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Mathematical programming formulation to identify the optimal value function of a negative Markov decision

process (MDP) is non-convex, non-smooth, and computationally intractable. Also note that other well-

known solution methods of MDP do not work properly for a negative MDP. More specifically, the policy

iteration diverges, and the value iteration converges but does not provide an error bound in a finite number of

iterations. To overcome this challenge, we develop a mixed integer linear programming (MILP) formulation

using the theory of disjunctive programming. Then, we discuss its strength and how to extract the optimal

value function and an optimal policy from this MILP formulation. Moreover, we exemplify our formulation

for a class of stopping problems studied by Ross (1983). At the end, we briefly present another formulation

developed by the traditional big-M method.
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1. Introduction

An infinite horizon MDP is a decision-making tool to control a system in a stochastic dynamic

environment. Primitives of an MDP consist of a single decision maker, periods, states, actions, costs,

and transition probabilities. The system evolves as follows. In each period, the system occupies a

state s ∈ S, where S denotes the set of all possible states. After observing the state, the decision

maker chooses an action a from the set of permissible actions As in state s, and incurs a cost of

c(s, a). The system then moves into a new state j in the next period according to the transition

probability p(j|s, a), and so on. The decision maker seeks to minimize a cost criterion, e.g., total

expected cost.

Researchers have adopted several performance criteria in MDPs, including 1. expected total

discounted cost, 2. average cost, and 3. expected total cost (Puterman 2005). Based on the sign of

c(s, a), MDPs with the third criterion are subdivided into two classes: 3.1. positive MDPs in which

c(s, a)≤ 0 for all s∈ S and a∈As, 3.2. negative MDPs in which c(s, a)≥ 0 for all s∈ S and a∈As
(Puterman 2005, Ross 1983, Strauch 1966). (Definition of positive MDP models is more general in
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Puterman (2005), but we do not involve ourselves in those details since those models are not the

focus of this paper.)

MDPs are applied to many practical settings such as healthcare, maintenance, inventory control,

revenue management, transportation (Puterman 2005, Ross 1983, Talluri and van Ryzin 2004,

Powell 2011). From methodological and practical standpoints, it is crucial to be able to solve MDPs

in the sense of finding an optimal policy and the optimal value function. There are three general

solution approaches for MDPs including value iteration, policy iteration, and linear programming

(LP) (Puterman 2005, Ross 1983). Functionality of these approaches depends on the considered

performance criterion, and it is summarized in Table 1. All the solution approaches work properly

for discounted, average cost, and positive MDP settings, but this is not the case for negative MDPs

as described at what follows.

Negative MDPs were originally studied by Strauch (1966), and ever since they have been used to

model problems such as optimal stopping, optimal search, and Bayesian sequential analysis (Ross

1983). For negative MDPs, the value iteration is the only functional approach in the sense that it

converges to the optimal value function. Although this convergence is methodologically important,

but it is of little computational value since it is unable to provide error bounds. More specifically,

when we terminate the value iteration algorithm after a finite number of iterations, it is unknown

how far our current solution is from the optimal value function. To sum up, there is no general

solution approach to compute the optimal value function of a negative MDP, which in turn has

limited its applicability.

Table 1 Solution approaches for different MDP settings.

MDP model type

Solution Method Discounted Average Positive Negative

Value iteration* X X 7 7

Policy iteration X X X 7

LP X X X 7

*Note that here we investigate the existence of an error bound in finite termination of the value iteration rather than
its convergence.

Our contribution in this paper is to present the first systematic approach to solve negative MDPs.

More specifically, we develop two MILP formulations, which are able to identify the optimal value

function and an optimal policy of a negative MDP. The first formulation is built on the theory

of disjunctive programming that provides an ideal formulation for the union of polytopes. We

demonstrate the validity and tightness of this formulation, and describe how to derive the optimal

value function and an optimal policy from the optimal solution of this MILP formulation. We
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adopt our formulation for a class of stopping problems studied by Ross (1983). Finally, we develop

our second formulation by the traditional big-M method. This formulation enjoys fewer variables

at the cost of a weaker LP relaxation.

The remainder of the paper is organized as follows. In Section 2, we present our disjunctive

programming formulation, analyze its strength, and illustrate it for the stopping example. Section

3 presents our big-M formulation. Some concluding remarks are provided in Section 4.

2. Disjunctive Formulation

In this section, we present our first MILP formulation. For this purpose, we introduce our notation

at what follows. We adopt the convention that a term in bold refers to a real-valued vector; e.g.,

v refers to the vector 〈v(s)〉s∈S. Moreover, 0 denotes a vector of appropriate dimension whose

components are all equal to zero. Let v∗ := 〈v∗(s)〉s∈S denote the optimal value function of our

negative MDP model. It is clear that v∗(s) ≥ 0 for all s ∈ S. For convenience, we use the term

policy to refer to stationary deterministic policy. Throughout the paper, we assume that both state

and action spaces are finite, and this implies that an optimal policy exists (Puterman 2005). The

optimality equation is as follows:

v(s) = min
a∈As

{c(s, a) +
∑
j∈S

p(j|s, a)v(j)} ∀s∈ S. (1)

Theorem 1. (Puterman 2005, Proposition 7.3.2.) The vector v∗ is the minimal nonnegative

solution of the following set of inequalities:

v(s)≥ min
a∈As

{c(s, a) +
∑
j∈S

p(j|s, a)v(j)} ∀s∈ S. (2)

Let v be an upper-bound vector of v∗. In Subsection 2.2, we describe how to obtain such a bound

by evaluating the value function of an arbitrary stationary policy. For each s∈ S, let Γs denote the

set of solutions for inequality associated with s in (2), which are (componentwise) bounded from

above by v. More formally,

Γs := {v ∈R|S| : v(s)≥ min
a∈As

{c(s, a) +
∑
j∈S

p(j|s, a)v(j)},0≤ v≤ v}. (3)

It follows that:

Γs =
⋃
a∈As

{v ∈R|S| : v(s)−
∑
j∈S

p(j|s, a)v(j)≥ c(s, a),0≤ v≤ v}. (4)

Note that Γs is the union of a finite number of polytopes, and such a set is called disjunctive

constraint or disjunctive set in mathematical programming literature (Vielma 2015). There is an

extensive literature on disjunctive programming which addresses how to formulate the convex hull
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of the union of polyhedra as an LP (Balas 1998). We adopt this literature to provide an MILP

formulation for Γs, and we discuss its strength later on in Subsection 2.1.

Let Γ := ∩s∈SΓs, which consists of solutions to the set of inequalities (2). To characterize Γ, we

present the feasible region of our MILP formulation as follows:

v(j) =
∑
a∈As

w(s, j, a) ∀s, j ∈ S, (5a)

w(s, s, a)−
∑
j∈S

p(j|s, a)w(s, j, a)≥ c(s, a)x(s, a) ∀s∈ S,a∈As, (5b)

0≤w(s, j, a)≤ v(j)x(s, a) ∀s, j ∈ S,a∈As, (5c)∑
a∈As

x(s, a) = 1 ∀s∈ S, (5d)

x(s, a)∈ {0,1} ∀s∈ S,a∈As. (5e)

Let ∆ := {〈v,w,x〉 |(5a)− (5e)}, where w := 〈w(s, j, a)〉s,j∈S,a∈As
and x := 〈x(s, a)〉s∈S,a∈As

. Indeed,

the vector w consists of
∑

s∈S |As| copies of v as required in disjunctive programming. More

specifically, for each s∈ S, we create |As| copies of the vector v needed to describe the set Γs. So,

to describe the set Γ this procedure creates in total
∑

s∈S |As| copies of v, denoted by the vector

w.

Theorem 2. The vector v belongs to Γ if and only if there exist w and x such that 〈v,w,x〉 ∈∆.

PROOF. ⇒: Suppose v ∈ Γ. For each s ∈ S, there exists an action as ∈ As such that v(s)−∑
j∈S

p(j|s, as)v(j)≥ c(s, as). If there are multiple actions with such a property, pick one arbitrarily.

Let x(s, as) := 1 and x(s, a) := 0 for all a∈As\as. Moreover, let w(s, j, as) := v(j) for all j ∈ S, and

let w(s, j, a) := 0 for all a∈As\{as} and j ∈ S. It is clear that 〈v,w,x〉 ∈∆.

⇐: Suppose 〈v,w,x〉 ∈∆. For each s∈ S, (5d) implies that there is an action as ∈As such that

x(s, as) = 1 and x(s, a) = 0 for all a ∈ As\{as}. Therefore, (5c) implies that w(s, j, a) = 0 for all

a∈As\{as} and j ∈ S. Then, (5a) implies that w(s, j, as) = v(j) for all j ∈ S. Given (5b) for as, it

follows that v(s)−
∑
j∈S

p(j|s, as)v(j)≥ c(s, as) for all s∈ S, so v ∈ Γ. �

Choose α(s), s ∈ S to be strictly positive numbers. The optimal solution of the following MILP

provides the optimal value function and an optimal policy of our negative MDP.

min
∑
s∈S

α(s)v(s) (6a)

s.t.

〈v,w,x〉 ∈∆. (6b)

Theorem 3. (i) There exist w∗ and x∗ such that 〈v∗,w∗,x∗〉 is an optimal solution to the MILP

(6a)-(6b).
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(ii) If 〈v̂, ŵ, x̂〉 is an optimal solution to the MILP (6a)-(6b), then v̂ = v∗.

(iii) Given an optimal solution 〈v̂, ŵ, x̂〉 to the MILP (6a)-(6b), let d∞x̂ be a policy under which in

each state s∈ S, we choose action as ∈As such that x̂(s, as) = 1. Then, d∞x̂ is an optimal policy.

PROOF. (i) Let us choose w∗ and x∗ by the procedure described in the proof of Theorem 2.

Then, 〈v∗,w∗,x∗〉 ∈∆ by Theorem 2, and it is sufficient to show that this point is optimal. Let

〈v,w,x〉 denote an arbitrary feasible solution to ∆, so v ∈ Γ by Theorem 2. Then, Theorem 1

implies that v∗(s)≤ v(s) for all s ∈ S. As α(s)> 0 for all s ∈ S, it follows that
∑

s∈S α(s)v∗(s)≤∑
s∈S α(s)v(s), implying that 〈v∗,w∗,x∗〉 is an optimal solution.

(ii) Theorems 1 and 2 imply that v̂(s)≥ v∗(s) for all s∈ S. As 〈v̂, ŵ, x̂〉 is an optimal solution to

the MILP (6a)-(6b), part (i) implies that
∑

s∈S α(s)
(
v̂(s)− v∗(s)

)
= 0. Since α(s)> 0 for all s∈ S,

it follows that v̂(s) = v∗(s) for all s∈ S.

(iii) Part (ii) implies that v̂ = v∗. By a proof similar to that of Theorem 2, it can be seen that

x̂(s, as) = 1 and x̂(s, a) = 0 for all a ∈ As\{as}, ŵ(s, j, a) = 0 for all a ∈ As\{as} and j ∈ S, and

ŵ(s, j, as) = v̂(j) for all j ∈ S. Given (5b) for as, it follows that v̂(s)≥ c(s, as) +
∑
j∈S

p(j|s, as)v̂(j)

for all s∈ S. By MDP optimality equations, it follows that:

v̂(s) = min
a∈As

{c(s, a) +
∑
j∈S

p(j|s, a)v̂(j)} ∀s∈ S.

As as is the argument minimizing the right-hand side of the above equation, it follows from Theorem

7.3.5 of Puterman (2005) that d∞x̂ is an optimal policy. �

2.1. Strength of the MILP Formulation

In this subsection, we essentially provide Theorem 4 that enhances our understanding of the tight-

ness of the MILP formulation (6a)-(6b). For this purpose, we present the following definition.

Definition 1. (Vielma 2015) An MILP formulation is called ideal when extreme points of its

LP relaxation automatically satisfy integrality requirements of integer variables.

The tightness of the LP relaxation for an MILP formulation significantly affects its solution time

by state-of-the-art MILP solvers. Hence, the tightness is adopted to measure strength of an MILP

formulation (Vielma 2015). In principle, a formulation with a tighter LP relaxation is favorable

since state-of-the-art MILP solvers adopt the branch-and-cut algorithm which repeatedly solves

the LP relaxation, and a tighter LP relaxation results in a faster convergence (Vielma 2015). For

an ideal formulation, we may simply solve its LP relaxation instead of the MILP formulation. Note

that the number of variables in the formulation (6a)-(6b) is
∑

s∈S

(
|As|(|S|+ 1) + 1

)
, which is used

as another indicator to measure strength of the formulation (Vielma 2015).
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In the following, we present a regularity condition under which the operations of projection and

intersection commute, and it is used in the proof of Theorem 4. Given a set Q⊂Rn+p, define its

projection onto the linear subspace Rn×{0}p as follows:

projx(Q) := {x∈Rn : ∃y ∈Rp s.t. (x,y)∈Q}.

Let I := {1, . . . , I} be an index set. For each i∈I , let Pi := {(x,y)∈Rn+pi :Aix+Biyi ≤ bi},

where Ai and Bi are, respectively, mi × n and mi × pi matrices, and bi is an mi−dimensional

column vector. Therefore, {Pi}i∈I is a set of polyhedra that share the same set of the first n

variables, and the rest of their variables are different. To investigate ∩i∈IPi, we clearly need to

consider the space of R
n+

I∑
i=1

pi
including all variables x,y1, . . . ,yI . In such a space, we may represent

Pi as follows:

Pi := {(x,y1, . . . ,yI)∈R
n+

I∑
i=1

pi
:Aix+Biyi ≤ bi} ∀i∈I .

Lemma 1. The following holds:

projx(∩i∈IPi) =∩i∈I projx(Pi).

PROOF. ⇒: Suppose x̂∈ projx(∩i∈IPi). Then, there exist ŷ1, . . . , ŷI such that (x̂, ŷ1, . . . , ŷI)∈

∩i∈IPi. As a result, x̂∈ projx(Pi) for all i∈I , which implies that x̂∈∩i∈I projx(Pi).

⇐: Suppose x̂∈∩i∈I projx(Pi). Then, there exists ŷi such that (x̂, ŷi)∈ Pi for all i∈ I. We may

restate this in the space of R
n+

I∑
i=1

pi
as (x̂, ŷ1, . . . , ŷI)∈ Pi for all i∈ I. Then, (x̂, ŷ1, . . . , ŷI)∈∩i∈IPi,

which implies that x̂∈ projx(∩i∈IPi). �

Let us fix s∈ S in the formulation of ∆, which results in the following formulation:

v(j) =
∑
a∈As

w(s, j, a) ∀j ∈ S, (7a)

w(s, s, a)−
∑
j∈S

p(j|s, a)w(s, j, a)≥ c(s, a)x(s, a) ∀a∈As, (7b)

0≤w(s, j, a)≤ v(j)x(s, a) ∀a∈As, (7c)∑
a∈As

x(s, a) = 1 (7d)

x(s, a)∈ {0,1} ∀a∈As, (7e)

v(s)≥ 0. (7f)

Let ∆s := {〈v,w,x〉 |(7a)− (7f)}. So that ∆ =∩s∈S∆s. Moreover, let LPR(∆s) and LPR(∆) denote

the LP relaxations of ∆s and ∆, respectively.
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Theorem 4. (i) For each s ∈ S, the convex hull of Γs is equal to the projection of LPR(∆s)

onto v-space.

(ii) The intersection of convex hull of Γs over all s ∈ S is equal to the projection of LPR(∆) onto

v-space.

PROOF. (i) For each s ∈ S, (4) represents the union of |As| polytopes. Theorems 3.3 & 3.4

of Balas (1985) or Proposition 3.2. of Jeroslow and Lowe (1984) implies that the convex hull of

solutions to (4) is the projection of LPR(∆s) onto v-space.

(ii) Given a set F ⊆Rn, let conv(F ) denote its convex hull.

projv
(
LPR(∆)

)
= projv

(⋂
s∈S

LPR(∆s)
)

=
⋂
s∈S

projv
(
LPR(∆s)

)
=
⋂
s∈S

conv(Γs),

where the second and third equalities follow, respectively, from Lemma 1 and part (i). �

In summary, it is desirable to provide an ideal formulation for Γ, which is the intersection of

the union of polyhedra. To the best of our knowledge, providing such a formulation seems unlikely

based on the available results in the integer programming literature (Vielma 2015). However, there

are well-known results in disjunctive programming which provides an ideal formulation for the

union of polyhedra. We adopt them to provide an ideal formulation for Γs for all s∈ S, and combine

them to provide a tight formulation for Γ. Theorem 4 illuminates our understanding regarding the

tightness of the formulation.

Remark 1. Compared to LPs, MILPs may more effectively incorporate any information avail-

able regarding a special structure of an optimal policy. More specifically, many real-life applications

of MDPs exhibit a monotone structure of an optimal policy (Puterman 2005, Ross 1983). For

instance, suppose that As =A for all s∈ S, both state and action spaces are ordered sets, and an

optimal policy has a monotone structure in the sense that if s1 ≥ s2, then the optimal action in s1

is at least as big as that of s2. This structure may be captured in the formulation of (6a)-(6b) by

adding x(s1, a1)≤ x(s2, a2) for all s1 ≥ s2 and a1 ≤ a2. For the case where S is a subset of integer

numbers, this can be more compactly represented as x(s+1, a1)≤ x(s, a2) for all s∈ S and a1 ≤ a2.

Adding these constraints to (6a)-(6b) tightens its LP relaxation, and improves its solution time.

2.2. Computing the Value Function of a Policy

In this subsection, we present an LP formulation to compute the upper-bound v used in the

formulation of ∆. As noted earlier, v could be the value function of an arbitrary policy, chosen
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in an ad hoc manner, with a finite value function for all states. Let d∞ and vd
∞

denote such a

policy and its value function, respectively. Theorem 1 implies that vd
∞

is the minimal nonnegative

solution of the following set of inequalities:

v(s)≥ c(s, d(s)) +
∑
j∈S

p(j|s, d(s))v(j) ∀s∈ S. (8)

Therefore, vd
∞

is the optimal solution of the following LP:

min
∑
s∈S

α(s)v(s) (9a)

s.t.

v(s)≥ c(s, d(s)) +
∑
j∈S

p(j|s, d(s))v(j) ∀s∈ S. (9b)

Note that although d∞ may be arbitrarily chosen, we should attempt to choose it as close as

possible to an optimal policy. This is because a near-optimal policy possesses a smaller value

function, which leads to a tighter MILP formulation for ∆ and a smaller solution time.

2.3. An Example: Our Formulation for a Class of Stopping Problems

In this subsection, we illustrate our formulation for a class of stopping problems studied by Ross

(1983) as follows: A decision maker observes the current state of the system i ∈ S, and then he

may either choose to stop and receive the reward r(i)≥ 0, or continue at the cost of c(i)≥ 0. If the

decision maker decides to continue, the next state will be j with probability p(j|i). If the decision

maker decides to stop, the system moves into an absorbing state Ω, where the system remains

forever with no cost nor a reward.

As the decision maker may receive a reward r(i)> 0, the problem is not within the framework of

a negative MDP. To circumvent this issue, Ross (1983) assumed a stability condition under which

inf i∈S c(i)> 0 and supi∈S r(i)<∞, and then transformed the problem into an “equivalent” negative

MDP as follows. Consider a related optimal stopping problem for which the stopping reward r(i)

of the original problem is changed to a stopping cost r− r(i) where r := supi∈S r(i). Ross (1983)

observed that for each policy π that stops almost surely, vπ(i) = vπ(i) + r where vπ and vπ denote

the value function of π for the original MDP and the modified one, respectively. He noted that

investigation of such policies suffices for finding an optimal policy as the other policies have an

infinite value function at least at one state. Therefore, a policy is optimal for the original problem

if and only if it is optimal for the transformed problem. To characterize the optimal policy, Ross

(1983) defined the set of states for which stopping is not worse than continuing for exactly one

more period and then stopping as B := {i ∈ S :−r(i)≤ c(i)−
∑

j∈S p(j|i)r(j)}. Then, he showed

that if the set B is closed in the sense that if the process enters B, it will never leave it, then the
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optimal policy is to stop as soon as the process enters B. Finally, Ross (1983) adopted this class of

stopping problems for three specific applications: selling an asset, a burglar problem, and searching

for distinct types.

In many practical and theoretical settings, the set B is not necessarily closed. Hence, it is crucial

to develop a method which can identify the optimal value function in such settings. For this

purpose, we present our MILP formulation for the transformed stopping problem. Letting 0 and 1,

respectively, denote the actions of continuing and stopping, our MILP formulation is as follows:

min
∑
i∈S

α(i)v(i) (10a)

s.t.

v(j) =w(i, j,0) +w(i, j,1) ∀i, j ∈ S, (10b)

w(i, i,0)−
∑
j∈S

p(j|i)w(i, j,0)≥ c(i)x(i,0) ∀i∈ S, (10c)

w(i, i,1)≥
(
r− r(i)

)
x(i,1) ∀i∈ S, (10d)

0≤w(i, j,0)≤
(
r− r(j)

)
x(i,0) ∀i, j ∈ S, (10e)

0≤w(i, j,1)≤
(
r− r(j)

)
x(i,1) ∀i, j ∈ S, (10f)

x(i,0) +x(i,1) = 1 ∀i∈ S, (10g)

x(i,0), x(i,1)∈ {0,1} ∀i∈ S, (10h)

where we used the policy that stops in all states to evaluate the upper bound vector of v in the

formulation of (6a) - (6b), which resulted in v(j) = r− r(j) for all j ∈ S.

3. Big-M Formulation

The formulation (5a)-(5e) for Γ possesses
∑

s∈S

(
|As|(|S|+ 1) + 1

)
variables. A formulation with

fewer variables may be provided by the big-M method as follows:

min
∑
s∈S

α(s)v(s) (11a)

s.t.

v(s)−
∑
j∈S

p(j|s, a)v(j)≥ c(s, a)−Mx(s, a) ∀s∈ S,a∈As, (11b)∑
a∈As

(
1−x(s, a)

)
≥ 1 ∀s∈ S, (11c)

x(s, a)∈ {0,1} ∀s∈ S,a∈As, (11d)

v(s)≥ 0 ∀s∈ S, (11e)

where M is a sufficiently large constant. Let Θ := {〈v,x〉 |(11b)− (11e)}. The next theorem shows

that the optimal value function and an optimal policy may be derived from the optimal solution

of (11a)-(11e), and vice versa.
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Theorem 5. (i) The vector v belongs to Γ if and only if there exists x such that 〈v,x〉 ∈Θ.

(ii) There exists x∗ such that 〈v∗,x∗〉 is an optimal solution to the MILP (11a)-(11e).

(iii) If 〈v̂, x̂〉 is an optimal solution to the MILP (11a)-(11e), then v̂ = v∗.

(iv) Given an optimal solution 〈v̂, x̂〉 to the MILP (11a)-(11e), let d∞x̂ be a policy under which in

each state s∈ S, we choose arbitrarily only one action as ∈As for which x̂(s, as) = 0. Then, d∞x̂ is

an optimal policy.

PROOF. The proof is similar to those of Theorems 2 & 3. �

The number of variables in this formulation is
∑

s∈S(1 + |As|), which is relatively smaller than

that of ∆. However, its LP relaxation is weaker than that of ∆, and assigning a value to the big-M

coefficient is a computational challenge on its own. Hence, the formulation of ∆ is superior to that

of Θ.

4. Conclusion

LP formulations are available to solve discounted, average cost, and positive MDPs. An LP for-

mulation is unavailable for negative MDPs, and identifying their optimal value functions and their

optimal policies had remained a challenge. To overcome such a challenge, we developed two MILP

formulations. Although MILPs are computationally more challenging than LPs, they can effectively

be solved by state-of-the-art MILP solvers (Vielma 2015). As an advantage over LPs, MILPs may

more efficiently incorporate structural properties of an optimal policy through adding constraints

reflecting those properties, and this decreases their solution times.
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