj, X〉 = 0 (j = 1, . . . , qp, p = 1, . . . ,m)

}
(14)

for some positive integers qp (p = 1, . . . ,m) and m.

Conversely, we can construct any face J of coK by (12), (13) and (14) as we shall
present next. Since all Qpj ∈ V (j = 1, . . . , qp) are copositive on Jp−1 in (13), we can
replace (13) by

Jp =
{
X ∈ Jp−1 : 〈Qp, X〉 = 0

}
for some copositive Qp ∈ V on Jp−1 (p = 1, . . . ,m) (15)

as in Lemma 4.1 by letting Qp =
∑qp

j=1Q
qj. We also see that if 0 ≤ k < p ≤ m and

P ∈ V is copositive on Jk, then it is copositive on Jp since (Jk)∗ ⊃ (Jp)∗. This implies
that replacing (13) by (15) is not restrictive at all. Furthermore, if Jp−1 is a face of
coK, then Jp−1 = co(K ∩ Jp−1) by (i) of Lemma 3.4. Hence, “copositive on Jp−1” can be
replaced by “copositive on K ∩ Jp−1” in (13) and (15).

Lemma 4.2. Let K ⊂ V be a cone. Let Qp ∈ V (p = 0, . . . ,m) be given, and construct
a sequence of Jp ⊂ V (p = 0, . . . ,m) by

J0 = coK and Jp =
{
X ∈ Jp−1 : 〈Qp, X〉 = 0

}
(p = 1, . . . ,m) (16)

Assume that Qp ∈ V is copositive on K ∩ Jp−1 (p = 1, . . . ,m). Then each Jp is a face of
Jp−1 and a face of coK (p = 1, . . . ,m).

Proof. The assertion follows from (ii) and (iii) of Lemma 2.1.

It should be noted that Q1 need to be chosen from the cone K∗, but Qp from a
possibly wider cone J∗p−1 than J∗p−2 (p = 2, . . . ,m).

4.2 Characterization of copositivity

Let J0 = coK. We assume that k = 0 or a face Jk of Jk−1 has already been constructed
through (16) for some k = 1, . . . , p−1. Now, we focus on the choice of a copositiveQp ∈ V
on K∩ Jp−1, i.e., Qp ∈ (K∩ Jp−1)∗ so that the cone Jp =

{
X ∈ Jp−1 : 〈Qp, X〉 = 0

}
can

become a face of Jp−1. By definition, Qp is copositive on K ∩ Jp−1 iff

η(K ∩ Jp−1,Qp) ≡ inf
{
〈Qp, X〉 : X ∈ K ∩ Jp−1

}
≥ 0. (17)

Lemma 4.3. Let H0 ∈ K∗ and Jp−1 be a face of coK. Assume that ζ(K∩Jp−1,Qp, 0) ≥ 0.
Then, (17) is equivalent to either of the following two conditions:

ζ(K ∩ Jp−1,Qp, ρ) ≥ 0 for every ρ ≥ 0, (18)

ζ(K ∩ Jp−1,Qp, 1) ≥ 0. (19)
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Proof. Since K∩ Jp−1 ⊃ G(K∩ Jp−1, ρ) for every ρ ≥ 0, we see that (17) ⇒ (18) ⇒ (19).
Thus, it suffices to show that (19) ⇒ (18) ⇒ (17).

(19) ⇒ (18): Assume that (19) holds. Let X ∈ K ∩ Jp−1 and 〈H0, X〉 = ρ. First,
we consider the case ρ > 0. Then, 〈H0, X/ρ〉 = 1 and X/ρ ∈ K ∩ Jp−1. As a result,
〈Qp, X/ρ〉 ≥ 0, which implies that 〈Qp, X〉 ≥ 0. Therefore ζ(K∩ Jp−1,Qp, ρ) ≥ 0. The
second case where ρ = 0 simply follows from the assumption that ζ(K∩ Jp−1,Qp, 0) ≥ 0.

(18) ⇒ (17): Assume that (18) holds. Take X ∈ K∩ Jp−1 arbitrarily. It follows from
X ∈ Jp−1 and H0 ∈ K∗ ⊂ J∗p−1 that ρ = 〈H0, X〉 ≥ 0. Hence X ∈ G(K ∩ Jp−1, ρ) with
ρ ≥ 0. Thus 〈Qp, X〉 ≥ 0 follows from (18).

Remark 4.4. Suppose that (19) holds. If G(K ∩ Jp, 1) 6= ∅, then 〈Qp, X〉 = 0 for some
X ∈ G(K ∩ Jp−1, 1). Thus, ζ(K ∩ Jp−1,Qp, 1) = 0 and ζ(K ∩ Jp−1,Qp, ρ) = 0 for every
ρ > 0. This implies that limρ→0+ ζ(K ∩ Jp−1,Qp, ρ) = 0. By (iii) of Lemma 3.5, we also
know that either ζ(K∩Jp−1,Qp, 0) = 0 or ζ(K∩Jp−1,Qp, 0) = −∞. Thus the assumption
made in Lemma 4.3 is to ensure that the latte case where ζ(K ∩ Jp−1,Qp, 0) = −∞ <
limρ→0+ ζ(K ∩ Jp−1,Qp, ρ) = 0 (a discontinuity of ζ(K ∩ Jp−1,Qp, ρ) at ρ = 0) cannot
occur. Note that if G(K ∩ Jp−1, 0) = {0}, then clearly ζ(K ∩ Jp−1,Qp, 0) = 0, and the
assumption of the lemma holds.

Remark 4.5. We consider the case where Jp−1 is an exposed face of coK, where there
is a nonzero H1 ∈ K∗ such that Jp−1 = coK ∩ L with L =

{
X ∈ V : 〈H1, X〉 = 0

}
.

Then J∗p−1 = cl(K∗ + L⊥). Now assume that Qp ∈ V is copositive on K ∩ Jp−1 or

Qp ∈ (K ∩ Jp−1)∗ = J∗p−1. If K∗ + L⊥ is closed, then J∗p−1 = K∗ + L⊥. Hence there exist

Ŷ ∈ K∗ and ŷ1 ∈ R such that Qp = Ŷ +H1ŷ1. It follows that

Jp =
{
X ∈ coK : 〈H1, X〉 = 0, 〈Qp, X〉 = 0

}
=

{
X ∈ coK : 〈H1, X〉 = 0, 〈Ŷ +H1ŷ1, X〉 = 0

}
=

{
X ∈ coK : 〈H1, X〉 = 0, 〈Ŷ , X〉 = 0

}
=

{
X ∈ coK : 〈H1 + Ŷ , X〉 = 0

}
. (since H1, Ŷ ∈ K∗)

This implies that Jp is also an exposed face of coK.

5 Convex COP reformulation of polynomial optimiza-

tion problems

We extend the CPP reformulation of QOPs studied in many papers such as [10, 8, 11]
(see also Sections 2.2 and 6.1.) to POPs. The results presented in this section are closely
related to those in Section 3 of [4], but our class of POPs of the form (1) that can be
reformulated as convex COPs does cover POPs in nonnegative variables with polynomial
equality constraints satisfying the hierarchy of copositivity conditions, which is more
general than the copositivity condition assumed in Section 3 of [4].

To apply the results described in Sections 3 and 4 to a convex conic reformulation of
POP (1), we first reduce POP (1) to COP(ΓA ∩ J,Q0). Here ΓA is a nonconvex cone
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in a linear space SA of symmetric matrices whose dimension depends on the maximum
degree of the monomials involved in fi(w) (i = 0, . . . ,m) of POP (1), and A stands for a
set of monomials. The convex hull of ΓA, denoted as CPPA, corresponds to an extension
of the CPP cone CPP1+n. The polynomial function fp(w) is converted into 〈Qp, X〉 in
X ∈ ΓA for some Qp ∈ SA with the additional constraint 〈H0, X〉 = 1 through its
homogenization f̄p(x) (p = 0, . . . ,m), and then the face J of CPPA is defined as in (3).

We explain how a polynomial function in w ∈ Rn is homogenized in Section 5.1, and
define an extended completely positive cone CPPA in Section 5.2. The conversion of
POP (1) into COP(ΓA∩ J,Q0) is presented in Section 5.3, and the convex reformulation
of COP(ΓA ∩ J,Q0) into COP(J,Q0) is discussed in Section 5.4.

5.1 Homogenizing polynomial functions

Let τ be a positive integer. We call that a real valued polynomial function f̄(x) in
x ∈ R1+n is homogeneous with degree τ ∈ Z+ (or degree τ homogeneous) if f̄(λx) =
λτ f̄(x) for every x ∈ R1+n and λ ≥ 0. For the consistency of the discussions throughout
Section 5, a homogeneous polynomial function is defined in R1+n but not Rn, where the
first coordinate of R1+n is indexed by 0; we write x = (x0, x1, . . . , xn) or x = (x0,w)
with w ∈ Rn.

For each α = (α1, . . . , αn) ∈ Zn+, let wα denote the monomial
∏n

i=1w
αi
i with degree

τ0 = |α| ≡
∑n

i=1 αi. Let τ be a nonnegative integer no less than τ0. By introducing an
additional variable x0 ∈ R, which will be fixed to 1 later, we can convert the previous
monomial to the monomial xτ−τ00 wα in (x0, w1, . . . , wn) ∈ R1+n with degree τ . Using this
technique, we can convert any polynomial function f(w) in w = (w1, . . . , wn) ∈ Rn with
degree τ0 to a homogeneous polynomial function f̄(x0,w) in (x0, w1, . . . , wn) ∈ R1+n with
degree τ ≥ τ0 such that f̄(1,w) = f(w) for every w = (w1, . . . , wn) ∈ Rn.

5.2 An extension of the completely positive cone

We begin by introducing some additional notation and symbols. For each positive integer
ω, we define Aω =

{
α = (α0, . . . , αn) ∈ Z1+n

+ : |α| = ω
}

. For each nonempty subset A
of Aω, let RA be the |A|-dimensional Euclidean space whose coordinates are indexed by
α ∈ A, where |A| stands for the cardinality of A, i.e., the number of elements in A. We
use SA ⊂ RA × RA to denote the space of |A| × |A| symmetric matrices whose elements
are indexed by (α,β) ∈ A×A. Let SA+ denote the cone of positive semidefinite matrices
in SA, and NA the cone of nonnegative matrices in SA.

Let ω be a positive integer and ∅ 6= A ⊂ Aω. We define

ΓA =
{
uA(x)(uA(x))T ∈ SA : x ∈ R1+n

+

}
and CPPA = coΓA.

Here uA(x) denotes the |A|-dimensional column vector of monomials xα (α ∈ A). We
note that every element [uA(x)(uA(x))T ]αβ = xαxβ is a degree 2ω monomial in x ∈
R1+n. It follows that ΓA forms a cone in SA. The coordinate indices (α ∈ A) are ordered
so that uA(x) ∈ RA for every x ∈ R1+n. We call CPPA an extended completely positive
cone, and the dual of CPPA, COPA = (CPPA)∗ = (ΓA)∗ an extended copositive cone.
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By definition, we know that ΓA ⊂ SA ∩ NA. We also observe that

Xαβ = xα+β = xγ+δ = Xγδ if α+ β = γ + δ

for every X = uA(x)(uA(x))T ∈ ΓA. This implies that the cone ΓA and its convex hull
CPPA is contained in the linear subspace LA of SA defined by

LA =
{
X ∈ SA : Xαβ = Xγδ if α+ β = γ + δ

}
.

Therefore,

ΓA ⊂ CPPA ⊂ SA+ ∩ NA ∩ LA ⊂ SA+ ⊂ SA+ + NA +
(
LA
)⊥ ⊂ COPA = (ΓA)∗. (20)

Let f̄(x) be a degree 2ω homogeneous polynomial function. Then, we can write
f̄(x) =

∑
γ∈B cγx

γ for some nonzero cγ ∈ R (γ ∈ B) and some B ⊂ A2ω. Since

Aω +Aω ≡ {α+β : α ∈ Aω, β ∈ Aω} = A2ω ⊃ B and the matrix uA(x)(uA(x))T ∈ SA
involves all monomials in A + A for every A ⊂ Aω, we can choose an A ⊂ Aω such
that B ⊂ A + A (see [20] for such a choice A from Aω), and a matrix P ∈ SA such
that f̄(x) = 〈P , uA(x)(uA(x))T 〉 for every x ∈ R1+n. (Note that such a P ∈ SA is
not unique.) In our subsequent discussion, we impose an additional condition that A
contains αω ≡ (ω, 0, . . . , 0) ∈ Rn, and assume that the first coordinate of RA is αω, the
upper-leftmost element of each X ∈ SA ⊂ RA × RA is Xαωαω and that the first element
of uA(x) ∈ RA is xαω

= xω0 .

As a consequence of the representation of f̄(x) = 〈P , uA(x)uA(x)T 〉, f̄(x) ≥ 0 for
every x ∈ R1+n

+ iff 〈P , X〉 ≥ 0 for every X ∈ ΓA or equivalently P ∈ (ΓA)∗ = COPA.

5.3 Conversion of POP (1) to COP(ΓA ∩ J,Q0)

Let τmin = max{degfi(w) : i = 0, . . . ,m} and ω be a positive integer such that 2ω ≥ τmin.
By applying the homogenization technique with degree 2ω described in the previous
section to the polynomial function fi(x) (i = 0, . . . ,m), we can convert POP (1) to

ζ∗ = inf
{
f̄0(x) : x = (x0,w) ∈ R1+n, f̄i(x) = 0 (i = 1, . . . ,m), x0 = 1

}
. (21)

Here f̄i(x) denotes a degree 2ω homogeneous polynomial function in x = (x0,w) ∈ R1+n

such that f̄i(1,w) = fi(w) for every w ∈ Rn (i = 0, . . . ,m).

As discussed in the previous subsection, we choose an A ⊂ Aω such that αω ≡
(ω, 0, . . . , 0) ∈ A and the set of monomials {xα+β : α ∈ A, β ∈ A} covers all monomials
involved in f̄i(x) (i = 0, . . . ,m), and choose Qi ∈ SA (i = 0, . . . ,m) to satisfy

f̄i(x) = 〈Qi, uA(x)(uA(x))T 〉 for every x ∈ R1+n (i = 0, . . . ,m). (22)

Then,

〈Qi, uA(x)(uA(x))T 〉 = f̄i(x) for every uA(x)(uA(x))T ∈ ΓA (i = 0, . . . ,m). (23)

Define J =
{
X ∈ CPPA : 〈Qi, X〉 = 0 (i = 1, . . . ,m)

}
. Then, we have that

ΓA ∩ J =
{
uA(x)(uA(x))T : x ∈ R1+n

+ , f̄i(x) = 0 (i = 1, . . . ,m)
}
.
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Define H0 ∈ SA such that

H0 = the symmetric matrix in SA whose elements are all 0 except

the upper-leftmost element H0
αωαω that is set to 1.

We then see that 〈H0, uA(x)(uA(x))T 〉 = x2ω0 for every x ∈ R1+n. It follows that
X ∈ ΓA∩J and 〈H0, X〉 = 1 (i.e., X ∈ G(ΓA∩J, 1)) iff there is an x ∈ R1+n

+ such that

X = uA(x)(uA(x))T , f̄i(x) = 0 (i = 1, . . . ,m) and x2ω0 = 1.

Since x ∈ R1+n
+ implies x0 ≥ 0, the last equality can be replaced by x0 = 1. Therefore, a

feasible solution x ∈ R1+n of POP (21) with the objective value f̄0(x) corresponds to a
feasible solutionX of COP(ΓA∩J,Q0) with the objective value 〈Q0, X〉 = f̄0(x) through
the correspondence x ↔ X = uA(x)(uA(x))T . Thus, POP (21) (hence POP (1)) is
equivalent to COP(ΓA ∩ J,Q0) and ζ∗ = ζ(ΓA ∩ J,Q0, 1).

5.4 Reformulation of COP(ΓA ∩ J,Q0) into COP(J,Q0)

We assume that POP (21) (hence (1)) is feasible, which implies G(ΓA ∩ J, 1) 6= ∅. We
also see that 0 6= H0 ∈ (ΓA)∗ ⊂ J∗. Hence Condition IJ holds.

Now we focus on Conditions 0J and IIJ. Define a sequence Jp ⊂ SA (p = 0, . . . ,m)

by (16) with K = ΓA and J0 = coK = CPPA. Obviously, J = Jm. By Lemma 4.2, we
know that J becomes a face of CPPA if Qp is copositive on ΓA ∩ Jp−1 (p = 1, . . . ,m).

Thus, the copositivity of Qp on ΓA ∩ Jp−1 (p = 1, . . . ,m) can be characterized in terms
of fi(w) and f̄i(x) (i = 0, . . . ,m).

Define

S0 = Rn
+, Sp = {w ∈ Sp−1 : fp(w) = 0} (p = 1, . . . ,m), (24)

S̃0 = Rn
+, S̃p =

{
w ∈ S̃p−1 : f̄p(0,w) = 0

}
(p = 1, . . . ,m), (25)

S0 = R1+n
+ , Sp =

{
x ∈ Sp−1 : f̄p(x) = 0

}
(p = 1, . . . ,m). (26)

By the definition of ΓA and (23), we observe that

ΓA ∩ J0 = ΓA =
{
uA(x)(uA(x))T : x ∈ S0

}
,

ΓA ∩ Jp =
{
uA(x)(uA(x))T ∈ Jp−1 : f̄p(x) = 0

}
=

{
uA(x)(uA(x))T : x ∈ R1+n

+ , f̄i(x) = 0 (i = 1, . . . , p)
}

=
{
uA(x)(uA(x))T : x ∈ Sp

}
(p = 1, . . . ,m), (27)

G(ΓA ∩ Jp, ρ2ω) =

{
uA(x)(uA(x))T ∈ ΓA ∩ Jp :

x = (x0,w) ∈ R1+n
+ ,

x2ω0 = ρ2ω

}
=

{
uA(x)(uA(x))T : x = (ρ,w) ∈ Sp

}
(ρ ≥ 0, p = 0, . . . ,m). (28)

Now, we are ready to prove the lemma which is used to establish the main theorems
(Theorems 5.2 and 5.3) with Lemma 4.2 and 4.3.
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Lemma 5.1. Recall that η(ΓA ∩ Jp−1,Qp) = inf{〈Qp,X〉 : X ∈ ΓA ∩ Jp−1}. We have
that

(i) η(ΓA ∩ Jp−1,Qp) = inf
{
f̄p(x) : x ∈ Sp−1

}
(p = 1, . . . ,m);

(ii) ζ(ΓA ∩ Jp−1,Qp, 0) = inf
{
f̄p(0,w) : w ∈ S̃p−1

}
(p = 1, . . . ,m);

(iii) ζ(ΓA ∩ Jp−1,Qp, 1) = inf {fp(w) : w ∈ Sp−1} (p = 1, . . . ,m);

(iv) ζ(ΓA ∩ Jm,Q0, 0) = inf
{
f̄0(0,w) : w ∈ S̃m

}
.

Proof. The equality in (i) follows from (23) and (27). It follows from (23), (25) and (28)
with ρ = 0 that

ζ(ΓA ∩ Jp−1,Qp, 0) = inf
{
〈Qp, X〉 : X = uA(x)uA(x)T ∈ G(ΓA ∩ Jp−1, 0)

}
= inf

{
f̄p(x) : x = (0,w) ∈ Sp−1

}
= inf

{
f̄p(0,w) : w ∈ S̃p−1

}
.

Thus we have shown (ii). For (iii), we see that

ζ(ΓA ∩ Jp−1,Qp, 1) = inf
{
〈Qp, X〉 : X = uA(x)(uA(x))T ∈ G(ΓA ∩ Jp−1, 1)

}
= inf

{
f̄p(x) : x = (1,w),w ∈ Sp−1

}
(by (23), (24) and (28))

= inf {fp(w) : w ∈ Sp−1} .

(iv) follows from the same argument as the proof of (ii) with replacing p− 1 by m and p
by 0.

We introduce the following conditions for the theorems below. Let p ∈ {1, . . . ,m}.

inf
{
f̄p(x) : x ∈ S̄p−1

}
≥ 0, (29)

inf {fp(w) : w ∈ Sp−1} ≥ 0, (30)

inf
{
f̄p(0,w) : w ∈ S̃p−1

}
≥ 0, (31)

inf
{
f̄0(0,w) : w ∈ S̃m

}
≥ 0. (32)

We note that (29), (31) and (32) depend on the choice of ω, while (30) is independent
from the choice. But (30) depends on how an optimization problem is formulated by a
POP of the form (1), as we shall see in Section 6.2.

Theorem 5.2. Assume that Jp−1 is a face of CPPA for some p ∈ {1, . . . ,m}.

(i) If (29) holds, then Jp is a face of Jp−1 and a face of CPPA.

(ii) If (30) and (31) hold, then Jp is a face of Jp−1 and a face of CPPA.
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Proof. (i) By (i) of Lemma 5.1, we know that η(ΓA∩Jp−1,Qp) ≥ 0. Hence, the assertion
follows from Lemma 4.2.

(ii) Let K = ΓA. By (ii) and (iii) of Lemma 5.1, (30) and (31) are equivalent to
ζ(K ∩ Jp−1,Qp, 1) ≥ 0 (i.e., (19)) and ζ(K ∩ Jp−1,Qp, 0) ≥ 0, respectively. Hence, the
assertion follows from Lemmas 4.2 and 4.3.

Theorem 5.3. Assume that POP (1) is feasible and that J = Jm is a face of CPPA.
Then ζ∗ = ζ(J,Q0) iff

inf
{
f̄0(0,w) : w ∈ S̃m

}
≥ 0 (i.e., (32)) or ζ∗ = −∞ holds. (33)

Proof. By (iv) of Lemma 5.1, (32) is equivalent to ζ(ΓA ∩ Jm,Q0, 0) ≥ 0, i.e., Condition
IIJ with K = ΓA. We also know that ζ∗ = ζ(Γ1+n ∩ Jm, Q0, 1). Hence (33) is equivalent
to (10) in (iii) of Theorem 3.6.

Next, we make some preparations to discuss sufficient conditions for (30), (31) and (32)
to hold. We can represent each fi(w) as follows:

fi(w) = f̂i(w) + f̃i(w), degf̂i(w) < 2ω and degf̃i(w) = 2ω

(i = 0, 1, . . . ,m). If degfi(w) < 2ω, we assume that f̃i(w) ≡ 0. Since f̄i(0,w) = f̃i(w),
we know that

f̄i(0,w) =


a degree 2ω homogeneous

polynomial function if degfi(w) = 2ω,
0 otherwise, i.e., degfi(w) < 2ω,

(i = 0, . . . ,m). This implies that S̃p is a cone and that inf
{
f̄0(0,w) : w ∈ S̃m

}
is either

0 or −∞. Therefore, we can replace (31) and (32) by

inf
{
f̄p(0,w) : w ∈ S̃p−1

}
= 0 and inf

{
f̄0(0,w) : w ∈ S̃m

}
= 0,

respectively.

We present some sufficient conditions for (30), (31) and (32) to hold.

Lemma 5.4. Let p ∈ {1, . . . ,m}.

(i) Assume that fp(w) ≥ 0 for every w ∈ Rn
+. Then (30) and (31) hold.

(ii) If S̃p−1 = {0} or degfp(w) < 2ω, then (31) holds.

(iii) If S̃m = {0} or degf0(w) < 2ω, then (32) holds.

Proof. The results in (ii) and (iii) are straightforward from the discussion above. So we
only prove (i). Since Sp−1 ⊂ Rn

+, (30) follows. To show (31), assume on the contrary

that there is a w̃ such that f̄p−1(0, w̃) = f̃p−1(w̃) < 0 for some w̃ ∈ S̃p−1 ⊂ Rn
+. Since

degf̂p−1(w) < degf̃p−1(w) = 2ω, we have that

λw̃ ∈ Rn
+ and fp−1(λw̃) = λ2ω

(
f̂p−1(λw̃)/λ2ω + f̃p−1(w̃)

)
< 0
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for a sufficiently large λ. This contradicts the assumption.

Obviously, if fp(w) is a sum of squares of polynomials or a polynomial with non-
negative coefficients, then fp(w) ≥ 0 for every w ∈ Rn

+. Otherwise, the constraint
fp(w) = 0 can be replaced by fp(w)2 = 0 (i.e., the polynomial fp(w) is replaced by
fp(w)2), then (30) and (31) are attained. By (ii) of Lemma 5.4, we also know that Con-
dition IIJ is satisfied if we take a positive integer ω such that degf0(w) < 2ω. Thus, we
can easily construct an equivalent convex COP reformation, COP(J,Q0) of POP (1) in
theory.

6 Applying Theorems 5.2 and 5.3 to two examples

We illustrate how the main theorems, Theorems 5.2 and 5.3 in Section 5, can be applied
to QOPs and POPs with two examples. The first one is QOP (4) which has already been
reduced to COP(Γ1+n ∩ J,Q0) for some cone J ⊂ CPP1+n = coΓ1+n in Section 2.2. The
second one is a POP with some complicated combinatorial constraints.

6.1 QOP (4) revisited

Since QOP (4) is a special case of POP (1), all discussions in Section 5 can be applied
to QOP (4) if uA(x), ΓA and CPPA are replaced by (1, x1, . . . , xn), Γ1+n and CPP1+n,
respectively. In fact, we have already constructed a cone J ⊂ CPP1+n = coΓ1+n and
derived COP(Γ1+n ∩ J,Q0), which is equivalent to QOP (4), in the same way described
in Section 5.3. We have mentioned there that COP(J,Q0) provides a CPP reformulation
of QOP (4) under conditions (7) and (8). In this section, we prove this fact by applying
Theorems 5.2 and 5.3 .

Recall that Qp has been chosen to satisfy f̄p(x) = 〈Qp, xxT 〉 for every x ∈ R1+n

with f̄p(x) given in (5) (p = 0, . . . ,m). With K = Γ1+n, define Jp, Sp and S̃p by (16),
(24) and (25) (p = 0, . . . ,m), respectively. Obviously J = Jm. We then see that

f̄1(x) = (Aw − bx0)T (Aw − bx0) ≥ 0 for every x = (x0,w) ∈ R1+n
+ ,

f̄2(x) =
∑

(j,k)∈Icomp

wjwk ≥ 0 for every x = (x0,w) ∈ R1+n
+ .

By (i) of Theorem 5.2, J1 and J2 are faces of CPP1+n. Now, we show that Jp is a face of
Jp−1 for p ∈ {3, . . . ,m}. Let p ∈ {3, . . . ,m} be fixed. It follows from (7) that

Sp−1 ⊂ S1 =
{
w ∈ Rn

+ : Aw − b = 0
}

= L ⊂
{
w ∈ Rn

+ : wi ≤ 1 (i = 1, . . . ,m− 2)
}
,

S̃p−1 ⊂ S̃1 =
{
w ∈ Rn

+ : Aw = 0
}

= L∞ ⊂
{
w ∈ Rn

+ : wi = 0 (i = 1, . . . ,m− 2)
}
.

We then see

fp(w) = wp−2(1− wp−2) ≥ 0 for every w ∈ Sp−1 (hence (30) holds),

f̄p(0,w) = wp−2(0− wp−2) = 0 for every w ∈ S̃p−1 (hence (31) holds).

22



By (ii) of Theorem 5.2, Jp is a face of CPPA. Thus we have shown that Jp is a face of

CPPA for p = 3, . . . ,m. Therefore, we can conclude that J = Jm is a face of CPP1+n.

By Theorem 5.3, (33) is a necessary and sufficient condition for ζ∗ = ζ(J,Q0, 1). We
show that the pair of (7) and (8) is a sufficient condition for (33) to hold. We see from
conditions (7) and (8) that

S̃m ⊂ S̃2 ⊂ Ŝ ≡
{
w ∈ Rn

+ :
Aw = 0, wi = 0 (i = 1, . . . ,m− 2)
wj = 0 and wk = 0 ((j, k) ∈ Icomp)

}
.

Let w̄ be a fasible solution of QOP (4). Suppose that f̄0(0, w̃) = w̃TCw̃ < 0 for some

w̃ ∈ S̃m ⊂ Ŝ. Then w̄ + λw̃ is a feasible solution of QOP (4) with the objective value
f0(w̄ + λw̃)→ −∞ as λ→∞. Hence ζ∗ = −∞. On the contrary, if there is no such a

w̃ ∈ S̃m, then 0 ≤ inf{f̄0(0,w) : w ∈ S̃m}; hence (32) holds. Therefore, we have shown
that the pair of (7) and (8) implies (33).

6.2 A set of complicated combinatorial conditions from [1]

We consider a problem of minimizing a polynomial function in (w1, . . . , w4) subjct to the
following combinatorial conditions.

0 ≤ wj ≤ 1 (j = 1, 2, 3), w4 ∈ {0, 1},
w1 = 1 and/or w2 = 1, i .e., (1− w1)(1− w2) = 0,
w3 = 0 and/or w1 + w2 − w3 = 0, i .e., w3(w1 + w2 − w3) = 0,
w4 = 0 and/or 2− w1 − w2 − w3 = 0, i .e., w4(2− w1 − w2 − w3) = 0.

 (34)

To represent these conditions by polynomial equality constraints, we define 4 polynomial
functions in w = (w1, . . . , w8) ∈ R8. Choose a positive integer ω not less than the half of
the degree of the objective polynomial function. Define the 4 polynomial functions fi(w)
in w = (w1, . . . , w8) ∈ R8 (i = 1, . . . , 4) by

f1(w) =
4∑

k=1

(wk + wk+4 − 1)2ω, f2(w) = w4(1− w4) + (1− w1)(1− w2),

f3(w) = w3(w1 + w2 − w3) and f4(w) = w4(2− w1 − w2 − w3).

Here w5, . . . , w8 are slack variables for w1, . . . , w4, respectively. Then the combinatorial
constraints in w1, w2, w3, w4 above are satisfied iff w ∈ R8

+ and fi(w) = 0 (i = 1, 2, 3, 4)
for some w5, w6, w7, w8. We also set the objective polynomial function f0(w) inw ∈ R8 by
adding the dummy variables w5, w6, w7, w8 to the original one in (w1, . . . , w4). Thus the
problem is formulated as POP (1) with n = 8 and m = 4. By taking ω ≥ ddegf0(w)/2e,
Theorems 5.2 and 5.3 can be applied to POP (1) as shown in the following.

Homogenizing the polynomial functions fi(w) (i = 1, . . . , 4) with degree 2ω, we obtain
that

f̄1(x0,w) =
∑4

k=1(wk + wk+4 − x0)2ω,

f̄2(x0,w) = x2ω−20 (w4(x0 − w4) + (x0 − w1)(x0 − w2)) ,

f̄3(x0,w) = x2ω−20 w3(w1 + w2 − w3),

f̄4(x0,w) = x2ω−20 w4(2x0 − w1 − w2 − w3).
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Then

S0 = S̃0 = R8
+,

f1(w) =
∑4

k=1(wk + wk+4 − 1)2ω ≥ 0 for every w ∈ S0,

S1 =
{
w ∈ R8

+ : f1(w) = 0
}
⊂ [0, 1]8,

f2(w) = w4(1− w4) + (1− w1)(1− w2) ≥ 0 for every w ∈ [0, 1]8 ⊃ S1,

S2 = {w ∈ S1 : f2(w) = 0} = {w ∈ S1 : w4 ∈ {0, 1}, w1 = 1 or w2 = 1} ,

f3(w) = w3(w1 + w2 − w3) ≥ 0 for every w ∈ S2,

S3 = {w ∈ S2 : f3(w) = 0} = {w ∈ S2 : w3 = 0 or w1 + w2 − w3 = 0} ,

f4(w) = w4(2− w1 − w2 − w3) ≥ 0 for every w ∈ S3,

f̄1(0,w) =
∑4

k=1(wk + wk+4)
2ω ≥ 0 for every w ∈ S̃0,

S̃1 =
{
w ∈ R8

+ : f̄1(0,w) = 0
}

= {0}, S̃2 = S̃3 = S̃4 = {0},

f̄p(0,w) ≥ 0 for every w ∈ S̃p−1 = {0} (p = 2, 3, 4),

f̄0(0,w) ≥ 0 for every w ∈ S̃4 = {0}.

Thus, we have confirmed that (30) and (31) hold for p = 1, . . . , 4, and (32) holds with
m = 4. By Theorems 5.2 and 5.3, COP(J4,Q0) provides a convex COP reformulation of
POP (1) with n = 8 and m = 4.

If additional nonnegative variables w9 and w10 are introduced and some complemen-
tarity conditions are used, then (34) can also be represented as a single equality constraint

5∑
k=1

(wk + wk+4 − 1)2ω + (w9 − w1 − w2 + w3)
2ω

+(w10 + w1 + w2 + w3 − 2)2ω + w4w8 + w5w6 + w3w9 + w4w10 = 0.

In this case, we can apply the discussion at the end of Section 5.4.

For given combinatorial conditions, there exist multiple ways of representing them
with binary conditions and complementarity conditions. For example, binary conditions
can be replaced by some complementarity conditions with slack variables. See [17] for
more detailed discussions.

7 Concluding remarks

We have presented the theoretical aspects of the CPP reformulation of QOPs and its
extension to POPs. To compute a lower bound for the optimal value of POP (1), nu-
merically tractable relaxations of the problem are necessary. Suppose that QOP (4) is
equivalently convexified to COP(J,Q0) for some face J of CPP1+n as presented in Section
6.1, where J is represented as in (3) with K = Γ1+n and coK = CPP1+n. Since CPP1+n

is contained in the DNN cone S1+n ∩ N1+n, the CPP cone CPP1+n can be relaxed to
the DNN cone to obtain a numerically tractable DNN relaxation of QOP (4) so as to
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compute a lower bound of its optimal value ζQOP. The effectiveness of this approach
combined with the Lagrangian-DNN relaxation technique and the bisection and projec-
tion (BP) algorithm was confirmed through numerical results in [5, 16, 19], where binary
QOPs, max stable set problems, multi-knapsack QOPs, quadratic assignment problems
were solved. The BP algorithm was originally designed to work effectively and efficiently
for Lagrangian-DNN relaxation problems induced from CPP reformulations of a class of
QOPs with linear equality, binary and complementarity constraints in [19]. In fact, it
was shown in [5] that Lagrangian-DNN relaxation problems induced from the CPP refor-
mulations of binary QOP instances from [27] clearly provided tighter lower bounds than
DNN relaxation problems obtained from their standard SDP relaxations with replacing
the SDP cone by the DNN cone.

The aforementioned method using the Lagrangian-DNN relaxation technique and the
BP algorithm for QOPs was extended to a class of sparse POPs with binary, box and
complementarity constraints in [17, 18]. Numerical results on instances from the class
showed that accurate lower bounds of their optimal values were efficiently obtained by
the method. Consequently, the theoretical study of the CPP reformulation of QOPs and
its extensions to POPs are very important, not only for understanding of their theoretical
features, but also for practical implementation. See [17, 18] for more details.
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