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Abstract

We consider in this paper an infeasible predictor-corrector primal-dual path following interior

point algorithm using the Nesterov-Todd (NT) search direction to solve semi-definite linear com-

plementarity problems. Global convergence and polynomial iteration complexity of the algorithm

are established. Two sufficient conditions are also given for superlinear convergence of iterates

generated by the algorithm. Preliminary numerical results are finally provided when the algo-

rithm is used to solve semi-definite linear complementarity problems.
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1 Introduction

The class of semi-definite linear complementarity problems (SDLCPs), which contains the class

of semi-definite programs (SDPs) as an important subclass, has many real life applications, for

example, in optimal control, estimation and signal processing, communications and networks,

statistics, finance [2]. Semi-definite programming has wide applications in NP-hard combinatorial

problems [6] and global optimization, where it is used to find bounds on optimal values and to find

approximate solutions. Interior point methods have been proven to be successful in solving linear

programs, with many works in the literature devoted to its study since the 80s. Semi-definite

programs are extensions of linear programs to the space of symmetric matrices, and interior point

methods have been successfully extended from solving linear programs to solving semi-definite

programs with the same polynomial complexity results - see for example [1, 12, 15, 42].

Among different interior point methods (IPMs), primal-dual path following interior point

algorithms are the most successful and most widely studied. Due to the difficulty in maintaining

symmetry in the linearized complementarity when using primal-dual path following interior point

method to solve an SDP, researchers working in the IPM domain have proposed ways to overcome

this problem, resulting in different symmetrized search directions [1, 9, 12, 15, 16, 18, 19, 39] being

introduced. Among these search directions, the Alizadeh-Haeberly-Overton (AHO), Helmberg-

Kojima-Monteiro (HKM) and Nesterov-Todd (NT) directions are better known, with the latter

two being implemented in SDP solvers, such as SeDuMi, SDPT3. Various studies have been

conducted to analyze primal-dual path following interior point algorithm, using the HKM search

direction, such as [23], and the NT search direction, such as [14], to solve semi-definite programs.

Works [17, 25, 27] have also been done to give an unified polynomial complexity analysis of interior

point algorithms on semi-definite programs using a commutative class of search directions, which

include the HKM and NT directions. More recently, a stream of research [8, 26, 40, 41] has

appeared that derives polynomial complexity for a full NT step interior point method in solving

linear programs, semi-definite programs and symmetric cone programs.

The focus of this paper is on analyzing an infeasible predictor-corrector primal-dual path

following interior point algorithm, using the NT search direction, to solve semi-definite linear

complementarity problems. We consider an infeasible interior point algorithm since it is more

practical than a feasible interior point algorithm, as it is usually difficult to find an initial interior

point iterate which is also feasible. The algorithm considered in this paper was studied in [23] to
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solve semi-definite programs using the HKM search direction. The analysis in [23] to show global

convergence and polynomial complexity cannot be carried over in a straightforward manner to

analyze the algorithm using the search direction considered in this paper. Our contributions in

this paper include showing polynomial complexity O(n ln(max{nτ0, ‖r0‖2}/ε)) for the infeasible

interior point algorithm using the NT search direction to solve a semi-definite linear comple-

mentarity problem. Our result complements the result obtained in [23] which considers the

algorithm using the HKM search direction to solve semi-definite programs. Our iteration com-

plexity bound is the best known iteration bound for infeasible interior point algorithms using the

“narrow” neighborhood known so far in the literature. To the best of our knowledge, it is also the

first time this polynomial complexity is derived for an infeasible predictor-corrector primal-dual

path following interior point algorithm, using the NT search direction, on a semi-definite linear

complementarity problem. Furthermore, under strict complementarity assumption, we provide

local convergence results in Section 4 that are analogous to that in [31]. Note that superlinear

convergence results using interior point methods are hard to obtain, to quote the opening sen-

tences of [20]: “Local superlinear convergence is a natural and very desirable property of many

methods in nonlinear optimization. However, for interior-point methods the corresponding anal-

ysis is not trivial”. It is worthwhile mentioning that among these local convergence results, we

show that for the important class of linear semi-definite feasibility problems, only a suitably cho-

sen initial iterate is needed for superlinear convergence, unlike what is generally believed to be

needed to achieve superlinear convergence, which is for iterates to get close to the central path by

repeatedly solving the corrector-step linear system in an iteration (see for example [11, 20]). We

should also mention that although local convergence results using the NT search direction has

been established in [14] by “narrowing” the central path neighborhood, the algorithm considered

there generates feasible iterates, while here we consider an infeasible algorithm, which is more

practical, and the analysis for the infeasible case is more complicated than that for the feasible

case. Finally, our results in this paper indicate that using the NT search direction in an interior

point algorithm to solve semi-definite linear complementarity problems is as good as using the

HKM search direction both from the “polynomial complexity” and the “local convergence” point

of view.
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1.1 Facts, Notations and Terminology

The space of symmetric n × n matrices is denoted by Sn. The cone of positive semi-definite

(resp., postive definite) symmetric matrices is denoted by Sn+ (resp., Sn++). The identity matrix

is denoted by In×n, where n stands for the size of the matrix. We omit the subscript when the

size of the identity matrix is clear from the context. Given a symmetric matrix G, λmin(G) and

λmax(G) are denoted to be the minimum and maximum eigenvalue of G respectively.

Given matrices G and K in <n1×n2 , the inner product, G •K, between the two matrices is

defined to be G •K := Tr(GTK) = Tr(GKT ), where Tr(·) is the trace of a square matrix. ‖ · ‖2
for a vector in <n refers to its Euclidean norm, and for a matrix in <n1×n2 , it refers to its operator

norm. On the other hand, ‖G‖F :=
√
G •G, for G ∈ <n1×n2 , refers to the Frobenius norm of G.

For a matrix G ∈ <n1×n2 , we denote its component in the ith row and the jth column by Gij.

Gi· denotes the ith row of G and G·j the jth column of G. In the case when G is partitioned into

blocks of submatrices, then Gij refers to the submatrix in the corresponding (i, j) position.

Given square matrices Gi ∈ <ni×ni , i = 1, . . . , N , Diag(G1, . . . , GN) is a square matrix with

Gi, i = 1, . . . , N , as its main diagonal blocks arranged in accordance to the way they are lined

up in Diag(G1, . . . , GN). All the other entries in Diag(G1, . . . , GN) are zeroes.

Given X ∈ Sn, svec(X) is defined to be

svec(X) := (X11,
√

2X21, . . . ,
√

2Xn1, X22,
√

2X32, . . . ,
√

2Xn2, . . . , Xnn)T ∈ <ñ,

where ñ := n(n+ 1)/2. svec(·) sets up a one-to-one correspondence between Sn and <ñ.

Note that for all X, Y ∈ Sn, X • Y = svec(X)T svec(Y ). Hence, ‖X‖F = ‖svec(X)‖2 for

X ∈ Sn.

Given G,K ∈ <n×n, G⊗s K is a square matrix of size ñ defined by

(G⊗s K)svec(H) :=
1

2
svec(KHGT +GHKT ), ∀ H ∈ Sn.

Fact 1 (Appendix of [36]) Let G,K,L ∈ <n×n.

(a) G⊗s K = K ⊗s G and (G⊗s K)T = GT ⊗s KT .

(b) (G⊗s K)(L⊗s L) = (GL)⊗s (KL) and (L⊗s L)(G⊗s K) = (LG)⊗s (LK).

(c) If G and K are commuting symmetric matrices. Let {xi} be their common basis of eigenvec-

tors with corresponding eigenvalues λGi and λKi . Then G⊗sK is symmetric and has the set
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of eigenvalues given by
{

1
2
(λGi λ

K
j + λGj λ

K
i )
}

. Also, svec
(
1
2
(xix

T
j + xjx

T
i )
)

is an eigenvector

corresponding to the eigenvalue 1
2
(λGi λ

K
j + λGj λ

K
i ) of G⊗s K.

Fact 2 ([10]) For G,K ∈ <n×n, ‖GK‖F ≤ min{‖G‖F‖K‖2, ‖G‖2‖K‖F}.

Fact 3 For x ∈ <, x ≥ 0, we have
√

1 + x− 1√
1 + x+ 1

≤
√
x

1 +
√
x
.

Given functions f : Ω→ E and g : Ω→ <++, where Ω is an arbitrary set and E is a normed

vector space with norm ‖ · ‖. For a subset Ω̂ ⊆ Ω, we write f(w) = O(g(w)) for all w ∈ Ω̂

to mean that ‖f(w)‖ ≤ Mg(w) for all w ∈ Ω̂, where M > 0 is a positive constant. Suppose

E = Sn. Then we write f(w) = Θ(g(w)) if for all w ∈ Ω̂, f(w) ∈ Sn++, f(w) = O(g(w)) and

f(w)−1 = O(1/g(w)). The subset Ω̂ should be clear from the context. For example, Ω̂ = (0, ŵ)

for some ŵ > 0 or Ω̂ = {wk ; k ≥ 0}, where wk → 0 as k → ∞. In the latter case, we write

f(wk) = o(g(wk)) to mean that ‖f(wk)‖/g(wk)→ 0, as k →∞.

2 A Primal-Dual Path Following Interior Point Algorithm

on an SDLCP

We consider a semi-definite linear complementarity problem (SDLCP) which is the problem to

find a solution, (X, Y ), to the following system:

XY = 0, (1)

A(X) + B(Y ) = q, (2)

X, Y ∈ Sn+, (3)

where q ∈ <ñ and A,B : Sn → <ñ are linear operators mapping Sn to the space <ñ, ñ :=

n(n+ 1)/2. A and B take the form

A(X) = (A1 •X, . . . , Añ •X)T , B(Y ) = (B1 • Y, . . . , Bñ • Y )T , (4)

where Ai, Bi ∈ Sn for all i = 1, . . . , ñ. We also called the system (1)-(3) an SDLCP.

The following assumptions are assumed to hold for the system (1)-(3) in this and the next

section, while we replace Assumption 1(b) by Assumption 2 in Section 4, although we still assume

Assumptions 1(a),(c) in that section.
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Assumption 1 (a) System (1)-(3) is monotone. That is, A(X) +B(Y ) = 0 for X, Y ∈ Sn ⇒

X • Y ≥ 0.

(b) There exists (X1, Y 1) ∈ Sn++ × Sn++ such that A(X1) + B(Y 1) = q.

(c) {A(X) + B(Y ) ; X, Y ∈ Sn} = <ñ.

The first assumption (Assumption 1(a)) is satisfied for the class of semi-definite programs (SDPs),

with equality for X •Y instead of inequality. The second assumption ensures that (2) is satisfied

for some positive definite matrix pair, while the last assumption is a technical assumption that

can be satisfied for any SDP. Note that Assumption 1(b) is only used in this paper to ensure the

existence of a solution to the SDLCP (1)-(3).

An SDP in its primal and dual form is given by

(P) min C •X

subject to Ai •X = bi, i = 1, . . . ,m,

X ∈ Sn+,

(D) max
∑m

i=1 biyi

subject to
∑m

i=1 yiAi + Y = C,

Y ∈ Sn+.

In the above formulation of an SDP, it is without loss of generality to assume that Ai, i = 1, . . . ,m,

are linearly independent.

An SDP is a special case of an SDLCP by letting Ai = 0 for i = m + 1, . . . , ñ, Bi = 0 for

i = 1, . . . ,m, in (4). Bi, i = m+1, . . . , ñ, in (4) are chosen to be linearly independent and belong

to the subspace in Sn orthogonal to the space spanned by Ai, i = 1, . . . ,m.

Primal-dual path following interior point algorithms can be used to solve an SDLCP. We

consider an infeasible predictor-corrector primal-dual path following interior point algorithm, as

found in [23, 31], in this paper. In [23, 31], the search direction used is the Helmberg-Kojima-

Monteiro (HKM) search direction [9, 12, 15], while in this paper, we consider the algorithm

using the Nesterov-Todd (NT) search direction [18, 19]. The difference between the two search

directions is the way “symmetrization” is being done on (1). For P ∈ <n×n an invertible matrix,

the similarly transformed symmetrization operator HP (·), introduced in [42], is given by

HP (U) :=
1

2
(PUP−1 + (PUP−1)T ),
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where U ∈ <n×n. Hence, HP (·) is a map from <n×n to Sn. Different search directions correspond

to different P , as will be explained later.

Infeasible primal-dual path following interior point algorithm works on the principle that

iterates generated by the algorithm “follows” an (infeasible) central path (X(µ), Y (µ)), µ > 0,

which is the unique solution to

XY = µI,

A(X) + B(Y ) = q +
µ

µ0

r0,

X, Y ∈ Sn++,

where

r0 := A(X0) + B(Y0)− q,

for some X0, Y0 ∈ Sn++ and µ0 > 0. Here, X0, Y0 are such that X0Y0 = µ0I. The existence and

uniqueness of this central path follows from Theorem 2.3 in [32]. It also follows from Theorem

2.4 in [32] that there exists a solution (X∗, Y ∗) to the SDLCP (1)-(3). Although these theorems

apply to the feasible central path when r0 = 0 in [32], they can be easily shown to hold for an

infeasible central path when r0 6= 0 by assuming Assumptions 1(a)-(c). We leave their proofs as

exercises for the reader.

From now onwards, (X∗, Y ∗) denotes a solution to the SDLCP (1)-(3).

Using HP (·), the above central path (X(µ), Y (µ)), µ > 0, is also the unique solution to

HP (XY ) = µI,

A(X) + B(Y ) = q +
µ

µ0

r0,

X, Y ∈ Sn++,

since we have for X, Y ∈ Sn++ and µ > 0,

HP (XY ) = µI ⇔ XY = µI.

Below we describe the infeasible predictor-corrector primal-dual path following interior point

algorithm considered in this paper. This algorithm is the same as that in [23], although there is

a wider choice for β1, β2 here. The key to the algorithm is solving the following system of linear

equations:

HP (X∆Y + ∆XY ) = στI −HP (XY ), (5)

A(∆X) + B(∆Y ) = −r̄, (6)
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for ∆X,∆Y ∈ Sn, where τ > 0, 0 ≤ σ ≤ 1 and r̄ ∈ <ñ. Different choice of τ, σ and r̄ results in

different step in Algorithm 1 described below.

The following (narrow) neighborhood of the central path is used in this paper:

N1(β, τ) = {(X, Y ) ∈ Sn++ × Sn++ ; ‖HP (XY )− τI‖F ≤ βτ}, (7)

where τ > 0 and 0 < β < 1.

Note that P that appears in (5) and (7) is not chosen arbitrary, but is related to X, Y ∈ Sn++

as we will see next, after describing the algorithm we are analyzing in this paper.

Algorithm 1 Given ε > 0. Choose β1 < β2, with β2
2/(2(1− β2)) ≤ β1 < β2 < β2/(1− β2) < 1.

Choose (X0, Y0) ∈ N1(β1, τ0) with µ0 = τ0 = X0 • Y0/n. For k = 0, 1, . . ., do (a1) through (a3):

(a1) If max{Xk • Yk, ‖rk‖2} ≤ ε, where rk = A(Xk) + B(Yk) − q, then report (Xk, Yk) as an

approximate solution to the system (1)-(3), and terminate.

(a2) (Predictor Step) Find the solution (∆Xp
k ,∆Y

p
k ) of the linear system (5), (6), with X =

Xk, Y = Yk, P = Pk, σ = 0, τ = τk and r = rk. Define

X̂k = Xk + α̂k∆X
p
k , Ŷk = Yk + α̂k∆Y

p
k ,

where the steplength α̂k satisfies

αk,1 ≤ α̂k ≤ αk,2. (8)

Here,

αk,1 =
2√

1 + 4δk/(β2 − β1) + 1
, (9)

δk =
1

τk
‖HPk

(∆Xp
k∆Y p

k )‖F , (10)

and

αk,2 = max{α̃ ∈ [0, 1] ; (Xk + α∆Xp
k , Yk + α∆Y p

k ) ∈ N1(β2, (1− α)τk) ∀ α ∈ [0, α̃]}. (11)

If α̂k = 1, then (X̂k, Ŷk) solves the system (1)-(3) and terminate.

(a3) (Corrector Step) Find the solution (∆Xc
k,∆Y

c
k ) of the linear system (5), (6), with X =

X̂k, Y = Ŷk, P = P̂k, σ = (1− α̂k), τ = τk and r = 0. Set

Xk+1 = X̂k + ∆Xc
k, Yk+1 = Ŷk + ∆Y c

k ,

τk+1 = (1− α̂k)τk.

Set k + 1→ k and go to Step (a1).
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The above algorithm is an infeasible predictor-corrector primal-dual path following interior

point algorithm. Pk in the algorithm is chosen such that PkXkYkP
−1
k ∈ Sn. Examples of Pk that

satisfy this are Pk = Y
1/2
k , and Pk such that P T

k Pk = W−1
k with WkYkWk = Xk. The former

corresponds to the dual HKM search direction, while the latter corresponds to the NT search

direction. P̂k in the algorithm is also chosen to satisfy P̂kX̂kŶkP̂
−1
k ∈ Sn.

We remark that (∆Xp
k ,∆Y

p
k ) and (∆Xc

k,∆Y
c
k ) in Algorithm 1 exist and are unique, by ob-

serving that the left hand side of (5) and (6) together when written in matrix-vector product

has the matrix invertible, which holds because (Xk, Yk) ∈ N1(β1, τk) (by Proposition 4) and

(X̂k, Ŷk) ∈ N1(β2, (1 − α̂k)τk), respectively. (We leave the details to show the existence and

uniqueness of (∆Xp
k ,∆Y

p
k ) and (∆Xc

k,∆Y
c
k ) to the reader.) Furthermore, in the above algo-

rithm, we note that there is a wider range of choice for β1 and β2 compared with the algorithm

in [23].

Let us make an observation on our choice of Pk, P̂k in the following proposition:

Proposition 1 Suppose P ∈ <n×n is an invertible matrix with PXY P−1 ∈ Sn, where X, Y ∈

Sn++. Then PXP T and P−TY P−1 have a common set of eigenvectors with corresponding real

positive eigenvalues λXi and λYi , i = 1, . . . , n, respectively. Also, PXY P−1 has the same set of

eigenvectors with corresponding eigenvalues λXi λ
Y
i , i = 1, . . . , n.

Proof: Since PXY P−1 ∈ Sn, this implies that PXP T , P−TY P−1 ∈ Sn++ commute. Hence they

share a common set of eigenvectors with corresponding real positive eigenvalues λXi , λ
Y
i , i =

1, . . . , n. Furthermore, it is easy to see that PXY P−1 = (PXP T )(P−TY P−1) has the same set

of eigenvectors with corresponding eigenvalues λXi λ
Y
i , i = 1, . . . , n. �

From now onwards, we consider Algorithm 1 using the NT search direction in

Steps (a2) and (a3) of the algorithm, which means that Pk and P̂k in these steps

satisfy P T
k Pk = W−1

k with WkYkWk = Xk, and P̂ T
k P̂k = Ŵ−1

k with ŴkŶkŴk = X̂k

respectively. Proposition 1 then applies to Pk and P̂k given in this way since they satisfy

PkXkYkP
−1
k , P̂kX̂kŶkP̂

−1
k ∈ Sn, respectively. Furthermore, there are different ways in which Pk

and P̂k can be chosen to form the NT search direction in these steps of Algorithm 1. In Section 4,

using a particular choice of Pk, we establish two sufficient conditions for superlinear convergence

using the algorithm on SDLCPs that satisfy the strict complementarity assumption.

We also require that P that appears in (7) to be related to X,Y in (7) by

P TP = W−1 with WY W = X.
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The following are properties satisfied by (Xk, Yk) and (X̂k, Ŷk) in Algorithm 1, which are

useful in the analysis given in the paper on the convergence behavior of iterates generated by

the algorithm.

Proposition 2 Let (X, Y ) ∈ N1(β, τ), where τ > 0, 0 < β < 1, and P satisfies P TP = W−1

with WYW = X, then

PXP T = P−TY P−1 (12)

X • Y ≤ n(1 + β)τ, (1− β)τ ≤ λmin(XY ) ≤ λmax(XY ) ≤ (1 + β)τ, (13)

‖PXP T‖F ≤
√

(1 + β)nτ, ‖P−TY P−1‖F ≤
√

(1 + β)nτ, (14)

‖PXP T‖2 ≤
√

(1 + β)τ , ‖P−TY P−1‖2 ≤
√

(1 + β)τ , (15)

‖(PXP T )−1/2‖2 ≤
1

((1− β)τ)1/4
, ‖(P−TY P−1)−1/2‖2 ≤

1

((1− β)τ)1/4
, (16)

‖[I ⊗s (PXP T )]−1‖2 ≤
1√

(1− β)τ
. (17)

Proof: The relation (12) follows immediately from P TP = W−1, WYW = X and then taking

inverses.

Since (X, Y ) ∈ N1(β, τ), we have X, Y ∈ Sn++ and

‖HP (XY )− τI‖F ≤ βτ.

By Proposition 1 and observing that HP (XY ) = PXY P−1, we have using the notations in

Proposition 1 that √√√√ n∑
i=1

(λXi λ
Y
i − τ)2 ≤ βτ.

Hence, for all i = 1, . . . , n,

(1− β)τ ≤ λXi λ
Y
i ≤ (1 + β)τ, (18)

therefore (13) follows.

By (12), λXi = λYi for all i = 1, . . . , n. The second inequality in (18) then implies (14), (15).

Also, from (18) and λXi = λYi , we have

1

λXi
=

1

λYi
≤ 1√

(1− β)τ

for all i = 1, . . . , n. Inequalities in (16) then follow.
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Using Fact 1(c), I ⊗s (PXP T ) is symmetric and

λmin(I ⊗s (PXP T )) = min
i,j=1,...,n

1

2
(λXi + λXj ) ≥

√
(1− β)τ .

Therefore,

‖[I ⊗s (PXP T )]−1‖2 =
1

λmin(I ⊗s (PXP T ))
≤ 1√

(1− β)τ
,

which shows (17). �

The following technical result leads to Proposition 4, which ensures that the set in (11) is

nonempty.

Proposition 3 Given (X, Y ) ∈ N1(β, τ), where τ > 0, 0 < β < 1, and P satisfies P TP = W−1

with WYW = X. Suppose U, V ∈ Sn are such that

A(U) + B(V ) = 0, (19)

HP (XV + UY ) = R, (20)

then

‖(P ⊗s P )svec(U)‖22 + ‖(P−T ⊗s P−T )svec(V )‖22 ≤
1

(1− β)τ
‖svec(R)‖22.

Proof: Relation (20) can be written as

(P ⊗s (P−TY ))svec(U) + ((PX)⊗s P−T )svec(V ) = svec(R).

The latter can in turn be expressed as

[I ⊗s (P−TY P−1)](P ⊗s P )svec(U) + [I ⊗s (PXP T )](P−T ⊗s P−T )svec(V ) = svec(R), (21)

by Fact 1(b).

Since P satisfies P TP = W−1 with WYW = X, by (12), we have PXP T = P−TY P−1. Hence,

from (21), taking the inverse of I ⊗s (PXP T ), we get

(P ⊗s P )svec(U) + (P−T ⊗s P−T )svec(V ) = [I ⊗s (PXP T )]−1svec(R). (22)

Hence,

‖(P ⊗s P )svec(U)‖22 + ‖(P−T ⊗s P−T )svec(V )‖22
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≤ ‖(P ⊗s P )svec(U)‖22 + 2svec(U)T svec(V ) + ‖(P−T ⊗s P−T )svec(V )‖22

= ‖(P ⊗s P )svec(U) + (P−T ⊗s P−T )svec(V )‖22

= ‖[I ⊗s (PXP T )]−1svec(R)‖22

≤ ‖[I ⊗s (PXP T )]−1‖22‖svec(R)‖22

≤ 1

(1− β)τ
‖svec(R)‖22,

where the first inequality follows from (19) and Assumption 1(a), the first equality follows from

(22), and the last inequality follows from Proposition 2. �

The following result shows that iterates (Xk, Yk) generated by Algorithm 1 always belong to

the narrow neighborhood of the central path (7).

Proposition 4 For all k ≥ 0, (Xk, Yk) ∈ N1(β1, τk).

Proof: We prove the proposition by induction. It is easy to see that (X0, Y0) ∈ N1(β1, τ0). Hence,

the proposition holds for k = 0. Suppose the proposition holds for k = k0, where k0 ≥ 0, that is,

(Xk0 , Yk0) ∈ N1(β1, τk0). We wish to show that

‖HPk0+1
(Xk0+1Yk0+1)− τk0+1I‖F ≤ β1τk0+1,

which then prove the proposition by induction. First observe that

‖HPk0+1
(Xk0+1Yk0+1)− τk0+1I‖F

= ‖Pk0+1Xk0+1Yk0+1P
−1
k0+1 − τk0+1I‖F

= ‖Pk0+1[Xk0+1Yk0+1 − τk0+1I]P−1k0+1‖F

≤ ‖HP̂k0
P−1
k0+1

[Pk0+1[Xk0+1Yk0+1 − τk0+1I]P−1k0+1]‖F

= ‖HP̂k0
(Xk0+1Yk0+1)− τk0+1I‖F , (23)

where the first equality follows since Pk0+1Xk0+1Yk0+1P
−1
k0+1 ∈ Sn, and the inequality follows from

Lemma 2.2 in [23], again using Pk0+1Xk0+1Yk0+1P
−1
k0+1 ∈ Sn. Next, observe that

HP̂k0
(Xk0+1Yk0+1)− τk0+1I

= HP̂k0
((X̂k0 + ∆Xc

k0
)(Ŷk0 + ∆Y c

k0
))− τk0+1I

= HP̂k0
(X̂k0Ŷk0) +HP̂k0

(X̂k0∆Y
c
k0

+ ∆Xc
k0
Ŷk0) +HP̂k0

(∆Xc
k0

∆Y c
k0

)− τk0+1I

= HP̂k0
(∆Xc

k0
∆Y c

k0
),

11



where the third equality holds since (∆Xc
k0
,∆Y c

k0
) is the solution to the linear system (5), (6), in

which X = X̂k0 , Y = Ŷk0 , P = P̂k0 , σ = 1, τ = τk0+1 and r̄ = 0. Hence,

‖HP̂k0
(Xk0+1Yk0+1)− τk0+1I‖F

= ‖HP̂k0
(∆Xc

k0
∆Y c

k0
)‖F

≤ ‖P̂k0∆Xc
k0

∆Y c
k0
P̂−1k0
‖F

≤ ‖P̂k0∆Xc
k0
P̂ T
k0
‖F‖P̂−Tk0 ∆Y c

k0
P̂−1k0
‖F

= ‖svec(P̂k0∆X
c
k0
P̂ T
k0

)‖2‖svec(P̂−Tk0 ∆Y c
k0
P̂−1k0

)‖2

= ‖(P̂k0 ⊗s P̂k0)svec(∆Xc
k0

)‖2‖(P̂−Tk0 ⊗ P̂
−T
k0

)svec(∆Y c
k0

)‖2

≤ 1

2
[‖(P̂k0 ⊗s P̂k0)svec(∆Xc

k0
)‖22 + ‖(P̂−Tk0 ⊗ P̂

−T
k0

)svec(∆Y c
k0

)‖22], (24)

where the second inequality follows from Fact 2 and ‖U‖2 ≤ ‖U‖F for U ∈ Sn.

Since (∆Xc
k0
,∆Y c

k0
) is the solution to the linear system (5), (6), in which X = X̂k0 , Y = Ŷk0 , P =

P̂k0 , σ = 1, τ = τk0+1 and r̄ = 0, where (X̂k0 , Ŷk0) ∈ N1(β2, τk0+1), it follows from Proposition 3

that

‖(P̂k0 ⊗s P̂k0)svec(∆Xc
k0

)‖22 + ‖(P̂−Tk0 ⊗ P̂
−T
k0

)svec(∆Y c
k0

)‖22

≤ 1

(1− β2)τk0+1

‖svec(HP̂k0
(X̂k0Ŷk0)− τk0+1I)‖22.

Therefore, by the above inequality, (23) and (24) leads to

‖HPk0+1
(Xk0+1Yk0+1)− τk0+1I‖F

≤ 1

2(1− β2)τk0+1

‖svec(HP̂k0
(X̂k0Ŷk0)− τk0+1I)‖22

≤ β2
2

2(1− β2)
τk0+1,

where the last inequality holds since (X̂k0 , Ŷk0) ∈ N1(β2, τk0+1).

Since β1, β2 ∈ (0, 1) are chosen such that β2
2/(2(1−β2)) ≤ β1, we have from above, (Xk0+1, Yk0+1) ∈

N1(β1, τk0+1). By induction, the proposition is proved. �

As mentioned earlier, the above proposition ensures that αk,2 given by (11) is meaningful.

The following result allows us to say more about αk,2 and also shows that we can always find α̂k

that satisfies (8) in Algorithm 1.

Proposition 5 We have αk,1 ≤ αk,2.

12



Proof: The proposition is proved by showing that for all 0 ≤ α ≤ αk,1,

(Xk + α∆Xp
k , Yk + α∆Y p

k ) ∈ N1(β2, (1− α)τk).

We have for all 0 ≤ α ≤ αk,1

‖HPk
((Xk + α∆Xp

k)(Yk + α∆Y p
k ))− (1− α)τkI‖F

= ‖HPk
(XkYk) + αHPk

(Xk∆Y
p
k + ∆Xp

kYk) + α2HPk
(∆Xp

k∆Y p
k )− (1− α)τkI‖F

= ‖(1− α)[HPk
(XkYk)− τkI] + α2HPk

(∆Xp
k∆Y p

k )‖F

≤ (1− α)‖HPk
(XkYk)− τkI‖F + α2‖HPk

(∆Xp
k∆Y p

k )‖F

≤ (1− α)β1τk + α2‖HPk
(∆Xp

k∆Y p
k )‖F

≤ β2(1− α)τk,

where the second equality holds as (∆Xp
k ,∆Y

p
k ) satisfies the linear system (5), (6), with X =

Xk, Y = Yk, P = Pk, σ = 0, τ = τk and r = rk, the second inequality holds as (Xk, Yk) ∈

N1(β1, τk), and the last inequality follows from (9), (10). Hence, since Xk, Yk ∈ Sn++ and β2 < 1,

we see that if 0 < α ≤ αk,1 < 1, Xk + α∆Xp
k , Yk + α∆Y p

k ∈ Sn++.

Now, since Xk + α∆Xp
k , Yk + α∆Y p

k ∈ Sn++, the following holds.

‖HPk(α)((Xk + α∆Xp
k)(Yk + ∆Y p

k ))− (1− α)τkI‖F

= ‖Pk(α)[(Xk + α∆Xp
k)(Yk + α∆Y p

k )− (1− α)τkI]Pk(α)−1‖F

≤ ‖HPkPk(α)−1(Pk(α)[(Xk + α∆Xp
k)(Yk + α∆Y p

k )− (1− α)τkI]Pk(α)−1)‖F

= ‖HPk
((Xk + α∆Xp

k)(Yk + α∆Y p
k ))− (1− α)τkI‖F ,

where Pk(α) is such that Pk(α)TPk(α) = Wk(α)−1 with Wk(α)(Yk + α∆Y p
k )Wk = Xk + α∆Xp

k

and hence Pk(α)(Xk + α∆Xp
k)(Yk + α∆Y p

k )Pk(α)−1 ∈ Sn, so that the above inequality holds by

Lemma 2.2 in [23].

Putting everything together, if 0 ≤ α ≤ αk,1, we have (Xk + α∆Xp
k , Yk + α∆Y p

k ) ∈ N1(β2, (1 −

α)τk), as required. �

We remark that the above proposition implies that αk,2 given by (11) is always positive.
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3 Global Convergence and Polynomial Complexity of In-

terior Point Algorithm

In this section, we show global convergence and iteration complexity results for iterates {(Xk, Yk)}

generated by Algorithm 1, by considering the “duality gap”, µk := Xk •Yk/n, and the “feasibility

gap”, rk = A(Xk) + B(Yk)− q. The following proposition relates α̂k, τk and (Xk, Yk) generated

by Algorithm 1 with µk and rk. First, we have the following definition.

Definition 1 Define for k ≥ 0, ψk = Πk
j=0(1− α̂j). Also, define ψ−1 = 1.

Proposition 6 For all k ≥ 0, (1−β1)τk ≤ µk ≤ (1+β1)τk and A(Xk)+B(Yk)−q = rk = ψk−1r0.

Proof: By Proposition 4, for all k ≥ 0, (Xk, Yk) ∈ N1(β1, τk). Hence,

‖HPk
(XkYk)− τkI‖F ≤ β1τk.

It then follows from Proposition 1 that√√√√ n∑
i=0

(λXk
i λYki − τk)2 ≤ β1τk,

where λXk
i λYki , i = 1, . . . , n are the eigenvalues of PkXkYkP

−1
k . Therefore, for all i = 1, . . . , n,

(1− β1)τk ≤ λXk
i λYki ≤ (1 + β1)τk.

The first result in the proposition then follows by noting that Xk • Yk =
∑n

i=1 λ
Xk
i λYki .

Next, we show that

A(Xk) + B(Yk) = q + ψk−1r0 (25)

by induction on k ≥ 0.

Equality in (25) holds for k = 0. Suppose (25) holds for k = k0 for some k0 ≥ 0. Then

A(Xk0+1) + B(Yk0+1)

= A(X̂k0) + B(Ŷk0)

= A(Xk0 + α̂k0∆X
p
k0

) + B(Yk0 + α̂k0∆Y
p
k0

)

= A(Xk0) + B(Yk0) + α̂k0(q −A(Xk0)− B(Yk0))

= α̂k0q + (1− α̂k0)(A(Xk0) + B(Yk0))

= α̂k0q + (1− α̂k0)(q + ψk0−1r0)

= q + ψk0r0,
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where the first equality follows from Xk0+1 = X̂k0 + ∆Xc
k0
, Yk0+1 = Ŷk0 + ∆Y c

k0
and (∆Xc

k0
,∆Y c

k0
)

satisfying (6) with r̄ = 0, the third equality follows from (∆Xp
k0
,∆Y p

k0
) satistying (6) with r̄ = rk0 ,

and the fifth equality follows by induction hypothesis. Hence, (25) holds for k = k0 + 1, and by

induction, (25) holds for all k ≥ 0. �

To show global convergence and iteration complexity results using µk and rk, we only need

to investigate the behavior of ψk−1, since τk = ψk−1τ0 and µk ≤ (1 + β1)τk, and rk = ψk−1r0. By

definition of ψk in Definition 1, this is achieved by analyzing α̂j. We consider αj,1 instead, which

is given by (9) since it is a lower bound to α̂j. Since αj,1 given by (9) is expressed in terms of δj,

to analyze αj,1, we only need to analyze δj. We have the following upper bound on δj.

Lemma 1 For all k ≥ 0, we have

δk ≤ LxLy,

where

Lx =
1√

1− β1

[
β1 +

√
n+ (2 + β1 + ς)n

(
ςx +

√
1 + β1√
1− β1

(ςx + ςy)

)]
, (26)

Ly =
1√

1− β1

[
β1 +

√
n+ (2 + β1 + ς)n

(
ςy +

√
1 + β1√
1− β1

(ςx + ςy)

)]
. (27)

Here,

ς :=
X0 • Y ∗ +X∗ • Y0

X0 • Y0
,

ςx := 1 + ‖P0X
∗P T

0 ‖F‖(P0X0P
T
0 )−1/2‖22,

ςy := 1 + ‖P−T0 Y ∗P−10 ‖F‖(P−T0 Y0P
−1
0 )−1/2‖22.

We prove the above lemma in Subsection 3.1, as its proof is quite involved.

Based on Lemma 1, we have the following global convergence theorem using Algorithm 1.

Theorem 1 Given (X0, S0) ∈ N1(β1, τ0), we have µk → 0 and rk → 0 as k → ∞, and hence

any accumulation point of the sequence {(Xk, Yk)} generated by Algorithm 1 is a solution to the

SDLCP (1) - (3).

Proof: Since (X0, S0) ∈ Sn++ and for any (X∗, Y ∗), a solution to the SDLCP (1) - (3), it is easy

to see that Lx and Ly given by (26), (27) respectively are positive constants, since ς, ςx and ςy

are constants. Therefore, by the relation between δj and Lx, Ly in Lemma 1, δj is bounded above
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by a positive constant (that depends on X0, Y0, X
∗, Y ∗), say, L, independent of j ≥ 0. From (9),

we therefore have

αj,1 ≥
2√

1 + 4L/(β2 − β1) + 1
,

for all j ≥ 0. Since

ψk = Πk
j=0(1− α̂j)

≤ Πk
j=0(1− αj,1)

≤

(
1− 2√

1 + 4L/(β2 − β1) + 1

)k+1

,

ψk tends to zero as k →∞.

Therefore, the theorem is proved by applying Proposition 6. �

Let us now state an iteration complexity result using Algorithm 1.

Theorem 2 Let (X0, Y0) ∈ N1(β1, τ0) in Algorithm 1 be chosen such that there exists (X∗, Y ∗)

a solution to the SDLCP (1) - (3) with max{‖P0X
∗P T

0 ‖F , ‖P−T0 Y ∗P−10 ‖F} ≤
√
τ0. Then given

ε > 0, if Algorithm 1 does not stop at Step (a2) before the kth iteration with a solution to the

SDLCP (1) - (3), it stops at the kth iteration in Step (a1), where k = O(n ln(max{nτ0, ‖r0‖2}/ε)),

with an ε-approximate solution to the SDLCP (1) - (3).

Proof: We are given (X0, Y0) in N1(β1, τ0) ⊂ Sn++ × Sn++, and (X∗, Y ∗) in Sn+ × Sn+ such that

max{‖P0X
∗P T

0 ‖F , ‖P−T0 Y ∗P−10 ‖F} ≤
√
τ0.

Observe that

ς =
X0 • Y ∗ +X∗ • Y0

X0 • Y0

≤ ‖P0X0P
T
0 ‖F‖P−T0 Y ∗P−10 ‖F + ‖P0X

∗P T
0 ‖F‖P−T0 Y0P

−1
0 ‖F

X0 • Y0

≤
2τ0
√

(1 + β1)n

nτ0

= 2

√
1 + β1
n

,

where the second inequality holds by (14) (since (X0, Y0) ∈ N1(β1, τ0)), max{‖P0X
∗P T

0 ‖F ,

‖P−T0 Y ∗P−10 ‖F} ≤
√
τ0 and X0 • Y0 = nτ0.
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Also,

ςx = 1 + ‖P0X
∗P T

0 ‖F‖(P0X0P
T
0 )−1/2‖22 ≤ 1 +

1√
1− β1

,

ςy = 1 + ‖P−T0 Y ∗P−10 ‖F‖(P−T0 Y0P
−1
0 )−1/2‖22 ≤ 1 +

1√
1− β1

,

using (16) and max{‖P0X
∗P T

0 ‖F , ‖P−T0 Y ∗P−10 ‖F} ≤
√
τ0.

Therefore, Lx, Ly given by (26), (27) respectively are less than or equal to L0n, where L0 is a

large enough number that depends only on β1. Hence, by Lemma 1, (8) and (9),

α̂j ≥
2√

1 + 4L2
0n

2/(β2 − β1) + 1

for all j ≥ 0.

Therefore,

ψk−1 = Πk−1
j=0(1− α̂j)

≤

(
1− 2√

1 + 4L2
0n

2/(β2 − β1) + 1

)k

=

(√
1 + 4L2

0n
2/(β2 − β1)− 1√

1 + 4L2
0n

2/(β2 − β1) + 1

)k

≤
(

2L0n√
β2 − β1 + 2L0n

)k
,

where the last inequality holds by Fact 3.

Since max{Xk • Yk, ‖rk‖2} ≤ ε is needed for the algorithm to terminate at Step (a1), where

Xk • Yk/n = µk ≤ (1 + β1)τk = (1 + β1)ψk−1τ0 and rk = ψk−1r0, a sufficient condition for

termination at Step (a1) at the kth iteration is when k satisfies(
2L0n√

β2 − β1 + 2L0n

)k
max{(1 + β1)nτ0, ‖r0‖2} ≤ ε.

That is,

k ≥ ln

(
max{(1 + β1)nτ0, ‖r0‖2}

ε

)/
ln

(√
β2 − β1 + 2L0n

2L0n

)
and the result then follows. �

3.1 Proof of Lemma 1

Note that

δk =
1

τk
‖HPk

(∆Xp
k∆Y p

k )‖F
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≤ 1

τk
min{‖Pk∆Xp

kP
T
k ‖2‖P−Tk ∆Y p

k P
−1
k ‖F , ‖Pk∆X

p
kP

T
k ‖F‖P−Tk ∆Y p

k P
−1
k ‖2}

≤ 1

τk
‖Pk∆Xp

kP
T
k ‖F‖P−Tk ∆Y p

k P
−1
k ‖F , (28)

where the first inequality holds by Fact 2. To show Lemma 1, we analyze ‖Pk∆Xp
kP

T
k ‖F and

‖P−Tk ∆Y p
k P
−1
k ‖F that appear in (28) further by bounding them from above as given in the

following proposition.

Proposition 7 We have

‖Pk∆Xp
kP

T
k ‖F ≤ tx +

t√
(1− β1)τk

, (29)

‖P−Tk ∆Y p
k P
−1
k ‖F ≤ ty +

t√
(1− β1)τk

, (30)

where

tx := ψk−1‖(Pk ⊗s Pk)svec(X0 −X∗)‖2,

ty := ψk−1‖(P−Tk ⊗s P−Tk )svec(Y0 − Y ∗)‖2,

t := ‖svec(−HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖2.

Proof: We first observe that (∆Xp
k ,∆Y

p
k ) satisfies

A(∆Xp
k) + B(∆Y p

k ) = q −A(Xk)− B(Yk). (31)

Now, by Proposition 6,

A(Xk) + B(Yk) = (1− ψk−1)q + ψk−1(A(X0) + B(Y0)),

and with A(X∗) + B(Y ∗) = q, from (31), we obtain

A(∆Xp
k) + B(∆Y p

k ) = ψk−1(A(X∗ −X0) + B(Y ∗ − Y0)).

That is,

A(∆Xp
k + ψk−1(X0 −X∗)) + B(∆Y p

k + ψk−1(Y0 − Y ∗)) = 0. (32)

On the other hand,

HPk
(Xk(∆Y

p
k + ψk−1(Y0 − Y ∗)) + (∆Xp

k + ψk−1(X0 −X∗))Yk)

= HPk
(Xk∆Y

p
k + ∆Xp

kYk) + ψk−1HPk
(Xk(Y0 − Y ∗) + (X0 −X∗)Yk)

= −HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk), (33)
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where the last equality holds since (Xk, Yk) satisfies (5) with X = Xk, Y = Yk,∆X = ∆Xp
k ,∆Y =

∆Y p
k , σ = 0. Since (Xk, Yk) ∈ N1(β1, τk), Proposition 3 can be applied to (32), (33). We have

from the proposition

‖(Pk ⊗s Pk)svec(∆Xp
k + ψk−1(X0 −X∗))‖2

≤ 1√
(1− β1)τk

‖svec(−HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖2, (34)

‖(P−Tk ⊗s P−Tk )svec(∆Y p
k + ψk−1(Y0 − Y ∗))‖2

≤ 1√
(1− β1)τk

‖svec(−HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖2. (35)

The proposition then follows by applying triangle inequality to (34), (35) and upon algebraic

manipulations. �

Our objective to prove Lemma 1 is achieved by bounding tx, ty and t that appear in the upper

bounds to ‖Pk∆Xp
kP

T
k ‖F , ‖P−Tk ∆Y p

k P
−1
k ‖F in the above proposition appropriately. We need the

following results to achieve this.

Proposition 8 For all k ≥ 0, Yk •X0 + Y0 •Xk ≤ (2 + β1 + ς)nτ0.

Proof: By Proposition 6,

A(Xk) + B(Yk) = q + ψk−1r0.

Hence,

A(Xk − (1− ψk−1)X∗ − ψk−1X0) + B(Yk − (1− ψk−1)Y ∗ − ψk−1Y0) = 0.

Assumption 1(a) implies that

(Xk − (1− ψk−1)X∗ − ψk−1X0) • (Yk − (1− ψk−1)Y ∗ − ψk−1Y0) ≥ 0,

from which we have

Yk •X0 + Y0 •Xk ≤
1

ψk−1
Xk • Yk + ψk−1X0 • Y0 + (Y0 •X∗ + Y ∗ •X0).

Result then follows from the definition of ς, (13) (since (Xk, Yk) ∈ N1(β1, τk)), τk = ψk−1τ0, where

ψk−1 ≤ 1, and X0 • Y0 = nµ0 = nτ0. �

Remark 1 Since (X0, Y0) ∈ Sn++×Sn++, we see easily from the above proposition that {(Xk, Yk) ; k ≥

0} is bounded.
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Using Proposition 8, the following holds.

Proposition 9 For all k ≥ 0,

‖PkX0P
T
k ‖F ≤ (2 + β1 + ς)‖(P−Tk YkP

−1
k )−1/2‖22nτ0,

‖P−Tk Y0P
−1
k ‖F ≤ (2 + β1 + ς)‖(PkXkP

T
k )−1/2‖22nτ0,

‖PkX∗P T
k ‖F ≤ (2 + β1 + ς)‖(P−Tk YkP

−1
k )−1/2‖22‖P0X

∗P T
0 ‖F‖(P0X0P

T
0 )−1/2‖22nτ0,

‖P−Tk Y ∗P−1k ‖F ≤ (2 + β1 + ς)‖(PkXkP
T
k )−1/2‖22‖P−T0 Y ∗P−10 ‖F‖(P−T0 Y0P

−1
0 )−1/2‖22nτ0.

Proof: It suffices to prove the first inequality since the proofs for the last three inequalities are

similar.

We have

‖PkX0P
T
k ‖F ≤ ‖(PkX0P

T
k )1/2‖2F

= ‖(PkX0P
T
k )1/2(P−Tk YkP

−1
k )1/2(P−Tk YkP

−1
k )−1/2‖2F

≤ ‖(PkX0P
T
k )1/2(P−Tk YkP

−1
k )1/2‖2F‖(P−Tk YkP

−1
k )−1/2‖22

= (X0 • Yk)‖(P−Tk YkP
−1
k )−1/2‖22

≤ (2 + β1 + ς)‖(P−Tk YkP
−1
k )−1/2‖22nτ0,

where the first inequality holds since PkX0P
T
k ∈ Sn++, the second inequality holds by Fact 2, and

the last inequality holds by Proposition 8. �

With the above, we are ready to prove Lemma 1 by providing suitable upper bounds for tx, ty

and t as given below.

Proposition 10

t ≤ τk

[
β1 +

√
n+

√
1 + β1(2 + β1 + ς)n√

1− β1
(ςx + ςy)

]
, (36)

tx ≤
(2 + β1 + ς)n

√
τk√

1− β1
ςx, (37)

ty ≤
(2 + β1 + ς)n

√
τk√

1− β1
ςy. (38)

Proof: We first prove the upper bound on t. We have

t = ‖svec(−HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖2

= ‖ −HPk
(XkYk) + ψk−1HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk)‖F

≤ ‖HPk
(XkYk)‖F + ψk−1‖HPk

(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖F . (39)
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Since (Xk, Yk) ∈ N1(β, τk),

‖HPk
(XkYk)− τkI‖F ≤ β1τk.

Hence,

‖HPk
(XkYk)‖F ≤ (β1 +

√
n)τk.

On the other hand,

‖HPk
(Xk(Y0 − Y ∗) + (X0 −X∗)Yk))‖F ≤ ‖Pk(Xk(Y0 − Y ∗))P−1k ‖F + ‖Pk((X0 −X∗)Yk)P−1k ‖F .

Now,

‖Pk(Xk(Y0 − Y ∗))P−1k ‖F ≤ ‖PkXkP
T
k ‖2‖P−Tk (Y0 − Y ∗)P−1k ‖F

≤ ‖PkXkP
T
k ‖2[‖P−Tk Y0P

−1
k ‖F + ‖P−Tk Y ∗P−1k ‖F ]

≤ ‖PkXkP
T
k ‖2‖(PkXkP

T
k )−1/2‖22(2 + β1 + ς)nτ0ςy

≤
√

1 + β1(2 + β1 + ς)nτ0√
1− β1

ςy,

where the third inequality follows by Proposition 9, and the last inequality follows from (15),

(16). Similarly,

‖Pk((X0 −X∗)Yk)P−1k ‖F ≤
√

1 + β1(2 + β1 + ς)nτ0√
1− β1

ςx.

Putting everything together, we have (36).

In a similar way, we can show (37) and (38). �

From (28), (29), (30), using Proposition 10, Lemma 1 is proved.

4 Local Convergence Study of Interior Point Algorithm

In this section, we investigate the local convergence behavior of iterates {(Xk, Yk)} generated by

Algorithm 1.

We first need an assumption as follows.

Assumption 2 There exists a strictly complementary solution (X∗, Y ∗) to the SDLCP (1)-(3).

That is, (X∗, Y ∗) satisfies X∗ + Y ∗ ∈ Sn++.
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Assumption 2 is usually applied when we study the local convergence behavior of interior

point algorithms on semi-definite linear complementary problems [11, 14, 22, 23, 31]. Paper [4]

consider asymptotic behavior of the central path for an SDP when this assumption is relaxed.

In this section, we consider an SDLCP (1)-(3) that satisfies Assumptions 1(a),(c) and As-

sumption 2.

(X∗, Y ∗) now denotes a strictly complementary solution to the SDLCP (1)-(3). Since X∗, Y ∗

commute, they are jointly diagonalizable by some orthogonal matrix Q. Applying this orthogonal

similarity transformation on the matrices in the SDLCP (1)-(3), we may assume without loss of

generality that

X∗ =

 ΛX∗
0

0 0

 , Y ∗ =

 0 0

0 ΛY ∗

 ,
where ΛX∗

= Diag(λX
∗

1 , . . . , λX
∗

k0
) ∈ Sk0++ and ΛY ∗

= Diag(λY
∗

1 , . . . , λY
∗

n−k0) ∈ S
n−k0
++ .

Henceforth, whenever we partition a matrix U ∈ Sn, it is always understood that it is

partitioned as

 U11 U12

UT
12 U22

, where U11 ∈ Sk0 , U22 ∈ Sn−k0 and U12 ∈ <k0×(n−k0).

We study local superlinear convergence using Algorithm 1 in the sense of

µk+1

µk
→ 0, as k →∞. (40)

This is equivalent to

τk+1

τk
→ 0, as k →∞, (41)

by Proposition 6. Note that we have τk → 0 as k →∞, by Theorem 1 and Proposition 6.

Superlinear convergence in the sense of (40) is intimately related to local convergence behavior

of iterates, as investigated for example in [21]. The following can be verified easily.

Proposition 11 A sufficient condition for (41) to hold is

δk =
1

τk
‖HPk

(∆Xp
k∆Y p

k )‖F → 0, as k →∞, or ‖HPk
(∆Xp

k∆Y p
k )‖F = o(τk). (42)

Proof: Note that (41) holds if αk,1 → 1 as k →∞. By (9), this sufficient condition is equivalent

to δk → 0 as k →∞, where δk is given by (10). Hence, the proposition is proved. �

In the rest of this section, we are going to show that if certain condition holds for (Xk, Yk)

and for certain subclass of SDLCPs, superlinear convergence using Algorithm 1 can be achieved.
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This is achieved by showing that the above sufficient condition (42) holds. Towards this end, we

transform the system of equations, (5), (6), that relates (∆Xp
k ,∆Y

p
k ) to (Xk, Yk) to an equivalent

system of equations, and then analyze the resulting system.

From Step (a1) of Algorithm 1, where the system of equations (5), (6) is used with ∆X =

∆Xp
k ,∆Y = ∆Y p

k , X = Xk, Y = Yk, P = Pk, σ = 0, τ = τk and r = rk = (τk/τ0)r0, we note that

(∆Xp
k ,∆Y

p
k ) satisfies

Asvec(∆Xp
k) + Bsvec(∆Y p

k ) = −τk
τ0
r0, (43)

HPk
(Xk∆Y

p
k + ∆Xp

kYk) = −HPk
(XkYk), (44)

where A : <ñ → <ñ and B : <ñ → <ñ are defined by Asvec(U) := A(U) and Bsvec(U) := B(U),

respectively, for U ∈ Sn. Here, (A B) has full row rank equal to ñ by Assumption 1(c).

We observe that (43), (44) can be written in the following way. A B

I Wk ⊗sWk

 svec(∆Xp
k)

svec(∆Y p
k )

 = −

 τk
τ0
r0

svec(Xk)

 , (45)

by (12).

The task now is to transform (45) to an equivalent system of equations that allows us to show

that if certain condition on iterates (Xk, Yk) as given in Theorem 3 is satisfied, and for certain

subclass of SDLCPs as given in Theorem 4, superlinear convergence using Algorithm 1 can be

ensured. First, we observe the following.

Proposition 12 Xk =

 Θ(1) O(
√
τk)

O(
√
τk) Θ(τk)

 , Yk =

 Θ(τk) O(
√
τk)

O(
√
τk) Θ(1)

.

Since the proof of the above proposition follows from proofs of similar results in [24, 33] and the

relation between µk and τk as stated in Proposition 6, it will not be shown here.

The new system of equations that we are going to derive involves “iterate” (X̄k, Ȳk) corre-

sponding to (Xk, Yk), W̄k corresponding to Wk, and corresponding “predicted step” (∆X̄p
k ,∆Ȳ

p
k )

to (∆Xp
k ,∆Y

p
k ).

Define

X̄k :=

 I 0

0 1√
τk
I

Xk

 I 0

0 1√
τk
I

 ,
Ȳk :=

 1√
τk
I 0

0 I

Yk
 1√

τk
I 0

0 I

 ,
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and

W̄k :=
1
√
τk

 √τkI 0

0 I

Wk

 √τkI 0

0 I

 . (46)

Proposition 13

X̄k =

 Θ(1) O(1)

O(1) Θ(1)

 , X̄−1k =

 Θ(1) O(1)

O(1) Θ(1)

 ∈ Sn++,

Ȳk =

 Θ(1) O(1)

O(1) Θ(1)

 , Ȳ −1k =

 Θ(1) O(1)

O(1) Θ(1)

 ∈ Sn++,

W̄k =

 Θ(1) O(1)

O(1) Θ(1)

 , W̄−1
k =

 Θ(1) O(1)

O(1) Θ(1)

 ∈ Sn++. (47)

Also, any accumulation point of {X̄k}, {Ȳk}, {W̄k}, as k tends to infinity, are symmetric, positive

definite matrices.

Proof: Observe by Proposition 12 that

X̄k =

 Θ(1) O(1)

O(1) Θ(1)

 ∈ Sn++,

Ȳk =

 Θ(1) O(1)

O(1) Θ(1)

 ∈ Sn++,

and by (13) (from which we get 1−β1 ≤ λmin(X̄kȲk) ≤ λmax(X̄kȲk) ≤ 1 +β1), any accumulation

point of {X̄k}, {X̄−1k } or {Ȳk}, {Ȳ −1k } are symmetric, positive definite as k tends to infinity, with

X̄−1k =

 Θ(1) O(1)

O(1) Θ(1)

 ,
Ȳ −1k =

 Θ(1) O(1)

O(1) Θ(1)

 .
By definition of W̄k in (46), we have W̄kȲkW̄k = X̄k, which implies that W̄k = X̄

1/2
k (X̄

1/2
k ȲkX̄

1/2
k )−1/2X̄

1/2
k ,

from which we see that {W̄k} is a sequence of symmetric, positive definite matrices and has ac-

cumulation points which are symmetric, positive definite as k tends to infinity, since these are

so for {X̄k} and {Ȳk}. Therefore, (47) holds. �
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By partitioning matrices Ai and Bi in A, B, as appeared in (4), respectively into the 4 blocks

format as discussed near the beginning of this section, we perform block Gaussian elimination

on (A B) so that A,B can be rewritten as

svec

 (A1)11 (A1)12

(A1)
T
12 (A1)22

T

...svec

 (Ai1)11 (Ai1)12

(Ai1)
T
12 (Ai1)22

T

svec

 0 (Ai1+1)12

(Ai1+1)
T
12 (Ai1+1)22

T

...svec

 0 (Ai1+i2)12

(Ai1+i2)
T
12 (Ai1+i2)22

T

svec

 0 0

0 (Ai1+i2+1)22

T

...svec

 0 0

0 (Añ)22

T



,



svec

 (B1)11 (B1)12

(B1)
T
12 (B1)22

T

...svec

 (Bi1)11 (Bi1)12

(Bi1)
T
12 (Bi1)22

T

svec

 (Bi1+1)11 (Bi1+1)12

(Bi1+1)
T
12 0

T

...svec

 (Bi1+i2)11 (Bi1+i2)12

(Bi1+i2)
T
12 0

T

svec

 (Bi1+i2+1)11 0

0 0

T

...svec

 (Bñ)11 0

0 0

T



, (48)

respectively. This technique has been used for example in [30, 33]. See also [13, 24]. We will

take A,B to be expressed as in (48) from now onwards. Note that (A B) ∈ <ñ×2ñ has full row

rank by Assumption 1(c), and A,B also satisfy

Au+ Bv = 0 for u, v ∈ <ñ ⇒ uTv ≥ 0. (49)

The implication in (49) holds by Assumption 1(a).

Remark 2 In the case of an SDP, A and B are written as

A =

 A1

0

 , B =

 0

B1

 , (50)

where A1 consists of m rows and B1 consists of ñ−m rows. As discussed in [31], by performing
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block Gaussian elimination, A1 and B1 are given by

svec

 (A1)11 (A1)12

(A1)
T
12 (A1)22

T

...svec

 (Aj1)11 (Aj1)12

(Aj1)
T
12 (Aj1)22

T

svec

 0 (Aj1+1)12

(Aj1+1)
T
12 (Aj1+1)22

T

...svec

 0 (Aj1+j2)12

(Aj1+j2)
T
12 (Aj1+j2)22

T

svec

 0 0

0 (Aj1+j2+1)22

T

...svec

 0 0

0 (Am)22

T



,



svec

 (B1)11 (B1)12

(B1)
T
12 (B1)22

T

...svec

 (Bk1)11 (Bk1)12

(Bk1)
T
12 (Bk1)22

T

svec

 (Bk1+1)11 (Bk1+1)12

(Bk1+1)
T
12 0

T

...svec

 (Bk1+k2)11 (Bk1+k2)12

(Bk1+k2)
T
12 0

T

svec

 (Bk1+k2+1)11 0

0 0

T

...svec

 (Bñ−m)11 0

0 0

T



,

respectively. Note that the way A, B for an SDP are written in (50) is different from that for an

SDLCP, see (48). We can however write them in the form of (48) by appropriately interchanging

rows in (A B) for the SDP.

Now, in order to transform the equation system (45) to an equivalent system, let us define
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Ā(τ) ∈ <ñ×ñ and B̄(τ) ∈ <ñ×ñ to be

svec

 (A1)11
√
τ(A1)12

√
τ(A1)

T
12 τ(A1)22

T

...svec

 (Ai1)11
√
τ(Ai1)12

√
τ(Ai1)

T
12 τ(Ai1)22

T

svec

 0 (Ai1+1)12

(Ai1+1)
T
12

√
τ(Ai1+1)22

T

...svec

 0 (Ai1+i2)12

(Ai1+i2)
T
12

√
τ(Ai1+i2)22

T

svec

 0 0

0 (Ai1+i2+1)22

T

...svec

 0 0

0 (Añ)22

T



,



svec

 τ(B1)11
√
τ(B1)12

√
τ(B1)

T
12 (B1)22

T

...svec

 τ(Bi1)11
√
τ(Bi1)12

√
τ(Bi1)

T
12 (Bi1)22

T

svec

 √τ(Bi1+1)11 (Bi1+1)12

(Bi1+1)
T
12 0

T

...svec

 √τ(Bi1+i2)11 (Bi1+i2)12

(Bi1+i2)
T
12 0

T

svec

 (Bi1+i2+1)11 0

0 0

T

...svec

 (Bñ)11 0

0 0

T



,(51)

respectively, for τ ≥ 0.

The following proposition, whose proof can be found for example in [29, 30, 33], relates A

with Ā(τ) and B with B̄(τ):

Proposition 14

A

 I 0

0
√
τI

⊗s
 I 0

0
√
τI

 = Diag(Ii1×i1 ,
√
τIi2×i2 , τI(ñ−i1−i2)×(ñ−i1−i2))Ā(τ) (52)

and

B

 √τI 0

0 I

⊗s
 √τI 0

0 I

 = Diag(Ii1×i1 ,
√
τIi2×i2 , τI(ñ−i1−i2)×(ñ−i1−i2))B̄(τ). (53)

An important property of Ā(τ), B̄(τ) is given below.

Proposition 15 For τ ≥ 0, (Ā(τ) B̄(τ)) has full row rank, and

Ā(τ)u+ B̄(τ)v = 0 for u, v ∈ <ñ ⇒ uTv ≥ 0. (54)
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Proof: We note that (A(τ) B(τ)) has full row rank for all τ ≥ 0 follows from Assumption 1(c)

and the way block Gaussian elimination is performed on (A B) to obtain A,B in the form (48)

- see explanations for example in [33].

The implication in (54) holds for τ > 0 follows from Assumption 1(a) and (52), (53). For τ = 0,

(54) holds by following the proof of Proposition 2.4 in [33] (see also the proof of Theorem 3.13

in [24]). �

Because of the way A,B are now structured, we have

Proposition 16 q has the following form

q =


q1

0

0

 ∈ <ñ,
where q1 ∈ <i1.

Proof: By Proposition 6, the following equation holds

Asvec(Xk) + Bsvec(Yk) = q +
τk
τ0
r0.

This equation is equivalent to

Ā(τk)svec(X̄k) + B̄(τk)svec(Ȳk) = Diag

(
Ii1×i1 ,

1
√
τk
Ii2×i2 ,

1

τk
I(ñ−i1−i2)×(ñ−i1−i2)

)(
q +

τk
τ0
r0

)
.

Since the left hand side of the above equation and τk
τ0

Diag
(
Ii1×i1 ,

1√
τk
Ii2×i2 ,

1
τk
I(ñ−i1−i2)×(ñ−i1−i2)

)
r0

are bounded as k tends to infinity, we conclude that q must take the form as given in the propo-

sition. �

Remark 3 From the proof of the above proposition, we see that (X̄k, Ȳk) satisfies

Ā(τk)svec(X̄k) + B̄(τk)svec(Ȳk) = q +
τk
τ0
r̄0,k,

where

r̄0,k := Diag

(
Ii1×i1 ,

1
√
τk
Ii2×i2 ,

1

τk
I(ñ−i1−i2)×(ñ−i1−i2)

)
r0. (55)

Finally, by defining ∆X̄p
k and ∆Ȳ p

k to be

∆X̄p
k :=

 I 0

0 1√
τk
I

∆Xp
k

 I 0

0 1√
τk
I

 , (56)

∆Ȳ p
k :=

 1√
τk
I 0

0 I

∆Y p
k

 1√
τk
I 0

0 I

 , (57)
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we obtain from (45) the following new system of equations derived from the original system (45) Ā(τk) B̄(τk)

I W̄k ⊗s W̄k

 svec(∆X̄p
k)

svec(∆Ȳ p
k )

 = −

 τk
τ0
r̄0,k

svec(X̄k)

 , (58)

Let us take the inverse of the matrix on the left hand side of the above equation, which can

be shown to exist for τk > 0. Define

Gk := B−A(Wk ⊗sWk)

and

Ḡk := B̄(τk)− Ā(τk)(W̄k ⊗s W̄k).

Note that Gk and Ḡk are related by

Gk

 √τkI 0

0 I

⊗s
 √τkI 0

0 I

 = Diag

(
Ii1×i1 ,

1
√
τk
Ii2×i2 ,

1

τk
I(ñ−i1−i2)×(ñ−i1−i2)

)
Ḡk.

We have from (58), by taking the inverse of the matrix on the left hand side in (58), the

following svec(∆X̄p
k)

svec(∆Ȳ p
k )

 = −

 −(W̄k ⊗s W̄k)Ḡ−1k I + (W̄k ⊗s W̄k)Ḡ−1k A

Ḡ−1k −Ḡ−1k A

 τk
τ0
r̄0,k

svec(X̄k)


=

1

2

 −(W̄k ⊗s W̄k)Ḡ−1k
(
q − τk

τ0
r̄0,k

)
− svec(X̄k)

Ḡ−1k
(
q − τk

τ0
r̄0,k

)
− svec(Ȳk)

 , (59)

where to obtain the second equality, we use the identity

−Ḡ−1k
(
τk
τ0
r̄0,k

)
+ Ḡ−1k Asvec(X̄k) =

1

2
Ḡ−1k

(
q − τk

τ0
r̄0,k

)
− 1

2
svec(Ȳk).

Given that we are using (59), which involves ∆X̄p
k ,∆Ȳ

p
k , to derive meaningful conditions for

superlinear convergence using Algorithm 1, let us now express (42) in terms of them. We know

that P T
k Pk = W−1

k and by (46), we can let

Pk =
1

τ
1/4
k

W̄
−1/2
k

 √τkI 0

0 I

 . (60)

In the following lemma, we provide the sufficient condition for superlinear convergence using

Algorithm 1 in terms of ∆X̄p
k ,∆Ȳ

p
k .
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Lemma 2 If

∆X̄p
k∆Ȳ p

k = o(1), (61)

then superlinear convergence in the sense of (40) using Algorithm 1 follows.

Proof: A sufficient condition for superlinear convergence in the sense of (40) is (42). Now observe

that for (42) to hold, it is sufficient to have

Pk∆X
p
k∆Y p

k P
−1
k = o(τk). (62)

By (47), Pk given by (60) satisfies

Pk =
1

τ
1/4
k

 Θ(
√
τk) O(1)

O(
√
τk) Θ(1)

 , P−1k = τ
1/4
k

 Θ
(

1√
τk

)
O
(

1√
τk

)
O(1) Θ(1)

 . (63)

By (63), (62) holds if and only if

∆Xp
k∆Y p

k =

 o(τk) o(
√
τk)

o(τ
3/2
k ) o(τk)

 . (64)

Hence, since (62) is sufficient for (40) to hold, the lemma follows by applying (56) and (57) on

(64). �

The system of equations in (59) relates (Xk, Yk) through (X̄k, Ȳk) to (∆X̄p
k ,∆Ȳ

p
k ), and allows

us to have a way to validate conditions on (Xk, Yk) for superlinear convergence using Algorithm

1 by showing that (61) holds. Before we provide such a condition in Theorem 3 below, let us

observe the following.

Proposition 17

lim
k→∞

τk
τ0
r̄0,k =

1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 .

Proof: We have

lim
k→∞

τk
τ0
r̄0,k

= lim
k→∞

1

τ0
Diag(τkIi1×i1 ,

√
τkIi2×i2 , I(ñ−i1−i2)×(ñ−i1−i2))r0

= lim
k→∞

1

τ0
Ā(τk)

 √τkI 0

0 I

⊗s
 √τkI 0

0 I

 svec(X0)
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+
1

τ0
B̄(τk)

 I 0

0
√
τkI

⊗s
 I 0

0
√
τkI

 svec(Y0)

=
1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 ,

where the first equality holds by definition of r̄0,k in (55), and the second equality holds by (52),

(53) and the structure of q in Proposition 16. �

Theorem 3 Suppose

XkYk√
τk
→ 0, as k →∞, (65)

then Algorithm 1 is a superlinearly convergent algorithm in the sense of (40).

Proof: By Proposition 12, (65) implies that

(XkYk)12 = o(
√
τk),

which further implies that

(Xk)12 = o(
√
τk), (Yk)12 = o(

√
τk), (66)

by Claim 1, given in the appendix.

Let (X̄∗, Ȳ ∗) be any accumulation point of {(X̄k, Ȳk)}. Then (66) implies that

(X̄∗)12 = (Ȳ ∗)12 = 0.

We also have W̄ ∗, which is the corresponding accumulation point of {W̄k}, with (W̄ ∗)12 = 0.

Hence,

(Ā(0)(W̄ ∗ ⊗s W̄ ∗) + B̄(0))svec

 (Ȳ ∗)11 0

0 (Ȳ ∗)22


= Ā(0)svec

 (X̄∗)11 0

0 (X̄∗)22

+ B̄(0)svec

 (Ȳ ∗)11 0

0 (Ȳ ∗)22

 . (67)

Furthermore, we have

q + lim
k→∞

(
τk
τ0
r̄0,k

)

= q +
1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 , (68)

31



which follows from Proposition 17.

Note that

Ā(0)svec(X̄∗) + B̄(0)svec(Ȳ ∗) = q + lim
k→∞

(
τk
τ0
r̄0,k

)
,

by Remark 3. From this equality, it then follows from (67), (68), (X̄∗)12 = (Ȳ ∗)12 = 0, the

structure of q and that of Ā(0), B̄(0) that

−Ā(0)svec

 −(X̄∗)11 0

0 (X̄∗)22

+ B̄(0)svec

 −(Ȳ ∗)11 0

0 (Ȳ ∗)22


= q − 1

τ0
Ā(0)svec

 0 0

0 (X0)22

− 1

τ0
B̄(0)svec

 (Y0)11 0

0 0


Therefore,

(B̄(0)− Ā(0)(W̄ ∗ ⊗ W̄ ∗))svec

 −(Ȳ ∗)11 0

0 (Ȳ ∗)22

 = q − lim
k→∞

(
τk
τ0
r̄0,k

)
.

Hence, in the limit as k tends to infinity, Ḡ−1k
(
q − τk

τ0
r̄0,k

)
tends to

svec

 −(Ȳ ∗)11 0

0 (Ȳ ∗)22

 .

Therefore, by (59),

∆Ȳ p
k =

 −Θ(1) o(1)

o(1) o(1)

 .

In a similar way, we can show that

∆X̄p
k =

 o(1) o(1)

o(1) −Θ(1)

 .

Since (61) holds in this case, the theorem is proved. �

In Theorem 3, we provide a sufficient condition for superlinear convergence using Algorithm 1

on any SDLCP that satisfies Assumptions 1(a), (c) and Assumption 2. This sufficient condition is

similar to that found in [22, 31] using Algorithm 1 with the HKM search direction. We have shown

in the above theorem that the same condition is also sufficient for superlinear convergence using

Algorithm 1 with the NT search direction. Superlinear convergence result has been establised in
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[14] using the NT search direction by “narrowing” the neighborhood of the central path, although

in [14], a feasible algorithm is considered, while here, we consider an infeasible algorithm, with

more involved analysis.

In the following theorem, we give another sufficient condition for superlinear convergence

using Algorithm 1 on SDLCPs that have certain structure

Theorem 4 Let A,B be such that for all 1 ≤ i ≤ ñ, if Ai· 6= 0, then Bi· = 0 (or equivalently, if

Bi· 6= 0, then Ai· = 0). Furthermore, let q satisfies either one of the following two conditions:

1. For all 1 ≤ i ≤ i1, if Bi· 6= 0, then qi = 0.

2. For all 1 ≤ i ≤ i1, if Ai· 6= 0, then qi = 0.

Suppose (X0, Y0) is chosen such that

for all i1 + i2 + 1 ≤ i ≤ ñ, Ai·svec(X0) = 0,

if q satisfies the first condition, and

for all i1 + i2 + 1 ≤ i ≤ ñ, Bi·svec(Y0) = 0,

if q satisfies the second condition, then iterates generated by Algorithm 1 converge superlinearly

in the sense of (40).

Proof: We only need to show the theorem when the first condition (condition 1) on q is satisfied.

The proof of the theorem when the second condition on q holds is similar.

By Remark 3 and W̄kȲkW̄k = X̄k, we have

(Ā(τk)(W̄k ⊗ W̄k) + B̄(τk))svec(Ȳk) = q +
τk
τ0
r̄0,k

Let (X̄∗, Ȳ ∗) be any accumulation point of {(X̄k, Ȳk)} as k tends to infinity, with W̄ ∗ the corre-

sponding accumulation point of {W̄k}. Then,

q + lim
k→∞

τk
τ0
r̄0,k = (Ā(0)(W̄ ∗ ⊗ W̄ ∗) + B̄(0))svec(Ȳ ∗). (69)

On the other hand,

q + lim
k→∞

τk
τ0
r̄0,k

= q +
1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 , (70)
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which follows from Proposition 17.

By conditions imposed on (A,B, q) and (X0, Y0) in the theorem, (51), and the structure of q in

Proposition 16, it follows from (69) and (70) that

(B̄(0)− Ā(0)(W̄ ∗ ⊗ W̄ ∗))svec(Ȳ ∗)

= −q +
1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 .

Hence, in the limit as k tends to infinity, Ḡ−1k
(
q − τk

τ0
r̄0,k

)
tends to −svec(Ȳ ∗) and (W̄k ⊗

W̄k)Ḡ−1k
(
q − τk

τ0
r̄0,k

)
tends to −svec(X̄∗). Therefore, (59) implies that

∆X̄p
k = o(1), ∆Ȳ p

k = O(1),

from which we conclude that (61) holds which then implies that Algorithm 1 is a superlinearly

convergent algorithm. �

Theorem 4 tells us that for certain subclass of SDLCPs, if a suitable starting point (X0, Y0)

is chosen, then we have superlinear convergence using Algorithm 1 on the SDLCP. We can apply

this theorem to an important subclass of semi-definite programs known as linear semi-definite

feasibility problems. A linear semi-definite feasibility problem is a semi-definite program where

C = 0 in (P) or bj = 0, j = 1, . . . ,m, in (D).

Corollary 1 For a linear semi-definite feasibility problem, when C = 0 in (P), if X0 is chosen

such that for all i1 + i2 + 1 ≤ i ≤ ñ, Ai·svec(X0) = 0, and when bj = 0, j = 1, . . . ,m, in (D),

if Y0 is chosen such that for all i1 + i2 + 1 ≤ i ≤ ñ, Bi·svec(Y0) = 0, then Algorithm 1 is a

superlinearly convergent algorithm on the linear semi-definite feasibility problem.

Proof: When C = 0 in (P), it is easy to check that (A,B, q) satisfies the conditions in Theorem

4, with q satisfying the first condition there. When bj = 0, j = 1, . . . ,m, in (D), it is also easy to

check that (A,B, q) satisfies the conditions in Theorem 4, with q satisfying the second condition

there. Corollary then follows from Theorem 4. �

Corollary 1 states a similar result as Theorem 5.1 in [31]. The latter holds for the HKM

search direction, while Corollary 1 applies to the NT search direction. It is worthwhile to note

that to solve the linear semi-definite feasibility problem, in the literature [3, 5, 7, 35, 38] the

assumption that the interior of dual feasible region is nonempty is usually made. In the above

corollary, we do not need such an assumption to show superlinear convergence using Algorithm
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1. Only strict complementarity assumption and a suitable initial iterate are needed. In fact, we

see from Corollary 1 that if the linear semi-definite feasibility problem has primal feasible region

with nonempty relative interior in the case when C = 0 in (P), and has dual feasible region with

nonempty interior in the case when bj = 0, j = 1, . . . ,m, in (D), then Algorithm 1 is always a

superlinearly convergent algorithm, irrespectively of starting point (X0, Y0). This is so because

the conditions in the corollary are satisfied trivially, as k0 = n in the former case and k0 = 0 in

the latter case. That is, in these cases, the matrices that we considered are no longer partitioned

into 4 blocks, and we have i1 = ñ and i2 = 0 in both cases.

5 Numerical Study

In this section, we report on the numerical results we obtained upon applying Algorithm 1 to

solve instances of SDLCP (1)-(3). In existing SDP solvers, such as SeDuMi [34], SDPT3 [37],

there is an option for the equation system to find the corrector step in the interior point algorithm

to have a second order term. Having the second order term tends to enhance practical efficiency

of the algorithm. However, we decide to perform our numerical experiments without introducing

a second order term in the equation system to find the corrector step in Algorithm 1. This is

mainly due to more observed numerical warnings when we run our Matlab programs as iterates

get closer to an optimal solution for instances of SDLCP (1)-(3) we tested when the algorithm is

used with the second order term introduced. It is also worthwhile to note that with or without

the second order term in the equation system to find the corrector step, the number of iterations

to solve an instance of SDLCP (1)-(3), namely, a linear semi-definite feasibility problem (LSDFP)

with

A1 =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 , A2 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , A3 =


0 0 0 0

0 0 1 0

0 1 1 0

0 0 0 0

 ,

A4 =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

 , A5 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 1

 ,

C = 0, b1 = 1, bi = 0, i = 2, 3, 4, 5,

(71)
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using our implemented algorithm differs only by 1 iteration, when tolerance ε is set to 10−10.

We implement Algorithm 1 in Matlab, and in all our numerical experiments, we set β1 =

0.3, β2 = 0.45 and the tolerance ε to be 10−10 in the algorithm.

We generate random instances of SDLCP (1)-(3) by first generating diagonal matricesDÂ, DB̂ ∈

<ñ×ñ, where ñ = n(n+ 1)/2, such that the main diagonal entries of DB̂ are randomly taken from

the uniform distribution between −5 and −1, and the main diagonal entries of DÂ are zero

or nonzero with equal probability. If a main diagonal entry of DÂ is nonzero, then it is ran-

domly assigned a value from the uniform distribution between 0 and 4. We obtain the matrices

Â, B̂ ∈ <ñ×ñ by

Â = V DÂU, B̂ = V DB̂U,

where U, V ∈ <ñ×ñ are randomly generated orthogonal matrices, see [28]. We have A,B ∈ <ñ×ñ

to be obtained from Â, B̂ by interchanging corresponding columns in the latter matrices when a

random number generated from the uniform (0, 1) distribution is less than 0.5, and keeping these

columns when the random number is greater than or equal to 0.5. A,B thus obtained satisfy

Assumption 1(a),(c). On the other hand, Assumption 1(b) is satisfied by setting q to be

A(svec(In×n)) + B(svec(In×n)).

Hence, X1, Y 1 in Assumption 1(b) are both equal to the identity matrix. We set

X0 = ηIn×n, Y0 = ηIn×n,

where

η = max

{
10,
√
n, n max

1≤i≤ñ

{
1 + |qi|

1 + ‖Ai·‖2
,

1 + |qi|
1 + ‖Bi·‖2

}}
.

This choice of initial iterate (X0, Y0) is motivated by [37].

For each n from 5 to 15, we attempt to solve, using Algorithm 1, 100 instances of SDLCP

(1)-(3) of size n, randomly generated with given initial iterate (X0, Y0) as described in the last

paragraph. For each n, we compute the average number of iterations taken for the algorithm to

terminate for those instances that give real valued (Xk, Yk) upon termination of the algorithm.

We denote In to be the number of these instances. Our results are given in Table 1.

Comparing our implemented algorithm with existing solvers, using our implemented algo-

rithm on the LSDFP with data given by (71), we need 12 iterations before termination, while
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n In Average number of iterations to termination

5 94 21.07

6 91 22.80

7 90 23.22

8 77 24.64

9 80 25.79

10 68 26.84

11 64 27.91

12 65 27.97

13 54 29.61

14 52 30.44

15 54 31.63

Table 1: Performance of implemented interior point algorithm on SDLCP (1)-(3).

SDPT3 needs 7 iterations (with OPTIONS.gaptol in SDPT3 set to 1e− 10), and SeDuMi needs

5 iterations (with pars.eps in SeDuMi set to 1e − 14). The initial iterate (X0, Y0) used for our

implemented algorithm on this LSDFP is

X0 = 10


1 0 0 0

0 1 0 0

0 0 1 −0.5

0 0 −0.5 1

 , Y0 = 10I. (72)

The same initial iterate is also used when solving this problem using SDPT3.

We now report on our numerical investigation on the local convergence of Algorithm 1 when

it is used to solve the LSDFP with data given by (71). It is easy to check that the LSDFP

satisfies Assumption 2 with

X∗ =


x1 x2 0 0

x2 1− x1 0 0

0 0 0 0

0 0 0 0

 , Y ∗ =


0 0 0 0

0 0 0 0

0 0 y1 + y2 y3

0 0 y3 y3 − y2

 ,

where x1, x2, y1, y2, y3 are constrained for these matrices to be positive semi-definite. It is also

easy to check that when the initial iterate (X0, Y0) in Algorithm 1 is chosen to be given by (72),
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the condition in Corollary 1 is satisfied. As predicted by our theoretical result in the corollary,

our numerical results given in Table 2 shows that superlinear convergence of iterates generated

by the implemented algorithm when solving this LSDFP takes place.

k Xk • Yk/Xk−1 • Yk−1

1 0.251141

2 0.433461

3 0.505825

4 0.527020

5 0.512764

6 0.464522

7 0.376313

8 0.242669

9 0.091191

10 0.010082

11 0.000104

12 0.000013

Table 2: Convergence behavior of iterates generated by implemented interior point algorithm on

LSDFP with data given by (71).

6 Conclusion

In this paper, we consider an infeasible predictor-corrector primal-dual path following interior

point algorithm, using the Nesterov-Todd (NT) search direction, to solve a semi-definite linear

complementarity problem (SDLCP). Global convergence is shown using the algorithm to solve

an SDLCP and an iteration complexity bound which is polynomial in n, the size of the matrices

involved, is also provided. This complexity bound is the best known so far for infeasible interior

point algorithms when the “narrow” neighborhood is used for solving SDPs. Furthermore, we

study superlinear convergence using the algorithm under strict complementarity assumption.

Two sufficient conditions are provided for this to occur. The first sufficient condition is on the

behavior of iterates generated by the algorithm, while the second sufficient condition is on the
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structure of SDLCPs. We finally report on preliminary numerical results we obtained upon

implementing the interior point algorithm and using it to solve SDLCPs that are not necessarily

SDPs.
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Appendix

Claim 1 We have

(XkYk)12 = o(
√
τk)

if and only if

(Xk)12 = o(
√
τk), (Yk)12 = o(

√
τk).

Proof1: We only need to show the if direction, since the only if direction follows trivially using

Proposition 12.

Suppose (XkYk)12 = o(
√
τk). Then (X̄kȲk)12 = o(1). Let (X̄∗, Ȳ ∗) be any accumulation point of

(X̄k, Ȳk) as k tends to infinity. We have (X̄∗Ȳ ∗)12 = 0. If we can show that (X̄∗)12 = (Ȳ ∗)12 = 0,

then we show that (X̄k)12 = o(1), (Ȳk)12 = o(1), and hence (Xk)12 = o(
√
τk), (Yk)12 = o(

√
τk).

Now, if we premultiply and postmultiply (X̄∗Ȳ ∗)12 by (Ȳ ∗)T12 and (Ȳ ∗)−122 respectively, and express

(X̄∗Ȳ ∗)12 in terms of block components of X̄∗ and Ȳ ∗, we obtain

(Ȳ ∗)T12(X̄
∗)11(Ȳ

∗)12(Ȳ
∗)−122 + (Ȳ ∗)T12(X̄

∗)12 = 0.

Therefore, we have

(X̄∗)12 • (Ȳ ∗)12 = −Tr((Ȳ ∗)T12(X̄
∗)11(Ȳ

∗)12(Ȳ
∗)−122 ) = −‖(X̄∗)1/211 (Ȳ ∗)12(Ȳ

∗)
−1/2
22 ‖2F ≤ 0. (73)

On the other hand, by Remark 3, (X̄k, Ȳk) satisfies

Ā(τk)svec(X̄k) + B̄(τk)svec(Ȳk) = q +
τk
τ0
r̄0,k. (74)

1The proof follows that of Proposition 4.4 in [31].
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In the limit as k tends to infinity, from (74), we obtain

Ā(0)svec(X̄∗) + B̄(0)svec(Ȳ ∗)

= q +
1

τ0
Ā(0)svec

 0 0

0 (X0)22

+
1

τ0
B̄(0)svec

 (Y0)11 0

0 0

 ,

where we apply the result in Proposition 17.

That is,

Ā(0)svec

X̄∗ − 1

τ0

 0 0

0 (X0)22

+ B̄(0)svec

Ȳ ∗ − 1

τ0

 (Y0)11 0

0 0

 = q.

Using the structure of q in Proposition 16 and that of Ā(0), B̄(0), the following holds:

Ā(0)svec

 0 (X̄∗)12

(X̄∗)T12 (X̄∗)22 − 1
τ0

(X0)22

+ B̄(0)svec

 (Ȳ ∗)11 − 1
τ0

(Y0)11 (Ȳ ∗)12

(Ȳ ∗)T12 0

 = 0.

By the monotonicity result in Proposition 15, we have 0 (X̄∗)12

(X̄∗)T12 (X̄∗)22 − 1
τ0

(X0)22

 •
 (Ȳ ∗)11 − 1

τ0
(Y0)11 (Ȳ ∗)12

(Ȳ ∗)T12 0

 ≥ 0.

Hence, (X̄∗)12•(Ȳ ∗)12 ≥ 0. Combined with (73), we conclude from ‖(X̄∗)1/211 (Ȳ ∗)12(Ȳ
∗)
−1/2
22 ‖2F = 0

that (Ȳ ∗)12 = 0.

In a similar fashion, we can show that (X̄∗)12 = 0. �
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