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Abstract

A new extragradient projection method is devised in this paper, which does not obviously require

generalized monotonicity and assumes only that the so-called dual variational inequality has a solution in

order to ensure its global convergence. In particular, it applies to quasimonotone variational inequality

having a nontrivial solution.
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1. Introduction

In the classical variational inequality problem, we are given a closed convex set C in Rn and a continuous

mapping F from C into Rn, and we wish to find an element x ∈ C such that

〈F (x), y − x〉 ≥ 0, ∀ y ∈ C. (1.1)

Throughout this paper, we denote the variational inequality problem by VI(F,C).

Projection methods for solving variational inequalities include extragradient methods, double projection

methods, and proximal point methods, etc. We refer the readers to [7-17] for more details. Extragradient

methods are a class of effective projection methods and developed by many researchers. Basically, different

extragradient methods require different monotonicity assumption on the mapping, some of them even require

Lipschitz continuity. The original extragradient method assumes that the mapping F is monotone and Lip-

schitz continuous. Many subsequent papers aimed at improving the extragradient algorithm so that it could

apply to a wider class of problems, especially relax the monotonicity assumption of the mapping. The method

suggested in [5] applies to monotone variational inequalities, and that in [4] applies to pseudomonotone vari-

ational inequalities. So far, the weakest conditions for the global convergence of improved extragradient

methods is pseudomonotonicity and continuity of the mapping; see [11] and [1] for more references.

Recently, [14] put forward a double projection method for solving variational inequalities without as-

suming any kind of generalized monotonicity, which improves the projection method in [9] by relaxing the

monotonicity condition. In particular, this method applies to quasimonotone variational inequalities having

a nontrivial solution. However, to obtain the next iteration point, the method in [14] needs to calculate

a projection onto the intersection of a finite number of halfspaces and the closed convex set C, and the

number of halspaces is equal to the number of the current iteration, so that one needs to add more and more
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halfspaces as iteration number is increasing. This obviously brings difficulty for calculating the projection.

To address this difficulty, a new extragradient-type algorithm is proposed in this paper. No halfspace is

added when calculates the projection, and the global convergence is proved under the same assumption with

that in [14]. In other words, we propose a new extragradient method for solving variational inequalities with-

out assuming any kind of the usual generalized monotonicity, while known extragradient methods assume

pseudomonotonicity at least.

2. Preliminaries

Definition 2.1. x ∈ C is called a solution of the dual variational inequality if

〈F (y), y − x〉 ≥ 0, ∀ y ∈ C.

Definition 2.2. The mapping F is said to be pseudomonotone if for each pair x, y ∈ C,

〈F (x), y − x〉 ≥ 0⇒ 〈F (y), y − x〉 ≥ 0.

Definition 2.3. The mapping F is said to be quasimonotone if for each pair x, y ∈ C,

〈F (x), y − x〉 > 0⇒ 〈F (y), y − x〉 ≥ 0.

It can be seen that pseudomonotone mappings are quasimonotone, but not vice versa. For example, if

F (x) := x2 and C := [−1, 1], then F is quasidomonotone on C. However, F is not pseudomonotone.

Definition 2.4. x ∈ C is called a trivial solution if 〈F (x), y − x〉 = 0 for all y ∈ C. If a solution of VI(F,C)

is not a trivial solution, it is called a nontrivial solution.

Proposition 2.1. If the mapping F is pseudomonotone and VI(F,C) has a solution, then the dual variational

inequality has a solution.

Proof. Let x be a solution set of VI(F,C). Then

〈F (x), y − x〉 ≥ 0, ∀y ∈ C.

Since F is pseudomonotone, it follows that 〈F (y), y − x〉 ≥ 0 for all y ∈ C. Thus x is a solution of the dual

variational inequality.

Proposition 2.2. If the mapping F is quasimonotone and VI(F,C) has a nontrivial solution, then the dual

variational inequality has a solution.

Proof. Let x∗ ∈ C be a nontrivial solution of the variational inequality. Fix any y ∈ C. One has

〈F (x∗), y − x∗〉 ≥ 0. By Lemma 3.1 in [2], one of the following must hold:

〈F (y), y − x∗〉 ≥ 0, or 〈F (x∗), x− x∗〉 ≤ 0 for all x ∈ C.

Since x∗ is a solution of VI(F,C), the second inequality implies that x∗ is a trivial solution, which contradicts

that x∗ is a nontrivial solution. Thus the first inequality must hold, and hence x∗ is a solution of the dual

variational inequality.

Note that the mapping can be not quasimonotone even if the dual variational inequality has a solution.

This can be seen from the following example.
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Example 2.1. Let

K := [−1, 1]× [−1, 1]

and

F (x1, x2) = (x21, x
2
2), ∀(x1, x2) ∈ K.

If we take x = (−1, 0) and y = (− 1
2 ,−1), then 〈F (x), y − x〉 = 1

2 > 0, but 〈F (y), y − x〉 = − 7
8 < 0. Therefore

F is not quasimonotone on K. However, (−1,−1) solves the dual variational inequality:

〈F (y), y − x〉 ≥ 0, ∀y ∈ K.

To design projection methods for the variational inequality problem, one usually uses the so-called natural

residual

r(x) := x−ΠC(x− F (x)), (2.1)

where ΠC denotes the metric projection onto C.

Lemma 2.1. For any x, d ∈ Rn and α ≥ 0, define

x(α) = ΠC(x− αd).

Then, 〈d, x− x(α)〉 is nondecreasing for α > 0.

Proof. By the property of the projection, one has

〈ΠC(x− td)−ΠC(x− αd), (α− t)d〉 ≥ ‖ΠC(x− td)−ΠC(x− αd)‖2.

It follows that α 7→ 〈ΠC(x− αd), d〉 is decreasing.

One can refer to [1, 10] for the following results.

Lemma 2.2. For any x, d ∈ Rn and α ≥ 0, define

Ψ(α) = min{‖y − x+ αd‖2 | y ∈ C}.
Then Ψ is differentiable and Ψ′(α) = 2 〈d, x(α)− x+ αd〉.

Lemma 2.3. Let y ∈ C and x ∈ Rn. Then 〈y −ΠC(x), x−ΠC(x)〉 ≤ 0.

Lemma 2.4. 〈F (x), r(x)〉 ≥ ‖r(x)‖2 for all x ∈ C.

Lemma 2.5. r(x) = 0⇔ x is a solution of VI(F,C).

3. Main Results

Now we present a new extragradient method and establish its global convergence.

Algorithm 1. (New extragradient method)

Step 0. Select any σ, γ ∈ (0, 1), x0 ∈ C, k = 0.

Step 1. For xk ∈ C, compute r(xk). If r(xk) = 0, stop; else compute

yk = xk − ηkr(xk),

where ηk = γmk with mk being the smallest nonnegative integer m satisfying〈
F (xk)− F (xk − γmr(xk)), r(xk)

〉
≤ σ‖r(xk)‖2.
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Let

ik := arg max
0≤j≤k

〈
F (yj), xk − yj

〉
‖F (yj)‖

, (3.1)

that is, ik ∈ {0, 1, . . . , k} and〈
F (yik), xk − yik

〉
‖F (yik)‖

≥
〈
F (yj), xk − yj

〉
‖F (yj)‖

, ∀ j ∈ {0, 1, . . . , k}.

Set zk := yik .

Step 2. Compute xk+1 = ΠC(xk −αkF (zk)), where the stepsize αk satisfies the following two conditions

αk ≥ α1
k =

〈
F (zk), xk − zk

〉
‖F (zk)‖2

, (3.2)〈
F (zk),ΠC(xk − αkF (zk))− zk

〉
≥ 0. (3.3)

Let k = k + 1 and return to Step 1.

Remark 3.1. Since F is a continuous mapping from C into Rn, we have〈
F (xk)− F (xk − γmr(xk)), r(xk)

〉
≤ σ‖r(xk)‖2,

for sufficiently large m. Therefore the linesearch in Step 1 is well-defined. If r(xk) = 0, then procedure stops.

If r(xk) 6= 0 and
〈
F (xk)− F (yk), r(xk)

〉
≤ σ‖r(xk)‖2, by Lemma 2.4, then F (yk) 6= 0. Therefore (3.1) is

well-defined.

In what follows, we show that Step 2 is well-defined.

Lemma 3.1. Let ψ(α) := α2‖F (y)‖2 − 2α 〈F (y), x− y〉 − d2C(x− αF (y)). Assume that x and y satisfy the

following three conditions:

(C1) x, y ∈ C.

(C2) y is not a solution of VI(F,C).

(C3) 〈F (y), x− y〉 > 0.

Then there exists α ∈ (0,+∞) such that the derivative ψ ′(α) = 0.

Proof. Note that

d2C(x− αF (y)) = inf
z∈C
‖z − x+ αF (y)‖2 = inf

z∈C
{‖z − x‖2 + 2α 〈F (y), z − x〉}+ α2‖F (y)‖2.

It follows that

ψ(α) = sup
z∈C

{
−2α 〈F (y), z − y〉 − ‖z − x‖2

}
= 2 sup

z∈D

{
〈x− αF (y)− y, z〉 − 1

2
‖z‖2

}
− ‖x− y‖2, (3.4)

where D := C − y. Define g : R→ R and h : Rn → R by

g(α) := sup
z∈D
{〈x− αF (y)− y, z〉 − 1

2
‖z‖2} and h(u) := sup

z∈D
{〈u, z〉 − 1

2
‖z‖2}.

Obviously, h is a convex function. Since h(u) ≡ 1
2‖u‖

2 − 1
2d

2
D(u), h is a real-valued convex function on Rn.

It follows that g is a real-valued convex function on R, as g(α) = h(x− αF (y)− y).
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By (3.4), ψ(α) = 2g(α) − ‖x − y‖2. To prove the conclusion, it suffices to prove that the minimization

problem minα≥0 g(α) has a global optimal solution.

By the definition of conjugate function,

g∗(β) = sup
α∈R

[αβ − g(α)] = sup
α∈R

[αβ − h(x− αF (y)− y)]

Let L := {x− αF (y)− y : α ∈ R}. It is easy to check that for z ∈ Rn,

z = x− αF (y)− y if and only if α =
〈F (y), x− y − z〉
‖F (y)‖2

and z ∈ L,

where the denominator ‖F (y)‖2 is nonzero, as y is not a solution of VI(F,C); see (C2).

Therefore,

g∗(β) = sup

{
〈F (y), x− y − z〉β

‖F (y)‖2
− h(z) : z ∈ L

}
=
〈F (y), x− y〉β
‖F (y)‖2

+ sup

{
−β

‖F (y)‖2
〈F (y), z〉 − h(z) : z ∈ L

}
Let ξ := − β F (y)

‖F (y)‖2 . Recall that δL is the indicator function of L. It follows that

g∗(β) = (h+ δL)∗(ξ)− 〈ξ, x− y〉 . (3.5)

Since h is a real-valued convex function on Rn, Theorem 16.4 in [6] shows that

(h+ δL)∗(ξ) = inf
v∈Rn

{h∗(ξ − v) + δ∗L(v)} . (3.6)

Since h(u) = ( 1
2‖ · ‖

2 + δD)∗(u) and 1
2‖ · ‖

2 + δD(·) is a lower semicontinuous convex function, we have

h∗(w) = 1
2‖w‖

2 + δD(w) for every w ∈ Rn. Note that

δ∗L(v) = sup
z∈L
〈z, v〉 = sup

α∈R
〈x− αF (y)− y, v〉 = 〈x− y, v〉+ δE(v),

where E := {z ∈ Rn : 〈F (y), z〉 = 0}. It follows from (3.6) that

(h+ δL)∗(ξ) = inf {h∗(ξ − v) + 〈v, x− y〉+ δE(v) : v ∈ Rn}

= inf{1

2
‖v − ξ‖2 + δD(ξ − v) + 〈v, x− y〉+ δE(v) : v ∈ Rn}

= inf{1

2
‖v − ξ‖2 + 〈v, x− y〉 : v ∈ E ∩ (ξ −D)}

=
1

2
‖ξ‖2 − 1

2
‖x− ξ − y‖2 +

1

2
d 2
E∩(ξ−D)(ξ + y − x).

Since infimum over empty set is +∞, we have

ξ ∈ dom(h+ δL)∗ ⇐⇒ E ∩ (ξ −D) 6= ∅ ⇐⇒ β ∈ {〈F (y), y − z〉 : z ∈ C}, (3.7)

where the second equivalence is due to the fact that D = C − y and ξ := − β F (y)
‖F (y)‖2 .

By virtue of (3.5), β ∈ dom(g∗) if and only if ξ ∈ dom(h+ δL)∗. By (3.7), it follows that

dom(g∗) = {〈F (y), y − z〉 : z ∈ C}. (3.8)

Since y is not a solution of VI(F,C), there exists u0 ∈ C such that β1 := 〈F (y), y − u0〉 > 0. On the other

hand, the condition (C3) implies β2 := 〈F (y), y − x〉 < 0. Since u0, x ∈ C, (3.8) implies that {β1, β2} ⊂
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dom(g∗). The convexity of dom(g∗) yields (β2, β1) ⊂ dom(g∗), which implies 0 ∈ int(dom(g∗)). It follows

from Corollary 13.3.4(c) and Theorem 27.3 in [6] that g attains its minimum over [0,+∞), that is, the

minimization problem minα≥0 g(α) has a global optimal solution α0.

By (C1), we have ψ(0) = 0. As verified in [3, Example IV.4.1.6], the derivative (d2C)′(z) = 0 for each

z ∈ C. So ψ ′(0) = −2 〈F (y), x− y〉. By (C3), we have ψ ′(0) < 0, which implies infα≥0 ψ(α) < ψ(0). It

follows that α0 > 0, and hence ψ ′(α0) = 0.

For α ≥ 0, we define

xk(α) := ΠC(xk − αF (zk)),

Φk(α) := 2α
〈
F (zk), xk − zk

〉
− α2‖F (zk)‖2 + dist(xk − αF (zk), C)2.

This implies that

Φk(0) = 0. (3.9)

By Lemma 2.2, we have

Φ′k(α) = 2
〈
F (zk), xk − zk

〉
− 2α‖F (zk)‖2 − 2

〈
F (zk), xk − αF (zk)− xk(α)

〉
= 2

〈
F (zk), xk − zk − αF (zk)− xk + αF (zk) + xk(α)

〉
= 2

〈
F (zk), xk(α)− zk

〉
.

(3.10)

Moreover,

Φ′k(α) = 2
〈
F (zk), xk(α)− xk + xk − zk

〉
= 2

〈
F (zk), xk(α)− xk

〉
+ 2

〈
F (zk), xk − zk

〉
.

By Lemma 2.1, we know that Φ′k(α) is decreasing with respect to α ≥ 0.

By the construction of zk, one has〈
F (zk), xk − zk

〉
‖F (zk)‖

≥
〈
F (yk), xk − yk

〉
‖F (yk)‖

.

Since 〈
F (yk), xk − yk

〉
≥ ηk(1− σ)‖r(xk)‖2 > 0, (3.11)

it follows that

Φ′k(0) = 2
〈
F (zk), xk − zk

〉
> 0. (3.12)

We claim that zk is not a solution of VI(F,C). Indeed, since xik is not a solution, r(xik) 6= 0, so〈
F (zk),ΠC(xik − F (xik))− zk

〉
=
〈
F (yik),ΠC(xik − F (xik))− xik + ηikr(x

ik)
〉

= (ηik − 1)
〈
F (yik), r(xik)

〉
≤ (ηik − 1)(1− σ)‖r(xik)‖2

< 0.

(3.13)

This verifies the claim.

By (3.12) and (3.13), it follows from Lemma 3.1 that there exists an α′ > 0 such that
〈
F (zk), xk(α′)− zk

〉
=

0. Moreover, since

0 < 〈F (zk), xk − zk〉
= 〈F (zk), xk − xk(α′)〉
= 〈F (zk),ΠC(xk)−ΠC(xk − α′F (zk))〉
≤ α′‖F (zk)‖2,
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it follows that

0 < α1
k =
〈F (zk), xk − zk〉
‖F (zk)‖2

≤ α′. (3.14)

This, together with the fact that Φ′k(α) is a continuous and decreasing function of α on [0,+∞), implies

that {α : Φ′k(α) = 0, α ∈ [0,+∞)} is a closed interval [αkl, αku] and αkl ≥ α1
k > 0. Let α2

k = αkl. We have

0 < Φ′k(α),∀α ∈ [0, α2
k). (3.15)

Conditions (3.15) and (3.14) together imply that

0 ≤ Φ′k(αk) = 2
〈
F (zk), xk(αk)− zk

〉
,∀αk ∈ [α1

k, α
2
k].

Therefore, if αk ∈ [α1
k, α

2
k], then αk satisfies (3.2) and (3.3).

This verifies that Step 2 is well-defined.

Now we present a global convergence result under the assumption that the dual variational inequality has

a solution, without assuming usual generalized monotonicity. However, this result applies to quasimonotone

variational inequalities having a nontrivial solution, as shown by Proposition 2.2 that the dual variational

inequality has a solution in this case.

Theorem 3.1. If there exists z0 ∈ C such that

〈F (y), y − z0〉 ≥ 0, ∀ y ∈ C, (3.16)

then either the algorithm terminates in a finite number of iterations or generates a sequence {xk} converging

to a solution of the variational inequality problem.

Proof. Fix any x ∈ C.

‖xk+1 − x‖2 = ‖ΠC(xk − αkF (zk))− x‖2

≤ ‖xk − αkF (zk)− x‖2 − ‖xk − αkF (zk)− xk+1‖2

= ‖xk − x‖2 − 2αk
〈
F (zk), xk − x

〉
+ (αk)2‖F (zk)‖2 − ‖xk − αkF (zk)− xk+1‖2.

(3.17)

It follows that for any z0 ∈ C satisfying (3.16),

‖xk+1 − z0‖2 ≤ ‖xk − z0‖2 − 2αk
〈
F (zk), xk − zk

〉
+ (αk)2‖F (zk)‖2 − ‖xk − αkF (zk)− xk+1‖2. (3.18)

Conditions (3.9) and (3.15) together imply that

0 < Φk(α1
k) ≤ Φk(αk) ≤ Φk(α2

k),∀αk ∈ [α1
k, α

2
k].

Consequently, by (3.18), it follows that

‖xk+1 − z0‖2 ≤ ‖xk − z0‖2 − Φk(αk)

≤ ‖xk − z0‖2 − Φk(α1
k)

= ‖xk − z0‖2 −
〈
F (zk), xk − zk

〉2
‖F (zk)‖2

− ‖xk − α1
kF (zk)− xk(α1

k)‖2

≤ ‖xk − z0‖2 −
〈
F (zk), xk − zk

〉2
‖F (zk)‖2

,∀αk ∈ [α1
k, α

2
k].

(3.19)

Thus (3.19) implies that

lim
k→+∞

〈
F (zk), xk − zk

〉
‖F (zk)‖

= 0. (3.20)
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This, (3.1), and (3.11) together imply that

lim
k→+∞

〈
F (yk), xk − yk

〉
‖F (yk)‖

= 0. (3.21)

By (3.19), {‖xk − z0‖} is a decreasing sequence and hence {xk} is bounded. Moreover, {F (yk)} is bounded.

Therefore an immediate consequence of (3.21) and (3.11) is that ηk(1− σ)‖r(xk)‖2 → 0 as k → +∞. Since

the sequence {xk} being bounded, there exists subsequence {xkl} such that xkl → x′.

Case 1. If lim sup ηkl > 0, then r(x′) = 0.

Using (3.1), we know 〈
F (yikl ), xkl − yikl

〉
‖F (yikl )‖

≥
〈
F (yj), xkl − yj

〉
‖F (yj)‖

, 0 ≤ j ≤ kl.

Therefore, let kl →∞, we get〈
F (yj), x′ − yj

〉
‖F (yj)‖

≤ 0⇔
〈
F (yj), x′ − yj

〉
≤ 0, j ∈ {0, 1, . . . }.

If we replace z0 by x′ in the above process, then we obtain the decreasing sequence {‖xk−x′‖}. Moreover,

since x′ is an accumulation point of {xk}, we have xk → x′ as k → +∞.

Case 2. If lim sup ηkl = 0, then〈
F (xkl)− F (xkl − γ−1ηklr(xkl)), r(xkl)

〉
> σ‖r(xkl)‖2.

Moreover, we have

σ‖r(x′)‖2 ≤ 0, σ ∈ (0, 1).

Therefore, r(x′) = 0, by repeating the process in the Case 1, we have xk → x′ as k → +∞.

4. Numerical experiments

Algorithm 1 is tested through following examples under MATLAB version R2007b. The termination criterion

is ‖r(x)‖ ≤ 10−4. We choose σ = 0.99, γ = 0.4 in Algorithm 1. Let nf denote the total number of times

that F is evaluated. We denote by x∗ the solution of VI(F,C).

Example 4.1. Let C = [−1, 1]4 and F (x) = (x21, x
2
2, x

2
3, x

2
4), x ∈ C. Then (−1,−1,−1,−1) is a solution of

dual variational inequality. The performance of Algorithm 1 with different initial points is listed in Table 1.

Table 1: result for Example 4.1

x0 iter(nf) time x∗

(0.5, 0.5, 0.5, 0.5) 135(406) 0.0936006 (0.00705625,0.00705625,0.00705625,0.00705625)

(0.5, 0.5, 0.5,−0.5) 126(379) 2.55842 (0.00759151,0.00759151,0.00759151,-1)

(0.5,−0.5, 0.5, 0.5) 126(379) 2.49602 (0.00759151,-1,0.00759151,0.00759151)

(0.5,−0.5, 0.5,−0.5) 114(343) 2.29321 (0.00835991,-1,0.00835991,-1)

(0.5,−0.5,−0.5,−0.5) 95(286) 1.96561 (0.00995731,-1,-1,-1)

(−0.5,−0.5,−0.5,−0.5) 2(7) 0.0156001 (-1,-1,-1,-1)
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Example 4.2. Let C = [0, 1]2. We define

F (x1, x2) =

{
( −t1+t ,

−1
1+t ) if (x1, x2) 6= (0, 0)

(0,−1) if (x1, x2) = (0, 0),
(4.1)

where t =
x1+
√
x2
1+4x2

2 . Then (1, 1) is a solution of the dual variational inequality. The performance of

Algorithm 1 with different initial points is listed in Table 2.

Table 2: result for Example 4.2

x0 iter(nf) time x∗

(0, 1) 2(7) 1.06081 (1, 1)

(0, 0) 2(7) 0.889206 (1, 1)

(1, 0) 3(10) 2.43362 (1, 1)

(0.5, 0.5) 1(4) 0.811205 (1, 1)
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