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Abstract

In this paper, we propose an Augmented Lagrangian algorithm for solving a general
class of possible non-convex problems called quasi-equilibrium problems (QEPs). We
define an Augmented Lagrangian bifunction associated with QEPs, introduce a sec-
ondary QEP as a measure of infeasibility and we discuss several special classes of QEPs
within our theoretical framework. For obtaining global convergence under a new weak
constraint qualification, we extend the notion of an Approximate Karush-Kuhn-Tucker
(AKKT) point for QEPs (AKKT-QEP), showing that in general it is not necessarily
satisfied at a solution, differently from its counterpart in optimization. We study some
particular cases where AKKT-QEP does hold at a solution, while discussing the solv-
ability of the subproblems of the algorithm.

Keywords: Augmented Lagrangian methods; Quasi-equilibrium problems; Equi-
librium problems; Constraint qualifications; Approximate-KKT conditions.

1 Introduction

Given a nonempty set K from Rn and an equilibrium bifunction f on K, i.e., a bi-
function f : Rn × Rn → R with f(x, x) = 0 for all x ∈ K, the equilibrium problem is
defined by

find x ∈ K such that f(x, y) ≥ 0, ∀ y ∈ K. (EP)

As was noted in [13], equilibrium problems encompass several problems found in
fixed point theory, continuous optimization and nonlinear analysis, e.g. minimization
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problems, linear complementary problems, variational inequalities (VIs from now on)
and vector optimization problems, among others.

On the other hand, and mainly motivated by real life problems, quasi-variational
inequalities (QVIs from now on) have been introduced and studied deeply in the recent
years. Recall that, given a point-to-set operator K : Rn ⇒ Rn and a point-to-point
operator F : Rn → Rn, the QVI problem consists of

find x ∈ K(x) such that 〈F (x), x− y〉 ≥ 0, ∀ y ∈ K(x). (QVI)

We say that a point x ∈ Rn is feasible if x ∈ K(x). If K(x) := K, then (QVI)
reduces to the usual variational inequality problem, which is also a particular case the
equilibrium problem (EP).

In order to unify both approaches, the quasi-equilibrium problem (QEP from now
on) have been introduced and studied. Here the problem is defined by a point-to-set
operator K and an equilibrium bifunction f , where the QEP consists of

find x ∈ K(x) such that f(x, y) ≥ 0, ∀ y ∈ K(x). (QEP)

Therefore, QEPs encompass both EPs and QVIs simultaneously, i.e., by extension,
minimization problems, linear complementary problems, generalized Nash equilibrium
problems (GNEPs from now on), and many others related to economics, management
and mechanics among others (see [9, 26, 36]). Moreover, the tools used for providing
existence results and optimality conditions goes from convex analysis and operator
theory to generalized convexity, generalized monotonicity, fixed point theory and vari-
ational analysis, i.e., such problems provide a rich area for applying theoretical results
and new developments from nonlinear applied analysis (see [8, 9, 15, 19] for instance).

With respect to algorithms for solving QEPs, several developments have been made
in the past 10 years. We mention here different approaches for QEPs as Extragradient
methods (see [40, 41]) and the gap function approach (see [10]). The case of the
Augmented Lagrangian method, which is also the main topic of this paper, have been
developed in [39] for the usual minimization problem, and in [29] for the variational
inequality problems. Different variants of the Augmented Lagrangian method for QVIs
may be found in [32, 33, 34, 37], extending the method from VIs to QVIs.

In this paper, we propose an Augmented Lagrangian algorithm for QEPs. The
main difference of our algorithm is given by its global convergence properties under
weak constraint qualifications. To do this, and after an study of optimality conditions
and constraints qualification for QEPs, we adapt the so-called sequential optimality
conditions from nonlinear programming to QEPs (see [1]). Furthermore, it turns out
that the generalization of an Approximate-KKT (AKKT) point for QEPs, which is a
natural sequential optimality condition in optimization, is not necessarily satisfied at
the solutions of a general QEP. So, special classes of QEPs need to be studied.

In our algorithm, we divide the constraint set K(x) in two parts and we penalize
only one of these parts within our (partial) Augmented Lagrangian approach. Hence,
we consider a whole class of methods which are quite flexible and that can take into
account the special structure of the underlying QEP in a favourable way. Since Aug-
mented Lagrangian methods are not expected to find feasible points without strong
assumptions, we provide a tendency for finding feasible points by introducing a sec-
ondary QEP as a measure of infeasibility. Hence, our global convergence theory is split
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into a result concerning feasibility and another one concerning optimality, as motivated
by similar results in optimization (see, e.g., [12]). Finally, we provide special classes of
QEPs for which the resulting EP-subproblems are easy to solve, for instance, under a
monotone or pseudomonotone assumption on the Lagrangian bifunction or when the
AKKT conditions are necessarily satisfied at its solutions.

The paper is organized as follows. In Section 2, we set up notation, basic defini-
tions and preliminaries on constraint qualifications and generalized monotonicity. In
Section 3, we deal with QEP-tailored constraint qualifications (CQ-QEP) and we intro-
duce the concept of Approximate Karush-Kuhn-Tucker (AKKT) condition for QEPs
(AKKT-QEP). We present classes of QEPs for which AKKT-QEP is satisfied at a
solution. In Section 4, we present our Augmented Lagrangian method. We provide
a compact global convergence analysis considering both feasibility and optimality of
a limit point generated by our algorithm. Finally, in Section 5, we deal with prop-
erties of the feasibility of QEPs and consider some special classes of QEPs via the
study of monotonicity properties of its associated Lagrangian. Finally, an example for
pseudomonotone equilibrium problems is also provided.

2 Preliminaries

Given a ∈ R, we define a+ := max{0, a}. Similarly, for a real vector x, we write x+

for the vector where the plus-operator is applied to each component. A vector-valued
function ψ : Rn → Rm is called convex if all component functions are convex. Finally,
for a continuously differentiable bifunction g : Rn × Rn → Rm, we denote the partial
(with respect to the second argument y) transposed Jacobian by ∇yg(x, y). Hence, for
the i-th component, ∇ygi(x, y) is the gradient, viewed as a column vector. A collection
a1, . . . , am of vectors is called positively linearly dependent (p.l.d. from now on) if∑m
i=1 tiai = 0 for some t1 ≥ 0, . . . , tm ≥ 0 not all zero. Otherwise the collection is

called positively linearly independent (p.l.i. from now on).
Consider a nonlinear programming problem with inequality constraints (for sim-

plicity),
min
x
u(x) s.t. ci(x) ≤ 0, ∀ i ∈ {1, . . . ,m}, (2.1)

where u : Rn → R and ci : Rn → R for i = 1, . . . ,m are assumed to be continuously
differentiable. Let X denote the feasible set of problem (2.1) and A(x̄) = {i | ci(x̄) = 0}
the index set of active constraints at a point x̄ ∈ X.

Definition 2.1. Let x̄ ∈ X be a feasible point. We say that x̄ satisfies the:

(a) Linear Independence Constraint Qualification (LICQ) if the gradient vectors ∇ci(x̄)
for i ∈ A(x̄) are linearly independent.

(b) Mangasarian-Fromovitz Constraint Qualification (MFCQ) if the gradients ∇ci(x̄)
for i ∈ A(x̄) are p.l.i.

(c) Constant Positive Linear Dependence (CPLD) constraint qualification if for any
subset I ⊆ A(x̄) such that the gradient vectors ∇ci(x̄) for i ∈ I are p.l.d., they
remain p.l.d. for all x in a neighborhood of x̄.
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(d) Cone Continuity Property (CCP) if the set-valued mapping C : Rn ⇒ Rn is outer
semicontinuous at x̄, i.e., lim supx→x̄ C(x) ⊆ C(x̄), where

C(x) :=

w ∈ Rn : w =
∑
i∈A(x̄)

λi∇ci(x), λi ≥ 0

 , and

lim sup
x→x̄

C(x) :=
{
w ∈ Rn : ∃ xk → x̄, ∃ wk → w,wk ∈ C(xk)

}
.

It is know that CCP is the weakest of the conditions presented (among others),
while still being a constraint qualification, implying, e.g., Abadie’s CQ (see [6]). That
is, when CCP holds at a local minimizer, the KKT conditions are satisfied. On the
other hand, sequential optimality conditions for constrained optimization are neces-
sarily satisfied by local minimizers, independently of the fulfillment of constraint qual-
ifications. These conditions are used for developing stopping criteria for several im-
portant methods such as the Augmented Lagrangian method and others and for prov-
ing global convergence results to a KKT point under a weak constraint qualification
(CCP, for instance). The most popular of these sequential optimality conditions is the
Approximate-KKT (AKKT) [1, 38] defined below:

Definition 2.2. (AKKT) We say that x̄ ∈ X satisfies AKKT if there exist sequences{
xk
}
⊂ Rn and

{
λk
}
⊂ Rm+ such that limk→∞ xk = x̄,

lim
k→∞

∥∥∥∥∥∇u(xk) +

m∑
i=1

λki∇ci(xk)

∥∥∥∥∥ = 0, and lim
k→∞

min
{
−ci(xk), λki

}
= 0,

for all i = 1, . . . ,m. Sequences {xk} and {λk} are called primal AKKT and dual
AKKT sequences respectively.

The following theorem states that AKKT is a true necessary optimality condition
independently of the validity of any constraint qualification (see [1, 12]).

Theorem 2.1. Let x̄ be a local solution of problem (2.1), then x̄ satisfies AKKT.

When an AKKT point is such that the corresponding dual sequence is bounded, it
is clear that the point is a true KKT point. However, even in the unbounded case, one
may prove that the KKT conditions hold under different assumptions. The weakest of
such assumptions, independently of the objective function, is CCP. Theorem 2.1 is also
relevant without assuming constraint qualifications, as it shows that it is possible to
find a point arbitrarily close to a local solution of problem (2.1) that satisfies the KKT
conditions up to a given tolerance ε > 0. This result suggests the use of perturbed
KKT conditions as stopping criterion of numerical algorithms.

In our analysis, we consider the (QEP) with a continuously differentiable bifunction
f , together with the multifunction K defined as

K(x) = {y ∈ Rn : g(x, y) ≤ 0}, (2.2)

where g : Rn ×Rn → Rm is continuously differentiable and denotes the parameterized
constraints.
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Note that equality constraints can also be included, but to keep the notation simple,
we consider only inequality constraints. If g depends only on y, by abuse of notation,
we replace g(x, y) by g(y). Thus, K(x) = {y ∈ Rn : g(y) ≤ 0} = K for all x ∈ Rn,
and (QEP) reduces to (EP).

Let x∗ be a solution of the QEP with K given as in equation (2.2). Then x∗ ∈ K(x∗)
and f(x∗, y) ≥ 0 for all y ∈ K(x∗), or equivalently,

f(x∗, y) ≥ 0, ∀ y : g(x∗, y) ≤ 0.

As f(x∗, x∗) = 0, it follows that x∗ is a solution of the problem

min
y
f(x∗, y) s.t gi(x

∗, y) ≤ 0, ∀ i ∈ {1, . . . ,m}. (2.3)

Assuming that a suitable constraint qualification holds at the solution x∗ with respect
to the set K(x∗) ⊆ Rn, it follows that there exists some Lagrange multiplier λ∗ ∈ Rm+
such that (x∗, λ∗) satisfies the following KKT conditions:

∇yf(x∗, x∗) +

m∑
i=1

λ∗i∇ygi(x∗, x∗) = 0,

λ∗i ≥ 0, gi(x
∗, x∗) ≤ 0, λ∗i gi(x

∗, x∗) = 0, ∀ i ∈ {1, . . . ,m}.

This motivates the following definition of the KKT system for a QEP:

Definition 2.3 (KKT-QEP). Consider the (QEP) with K given by (2.2). Then the
system

∇yf(x, x) +

m∑
i=1

λi∇ygi(x, x) = 0,

λi ≥ 0, gi(x, x) ≤ 0, λigi(x, x) = 0, ∀ i ∈ {1, . . . ,m},

is called the KKT conditions of the underlying (QEP). Every (x, λ) satisfying these
conditions is called a KKT-QEP pair.

A QEP is said to be convex if f(x, ·) and g(x, ·) are convex for each x (a usual
assumption for QEPs – which we do not assume). Then, the KKT-QEP conditions are
sufficient for optimality.

Our aim is to compute a KKT-QEP point by solving a related sequence of KKT-
QEP systems from (simpler) quasi-equilibrium subproblems. In fact, in our analysis
we allow for inexact solutions of the underlying subproblems. The following defini-
tion, motivated by the similar concept for optimization suggested by Definition 2.2,
introduces our notion of an ε-stationary point of this QEP.

Definition 2.4. Consider the (QEP) with K defined by (2.2), and let ε ≥ 0. We
call (x, λ), with λ ≥ 0, an ε-inexact KKT-QEP pair of the (QEP) if the following
inequalities hold:

‖∇yf(x, x) +

m∑
i=1

λi∇ygi(x, x)‖ ≤ ε, (2.4)

|min{−gi(x, x), λi}| ≤ ε, ∀ i ∈ {1, . . . ,m}. (2.5)
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Note that for ε = 0 an ε-inexact KKT-QEP point is a standard KKT-QEP point.
A limit x̄ of ε-inexact KKT-QEP points {xε}ε→0+ (with suitable multipliers {λε}ε→0+

that may not be convergent) will be called an AKKT-QEP point. See Definition 3.1.
We finish this section with the following monotonicity notions which will be relevant

in our forthcoming analysis.

Definition 2.5. Let S be a nonempty set from Rn. Then an equilibrium bifunction
f : S × S → R is said to be

(a) strongly monotone on S, if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ‖x− y‖2, ∀ x, y ∈ S; (2.6)

(b) mononote on S, if
f(x, y) + f(y, x) ≤ 0, ∀ x, y ∈ S, (2.7)

while f is strictly monotone on S if the previous inequality is strict whenever
y 6= x;

(c) pseudomonotone on S if for every x, y ∈ S,

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0; (2.8)

(d) ∇xy-monotone on S, if the mapping ∇xf(x, ·) is monotone for any x ∈ S, that
is

〈∇xf(x, y)−∇xf(x, z), y − z〉 ≥ 0, ∀ x, y, z ∈ S,

while f is strictly ∇xy-monotone on S if the previous inequality is strict whenever
y 6= z.

Clearly, every strongly monotone bifunction is strictly monotone and every mono-
tone bifunction is pseudomonotone. If f is (strictly) ∇xy−monotone on S, then f is
(strictly) monotone on S by [11, Theorem 3.1].

For a further study on generalized monotonicity we refer to [11, 25].

3 Approximate-Karush-Kuhn-Tucker condition and
Constraint Qualifications for QEPs

In many problems, it is natural to stop the execution of an algorithm when a stationar-
ity measure is approximately satisfied. In this section we will show that this procedure
may avoid solutions a priori. This is in contrast with what is known in nonlinear
programming.

We begin by extending the concept of AKKT for QEPs (AKKT-QEP), followed by
the study of some important cases of QEPs where this condition is necessarily satisfied
at a solution, whereas we show that this does not happen in general. Then we will
see the relationship that exists between AKKT-QEP and constraint qualifications for
QEPs, together with the Augmented Lagrangian method that will be presented in the
next section. This analysis yields a global convergence proof to a KKT-QEP point
under a weak constraint qualification.
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Definition 3.1. (AKKT-QEP) Consider the (QEP) with K defined by (2.2). We say
that a feasible x̄ ∈ Rn satisfies AKKT-QEP if there exist sequences

{
xk
}
⊂ Rn and{

λk
}
⊂ Rm+ such that limk→∞ xk = x̄,

lim
k→∞

∥∥∥∥∥∇yf(xk, xk) +

m∑
i=1

λki∇ygi(xk, xk)

∥∥∥∥∥ = 0, (3.1)

and
lim
k→∞

min
{
−gi(xk, xk), λki

}
= 0, (3.2)

for all i = 1, . . . ,m. Sequences {xk} and {λk} are called, respectively, primal AKKT-
QEP sequence and dual AKKT-QEP sequence.

Example 3.1. AKKT-QEP is not necessarily satisfied at a solution. Indeed, set f, g :
R × R → R given by f(x, y) = −x + y, g(x, y) = 1

2 (x − y)2, and K(x) = {y ∈
R : g(x, y) ≤ 0} = {x}. Clearly, the solution set of (QEP) is the whole real line.
Set any solution x∗ ∈ R. If x∗ is an AKKT-QEP point, then we should find sequences
{xk} ⊂ R and {λk} ⊂ R+ such that |1 + λk(xk − xk)| → 0, which is impossible. Hence
x∗ is not an AKKT-QEP point.

In [22, 34, 32], some important classes of QVIs were analyzed in the study of
the Augmented Lagrangian method and of a method based on a potential reduction
approach for solving the KKT system of a QVI. Let us show that for some of these
classes and some others, which are extensions to general QEPs, we have the necessity
of AKKT-QEP at a solution.

Theorem 3.1. Consider (QEP) where the constraints have the structure

gi(x, y) = g1
i (x)g2

i (y) + g3
i (x), ∀ i ∈ {1, . . . ,m}, (3.3)

with continuously differentiable functions and x, y ∈ Rn. If x̄ is a solution then the
AKKT-QEP condition holds at x̄.

Proof. We have that x̄ is a solution of the following optimization problem:

min
y
f(x̄, y) s.t. g1

i (x̄)g2
i (y) + g3

i (x̄) ≤ 0, ∀ i ∈ {1, . . . ,m}.

By Theorem 2.1, there exist sequences {xk} ⊂ Rn and {λk} ⊂ R|A(x̄)|
+ such that xk → x̄

and
‖∇yf(x̄, xk) +

∑
i∈A(x̄)

λki g
1
i (x̄)∇g2

i (xk)‖ → 0, (3.4)

where λki → 0 for i 6∈ A(x̄) were equivalently replaced by a null sequence. Without loss
of generality, one could also redefine, if necessary, λki = 0 if g1

i (x̄) = 0, and (3.4) would
still hold. Let us define for k large enough and all i ∈ A(x̄):

λ̄ki :=

{
0, if g1

i (xk) = 0,

λki
g1i (x̄)

g1i (xk)
, otherwise.
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Note that xk → x̄ and for k large enough λ̄ki has the same sign of λki . Moreover, since

∇ygi(x, y) = g1
i (x)∇g2

i (y),

we have that
λ̄ki∇ygi(xk, xk) = λki g

1
i (x̄)∇g2

i (xk).

Therefore, by (3.4) and the triangular inequality,

‖∇yf(xk, xk) +
∑
i∈A(x̄)

λ̄ki∇ygi(xk, xk)‖ ≤

‖∇yf(xk, xk)−∇yf(x̄, xk)‖+ ‖∇yf(x̄, xk) +
∑
i∈A(x̄)

λki g
1
i (x̄)∇g2

i (xk)‖ → 0,

and so x̄ is an AKKT-QEP point.

Note that setting g1
i (x) = 1 and g3

i (x) = 0 for all i we obtain the classical EP.
Moreover, Theorem 3.1 also includes QEPs with Linear Constraints with variable rigth-
hand side (see [22, 34]), that is,

g(x, y) = Ay − b(x), (3.5)

where A ∈ Rm×n and b : Rn → Rm is a given continuously differentiable function.
A particularly important class of problems of type (3.5) are the QEPs with box con-
straints, that is,

g(x, y) =

(
bl(x)− y
y − bu(x)

)
, (3.6)

where bl, bu : Rn → Rn are given mappings which describe lower and upper bounds on
the variable y, which may depend on x.

In fact, one may show the validity of AKKT for more general constraints than
(3.5), but which are not contemplated by Theorem 3.1. For this, it is enough to have a
constraint qualification holding at K(x̄) for x̄ fixed. For example, consider a problem
where the constraints are of the form

g(x, y) = M(x)y − b(x), (3.7)

where M : Rn → Rm×n and b : Rn → Rm are continuously differentiable functions.
This class includes QEPs with bilinear constraints [22, 34, 32]. That is,

g(x, y) =

 xTQ1y − b1
...

xTQmy − bm

 , (3.8)

where each Qi ∈ Rn×n are symmetric matrices for all i = 1, . . . ,m and bi ∈ R are given
real numbers. To see this, set M(x) as the matrix with the i-th row given by xTQi.

For a fixed x̄ we have that the constraints g(x̄, y) ≤ 0 are linear and so it satisfies
a constraint qualification. So every solution x̄ of (2.3) is a KKT point associated with
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some Lagrange multiplier λ̄. Taking xk = x̄ and λk = λ̄ for all k we have the desired
result.

New, let us consider (QEP) with binary constraints [22, 34], that is, each con-
tinuously differentiable constraint gi(x, y) depends on a single pair (xj , yj) for some
j = j(i) ∈ {1, . . . , n}. Then

K(x) =
{
y ∈ Rn : gi(xj(i), yj(i)) ≤ 0, ∀ i ∈ {1, . . . ,m}

}
. (3.9)

This class of problems reduces to problems in which each constraint depends on one
argument. In this case, let us see that AKKT-QEP is necessary at a solution.

Theorem 3.2. Consider problem (QEP) with K(x) as in (3.9). Let x̄ be a solution.
Then x̄ is an AKKT-QEP point.

Proof. Since x̄ is a solution of the optimization problem

min
y
f(x̄, y) s.t. gi(x̄j(i), yj(i)) ≤ 0, ∀ i ∈ {1, . . . ,m},

by Theorem 2.1, there exist {xk} ⊂ Rn and {λk} ⊂ R|A(x̄)|
+ such that xk → x̄ and

‖∇yf(x̄, xk) +
∑
i∈A(x̄)

λki∇ygi(x̄, xk)‖ → 0, (3.10)

where ∇ygi(x, y) =
(
0, . . . , 0, ∂yj(i)gi(xj(i), yj(i)), 0, . . . , 0

)>
. Once again, note that we

can redefine λki = 0 if ∇ygi(x̄, xk) = 0. Now, define

λ̄ki :=

 0, if ∂yj(i)gi(x
k
j(i), x

k
j(i)) = 0,

λki
∂yj(i)gi(x̄j(i),x

k
j(i))

∂yj(i)gi(x
k
j(i)

,xk
j(i)

)
, otherwise.

Note that xk → x̄ and that λ̄ki has the same sign of λki for k large enough. Moreover,

λ̄ki∇ygi(xk, xk) = λki∇ygi(x̄k, xk).

Therefore, by (3.10), the continuity ∇yf(x, y) and the triangular inequality,

‖∇yf(xk, xk) +
∑
i∈A(x̄)

λ̄ki∇ygi(xk, xk)‖ ≤

‖∇yf(xk, xk)−∇yf(x̄, xk)‖+ ‖∇yf(x̄, xk) +
∑
i∈A(x̄)

λki∇ygi(x̄, xk)‖ → 0,

so x̄ is an AKKT-QEP point.

In nonlinear optimization, a constraint qualification is needed for ensuring that a
solution satisfies the KKT conditions. The same holds ture for a solution of an EP to
satisfy KKT-QEP. Since AKKT is a necessary optimality condition, any property on
the feasible set that guarantees that an AKKT point is KKT, is actually a constraint
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qualification. A constraint qualification with this property has been called a strict
constraint qualification in [5].

On the other hand, algorithms for nonlinear optimization usually generate se-
quences whose limit points satisfy AKKT. From [2, 3, 4, 5, 6], it is well-known that a
separate analysis of the sequences generated by the algorithm, together with the (strict)
constraint qualification needed for this limit point to satisfy KKT, yields global con-
vergence results to a KKT point under a weak constraint qualifications.

In the context of QEPs, the fact that AKKT-QEP is not necessarily satisfied at a
solution has some drawbacks for algorithms that generate AKKT-QEP sequences (see
[14] for a discussion around this issue in the context of GNEPs). Moreover, for an
algorithm that generates AKKT-QEP sequences, conditions for ensuring that AKKT-
QEP points are KKT-QEP are an important issue. These conditions are weaker than
the usual MFCQ for QEPs. Therefore, this analysis provides new global convergence
results for QEPs under weaker assumptions.

We list some relevant conditions below:

Definition 3.2. Consider a continuously differentiable constraint bifunction g : Rn ×
Rn → Rm and a feasible point x̄ ∈ Rn. We say that:

(a) LICQ-QEP holds at x̄ if {∇ygi(x̄, x̄) : i ∈ A(x̄)} is linearly independent.

(b) MFCQ-QEP holds at x̄ if {∇ygi(x̄, x̄) : i ∈ A(x̄)} is p.l.i.

(c) WCPLD-QEP holds at x̄ if there exits a neighborhood U from Rn of x̄ such that,
if I ⊆ A(x̄) is such that {∇ygi(x̄, x̄)}i∈I is p.l.d., then {∇ygi(x, x)}i∈I is p.l.d.
for all x ∈ U .

(d) WCCP-QEP holds at x̄ if the set-valued mapping C : Rn ⇒ Rn is outer semicon-
tinuous at x̄, that is, lim supx→x̄ C(x) ⊆ C(x̄), where

C(x) =

w ∈ Rn : w =
∑
i∈A(x̄)

λi∇ygi(x, x), λi ≥ 0

 , and

lim sup
x→x̄

C(x) =
{
w ∈ Rn : ∃ xk → x̄, ∃ wk → w, wk ∈ C(xk)

}
.

When x̄ ∈ Rn is not necessarily feasible, we say that

(e) EMFCQ-QEP (Extended-MFCQ-QEP) holds at x̄ if {∇ygi(x̄, x̄) : i ∈ AE(x̄)} is
p.l.i., where AE(x̄) = {i : gi(x̄, x̄) ≥ 0}.

To show that LICQ-QEP, MFCQ-QEP and EMFCQ-QEP are CQs for QEPs, it
is enough to show that each property implies the corresponding optimization CQ for
problem (2.3) at y = x̄. However, Example 3.1 shows that WCPLD and WCCP are not
CQs for QEPs, since the KKT conditions do not hold at any solution of the problem.

In order to obtain a CQ, we proceed as in [14], i.e., we require the validity on an
arbitrary neighborhood of (x̄, x̄) in Rn ×Rn, and not only in points of the form (x, x).
That is, we arrive at the following constraint qualifications.

Definition 3.3. Consider a continuously differentiable constraint bifunction g : Rn ×
Rn → Rm and a feasible point x̄ ∈ Rn. We say that:

10



(a) CPLD-QEP holds at x̄ if there exists a neighborhood U from Rn × Rn of (x̄, x̄)
such that, if I ⊆ A(x̄) is such that {∇ygi(x̄, x̄)}i∈I is p.l.d., then {∇ygi(x, y)}i∈I
is p.l.d. for all (x, y) ∈ U .

(b) CCP-QEP holds at x̄ if the set-valued mapping C̄ : Rn × Rn ⇒ Rn is outer
semicontinuous at (x̄, x̄), that is, lim sup(x,y)→(x̄,x̄) C̄(x, y) ⊆ C̄(x̄, x̄), where

C̄(x, y) =

w ∈ Rn : w =
∑
i∈A(x̄)

λi∇ygi(x, y), λi ≥ 0

 , and

lim sup
(x,y)→(x̄,x̄)

C̄(x, y) =
{
w ∈ Rn : ∃ (xk, yk)→ (x̄, x̄), ∃ wk → w,wk ∈ C̄(xk, yk)

}
.

Clearly CPLD-QEP (CCP-QEP) implies both WCPLD-QEP (WCCP-QEP) and
the traditional CPLD (CCP) in the context of optimization for the constraints g(x̄, y) ≤
0, which means that CPLD-QEP and CCP-QEP are CQs for QEPs. Using the same
argments presented in [14], we have the following strict implications:

LICQ-QEP =⇒ MFCQ-QEP =⇒ CPLD-QEP =⇒ CCP-QEP.

In the next theorem we show that in order to arrive at a KKT-QEP point from an
AKKT-QEP point, the WCCP-QEP condition is the weakest property that ensures
this for every bifunction f .

Theorem 3.3. The WCCP-QEP condition is equivalent to the fact that for any bi-
function f , AKKT-QEP implies KKT-QEP.

Proof. Let x̄ ∈ Rn be a feasible point satisfying WCCP-QEP. Let f be a bifunction
such that AKKT-QEP occurs in x̄. Then, there are sequences {xk} ⊂ Rn with xk → x̄

and {λk} ⊂ R|A(x̄)|
+ such that∥∥∥∥∥∥∇yf(xk, xk) +

∑
i∈A(x̄)

λki∇ygi(xk, xk)

∥∥∥∥∥∥→ 0.

Let wk =
∑
i∈A(x̄) λ

k
i∇ygi(xk, xk) ∈ C(xk). Then wk → −∇yf(x̄, x̄), i.e., −∇yf(x̄, x̄) ∈

lim supx→x̄ C(x). From the WCCP-QEP condition, it follows that −∇yf(x̄, x̄) ∈ C(x̄),
so x̄ is a KKT-QEP point.

Reciprocally, assume that AKKT-QEP implies KKT-QEP for any bifunction. We
will prove that WCCP-QEP holds. Indeed, let w ∈ lim supx→x̄ C(x). Then there are
sequences xk → x̄ and wk → w such that wk ∈ C(xk). Define f(x, y) := 〈x− y, w〉
with ∇yf(x, y) = −w ∈ Rn. As wk ∈ C(xk), there exists a sequence

{
λk
}
⊂ R|A(x̄)|

+

such that
wk =

∑
i∈A(x̄)

λki∇ygi(xk, xk).

Since ∇yf(xk, xk) = −w and wk → w, we have

∇yf(xk, xk) +
∑
i∈A(x̄)

λki∇ygi(xk, xk)→ 0.

11



Thus x̄ satisfies AKKT-QEP, i.e., KKT-QEP holds. Hence −∇yf(x̄, x̄) = w ∈ C(x̄)
and WCCP-QEP holds.

4 An Augmented Lagrangian Method

In this section we propose an Augmented Lagrangian method for QEPs. From now on
we will consider (QEP) where K is defined as follows:

K(x) = {y ∈ Rn : g(x, y) ≤ 0, h(x, y) ≤ 0}, (4.1)

where g : Rn × Rn → Rm and h : Rn × Rn → Rl are continuously differentiable. In
order to solve the QEP, we follow the approach from [32] where the authors compute
a solution of a QVI by solving a sequence of suitable QVIs.

Similarly to the minimization problem, we separate the set of constraints (4.1) in
two parts. The part described by g, with the difficult constraints, will be penalized,
while the part described by h will define the constraints of the subproblems at each
iteration. Therefore, our analysis includes the case when all the constraints are penal-
ized, where the subproblems are unconstrained, and also when the subproblems are
EPs.

Formally, at each iteration of the algorithm, the new mapping that defines the
constraints of the subproblems will be defined as Kh : Rn ⇒ Rn with

Kh(x) := {y ∈ Rn : h(x, y) ≤ 0}. (4.2)

Given u ∈ Rm and ρ > 0, we define the Augmentend Lagrangian bifunction, with
respect to the constraints bifunction g, as

L(x, y;u, ρ) = f(x, y)+
ρ

2

m∑
i=1

[
max{0, gi(x, y) +

ui
ρ
}
]2

−ρ
2

m∑
i=1

[
max{0, gi(x, x) +

ui
ρ
}
]2

,

where ρ is a suitable penalty parameter and ui denotes a safeguarded estimate for the
Lagrange multipliers λi associated with gi. The Augmented Lagrangian bifunction,
together with the mapping Kh, define in each iteration of the algorithm a new QEP
denoted by QEP(u, ρ).

Remark 4.1. If gi(x, y) = ci(y) for all i = 1, . . . ,m, then the Augmented Lagrangian
(5.1) reduces to the Augmented Lagrangian for EPs (see [29, Equation (2.4)]) by taking
γ = 1

ρ . Furthermore, if f(x, y) = u(y)− u(x) and gi(x, y) = ci(y) for all i = 1, . . . ,m,

then the Augmented Lagrangian (5.1) reduces to the usual Augmented Lagrangian for
the minimization problem (2.1) (see [39] for instance).

Our algorithm, in each iteration, computes an ε-inexact KKT-QEP point for a
tolerance ε → 0+ of QEP(u, ρ) (for values of u and ρ that will be updated in each
iteration) to find a KKT-QEP point of (QEP) under a weak constraint qualification.

The precise statement of our Augmented Lagrangian method is given in Algo-
rithm 1.
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Algorithm 1 Augmented Lagrangian (AL-QEP)

Step 0. Let umax ∈ Rm
+ , τ ∈ (0, 1), γ > 1, ε > 0 and a sequence {εk} ⊂ R+, εk → 0.

Choose (x0, λ0, µ0) ∈ Rn × Rm × Rl, u1 ∈ [0, umax], ρ1 ≥ 1, and set k := 1.

Step 1. If (xk−1, (λk−1, µk−1)) is an ε-inexact KKT-QEP pair of (QEP): STOP.

Step 2. Compute an εk-inexact KKT-QEP pair (xk, µk) of QEP(uk, ρk) below:

QEP(uk, ρk) : find x ∈ Kh(x) such that L(x, y;uk, ρk) ≥ 0, ∀ y ∈ Kh(x). (4.3)

Step 3. Define λk = max
{

0, uk + ρkg(xk, xk)
}

.

Step 4. If ∥∥∥max
{
g(xk, xk),−λk

}∥∥∥ ≤ τ ∥∥∥max
{
g(xk−1, xk−1),−λk−1

}∥∥∥ ,
then set ρk+1 = ρk, else set ρk+1 = γρk.

Step 5. Choose uk+1 ∈ [0, umax], set k := k + 1 and go to Step 1.

A natural choice of the sequence {uk} is uk+1 = min{λk, umax}. Recall that, from
Definition 2.4, the pair (xk, µk) computed in Step 2 must be such that:

‖∇yL(xk, xk, uk, ρk) +∇yh(xk, xk)µk‖ ≤ εk, (4.4)

‖min
{
−h(xk, xk), µk

}
‖ ≤ εk. (4.5)

Similarly to [32], our main result with respect to feasibility could be obtained requiring
only that the expression in (4.4) is bounded, not necessarily converging to zero. We
adopt the current presentation for clarity of exposition.

We proceed by considering the convergence properties of Algorithm 1. The analysis
of the algorithm is divided into the study of feasibility and optimality. Regarding the
former, note that (4.5) already implies that every limit point of {xk} satisfies the
h-constraints.

For the discussion of feasibility with respect to the g-constraints, we introduce an
auxiliary QEP, which consists of finding x ∈ Kh(x) such that:

Ψ(x, y) ≥ 0, ∀ y ∈ Kh(x), (4.6)

where

Ψ(x, y) =
‖g+(x, y)‖2 − ‖g+(x, x)‖2

2
.

Note that its associated KKT-QEP system is given by:

∇yg(x, x)g+(x, x) +
∑l
j=1 µj∇yhj(x, x) = 0,

µj ≥ 0, hj(x, x) ≤ 0, µjhj(x, x) = 0, ∀ j = 1, . . . , l.

Clearly, a solution x̄ of (QEP) related to (Ψ,Kh), denoted by QEP(Ψ,Kh), is such that
‖g+(x̄, y)‖ is globally minimized for y ∈ Kh(x̄) at y = x̄. Hence, if the feasible region
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of (QEP) is non-empty, x̄ is feasible for (QEP). Since we can only prove feasibility
under strong assumptions, the following result shows that any limit point of a sequence
generated by Algorithm 1 at least tends to be feasible, in the sense that it satisfies
AKKT-QEP for QEP(Ψ,Kh).

Theorem 4.1. Let {xk} be a sequence generated by Algorithm 1. Any limit point of
{xk} satisfies the AKKT-QEP condition for QEP(Ψ,Kh).

Proof. Let us assume that xk → x∗ in a subsequence. Since h is continuous and (4.5)
holds, we have h(x∗, x∗) ≤ 0 and hence x∗ is feasible for QEP(Ψ,Kh).

If the sequence {ρk} is bounded, we have by Step 4 that limk→∞
∥∥max

{
g(xk, xk),−λk

}∥∥ =
0, which implies that g(x∗, x∗) ≤ 0 and hence x∗ is feasible for (QEP). This clearly
gives an AKKT-QEP sequence with zero dual sequence for QEP(Ψ,Kh).

Let us now suppose that {ρk} tends to infinity. From (4.4), we have that ‖δk‖ ≤ εk
where

δk = ∇yf(xk, xk) +

m∑
i=1

max{0, uki + ρkgi(x
k, xk)}∇ygi(xk, xk) +

l∑
j=1

µkj∇yhj(xk, xk).

Dividing by ρk, we obtain

δk

ρk
=
∇yf(xk, xk)

ρk
+

m∑
i=1

max{0, u
k
i

ρk
+ gi(x

k, xk)}∇ygi(xk, xk) +

l∑
j=1

µkj
ρk
∇yhj(xk, xk),

where
δk

ρk
→ 0, from the boundedness of {εk}.

If gi(x
∗, x∗) < 0, from the boundedness of {uk}, we have that max{0, u

k
i

ρk
+gi(x

k, xk)} =

0 for large enough k. Therefore, taking the limit we can see that

lim
k∈K
‖

∑
i:gi(x∗,x∗)≥0

gi(x
k, xk)∇ygi(xk, xk) +

l∑
j=1

µkj
ρk
∇yhj(xk, xk)‖ = 0. (4.7)

Since µkj ≥
µkj
ρk

, from (4.5) and the fact that

∇yΨ(xk, xk) =
∑

i:gi(x∗,x∗)≥0

gi(x
k, xk)∇ygi(xk, xk),

we have that x∗ satisfies the AKKT-QEP condition for QEP(Ψ,Kh).

Corollary 4.1. Under the assumptions of Theorem 4.1, if x∗ fulfills WCCP-QEP
with respect to the h-constraints describing Kh, then x∗ is a KKT-QEP point of
QEP(Ψ,Kh).

Proof. It is a consequence of Theorems 3.3 and 4.1.
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Let us now state some particular cases of QEPs or additional conditions that ensure
that a limit point of Algorithm 1, that is, an AKKT-QEP point for QEP(Ψ,Kh), is
indeed feasible for QEP(f,K). Note that, from the proof of Theorem 4.1, this is the
case when {ρk} is bounded. The proofs are omitted since they are small adaptations of
the ones from [34]. The first one uses the traditional argument that, under EMFCQ,
a certain null linear combination of the constraint gradients can only occur with null
coefficients.

Theorem 4.2. Let x∗ be a limit point of a sequence generated by Algorithm 1, and
suppose that x∗ satisfies EMFCQ-QEP regarding the constraints defined by g and h.
Then x∗ is feasible for (QEP).

In the next results, the main argument is that, under certain conditions, KKT
points are indeed solutions to the problem.

Consider problem (QEP) with K(x) = {c(x) + S(x)w : w ∈ Q1 ∩ Q2}, where
S(x) ∈ Rn×n is nonsingular for all x, Qi := {x ∈ Rn : qi(x) ≤ 0} for i = 1, 2, and
q1 : Rn → Rm, q2 : Rn → Rl are convex. Here K(x) has the form of (4.1) with

g(x, y) = q1(S−1(x)[y − c(x)]) and h(x, y) = q2(S−1(x)[y − c(x)]). (4.8)

Then we have the following

Theorem 4.3. Let x∗ be a limit point of a sequence generated by Algorithm 1 applied
to a QEP of the form (4.8) with Q1 ∩ Q2 6= ∅. If x∗ satisfies WCCP-QEP regarding
the h-constraints, then x∗ is feasible for (QEP).

The following results are also proved in a similar way

Theorem 4.4. Consider a QEP with bilinear constraints, where g is given by (3.8),
where each Qi ∈ Rn×n is symmetric positive semidefinite for i = 1, . . . ,m and h(x, y) =
(h1(y), . . . , hl(y))T has convex components. Let x∗ be a limit point of a sequence gener-
ated by Algorithm 1. Suppose that x∗ satisfies WCCP-QEP regarding the h-restrictions.
Then x̄ is feasible.

Theorem 4.5. Consider a QEPs with linear constraints with variable rigth-hand side
given by (3.5). Suppose that rank(A) = m. Let x∗ be a limit point of a sequence
generated by Algorithm 1. Suppose that x∗ satisfies WCCP-QEP regarding the h-
restrictions. Then x̄ is feasible.

Theorem 4.6. Consider a QEPs with box constraints given by (3.6). Suppose that
bl(x̄) ≤ bu(x̄). Let x∗ be a limit point of a sequence generated by Algorithm 1. Suppose
that x∗ satisfies WCCP-QEP regarding the h-restrictions. Then x̄ is feasible.

Let us now discuss the optimality properties of the limit points of sequences gener-
ated by the Algorithm. The following result says that when the Algorithm generates a
sequence that has a feasible accumulation point, this is an AKKT-QEP point for the
original problem (QEP).

Theorem 4.7. Assume that the sequence {xk} generated by Algorithm 1 has a feasible
limit point x∗. Then, x∗ satisfies the AKKT-QEP condition for (QEP).
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Proof. Let limk∈K x
k = x∗. By Steps 2 and 3, we have that

lim
k∈K
‖∇yf(xk, xk) +

m∑
i=1

λki∇ygi(xk, xk) +

l∑
j=1

µkj∇yhj(xk, xk)‖ = 0,

and lim
k∈K
‖min

{
−h(xk, xk), µk

}
‖ = 0.

It remains to prove that limk∈K min{−gi(xk, xk), λki } = 0 for all i = 1, . . . ,m. If
gi(x

∗, x∗) = 0, the result follows from the continuity of gi. Otherwise, for k large
enough we have gi(x

k, xk) < c < 0 for some constant c. If {ρk} is bounded, Step 4
of the algorithm implies that λki → 0. On the other hand, the same result follows
from the updating scheme of Step 3 and the boundedness of {uk}. This concludes the
proof.

Corollary 4.2. Under the assumptions of Theorem 4.7, if x∗ fulfills WCCP-QEP
with respect to the constraints g and h describing K, then x∗ is a KKT-QEP point of
(QEP).

Proof. It is a consequence of Theorems 3.3 and 4.7.

The fact that the usual assumptions (LICQ, MFCQ, CPLD, CCP, etc) used in
global convergence theorems of nonlinear programming algorithms are constraint qual-
ifications is related to the fact that the algorithm does not discard solutions a priori.
If a property P is not a CQ, than there would be a problem whose solution satisfies
P but not the KKT conditions. Thus, if a theorem says that under P, a limit point
of a sequence generated by an algorithm satisfies KKT, such solution would never be
found. As we discussed earlier, several algorithms generate AKKT sequences which,
as a genuine necessary optimality condition in the context of nonlinear programming,
also do not rule out solutions a priori. In the case of QEPs, the situation is differ-
ent. The fact that AKKT-QEP is not an optimality condition already implies that
algorithms discard solutions that do not satisfy it. Therefore, to study the impact of
using an assumption that is not a CQ in such an algorithm, we must turn our atten-
tion to solutions that are AKKT-QEP. Among these, all that satisfy WCCP-QEP are
KKT-QEP and therefore no additional solution would be discarded by an algorithm
that generates AKKT-QEP sequences. In this way, there is no reason to worry that
WCCP-QEP is not a constraint qualification. Thus, since WCCP-QEP is weaker than
CCP-QEP, Corollary 4.2 is stronger than the analog one under CCP-QEP, which is
indeed a constraint qualification.

5 Solution of EP-Subproblems

The previous convergence theory for the Augmented Lagrangian method works for
general QEPs provided that we are able to find an approximate KKT-QEP point of
the resulting QEP(u, ρ), that arises at each iteration. In this section, we consider

K(x) = {y ∈ Rn : g(x, y) ≤ 0, h(y) ≤ 0} ,
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because there is a larger amount of algorithms available for EPs than for QEPs to solve
the subproblems in each iteration.

Some especial classes of QEPs where the EP-subproblems are not difficult to solve
are studied below. We emphasize on the study of the Lagrangian

L(x, y) = f(x, y)+
ρ

2

m∑
i=1

(max{0, gi(x, y)+
ui
ρ
})2− ρ

2

m∑
i=1

(max{0, gi(x, x)+
ui
ρ
})2, (5.1)

to be monotone or pseudomonotone.

5.1 Monotone Bifunctions

In this subsection, we provide necessary and sufficient conditions for the Lagrangian
L to be monotone, i.e., those conditions also ensure that our EP-subproblems admit a
solution.

By definition, L is monotone on Kh if and only if L(x, y) + L(y, x) ≤ 0 for all
x, y ∈ Kh, or equivalently,

f(x, y) +
ρ

2

(
m∑
i=1

(max{0, gi(x, y) +
ui
ρ
})2 − (max{0, gi(x, x) +

ui
ρ
})2

)
+ f(y, x)

+
ρ

2

(
m∑
i=1

(max{0, gi(y, x) +
ui
ρ
})2 − (max{0, gi(y, y) +

ui
ρ
})2

)
≤ 0, ∀ x, y ∈ Kh.

Therefore, L is monotone if and only if

f(x, y) + f(y, x) ≤ ρ

2
(α(x, x) + α(y, y)− α(x, y)− α(y, x)) , ∀ x, y ∈ Kh, (5.2)

where α(x, y) :=
∑m
i=1 max{0, gi(x, y) + ui

ρ }
2.

As a consequence, we have the following general result.

Proposition 5.1. The Lagrangian L is monotone if and only if equation (5.2) holds.
In particular, if gi(x, x) = 0 for all x ∈ Kh and all i = 1, . . . ,m, and

f(x, y) + f(y, x) ≤ −ρ
2

(
m∑
i=1

(max{0, gi(x, y) +
ui
ρ
})2 + (max{0, gi(y, x) +

ui
ρ
})2

)

+ ρ

m∑
i=1

(max{0, ui
ρ
})2, ∀ x, y ∈ Kh, (5.3)

then L is monotone.

Since the sum of monotone bifunctions is also monotone, in the case when f is
monotone, the monotonicity of L is ensured by the monotonicity of

φ(x, y) :=
ρ

2

m∑
i=1

(max{0, gi(x, y) +
ui
ρ
})2 − ρ

2

m∑
i=1

(max{0, gi(x, x) +
ui
ρ
})2. (5.4)

Therefore, the following results follows easily:
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Proposition 5.2. The bifunction φ is monotone if and only if

α(x, y) + α(y, x) ≤ α(x, x) + α(y, y), ∀ x, y ∈ Kh. (5.5)

In particular, if gi(x, x) = 0 for all x ∈ Kh and all i = 1, . . . ,m, and

α(x, y) + α(y, x) ≤ 2

m∑
i=1

(max{0, ui
ρ
})2, ∀ x, y ∈ Kh, (5.6)

then φ is monotone.

In order to provide more concrete sufficient conditions, we consider the following
assumptions:

Assumption 5.1. The functions f, g and h are such that:

(a) f : Rn × Rn → Rn is continuously differentiable on its second argument.

(b) g : Rn × Rn → Rm is twice continuously differentiable on Rn × Rn.
(c) h : Rn → Rl is a function for which Kh is a convex set.

If h is Rl+-convex, i.e., each hi is convex, then Kh is convex. The reverse statement
does not hold, i.e., there are classes of vector-valued functions for which Kh is convex
without the Rl+-convexity assumption on h, for instance, the class of ∗-quasiconvex
functions (see [31, Definition 2.2]).

If φ is ∇xy−monotone, then φ is monotone (by [11, Theorem 3.1(f)]), i.e., a suffi-
cient condition for φ to be monotone is that

ψ(y) = ∇xφ(x, y) =

m∑
i=1

max{0, ρgi(x, y) + ui}∇xgi(x, y)

−
m∑
i=1

max{0, ρgi(x, x) + ui}Jgi(x, x)>, (5.7)

be monotone on Kh, i.e., 〈ψ(x)− ψ(y), x− y〉 ≥ 0 for all x, y ∈ Kh.

Clearly, ψ : Rn → Rn is locally Lipschitz without being continuously differentiable.
By [30, Proposition 2.3(a)], we known that ψ is monotone on an open set D if and
only if all generalized Jacobians (in the sense of Clarke [17]) from ∂ψ(y) are positive
semidefinite for all y ∈ D.

We estimate the generalized Jacobian of ψ below.

Proposition 5.3. Suppose that Assumption 5.1 holds. Then the generalized Jacobian
of ψ at y ∈ Rn satisfies ∂ψ(y) ⊆M(y) with

M(y) =

{
m∑
i=1

max{0, ρgi(x, y) + ui}∇2
yxgi(x, y) + ρ

m∑
i=1

si∇xgi(x, y) [∇ygi(x, y)]
>

}
,

where si = 1 if ρgi(x, y) + ui > 0, si = 0 if ρgi(x, y) + ui < 0, and si ∈ [0, 1] if
ρgi(x, y) + ui = 0.
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Proof. Note that ψ is nonsmooth only on its max-terms which are compositions of a
smooth and a convex function, i.e., a regular mapping in the sense of Clarke [17].

If the elements of M(y) are positive semidefinite, then ψ is monotone, i.e., the
monotonicity of L holds whenever f is monotone, a usual assumption for EPs. Hence,
there are a large number of methods for solving the resulting EP-subproblem.

A sufficient condition for the elements from M(y) to be positive semidefinite is
given below.

Proposition 5.4. Suppose that Assumption 5.1 holds. If the matrices

∇2
xygi(x, y), ∀ i : ui + ρgi(x, y) > 0,

∇xgi(x, y) [∇ygi(x, y)]
>
, ∀ i : ui + ρgi(x, y) ≥ 0,

are positive semidefinite, then all elements in M(y) are positive semidefinite.

Proof. By the representation of M(y) and our assumptions, it follows that each element
of M(y) is a nonnegative sum of positive semidefinite matrices, i.e., M(y) is positive
semidefinite.

5.1.1 Example 1: The moving set case

An interesting special case of problem (QEP) is the moving set case [10, 22, 32, 34].
This is the case when K(x) = c(x) + Q for some vector-valued function c : Rn → Rn
and a closed and convex set Q from Rn. Usually, Q is given by

Q := {x ∈ Rn : q(x) ≤ 0} , (5.8)

where q : Rn → R is a function such that Q is closed and convex. As we noted in the
previous subsection, function q may not be convex.

If q is convex, then we have the following sufficient condition for ensuring mono-
tonicity.

Proposition 5.5. Assume that c : Rn → Rn is given by c(x) = (c1(x1), . . . , cn(xn))>

with c′i(xi) < 0 for all i = 1, . . . ,m. Then the elements of M(y) are positive semidefi-
nite.

Proof. Since gi(x, y) = qi(y− c(x)), it follows that ∇xgi(x, y) = −Jc(x)>∇qi(y− c(x))
and ∇ygi(x, y) = ∇qi(y − c(x)). Thus

∇xgi(x, y)(∇ygi(x, y))> = −Jc(x)>∇qi(y − c(x))∇qi(y − c(x))>. (5.9)

By assumption, S = −Jc(x) is a positive definite diagonal matrix, so S = DD with
D a positive definite diagonal matrix. Then

v>∇xgi(x, y)(∇ygi(x, y))>v = v>DD∇qi(y − c(x))∇qi(y − c(x))>v

= v>DD∇qi(y − c(x))∇qi(y − c(x))>D−1Dv

= w>D∇qi(y − c(x))∇qi(y − c(x))>D−1w, (5.10)
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where w = Dv for all v ∈ Rn. Since∇qi(y−c(x))∇qi(y−c(x))> is positive semidefinite,
we have that the similar matrix D∇qi(y − c(x))∇qi(y − c(x))>D−1 is also positive
semidefinite.

On the other hand, a direct computation shows that

∇2
xygi(x, y) = −Jc(x)∇2qi(y − c(x)).

Since qi is convex, its Hessian is symmetric and positive semidefinite. Hence, similarly
to the previous computation, ∇2

xygi(x, y) is positive semidefinite and the result follows
from Proposition 5.4.

5.1.2 Example 2: The Binary Constraints case

We consider problem (QEP) with g given as in equation (3.9), i.e.,

K(x) =
{
y ∈ Rn : gi(xj(i), yj(i)) ≤ 0, ∀ i ∈ {1, . . . ,m}

}
.

A sufficient condition for ensuring the monotonicity of the corresponding subpro-
blems is given below.

Proposition 5.6. Assume that for all i = 1, . . . ,m

∇xj(i)
gi(xj(i), yj(i))∇yj(i)gi(xj(i), yj(i)) ≥ 0, and ∇2

yj(i)xj(i)
gi(xj(i), yj(i)) ≥ 0. (5.11)

Then all elements in M(y) are positive semidefinite.

Proof. Clearly, ∇ygi(x, y) =
(
0, . . . , 0,∇yj(i)gi(xj(i), yj(i)), 0, . . . , 0

)>
, i.e., only posi-

tion j(i) could be nonzero. Then the Jacobian ∇2
xygi(x, y) is ∇2

yj(i)xj(i)
gi(xj(i), yj(i)) at

the diagonal position (j(i), j(i)), and zero elsewhere. Therefore, it is positive semidef-
inite by assumption (5.11).

On the other hand, ∇xgi(x, y) = (0, . . . , 0,∇xj(i)
gi(xj(i), yj(i)), 0, . . . , 0). So, only

position j(i) could be nonzero. Then, the matrix ∇xgi(x, y)(∇ygi(x, y))> is diago-
nal with value ∇xj(i)

gi(xj(i), yj(i))∇yj(i)gi(xj(i), yj(i)) at position (j(i), j(i)), and zero
elsewhere.

Therefore, the result follows from assumptions (5.11) and Proposition 5.4.

A special case of constraints with variable right-hand side which are also binary
constraints is defined below

K(x) = {y ∈ R : gi(x, y) = ci(xj(i)) + di(yj(i)) ≤ 0, ∀ i ∈ {1, . . . ,m}}, (5.12)

where ci, di are twice continuously differentiable functions for each i. Here

∇xj(i)
gi(x, y) = c′i(xj(i)), ∇yj(i)gi(x, y) = d′i(yj(i)), and ∇2

yj(i)xj(i)
gi(x, y) = 0.

The following result follows easily from the previous proposition.

Corollary 5.1. If c′i(xj(i))d
′
i(yj(i)) ≥ 0 for all i = 1, . . . ,m, then all elements in M(y)

are positive semidefinite.
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Another example is the class of problems with box constraints (with variable right-
hand side). Recall that

K(x) = {y ∈ Rn : yi − αixi − γi ≤ 0, ∀ i ∈ {1, . . . , n}}. (5.13)

Clearly, if αi ≤ 0 for all i, then all elements in M(y) are positive semidefinite.

5.2 Pseudomonotone Equilibrium Problems

In this subsection, we provide an example of an interesting and usual variational ine-
quality problem for which its associated Augmented Lagrangian is not a monotone
bifunction, but for which there exists a positive answer for finding the solution of the
related EP-subproblem.

Let A ∈ Rn×n be a symmetric matrix and a ∈ Rn. We consider the following
variational inequality problem:

find x ∈ Kh : 〈Ax+ a, y − x〉 ≥ 0, ∀ y ∈ Kh, (5.14)

where h := (h1, h2, . . . , hm) is such that Kh is a convex set and for each i = 1, 2, . . . ,m,
the function hi : Rn → R is continuous.

Given u ∈ Rn and ρ > 0. The Augmented Lagrangian associated to (5.14) is given
by:

LAu,ρ(x, y) = 〈Ax+a, y−x〉+ ρ

2

m∑
i=1

(
(max{0, hi(y) +

ui
ρ
})2 − (max{0, hi(x) +

ui
ρ
})2

)
.

Note that solving Step 2 of Algorithm 1 is equivalent to finding a solution of the mixed
variational inequality problem on Rn:

find x ∈ Rn : 〈Ax+ a, y − x〉+ g(y)− g(x) ≥ 0, ∀ y ∈ Rn, (5.15)

where g(·) := ρ
2

∑m
i=1(max{0, hi(·) + ui

ρ })
2. This class of problems is of special interest

due to its applications in economics, mechanics and electronics (see [24, 35]).
Set fgA : Rn × Rn → R given by

fgA(x, y) := 〈Ax+ a, y − x〉+ g(y)− g(x). (5.16)

Clearly, x ∈ Rn is a solution of problem (5.15) if and only if it is a solution of the
following equilibrium problem:

find x ∈ Rn : fgA(x, y) ≥ 0, ∀ y ∈ Rn. (5.17)

Note that fgA(x, x) = 0 for all x ∈ Rn, and that if g is continuous, then fgA(x, ·)
and fgA(·, y) are continuous for all x, y ∈ Rn. If A is positive semidefinite, then fgA
may be not monotone. However, we have a positive answer with pseudomonotonicity
as the following proposition shows (see [28]). We emphasize that there is no convexity
assumption on g.

Proposition 5.7. If A is positive semidefinite, then fgA is pseudomonotone.
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Proof. Set x, y ∈ Rn such that fgA(x, y) ≥ 0, that is,

〈Ax+ a, y − x〉+ g(y)− g(x) ≥ 0⇐⇒ 〈Ax+ a, x− y〉 − g(y) + g(x) ≤ 0

⇐⇒ 〈Ax+ a, x− y〉+ (〈Ay, x− y〉 − 〈Ay, x− y〉)− g(y) + g(x) ≤ 0

⇐⇒ 〈Ay + a, x− y〉 − g(y) + g(x) + 〈A(x− y), x− y〉 ≤ 0.

Since A is positive semidefinite, 〈A(x− y), x− y〉 ≥ 0 for all x, y ∈ Rn. Thus

fgA(y, x) = 〈Ay + a, x− y〉 − g(y) + g(x)

≤ 〈Ay + a, x− y〉 − g(y) + g(x) + 〈A(x− y), x− y〉 ≤ 0.

Therefore, fgA is pseudomonotone.

Existence results for pseudomonotone equilibrium problems for classes of nonconvex
functions may be found in [18, 27]. In particular, existence results for problem (5.15)
may be found in [24, 28]. An algorithm for a class of pseudomonotone equilibrium
problems may be found in [7].

6 Conclusion

In this paper we described an Augmented Lagrangian method for Quasi-Equilibrium
Problems, where we proved that it tends to find feasible limit points in the sense
that an Approximate-KKT-QEP point is found for an auxiliary feasibility QEP. When
a limit point is feasible, an Approximate-KKT-QEP point for the original problem
is found. We also discuss in some details the notion of an approximate stationary
point in the context of QEPs, where we showed that, differently from the case of
nonlinear programming, the KKT-QEP residual can not be made arbitrarily small
near any solution of a general QEP. Nonetheless, we were able to prove that feasible
limit points of the sequence generated by the Augmented Lagrangian method are true
KKT-QEP points under a new weak condition that we call Weak Cone Continuity
Property (WCCP), which, surprisingly, is not even a constraint qualification.

The difficulties underlying the possibility of dealing with non-convex problems is
somewhat subsumed in the assumption that the Augmented Lagrangian subproblems
can be solved, at least approximately. Hence, we also provided a detailed discussion
on several classes of problems where these subproblems can be properly solved, in the
sense that the they yield monotone or pseudomonotone equilibrium problems.
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[23] A. Fischer, M. Herrich, and K. Schönefeld. Generalized nash equilibrium problems
- recent advances and challenges. Pesq. Oper., 34:521–558, 2014.

[24] D. Goeleven. “Complementarity and Variational Inequalities in Electronics“.
Academic Press, London, (2017).

[25] N. Hadjisavvas, S. Komlosi and S. Schaible. Handbook of Generalized Convexity
and Generalized Monotonicity. Springer, Boston (2005)

[26] P. T. Harker, Generalized Nash games and quasi-variational inequalities. Eur. J.
Oper. Res., 54, 81–94 (1991).

[27] A. Iusem and F. Lara, Optimality conditions for vector equilibrium problems with
applications. J. Optim. Theory Appl., DOI: 10.1007/s10957-018-1321-6, (2018).

[28] A. Iusem and F. Lara, Existence results for noncoercive mixed variational inequal-
ities, Submitted.

[29] A. Iusem and M. Nasri, Augmented Lagrangian methods for variational inequality
problems, RAIRO, Oper. Res., 44, 5–24 (2010).

[30] H.Y. Jiang and L. Qi, Local uniqueness and convergence of iterative methods for
nonsmooth variational inequalities. J. Math. Anal. Appl., 196: 314–331, 1995.

[31] V. Jeyakumar, W. Oettli, M. Natividad, A solvability theorem for a class of qua-
siconvex mappings with applications to optimization. J. Math. Anal. Appl., 179,
537–546 (1993).

[32] C. Kanzow. On the multiplier-penalty-approach for quasi-variational inequalities.
Math. Program., 160 (1): 353–377, (2016).

[33] C. Kanzow and D. Steck. Augmented lagrangian methods for the solution of
generalized nash equilibrium problems. SIAM J. on Optim., 26(4): 2034–2058,
(2016).

[34] C. Kanzow and D. Steck. Augmented Lagrangian and exact penalty methods for
quasi-variational inequalities. Comput. Optim. Appl., 69(3):801–824, (2018).

[35] D. Kinderlehrer and G. Stampacchia. “An Introduction to Variational In-
equalities and Their Applications“. Academic Press, New York (1980).
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