
Line search and convergence in
bound-constrained optimization

Arnold Neumaier

Fakultät für Mathematik, Universität Wien
Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

email: Arnold.Neumaier@univie.ac.at
WWW: http://www.mat.univie.ac.at/~neum

Behzad Azmi

Johann Radon Institute for Computational and Applied Mathematics (RICAM)
Austrian Academy of Sciences

Altenbergerstraße 69, A-4040 Linz, Austria
email: behzad.azmi@ricam.oeaw.ac.at

WWW: https://people.ricam.oeaw.ac.at/b.azmi/

March 27, 2019

Abstract. The first part of this paper discusses convergence properties of a new line
search method for the optimization of continuously differentiable functions with Lipschitz
continuous gradient. The line search uses (apart from the gradient at the current best point)
function values only. After deriving properties of the new, in general curved, line search,
global convergence conditions for an unconstrained optimization algorithm are derived and
applied to prove the global convergence of a new nonlinear conjugate gradient (CG) method.
This method works with the new, gradient-free line search – unlike traditional nonlinear
CG methods that require line searches satisfying the Wolfe condition.

In the second part, a class of algorithms is developed for bound constrained optimiza-
tion. The new scheme uses the gradient-free line search along bent search paths. Unlike
traditional algorithms for bound constrained optimization, our algorithm ensures that the
reduced gradient becomes arbitrarily small. It is also proved that all strongly active vari-
ables are found and fixed after finitely many iterations.

A Matlab implementation of a bound constrained solver based on the new theory is dis-
cussed in the companion paper LMBOPT – a limited memory program for bound-constrained

optimization by M. Kimiaei and the present authors.

1

Contents

1 Introduction 2

2 Smooth bound-constrained optimization problems 4

3 The line search 6

4 Convergence – unconstrained case 11

5 The angle condition 14

6 Zigzagging 16

7 A nonlinear conjugate gradient method 18

8 Optimality conditions for bound constraints 24

9 The bent search path 27

10 Some auxiliary results 30

11 Convergence – bound constrained case 32

References 35

1 Introduction

This paper discusses theoretical properties of line search methods for the bound constrained
optimization problem

min f(x)

s.t. x ∈ R
n, x ≤ x ≤ x,

(1)

where f is continuously differentiable with Lipschitz continuous gradient. This contains the
unconstrained case when all bounds are infinite.

Convergence results for both the unconstrained and bound constrained have a long history.
For complete references we refer to the book by Nocedal & Wright [14]; here we con-
centrate on tracing only those references relevant for the present work that are aimed at

2

an improved convergence theory for line search methods valid under significantly weaker
assumptions than before.

Most line search algorithms are based on satisfying the Wolfe conditions (Wolfe [17]),
which require a gradient evaluation at every trial point but match the requirements in
typical modern convergence proofs. We shall instead focus on (possibly curved) line searches
that use (apart from the gradient at the current best point) function values only. In the
past, such line searches were based on satisfying the Goldstein conditions (Goldstein [8]),
which are known to behave poorly in strongly nonconvex regions. Our new line search
(presented in Section 3) is based on satisfying a new sufficient descent condition (9) that
removes this weakness and still produces efficient steps (Theorem 3.1) in the sense ofWarth

& Werner [16].

We prove in Theorem 4.1 a variant of their result that this condition together with a weak
condition on the search directions suffices for global convergence. This global convergence
result is used to prove in Theorem 7.3 the global convergence of a new nonlinear conju-
gate gradient (CG) method that – unlike traditional nonlinear CG methods that need line
searches satisfying the Wolfe condition – works with the new, gradient-free line search. The
new CG method is motivated by the desire to reduce the inefficiency of line search methods
due to zigzagging of the search directions, discussed in Section 6. The search direction is
therefore chosen by minimizing (Theorem 7.1) a preconditioned distance to the previous
search direction.

In the second part we show how to utilize the new line search to solve the bound constrained
optimization problem. Because of the bound constraints, the search path must now be bent
(Bertsekas [2]) in order to produce feasible points only. We therefore discuss in detail
(Section 9) the properties of bent search paths that are instrumental for an analysis of
the descent properties. We then formulate (Algorithm 9.1) a generic algorithm for solving
bound constrained optimization problems using a gradient-free bent line search.

Global convergence of this generic algorithm is then proved in Section 11. Its good theoret-
ical properties with regard to zigzagging are established by proving that all strongly active
variables are found and fixed after finitely many iterations (Theorem 8.2). Thus the new
algorithm shares this property with the traditional active set methods by Bertsekas [2],
Conn et al. [5], and Hager & Zhang [10].

An implementation of a bound constrained solver based on the new theory must take care
of many other questions not covered by the theory, in particular regarding finite precision
effects. A discussion of such implementation questions, details for a particular implemen-
tation in Matlab and Java, and a thorough comparison with other state of the art solvers
is given in the companion paper Kimiaei et al. [13].

Acknowledgments. Earlier versions of this paper benefitted from discussions with Wal-
traud Huyer, Morteza Kimiaei, Hermann Schichl.

3

2 Smooth bound-constrained optimization problems

Inequalities between vectors or matrices are interpreted component-wise. For an arbitrary
norm ‖ · ‖, the dual norm ‖ · ‖∗ is defined by

‖y‖∗ := sup
x 6=0

yT s

‖s‖ ,

so that the generalized Cauchy–Schwarz inequality

|yT s| ≤ ‖y‖∗‖s‖

holds. To be numerically appropriate, the norm must give a sensible measure of distance
between points where we evaluate functions. For example, one could use a scaled 1-norm,
with

‖s‖ :=
∑

k

∣∣∣ sk
wk

∣∣∣,

where wk > 0 is a weight specifying the typical magnitude xk of the kth component of a
trial point. In this case, the dual norm is a scaled maximum norm, with

‖y‖∗ := max
k
wk|yk|.

Another useful pair of norms are the ellipsoidal norms

‖p‖ =
√
pTBp, ‖g‖∗ =

√
gTB−1g (2)

defined in terms of a symmetric positive definite matrix B ∈ R
n×n. Using a Cholesky

factorization B = RTR and a linear transformation p′ = Rp, g′ = R−T g, where R−T

denotes the transposed inverse of R, it is easy to check that these indeed form a pair of
dual norms, so that

|gTp| ≤ ‖g‖∗‖p‖.

For the identity matrix B = I, (2) becomes the standard Euclidean norm ‖s‖2 :=
√
sT s,

which is its own dual. At times we assume that a norm is monotone, i.e., it satisfies

|s| ≤ |s′| ⇒ ‖s‖ ≤ ‖s′‖, (3)

and hence also ‖s‖ = ‖ |s| ‖. (Here, as always later, the absolute value of and inequalities
between vectors are componentwise.) This is the case for scaled 1-norms, scaled maximum
norms, the Euclidean norm. But ellipsoidal norms are monotone only if B is a diagonal
matrix.

We consider the bound-constrained optimization problem

min f(x)

s.t. x ∈ x,
(4)

4

where the objective function f : C ⊆ R
n → R is a continuously differentiable function,

and
x := [x, x] := {x ∈ R

n | x ≤ x ≤ x}
is a bounded or unbounded box in R

n describing the bounds on the variables. One-sided or
missing bounds are accounted for by allowing components of the vector x of lower bounds
to take the value −∞ and components of the vector x of upper bounds to take the value ∞.
A point x is called feasible if it belongs to the box x. To have a well-defined optimization
problem, the box x must be part of the domain C of definition1 of f . We assume that the
gradient

g(x) := ∂f(x)/∂x = f ′(x)T ∈ R
n.

is Lipschitz continuous in the feasible domain, i.e.,

‖g(x′)− g(x)‖∗ ≤ γ‖x′ − x‖ for x, x′ ∈ x. (5)

The Lipschitz constant γ depends on the norm used, but not the notion of Lipschitz
continuity, since all norms in R

n are equivalent.

The optimization methods discussed here improve an initial feasible point x0 by constructing
a sequence x0, x1, x2, . . . of feasible points with decreasing function values. To ensure this,
we search in each iteration along an appropriate search path x(α) starting at the current

point x(0) = xℓ, and take xℓ+1 = x(αℓ) where αℓ is determined by a line search (discussed
in Section 3) based on function values only. If the iteration index ℓ is fixed, we simply write

x for the current point xℓ.

The actual optimization typically proceeds through three phases with distinct character-
istics. In the initial phase, one moves down into a valley; the search direction is of minor
importance, and most activities are correctly adjusted if appropriately bent search paths
(see Section 9) are used. In the second, intermediate phase, one moves along the valley
towards the minimizer. This phase may be long if the valley is long, steep and curved, or
short and even absent if the valley is fairly round. To be sure to come close to the minimizer,
the search directions must conform to conditions that allow one to prove convergence of
the method; see Sections 4, 5, and 11. To be efficient in this phase, one also needs to take
measures against various forms of zigzagging; see Section 6.

In the final phase, one is close to the minimizer but has to locate it to the desired accuracy.
Here a good choice of search direction is essential. As near a minimizer the function is
typically almost quadratic, a good method must select in this phase search direction and
step sizes in a way that a good behavior on quadratic functions is guaranteed. We shall
utilize for this purpose approximate conjugate directions; see Section 7.

1In practice, one may allow a smaller domain of definition if f satisfies the coercivity condition that,
as x approaches the boundary of the domain of definition, f(x) exceeds the function value f(x0) at a known
starting point x0. Also, Lipschitz continuity may be relaxed to local Lipschitz continuity if all evaluation
points remain in a bounded region.

5

3 The line search

A line search proceeds by searching points x(α) on a curve of feasible points parameterized
by a step size α > 0 starting at the current point x = x(0). The goal is to find a
value for the step size such that f(x(α)) is sufficiently smaller than f(x), with a notion of
”sufficiently” to be made precise. If the gradient g = g(x) is nonzero, the existence of such
an α > 0 is guaranteed if the tangent vector

p := x′(0) (6)

exists and satisfies
gTp < 0; (7)

a vector p with (7) is called a descent direction. In the unconstrained case, the curve
is frequently taken to be a ray from x in a descent direction p, giving x(α) = x + αp. In
this case, we call the line search straight; if the curve is a piecewise-linear path, bent; and
otherwise curved.

A good and computationally useful measure of progress of a line search is the Goldstein
quotient (first considered by Goldstein [9])

µ(α) :=
f(x(α))− f(x)

αg(x)Tp
for α > 0. (8)

µ can be extended to a continuous function on [0,∞] by defining µ(0) := 1 since, by
l’Hôpital’s rule,

lim
α→0

µ(α) = lim
α→0

f ′(x(α))x′(α)

g(x)Tp
=
f ′(x)x′(0)

gTp
= 1.

Since by assumption gTp < 0, we have f(x(α)) < f(x) iff α > 0 and µ(α) > 0. Restrictions
on the values of the Goldstein quotient define regions where sufficient descent is achieved.
We consider here the sufficient descent condition

µ(α)|µ(α)− 1| ≥ β (9)

with fixed β > 0. This condition requires µ(α) to be both not too close to one, forbidding
steps that are too short, and sufficiently positive, typically forbidding steps that are too
long by forcing f(x(α)) < f(x). The condition is closely related to the so-called Goldstein
condition

f(x) + αµ′′gTp ≤ f(x(α)) ≤ f(x) + αµ′gTp, (10)

where 0 < µ′ < µ′′ < 1. Indeed, (10) is equivalent to

µ′ ≤ µ(α) ≤ µ′′, (11)

hence (9) holds with
β = µ′(1− µ′′) > 0.

Conversely, (9) implies that either (10) holds with

µ′ =
2β

1 +
√
1− 4β

, µ′′ =
1 +

√
1− 4β

2
,

6

Figure 1: The Goldstein condition with tuning parameter β = 0.1. Drawn in each case are
the lines with slopes µ′gTp, µ′′gTp, µ′′′gTp, and the resulting set of acceptable step sizes.

0 0.5 1 1.5 2

1

1.2

1.4

1.6

1.8

2

2.2

(i) f(x(α))=2−2α+α2

0 0.5 1 1.5 2

1

1.5

2

(ii) f(x(α))=2−α−α2
+α3

0 0.5 1
0.8

0.85

0.9

0.95

1

1.05

(iii) f(x(α))=1−α/(10α+1)

0 1 2 3
0

1

2

3

4

(iv) f(x(α))=4−α+1.8α2
−0.75α3

0 0.5 1 1.5 2

1

1.5

2

(v) f(x(α))=1+(α−1)
4

0 0.5 1 1.5
0.5

1

1.5

2

(vi) f(x(α))=2−0.25α−3α2
+2α3

7

or the alternative fast descent condition

µ(α) ≥ µ′′′ (12)

holds with

µ′′′ =
1 +

√
1 + 4β

2
.

The Goldstein condition (11) can be interpreted geometrically: In the graph of f(x(α)),

the cone defined by the two lines through (0, f) with slopes µ′gTp and µ′′gTp cuts out a
section of the graph, which defines the admissible step size parameters. Similarly, equality
in (12) defines another line that determines the boundary of another section of the graph
leading to admissible step size parameters. Some illustrative examples are given in Figure
1.

By the preceding discussion, satisfying the sufficient descent condition (9) guarantees a
sensible decrease in the objective function. Indeed, we shall prove an explicit bound on the
gain. It will be essential to get later global convergence statements.

3.1 Theorem. Suppose that the function f has a continuous gradient g satisfying the
Lipschitz condition

‖g(x)− g(x′)‖∗ ≤ γ‖x− x′‖.
If the restriction of the search path to [0, α] is a ray and α > 0 satisfies the sufficient descent
condition (9) then

(f(x)− f(x(α′))
‖p‖2

(g(x)Tp)2
≥ 2β

γ
(13)

holds for any step size α′ with f(x(α′)) ≤ f(x(α)).

Proof. By assumption,
x(α′) = x+ α′p for 0 ≤ α′ ≤ α.

The function ψ defined by

ψ(α) := f(x+ αp)− αg(x)Tp

satisfies
ψ′(α) = g(x+ αp)Tp− g(x)Tp = (g(x+ αp)− g(x))Tp.

The generalized Cauchy–Schwarz inequality gives

|ψ′(α)| ≤ ‖g(x+ αp)− g(x)‖∗‖p‖ ≤ γ‖αp‖‖p‖ = γα ‖p‖2,

hence

|f(x+ αp)− f(x)− αg(x)Tp| = |ψ(α)− ψ(0)| =
∣∣∣
∫ α

0

ψ′(t)dt
∣∣∣

≤
∫ α

0

|ψ′(t)|dt ≤
∫ α

0

γt‖p‖2dt = γα2

2
‖p‖2.

8

Therefore
‖p‖2

|g(x)Tp| ≥
2

αγ

∣∣∣f(x+ αp)− f(x)− αg(x)Tp

αg(x)Tp

∣∣∣ = 2

αγ
|µ(α)− 1|.

On the other hand, since g(x)Tp < 0,

f(x)− f(x(α))

|g(x)Tp| =
f(x(α))− f(x)

g(x)Tp
= αµ(α).

Taking the product, we conclude that

(f(x)− f(x(α′))
‖p‖2

(g(x)Tp)2
≥ αµ(α)

2

αγ
|µ(α)− 1| = 2µ(α)|µ(α)− 1|

γ
≥ 2β

γ
.

⊓⊔

A line search satisfying the conclusion of Theorem 3.1 is called an efficient line search
(Warth & Werner [16]).

Near a local minimizer, twice continuously differentiable functions are bounded from below
and, because of Taylor’s theorem, almost quadratic. For a linear search path and a stricly
convex quadratic function,

f(x+ αp) = f(x) + αg(x)Tp+
α2

2
pTG(x)p =: f + aα + bα2 = f − a2

4b
+ b(α− α̂)2

with

a < 0 < b, α̂ = − a

2b
> 0.

This implies that

µ(α) = 1 +
bα

a
= 1− α

2α̂
< 1

for α > 0. In particular, µ(α̂) = 1
2
, and the minimizer

α̂ =
α

2(1− µ(α))
(14)

along the search ray can be computed from any α > 0.

A step size satisfying the sufficient descent condition (9) can be found constructively, when
the objective function is bounded below.

3.2 Theorem. Let β ∈]0, 1
4
[, gTp < 0. If f(x(α)) is bounded below then the equation

µ(α̂) = 1
2
has a solution α̂ > 0, and any α sufficiently close to α̂ satisfies (9).

Proof. Let f := inf
α≥0

f(x(α)) and µ0 := inf
α≥0

µ(α). If µ0 > 0 then (8) implies for α > 0 the

inequality

f − f(x) ≤ f(x(α))− f(x) = αgTpµ(α) ≤ αgTpµ0, (15)

9

but since gTp < 0, this is impossible for sufficiently large α. Therefore µ0 ≤ 0. By
continuity, µ(α̂) = 1

2
has a solution α̂ > 0. Since µ(α̂)|µ(α̂)− 1| = 1

4
> β, (9) holds for all

α sufficiently close to α̂. ⊓⊔

Based on the theory so far it is natural to attempt to find a step size α with µ(α) ≈ 1
2 .

This can be done by a simple bisection procedure.

3.3 Algorithm. Curved line search (CLS)

Purpose: Finds a step size α with µ(α)|µ(α)− 1| ≥ β

Input: x(α) (search path), f0 = f(x(0)), ν = −g(x(0))Tx′(0)
αinit (initial step size), αmax (maximal step size),
Requirements: ν > 0, 0 < αinit ≤ αmax ≤ ∞
Parameters: β ∈]0, 1

4
[, q > 1

first=1;

α = 0; α = ∞; α = αinit;

while 1,

µ = (f0 − f(x(α)))/(αν);

if µ|µ− 1| ≥ β, break; end;

if µ ≥ 1
2
, α = α;

elseif α = αmax, break;

else α = α; % linear decrease or more

end;

if first,

first=0;

if µ < 1, α = 1
2
α/(1− µ); elseα = αq; end;

else

if α = ∞, α = αq;

elseif α = 0, α = 1
2
α/(1− µ);

else α =
√
αα;

end;

end;

α = min(α, αmax);

end;

return α;

The Boolean variable first in the while loop ensures that the quadratic case will be
optimally handled. In the first iteration we use the formula (14) whenever µ(α) < 1. If the
resulting next value for µ does not satisfy the sufficient descent condition (9), the function
is far from quadratic and bounded, and we proceed with a simple bisection scheme: Until
we know bounds α̂ ∈ [α, α] with α > 0 and α < ∞, we interpolate with (14), but we

10

extrapolate with a constant factor q > 1. Once such a bracket [α, α] is found we use
geometric mean steps since the bracket may span several orders of magnitude. However,
we quit the line search once the stopping test is satisfied and return the final step size α.

Because of Theorem 3.1, Algorithm 3.3 defines (for αmax = ∞) an efficient line search and
achieves a well-defined minimal reduction in the function value.

Note that in a computer implementation, this idealized line search needs an extra stopping
test to ensure that it ends after finitely many steps even when f is unbounded below along
the search curve. In addition, one need to take measures that make the line search robust
in the presence of rounding errors by forbidding steps that are so small that the change
in function value is dominated by rounding errors. Details are discussed in the companion
paper Kimiaei et al. [13].

In practice, one may use a small value such as β = 0.02, and a large value of q such as
q = 25. The best values depend on the particular algorithm calling the line search, and
must be determined by calibration on a set of test problems.

In all cases where for small α, the graph of f(x(α)) is – as in Figure 1(vi) – concave
and fairly flat, while for larger α, f(x(α)) is strongly increasing, the traditional Goldstein
condition (10) allows – unlike the present sufficient descent condition – only a tiny and
inefficient range of step sizes. This is one of the reasons why many currently used line
searches also involve the so-called Wolfe condition, which needs gradient evaluations during
the line search.

The present line search is gradient-free but still avoids this defect of the Goldstein condition.
Indeed, in the above cases, the range allowed by the sufficient descent condition (9) is
considerably larger than that of the Goldstein condition, since it includes the values where
(12) holds.

4 Convergence – unconstrained case

For any sequence x0, x1, x2, . . . of feasible points (typically generated by an optimization
algorithm) and ℓ = 0, 1, 2, . . ., we write

fℓ := f(xℓ), gℓ := g(xℓ),

sℓ := xℓ+1 − xℓ, yℓ := gℓ+1 − gℓ. (16)

We refer to the sℓ as steps. If straight line searches in the directions pℓ are used then
sℓ = αℓp

ℓ, where αℓ > 0 is the step length accepted in the ℓth step.

The following is a variant of a convergence result by Warth & Werner [16].

4.1 Theorem. Suppose that, for ℓ = 1, 2, 3, . . .,

σℓ := |(gℓ)T sℓ| > 0, (17)

11

sup
ℓ

‖gℓ‖2∗
(‖sℓ‖2

σ2
ℓ

− ‖sℓ−1‖2
σ2
ℓ−1

)
<∞. (18)

inf
ℓ
(fℓ − fℓ+1)

‖sℓ‖2
σ2
ℓ

> 0, (19)

Then
inf
ℓ
‖gℓ‖∗ = 0 or lim

ℓ→∞
fℓ = −∞. (20)

Proof. Suppose that inf ‖gℓ‖∗ = ε > 0; we need to show that fℓ → −∞ for ℓ → ∞. We
write κ for the supremum in (18), and find

‖sℓ‖2
σ2
ℓ

− ‖sℓ−1‖2
σ2
ℓ−1

≤ κ

‖gℓ‖2∗
≤ κ

ε2
≤ κ′ := max

(κ
ε2
,
‖s1‖2
σ2
1

)

Summation over all steps gives

‖sℓ‖2
σ2
ℓ

≤ ℓκ′ for ℓ > 0.

If we write δ for the infimum in (19), we may therefore conclude that

fℓ − fℓ+1 ≥
δσ2

ℓ

‖sℓ‖2 ≥ δ

ℓκ′
.

Summation over all steps gives fℓ ≤ f0 −
δ

κ′

ℓ−1∑

i=1

1

i
→ −∞ as ℓ→ ∞. ⊓⊔

According to the theorem, if all three conditions (17)–(19) hold, we either find arbitrarily
large negative function values, or we come arbitrarily close to a stationary point – typically
a local minimizer (unless we accidently hit directly on a stationary point or a symmetry-
protected saddle leading to such a point). In both cases, the unconstrained optimization

problem f(x) = min! may be considered as solved.2

To obtain results about the speed of convergence we need to make stronger assumptions. We
call a point x̂ ∈ R

n a strong local minimizer of f if f is twice continuously differentiable
in a neighborhood of x̂, the gradient g(x̂) of f at x̂ vanishes, and the Hessian G(x̂) of f at
x̂ is positive definite.

2To be completely sure, we would have to verify the second order sufficient optimality conditions.
However, this would require Hessian information, which is often not available. As a consequence, any
optimization method using only first order information and finite-precision arithmetic may get stuck in
nearly flat regions where rounding errors dominate and produce spurious apparent local minimizers. If
Hessian information is available, it can be used to check if it is positive semidefinite (indicating within the
numerical accuracy the prsence of a local minimizer). If this is not the case, one can find a direction of
negative curvature along which descent is generally possible even in finite precision arithmetic.

12

4.2 Theorem. If the xℓ converge to a strong local minimizer x̂ and if

inf
ℓ

fℓ − fℓ+1

‖gℓ‖2∗
> 0 (21)

then there are constants q ∈]0, 1[and c, c′ > 0 such that, for all sufficiently large ℓ,

fℓ+1 − f(x̂) ≤ q2(fℓ − f(x̂)), (22)

‖xℓ − x̂‖ ≤ cqℓ, ‖gℓ‖∗ ≤ c′qℓ. (23)

(22) and (23) are conventionally expressed by saying that convergence is locally linear.

Proof. Since the eigenvalues of a positive definite matrix are positive, the requirements on
x̂ imply that there are positive constants γ, γ and a ball C around x̂ such that for all x ∈ C,

the eigenvalues of the Hessian G(x) are in [γ, γ]. The remainder form of Taylor’s theorem

now implies that for x, x′ ∈ C,

‖g(x′)− g(x)‖∗ ≤ γ‖x′ − x‖. (24)

1

2
γ‖x′ − x‖2 ≤ f(x′)− f(x)− g(x)T (x′ − x) ≤ 1

2
γ‖x′ − x‖2. (25)

(For example, (25) follows by a simple modification of an argument in the proof of Theorem
3.1.) Interchanging x and x′ in the first inequality of (25), adding the two formulas, and
applying the generalized Cauchy–Schwarz inequality gives

γ‖x′ − x‖2 ≤ (g(x′)− g(x))T (x′ − x) ≤ ‖g(x′)− g(x)‖∗‖x′ − x‖, (26)

so that
‖x′ − x‖ ≤ γ−1‖g(x′)− g(x)‖∗. (27)

Since g(x̂)=0, (25) and (27) imply

1

2
γ‖xℓ − x̂‖2 ≤ f(xℓ)− f(x̂) ≤ 1

2
γ‖xℓ − x̂‖2 ≤ κ‖gℓ‖2∗, (28)

where κ = γ/2γ2. Writing f̂ := f(x̂), we find

fℓ+1 − f̂

fℓ − f̂
= 1− fℓ − fℓ+1

fℓ − f̂
≤ 1− fℓ − fℓ+1

κ‖gℓ‖2∗
≤ q2 := 1− inf

fℓ − fℓ+1

κ‖gℓ‖2∗
< 1; (29)

the last inequality holds by (21). Therefore (22) holds, and by induction

fℓ − f̂ ≤ c0q
2ℓ

for some constant c0 > 0. Now the first inequality in (28) gives ‖xℓ − x̂‖ ≤ cqℓ, and then

(24) gives ‖gℓ‖∗ ≤ c′qℓ. ⊓⊔

We now discuss how to satisfy the convergence conditions. In the unconstrained case, (17)
is usually accomplished by considering methods with

xℓ+1 = xℓ + αℓp
ℓ, αℓ > 0, (30)

13

where pℓ is a descent direction, so that (gℓ)T sℓ = αℓ(g
ℓ)Tpℓ < 0. In this case, sℓ = αℓp

ℓ, and
(17) holds. For this class of methods, we give in the following sections recipes for satisfying
(18) in terms of particular choices for the descent directions. The remaining convergence
condition (19) is satisfied by Theorem 3.1 if we employ the line search from Algorithm 3.3
with linear search paths.

5 The angle condition

As a special case of our convergence results we obtain the following classical result.

5.1 Theorem. An optimization method that computes its points by (30), where the search

directions satisfy the angle condition3

sup
ℓ

(gℓ)Tpℓ

‖gℓ‖∗‖pℓ‖
< 0, (31)

and uses a linear line search (e.g., Algorithm 3.3) enforcing the sufficient descent condition
(9) satisfies

inf
ℓ
‖gℓ‖∗ = 0 or lim

ℓ→∞
fℓ = −∞.

Moreover, if the xℓ converge to a strong local minimizer then convergence is locally linear.

Proof. Since σℓ > 0 for all l, the angle condition gives (17). Writing −δ for the value of the
supremum, it also implies that

σ2
ℓ =

(
(gℓ)T sℓ

)2

≥ δ2‖gℓ‖2∗‖sℓ‖2 > 0.

Hence (17) holds and

‖gℓ‖2∗
‖sℓ‖2
σ2
ℓ

≤ 1

δ2
.

This implies (18) since the negative terms can be discarded. Since Theorem 3.1 gives (19),

Theorem 4.1 applies and shows that either inf
ℓ
‖gℓ‖∗ = 0 or lim

ℓ
fℓ = −∞. Moreover,

fℓ − fℓ+1

‖gℓ‖2∗
= (fℓ − fℓ+1)

‖pℓ‖2
((gℓ)Tpℓ)2

((gℓ)Tpℓ

‖gℓ‖∗‖pℓ‖
)2

,

and both factors are separately bounded below by positive constants. Hence (21) holds,
and Theorem 4.2 implies the final claim. ⊓⊔

For example, the steepest descent directions

pℓ := −gℓ
3If the norms are Euclidean, the ratio is the cosine of the angle between gℓ and pℓ.

14

satisfy the angle condition in the Euclidean norm with δ = 1, hence lead to global conver-
gence if used together with an efficient line search.

Enforcing the angle condition. In the following, B ∈ R
n×n is a fixed but arbitrary

symmetric, positive definite matrix, called the preconditioner. In practice, B is the
identity matrix, a multiple of it, diagonal scaling matrix, or a matrix with the property
that linear systems with coefficient matrix B are easy to compute. B is considered as a
(more or less good) constant approximation of the Hessian matrix for the objective function.
We may then apply the preceding with the ellipsoidal norms defined by (2). The simplified
Newton directions

pℓ := −B−1gℓ

satisfies the angle condition in the norms (2) with δ = 1, hence leads to global convergence
if used together with an efficient line search.

More generally, we may modify an arbitrary direction q by adding a multiple of the simplified
Newton direction to get a direction

p := q − λB−1g (32)

that satisfies the angle condition for a proper choice of the factor λ. Clearly it is enough to
discuss the case q 6= 0. If

c :=
gT q√

gTB−1g · qTBq
satisfies c ≤ −δ we can take λ = 0 and p := q satisfies the bounded angle condition. If this
is not the case, we may use the following result.

5.2 Proposition. Suppose that g 6= 0 and let q ∈ R
n \ {0}, 0 < δ < 1. Put

π1 := gTB−1g > 0, π2 := qTBq > 0, π := gT q. (33)

Then

c =
π√
π1π2

∈ [−1, 1], w :=
π1π2(1− c2)

1− δ2
≥ 0, (34)

and (32) satisfies the angle condition

gTp√
(gTB−1g)(pTBp)

= −δ < 0 (35)

when λ is chosen as

λ :=
π + δ

√
w

π1
. (36)

Proof. (34) follows directly from the generalized Cauchy–Schwarz inequality. In terms of
the πi, the angle condition (35) reads

π − λπ1√
π1(π2 − 2λπ + λ2π1)

= −δ. (37)

15

Squaring, multiplying with the denominator, and subtracting δ2(π − λπ1)
2 gives

(1− δ2)(π−λπ1)2 = δ2π1(π2−2λπ+λ2π1)− δ2(π−λπ1)2 = δ2(π1π2−π2) = δ2π1π2(1− c2).

Since π − λπ1 is negative by (37), we need π − λπ1 = −δ√w, hence (36). By construction,
this choice indeed satisfies (37) and hence (35). ⊓⊔

In finite precision arithmetic, rounding errors occasionally result in a value of c2 > 1.
Therefore one should compute w from

w :=
π1π2 max{ε, 1− c2}

1− δ2
,

where ε is the machine precision.

6 Zigzagging

The following examples show that unless the search paths are chosen with some care,
convergence may be extremely slowed down by zigzagging.

(i) For the unconstrained problem

min f(x) = (x1 − x2)
2 + εx22

s.t. x ∈ R
2

with small ε > 0, we have

g(x) = 2

(
x1 − x2

(1 + ε)x2 − x1

)
.

The Hessian matrix

G(x) =

(
2 −2
−2 2 + 2ε

)

is constant and has condition number cond∞(G) = 4ε−1 + 4 + ε→ ∞ for ε→ 0.

Starting with x0 =
(
ξ

ξ

)
, we find for the steepest descent method (pℓ = −gℓ) with exact line

searches the sequence

x2ℓ = ξ(1 + ε)−ℓ

(
1

1

)
, g2ℓ = 2ξε(1 + ε)−ℓ

(
0

1

)
,

x2ℓ+1 = ξ(1 + ε)−ℓ−1

(
1 + ε

1

)
, g2ℓ+1 = 2ξε(1 + ε)−ℓ−1

(
1

0

)
,

with for ε→ 0 arbitrarily slow linear convergence to the solution at zero.

16

Figure 2: Inefficient zigzagging for convergence
(i) to an interior solution (left),
(ii) to an unconstrained minimizer in corner (middle), and
(iii) to a constrained minimizer in a corner (right).

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Thus the global convergence of the steepest descent method does not rule out extremely slow
convergence. (The same example also shows that extremely slow convergence is possible
for another simple globally convergent method, namely coordinate descent, which uses

as search directions the coordinate axes ±e(i) in a cyclic (or more arbitrary) fashion.

(ii) For the bound constrained optimization problem

min 1
2
(x1 − x2)

2 + εx1x2

s.t. x1 ≥ 0, x2 ≥ 0

with small ε > 0, we have

g(x) = 2

(
x1 − (1− ε)x2
x2 − (1− ε)x1

)
.

Started with x0 =

(
1
0

)
, the search directions

p2ℓ =

(
−1
1− ε

)
, p2ℓ+1 =

(
1− ε
−1

)

are scaled steepest descent directions, and may produce with an inexact line search the
sequence

x2ℓ =

(
(1− ε)2ℓ

0

)
, x2ℓ+1 =

(
0

(1− ε)2ℓ+1

)
,

with arbitrarily slow linear convergence to the solution at zero.

(iii) For the optimization of the bound constrained problem

min x1 + x2

s.t. x1 ≥ 0, x2 ≥ 0,

17

started with x0 =

(
1
0

)
, the search directions

p2ℓ =

(
−1
1− ε

)
, p2ℓ+1 =

(
1− ε
−1

)

(0 < ε < 1 fixed) are descent directions and produce the sequence

x2ℓ =

(
(1− ε)2ℓ

0

)
, x2ℓ+1 =

(
0

(1− ε)2ℓ+1

)
,

with arbitrarily slow linear convergence to the zero solution. Moreover,

gred(x
2ℓ) =

(
1
0

)
, gred(x

2ℓ+1) =

(
0
1

)
,

so that gred(x
ℓ) does not converge to zero.

Thus zigzagging is a possible source of inefficiency. Good optimization methods should
therefore be designed to eliminate zigzagging behavior as far as possible.

7 A nonlinear conjugate gradient method

The first example in Section 6 shows that the steepest descent method, which uses pℓ = −gℓ
as descent direction suffers from zigzagging although it trivially satisfies the angle condition.

Better methods attempt to reduce this effect. In order to avoid zigzagging we choose the
search direction p as a vector satisfying gTp < 0 that is closest to the previous search
direction pold, with respect to the distance in the ellipsoidal norm (2) associated with
a fixed symmetric and positive definite preconditioner B. Note that the results of this
chapter are useful even when working with the 2-norm. This is the special case without
preconditioning, where B = I.

In order that it is meaningful to compare two different search directions we note that for a
sufficiently small step size α we obtain a gain in the function value of f(x)− f(x + αp) =

−αgTp + o(α). Hence the infinitesimal quality of a direction is fully characterized by

ν := gTp. We therefore compare only directions with the same value of ν; this is no
restriction of generality since we may rescale an arbitrary direction to match any given
value of ν.

7.1 Theorem. Among all p ∈ R
n with gTp = −ν < 0, the squared preconditioned distance

(p− pold)
TB(p− pold) becomes minimal for

p = pold − λB−1g, (38)

where

λ =
ν + gTpold
gTB−1g

. (39)

18

Proof. This optimization problem can be solved using Lagrange multipliers. We have to
find a stationary point of the Lagrange function

L(p) :=
1

2
(p− pold)

TB(p− pold) + λgTp,

giving the condition B(p − pold) + λg = 0, hence (38) holds. The Lagrange multiplier λ is

determined from the constraint gTp = −ν, and yields (39). ⊓⊔

Note that Pardalos & Kovoor [15] show that for diagonal B, a bound-constrained
version of the no-zigzag direction of Theorem 7.1 is computable in O(n) steps.

For a search direction of the form

pℓ = ρℓp
ℓ−1 − λℓB

−1gℓ (40)

we need
0 < νℓ := −(gℓ)Tpℓ = −ρℓ(gℓ)Tpℓ−1 + λℓ(g

ℓ)TB−1gℓ,

hence

λℓ =
νℓ + ρℓ(g

ℓ)Tpℓ−1

(gℓ)TB−1gℓ
. (41)

For ρℓ = 1, this agrees with the direction derived from the zigzagging avoiding argument;
for ρℓ = 0, we get the simplified Newton direction. Thus search directions of the form (40)
look like a flexible choice.

7.2 Theorem. Suppose that (40) and (41) hold for all sufficiently large ℓ with

νℓ > 0, |ρℓ| ≤
νℓ
νℓ−1

.

Then
(pℓ)TBpℓ

ν2ℓ
− (pℓ−1)TBpℓ−1

ν2ℓ−1

≤ 1

(gℓ)TB−1gℓ
. (42)

Moreover, if an efficient line search – e.g., Algorithm 3.3 – is used, we have

inf
ℓ
‖gℓ‖∗ = 0 or lim

ℓ→∞
fℓ = −∞.

Proof. We have

(pℓ)TBpℓ = ρ2ℓ(p
ℓ−1)TBpℓ−1 − 2ρℓλℓ(g

ℓ)Tpℓ−1 + λ2ℓ(g
ℓ)TB−1gℓ

≤ ν2ℓ
ν2ℓ−1

(pℓ−1)TBpℓ−1 +
ν2ℓ −

(
ρℓ(g

ℓ)Tpℓ−1
)2

(gℓ)TB−1gℓ
,

19

and (42) follows. In terms of the ellipsoidal norms (2), (42) reads

‖pℓ‖2
ν2ℓ

− ‖pℓ−1‖2
ν2ℓ−1

≤ 1

‖gℓ‖2∗
.

Since sℓ = αℓp
ℓ and σℓ = αℓνℓ, we find

‖gℓ‖2∗
(‖sℓ‖2

σ2
ℓ

− ‖sℓ−1‖2
σ2
ℓ−1

)
≤ 1.

Therefore (18) holds. (17) holds since νℓ > 0, and (19) is guaranteed by the line search.
Hence Theorem 4.1 applies and proves the claim. ⊓⊔

7.3 Theorem. Under the conditions of Theorem 7.2, suppose that an efficient line search
is used and there are positive constants κ1 and κ2 such that, for all sufficiently large ℓ,
either pℓ is parallel to the simplified Newton direction −B−1gℓ or the conditions

(gℓ)TB−1gℓ ≤ κ1(y
ℓ−1)TB−1yℓ−1, (43)

(yℓ−1)Tpℓ−1 ≤ κ2νℓ−1 (44)

hold (where yℓ−1 := gℓ−gℓ−1). Then the bounded angle condition (31) holds. In particular,

if the xℓ converge to a strong local minimizer, convergence is locally linear.

Proof. Under the asssumption of strong convergence to x̂, relations (24) and (26) from the
proof of Theorem 4.2 apply for x, x′ sufficiently close to x̂, and give

γ‖g(x′)− g(x)‖∗ ‖x′ − x‖ ≤ γ(g(x′)− g(x))T (x′ − x).

Substituting x′ = xℓ and x = xℓ−1 and using (43), we find after division by αℓ−1 that

γ‖yℓ−1‖ ‖pℓ−1‖ ≤ γ(yℓ−1)Tpℓ−1 ≤ γκ2νℓ−1

for all sufficiently large ℓ for which (43) and (44) hold. For these ℓ,

(gℓ)TB−1gℓ · (pℓ−1)TBpℓ−1 ≤ κ1(y
ℓ−1)TB−1yℓ−1 · (pℓ−1)TBpℓ−1

≤ κ1‖yℓ−1‖2‖pℓ−1‖2

≤ κ1

(γκ2νℓ−1

γ

)2

= cν2ℓ−1

for some constant c > 0. Now (42) implies

(pℓ)TBpℓ

ν2ℓ
≤ (pℓ−1)TBpℓ−1

ν2ℓ−1

+
1

(gℓ)TB−1gℓ
≤ c+ 1

(gℓ)TB−1gℓ
.

Thus
ν2ℓ

(pℓ)TBpℓ · (gℓ)TB−1gℓ
≥ 1

c+ 1
(45)

20

for sufficiently large ℓ satisfying (43) and (44). But if (43) or (44) are violated, pℓ is the

simplified Newton direction, for which (45) holds trivially. Since 0 < νℓ = −(gℓ)Tpℓ, this
shows that the left hand side of (31) is bounded away from zero. Hence Theorem 5.1 implies
local linear convergence. ⊓⊔

7.4 Algorithm. Nonlinear conjugate gradient method (NCG)

Purpose: Finds local minimizer of f(x) (or a stationary point only)

Input: x0 (starting point), B (preconditioner)
Requirements: B symmetric and positive definite
Parameters: κ1 > 1, κ2 > 1

for ℓ = 0, 1, . . .,

gℓ = g(xℓ);

ωℓ = (gℓ)TB−1gℓ;

if ωℓ ≤ 0, stop; end; % xℓ stationary

if ℓ = 0,

restart=1;

else

ω′ = (gℓ)TB−1gℓ−1;

restart1=(ωℓ > κ1(ωℓ − 2ω′ + ωℓ−1));

restart2=(|(gℓ)Tpℓ−1 + ν| > κ2ν);

restart = restart1 or restart2;

end;

if restart,

ν = ωℓ; pℓ = −B−1gℓ;

else

λℓ =
ν + (gℓ)Tpℓ−1

ωℓ

; pℓ = pℓ−1 − λℓB
−1gℓ;

end;

determine αℓ by Algorithm 3.3 with x(α) = xℓ + αpℓ;

xℓ+1 = xℓ + αℓp
ℓ;

end;

Since we expect that the new search direction is not too different from the old one, f is
expected to behave along the new search path like along the old one. The initial step size
for each but the first line search may therefore be chosen as the accepted step size of the
previous line search. To start the iteration we take pold = 0. In order to guarantee local
linear convergence, we may need to reset pold to zero also at suitable later stages. We call
this a restart; the precise restart conditions used come from Theorem 7.3. For B 6= I,
i.e., if preconditioning is used, one should store hℓ := B−1gℓ in the computation of ωℓ,
for later use in the computation of pℓ. Finally, note that, by Theorem 7.1, ν = −(Gℓ)Tpℓ

21

remains constant as long as no restart is made. The result is Algorithm 7.4. It is called
a nonlinear conjugate gradient method since for a quadratic function f with positive
definite Hessian, it is by Theorem 7.5 below equivalent to the preconditioned conjugate
gradient method for solving positive definite linear systems of equations.

There are many other variants of nonlinear conjugate gradient methods. A thorough survey
of nonlinear conjugate gradient methods was given by by Hager & Zhang [11]. In the
literature, they are generally described in terms of search directions of the form

dℓ = −gℓ + βℓ−1d
ℓ−1 (46)

and corresponding updates

xℓ+1 = xℓ + γℓd
ℓ.

Many formulas for the βs are in use; the step sizes γℓ are typically determined by a Wolfe
line search. Our formulas can be cast into this form if no preconditioning is used (B = I),
by considering the scaled vectors

dℓ := λ−1
ℓ pℓ = λ−1

ℓ pℓ−1 − gℓ = −gℓ + λℓ−1

λℓ
dℓ−1

and the correspondence

βℓ−1 :=
λℓ−1

λℓ
, γℓ :=

αℓ

λℓ
.

Thus as long as all λℓ (or βℓ) are positive, the two choices of search directions are equivalent
apart from the choice of the initial step sizes for the line search. The first nonlinear conjugate
gradient method, introduced by Fletcher & Reeves [7], uses no preconditioning (B = 1)
and (46) with

βℓ−1 :=
ωℓ

ωℓ−1

. (47)

For a quadratic function

f(x) = γ + cTx+
1

2
xTGx (48)

with positive definite Hessian G, they showed the equivalence with the conjugate gradient
method of Hestenes & Stiefel [12] for solving the linear system of equations g(x) =
c + Gx = 0. The latter showed that their algorithm stops after at most n iterations with
a solution of the linear system, hence with the minimizer of f(x). If G is not positive
definite, the algebra remains the same, except that it is now possible that a line search
ends with a direction of infinite descent. Thus the method of Fletcher and Reeves stops for
quadratic functions after at most n steps with a minimizer or with a direction of infinite
descent. The case with a preconditioner is easily reduced to the case B = I by means of a
linear transformation of the vector x of variables; hence the same properties hold for any
symmetric and positive definite B.

7.5 Theorem. Applied to quadratic functions f , Algorithm 7.4 produces the same se-
quence of xℓ as the nonlinear conjugate gradient method by Fletcher and Reeves. In par-
ticular, Algorithm 7.4 stops for quadratic functions after at most n steps with a minimizer
or with a direction of infinite descent.

22

Proof. We have

pℓ = pℓ−1 − λℓB
−1gℓ, xℓ+1 = xℓ + αℓp

ℓ.

For a quadratic function (48) we have gℓ = c+Gxℓ, hence

gℓ − gℓ−1 = G(xℓ − xℓ−1) = αℓ−1Gp
ℓ−1.

For quadratic functions, the line search of Algorithm 3.3 becomes exact, hence

αℓ =
−(gℓ)Tpℓ

(pℓ)TGpℓ
=

ν

(pℓ)TGpℓ

when no restarts are made for ℓ > 0. Now ν = −(gℓ−1)Tpℓ−1, hence

λℓ =
(gℓ − gℓ−1)Tpℓ−1

ωℓ

=
ν

ωℓ

> 0, βℓ−1 =
λℓ−1

λℓ
=

ωℓ

ωℓ−1

.

Since due to exact line search, the result of the algorithm is the same for an arbitrary
rescaling of the search direction, we may rewrite the iteration in terms of the dℓ (discussed
below) and get for B = I equivalence with the Fletcher-Reeves conjugate gradient method.

The well-known conjugacy properties

(gℓ)Tpℓ−1 = (gℓ)TB−1gℓ−1 = 0

of the linear conjugate gradient method (Hestenes & Stiefel [12]) imply that given the
restrictions κ1 > 1 and κ2 > 1, indeed no restarts will be made. ⊓⊔

Since locally all twice continuously differentiable functions are well approximated by a
quadratic, the final remark in the proof also holds locally for general C2-functions with the
line search from Algorithm 3.3. In particular, Algorithm 7.4 shares close to a strong local
minimizer the excellent local convergence behavior (see, e.g., Axelsson & Lindskog [1])
of the preconditioned linear conjugate gradient method.

Finally, we have the following global convergence result.

7.6 Theorem. The points xℓ produced by the nonlinear conjugate gradient method of
Algorithm 7.4 satisfy

inf
ℓ
‖g(xℓ)‖∗ = 0 or lim

ℓ→∞
f(xℓ) = −∞,

and in case of convergence to a strong local minimizer, the convergence is locally linear.

Proof. Using Theorem 7.2, it is easy to see that the assumptions of Theorem 4.1 and
Theorem 7.3 are satisfied. ⊓⊔

We have seen that Algorithm 7.4 enjoys many good theoretical properties and is guaranteed
to perform well on general smooth functions. When a good starting point is available, no

23

restarts are made. Far away from a minimizer, however, a strong deviation from quadratic
behavior may cause a restart. In particular, whenever very little progress is made while
the gradient is still large, gℓ ≈ gℓ−1, hence yℓ−1 ≈ 0, and a restart is made. Thus jamming,
a problem for the standard implementation of the nonlinear conjugate gradient method by
Fletcher & Reeves [7] is not possible.

The algorithm can be implemented using very little storage only: Apart from what is needed
for a Cholesky factor of the preconditioner, 4 vectors of storage (for x, g, h = B−1g, p), and
without preconditioning (B = I) even 3 vectors, suffice.

Compared to other nonlinear conjugate gradient methods, Algorithm 7.4 has two advan-
tages:
(i) Because of the no zigzagging property, there is a simple rule for a good initial step size.
(ii) Since the λℓ need not be positive, the restrictions on the line search is just the minimal
requirement of efficiency.
On the other hand, the traditional nonlinear conjugate gradient methods need stronger as-
sumptions on the line search for good performance; given only an efficient line search, many
of them do not even always lead to descent directions. As a consequence, the convergence
analysis is usually more complicated. They also do not have an optimality property with
respect to zigzagging.

8 Optimality conditions for bound constraints

Given a feasible point x and an index i, we call the bound xi or xi active if xi = xi or
xi = xi, respectively. In both cases, we also call the index i and the component xi active.
Otherwise, i.e., if xi ∈]xi, xi[, the index i, the component xi, and the bounds xi and xi are
called nonactive or free. A corner of the box x is a point all of whose components are
active. If the gradient g = g(x) has a nonzero component gi at a nonactive index i, we may
change xi slightly without leaving the feasible region. The value of the objective function
is reduced by moving slightly to smaller or larger values depending on whether gi > 0 or
gi < 0, respectively. However, if xi is active, only changes of xi in one direction are possible
without losing feasibility. The value of the objective function can then possibly be reduced
by moving slightly in the feasible direction only when

{
gi ≤ 0 if xi = xi,
gi ≥ 0 if xi = xi.

(49)

But a decrease is guaranteed only if the slightly stronger condition

{
gi < 0 if xi = xi,
gi > 0 if xi = xi

(50)

holds.

8.1 Theorem. (optimality conditions for bound-constrained optimization)
(i) First order necessary conditions. At any local minimizer x of (4), the reduced

24

gradient gred(x) at x, with components

gred(x)i :=





0 if xi = xi = xi,
min(0, gi(x)) if xi = xi < xi,
max(0, gi(x)) if xi = xi > xi,
gi(x) otherwise,

(51)

vanishes.

(ii) First order sufficient conditions. Every corner x of x such that gi(x) > 0 at all
active lower bounds and gi(x) < 0 at all active upper bounds is a local minimizer of (4).

Proof. (i) Combining the various cases discussed above, we see that a decrease is always
possible if the reduced gradient has a nonzero component.

(ii) In this case, any feasible point x + αp 6= x (α > 0) must have pi ≥ 0 if xi is active,
pi ≤ 0 if xi is active, and at least one pi is nonzero. Therefore

g(x)Tp =
∑

i

gipi > 0.

This implies that f(x + αp) − f(x) = αg(x)Tp + o(α) > 0 for small α > 0, hence f(x) is
locally minimal. ⊓⊔

If no bound is active, gred(x) = g(x) and (i) reduces to the condition that x is a stationary
point of the function f . In generalization of this, we call a feasible point x with gred(x) = 0
a stationary point of the optimization problem (4). By the above, a local minimizer x of
(4) must be a stationary point of this problem. This statement is a concise expression of
the first order optimality conditions.

Note that the reduced gradient need not be continuous – it may change abruptly when a
bound becomes active. A simple example is

f(x) = x, x = [0,∞], (52)

where gred(x) = 1 for x > 0 but gred(0) = 0. It is therefore important that a weaker
continuity statement still holds, expressed in the first part of the following theorem.

8.2 Theorem. If the sequence xℓ converges to x̂ and lim gred(x
ℓ) = 0 then gred(x̂) = 0.

Moreover, for every index i = 1, . . . , n,

gi(x̂) > 0 ⇒ xℓi = x̂i = xi for sufficiently large ℓ, (53)

gi(x̂) < 0 ⇒ xℓi = x̂i = xi for sufficiently large ℓ. (54)

Proof. Every free index i of x̂ is also free for xℓ with sufficiently large ℓ. Since f is
continously differentiable, we conclude that gi(x̂) = lim gi(x

ℓ) = 0 for all free i. If x̂i = xi

25

then the xℓi converge to xi, hence satisfy xℓi < xi; thus gi(x̂) = lim gi(x
ℓ) ≥ 0 for these i.

Similarly, one sees that gi(x̂) ≤ 0 if x̂i = xi. Together, this implies gred(x̂) = 0.

Now let i be an index i for which gi(x̂) > 0. From (51) and gred(x̂) = 0 we conclude that
x̂i = xi < xi. The definition (51) of the reduced gradient implies that for sufficiently large
ℓ,

gred(x
ℓ)i =

{
0 if xℓi = xi,
gi(x

ℓ) otherwise.

Now gred(x
ℓ) converges to zero, but by continuity of the gradient, gi(x

ℓ) → gi(x̂) > 0. Hence

the second case is impossible for large ℓ. Therefore xℓi = xi for all large ℓ, and (53) holds
for sufficiently large k.

Similarly, if i is an index for which gi(x̂) < 0 then (54) holds for sufficiently large l. ⊓⊔

We say that the active variable xi is strongly active if

{
gi > 0 if xi = xi,
gi < 0 if xi = xi.

(55)

Thus slightly changing a single strongly active variable only cannot lead to a better feasible
point. A stationary point is called degenerate if gi(x) = 0 for some active index i, and
nondegenerate otherwise, i.e., if all its active bounds are strongly active. This allows
us to rephrase Theorem 8.2 as saying that all strongly active variables are ultimately fixed

when the sequence xℓ converges and lim gred(x
ℓ) = 0.

In particular, in case of convergence to a nondegenerate stationary point, zigzagging through
changes of the active set (as in the examples of Section 6) cannot occur infinitely often.

8.3 Corollary. If the xℓ ∈ x form a bounded sequence such that inf
ℓ
gred(x

ℓ) = 0 then some

subsequence converges to a point x̂ ∈ x satisfying gred(x̂) = 0.

Proof. By assumption, there is a subsequence on which gred(x
ℓ) → 0. Boundedness implies

that this subsequence has a convergent subsequence, and by Theorem 8.2, its limit x̂ satisfies
the claim. ⊓⊔

The corollary justifies to accept a numerical approximation x to a stationary point x̂ as
soon as a stopping test of the form

‖gred(x)‖∗ ≤ ε (56)

holds for some fixed ε. In this stopping test, one traditionally uses for ‖ · ‖∗ the maximum

norm, with ε = 10−5 or ε = 10−6. In a conceptual analysis of algorithms, however, one has
no stopping test and investigates the behavior of an infinite number of approximations xℓ,
with the goal of showing that the gred(x

ℓ), or at least a subsequence of them, converge to
zero. This implies (at least in exact arithmetic) finite termination if the stopping test (56)
is added to the algorithm.

26

We define the feasible projection π[x] of an arbitrary point x ∈ R
n to the (fixed) box x

by

π[x]i := max(xi,min(xi, xi)) =

{
xi if xi ≤ xi,
xi if xi ≥ xi,
xi otherwise.

(57)

Clearly π[x] ∈ x, and π[x] = x iff x ∈ x. It is easy to see that (for any fixed α > 0) the
first order optimality conditions may also be written in the equivalent form

g(α)(x) := π[x− αg(x)]− x = 0.

g(α)(x) is continuous in x for any α. In contrast, Example (ii) of Section 6 showed that

convergence to a stationary point x̂ is possible even when inf
ℓ
gred(x

ℓ) > 0, reflecting the

lack of continuity of the reduced gradient. Such a counterintuitive situation means that
infinitely many xℓ have activities different from the limiting x̂.

Traditional bound constrained solvers therefore aim only at a slightly weaker convergence

statement that the projected gradient g(1)(xℓ) has a subsequence converging to zero.
The resulting simpler convergence analysis [2, 4, 6] is probably the reason why usually,
e.g., in LBFGS-B [3] and in Hager & Zhang [10], a different stopping criterion of the

form ‖g(1)(x)‖∞ ≤ δ is used in place of (56). For example, for (52), x = δ satisfies
this criterion although gred(x) = 1. However, in finite precision arithmetic, this stopping
criterion may accept very poor points as sufficiently stationary. For example, for (52),

x = 1017 also satisfies this criterion although x is extremely far from a stationary point! In

this particular case, the reason is that, in double precision arithmetic, g(1)(x) numerically
becomes identically zero due to severe cancellation of digits in the subtraction.

9 The bent search path

For solving the bound constrained optimization problem (4), a line search along a ray may
lead to infeasible points. The most natural remedy, first suggested by Bertsekas [2], is
to project the ray into the box. Thus we do each line search along a bent search path

x(α) := π[x+ αq], (58)

obtained by taking the ray x+ αq (α ≥ 0) from the current point x into a direction q 6= 0
and projecting it into the feasible set using the projection (57). The bent search path
is piecewise linear, with breakpoints at the α > 0 with xi + αqi ∈ {xi, xi}. Thus the
breakpoints are the elements of the set

S :=
{xi − xi

qi
| qi > 0

}
∪
{xi − xi

qi
| qi < 0

}
\ {0,∞}.

If the breakpoints α1, . . . , αm are ordered such that

0 = α0 < α1 < . . . < αm < αm+1 = ∞,

27

the bent search path is linear on each interval [αi−1, αi] (i = 1, ...,m+ 1). Note that when
for some α > 0, x(α) is a corner of the box then this corner is x(αm) for some m > 0, and
x(α) stays constant for all α ≥ αm.

In an active set algorithm for bound-constrained optimization, each iteration changes
only a subset of the variables. To account for this we use a working set I ⊆ {1, . . . , n}
satisfying

qi = 0 for i 6∈ I, (59)

and denote by qI the subvector of q indexed by I. We write

g = g(x), gred = gred(x).

In order to ensure local linear convergence when the working set I stays constant we require
the angle condition

gTI qI
‖gI‖∗‖qI‖

≤ −δ < 0. (60)

Sensible choices for the working set I include the set

I−(x) := {i | xi < xi < xi} (61)

of free indices of x, or the set

I+(x) := I−(x) ∪ {i | (gred)i 6= 0}
= {i | xi < xi < xi or xi = xi < xi, gi < 0 or xi < xi = xi, gi > 0}.

(62)

By definition of the reduced gradient,

‖gI(x)‖∗ = ‖gred(x)‖∗ if I = I+(x). (63)

To prove (in Section 11 below) the global convergence of a descent algorithm for bound
constrained optimization we need at one critical place the condition

gi(x)qi ≤ 0 for all i if I = I+(x) 6= I−(x). (64)

Note that (59), (60), and (64) are satisfied with arbitrary I by directions of the form

qi =

{
−gi/di if i ∈ I,
0 otherwise,

(65)

with positive elements di in a fixed interval [d, d], where 0 < d < d <∞.

To find conditions that eliminate most of a major cause of inefficiency, namely the zigzagging
behaviour, we reconsider the examples of Section 6. The first example does not depend on
constraints and must be handled by the choice of the search direction in iterations where
the working set remains fixed. By Theorem 7.1, a nonlinear conjugate gradient method
reduces the zigzagging effect and eliminates all difficulties in this kind of examples. Indeed,
by Theorem 7.6, the nonlinear conjugate gradient method terminates on n-dimensional
quadratic problems in at most n iterations, and hence is fast near a strong minimizer where

28

the objective function is almost quadratic. One only needs to adapt the method to work
on the subspace determined by the working set.

The second and third example of Section 6 show that algorithms unable to quickly identify
the set of optimal active bound constraints may free and fix the same subset of variables
alternatingly in a large number of successive iterations. To handle these example we control
the conditions under which variables enter the working set I.

Using always I = I+(x) seems to be a good choice since it most quickly corrects a poor

active set. However, in the second example of Section 6, Iℓ = I+(x
ℓ) = {1, 2} and (64)

holds; so the choice I = I+(x) is not always adequate. In this example, the alternative

choice I = I−(x) is adequate; it forbids the zigzagging directions since I(xℓ) has size one.

In the third example of Section 6, Iℓ = {1, 2} while I(xℓ) = I+(x
ℓ) has size one. Therefore

both (in this example identical) choices I = I−(x) or I = I+(x) forbid the zigzagging
directions. However, we cannot always choose I = I−(x) since this might even be the
empty set! Closer inspection reveals that we need to ensure that shrinking the gradient
in the components indexed by I shrinks the reduced gradient at least asymptotically. We
therefore require (in an arbitrary monotone norm) the condition

‖gI‖2∗ ≥ ρ‖gred‖2∗ (66)

for some ρ ∈]0, 1]. This condition says that the components of the reduced gradients missed
by restricting to I are bounded by a multiple of ‖gI‖∗.

Our examples indicate that an appropriate alternation between the choices I = I+(x) and
I = I−(x) could eliminate zigzagging. (63) implies that (66) always holds when I = I+(x);
thus (66) only restricts the situations in which I = I−(x) is allowed. We must ensure that
this is the case in the second example of Section 6. Indeed, there this choice is possible
without violating (66) if the 2-norm is used and

ρ < 1/n.

The factor n is needed in order to also eliminate related n-dimensional examples of zigzag-
ging with n−1 freeable bounds. For the maximum norm ‖·‖∗, corresponding to the 1-norm
‖ · ‖, any positive ρ < 1 would suffice to eliminate these examples.

Taking into account these insights we propose the following algorithmic scheme, for which
convergence and strong limitations on the possible forms of zigzagging will be proved.

9.1 Algorithm. (BOPT, bound constrained optimization)
Purpose: Minimizes a smooth f(x) subject to x ∈ x = [x, x]

Input: x0 ∈ R
n (starting point)

Parameters: β ∈]0, 1
4
[, q > 1 (line search parameters)

0 < δ < 1 (reduced angle parameters)
0 < ρ < 1/n (factor safeguarding (66))
and parameters specifying a pair of monotone dual norms

29

x = x0; I = I+(x); freeing=0;

while gred(x) 6= 0,

choose q with (59), (60), and (64);

do a line search (Algorithm 3.3) along the bent search path (58)

update x and I = I−(x);

freeing=((66) fails);

if freeing, update I = I+(x); end;

end;

By (63) and the stopping test, we have

‖gI(x)‖∗ = ‖gred(x)‖∗ > 0 if I = I+(x). (67)

In particular if (66) fails for I = I−(x), the resetting of I ensures that (66) holds for the I
used in the next iteration. Therefore (66) holds at every iteration except possibly the first.

Note that i ∈ I+(x) \ I−(x) iff i is active and (50) holds. In this case we call the index i
freeable and say that the variable xi can be freed from its bound. Indeed, (50) says for
an active index i that the ith components of the reduced gradient is nonzero, so that the
function value decreases when moving the corresponding components xi into the interior.
We call any iteration where

I = I+(x) 6= I−(x)

a freeing iteration, since this is the condition that at least one bound is freed. In a
freeing iteration one typically uses a search direction of the form (65), which guarantees the
conditions required in the algorithm. In a non-freeing iteration, (64) is not a restriction,
and one typically uses a search direction appropriate for an unconstrained method in the
subspace defined by I, which, once the optimal activities are identified, leads to faster
local convergence. For example, we may use a conjugate gradient method in the subspace;
after any change of I, the subspace changes, hence the conjugate gradient method must be
restarted.

10 Some auxiliary results

We now prove a few technical results that are needed for our convergence proof in the next
section.

10.1 Proposition. For nonzero q and α > 0,

pq(α) :=
π[x+ αq]− x

α

satisfies (in any monotone norm)

|pq(α)| ≤ |q|, ‖pq(α)‖ ≤ ‖q‖,

30

and with p ∈ R
n defined by

pi :=





0 if xi = xi = xi,
max(0, qi) if xi = xi < xi,
min(qi, 0) if xi < xi = xi,
qi if xi < xi < xi,

(68)

we have
pq(α) = p for sufficiently small α > 0, (69)

Proof. Rescaling α and q if necessary, we may assume that ‖q‖ = 1. Then

αpq = π[x+ αq]− x = sup
(
x, inf(x+ αq, x)

)
− x

= sup
(
x− x, inf(αq, x− x)

)
,

hence

|pq| =
∣∣∣ sup

(x− x

α
, inf

(
q,
x− x

α

))∣∣∣ ≤ |q|,

‖pq‖ ≤ ‖q‖ = 1.

The term
xi − xi
α

vanishes if xi = xi, and it becomes arbitrarily large negative if xi > xi

and α is sufficiently small. Similarly,
xi − xi
α

vanishes if xi = xi, and becomes arbitrarily

large positive if xi > xi and α is sufficiently small. Evaluating componentwise the sup and
inf therefore results in (68). ⊓⊔

10.2 Proposition. If the index set I ⊆ I+(x) satisfies (59) and (60) then

gT q = gTI qI < 0, ‖q‖ = ‖qI‖. (70)

If, in addition,
gi(x)qi ≤ 0 for all i (71)

then
p = q, (72)

and we have f(x(α)) < f(x) for sufficiently small α > 0.

Proof. By (59) and (60),

gT q =
∑

i

giqi =
∑

i∈I

giqi = gTI qI < 0,

giving (70). Since I ⊆ I+(x), any active i satisfies one of the conditions in (71). Thus if
(71) holds then (68) gives (72). The piecewise linear structure of the search path now gives
x(α) = x+ αpq(α) = x+ αq for all sufficiently small α > 0, and therefore

f(x(α)) = f(x+ αq) = f(x) + αgT q + o(α) = f(x) + α(gT q + o(1)) < f(x)

for sufficiently small α > 0. ⊓⊔

31

10.3 Proposition. Suppose that

gi(x
ℓ)qℓi ≤ 0 for i ∈ I+(x

ℓ), (73)

qℓi = 0 for i 6∈ I+(x
ℓ).

If
lim
ℓ→∞

xℓ = x, lim
ℓ→∞

αℓ = 0, lim
ℓ→∞

qℓ = q

then

rℓ :=
π[xℓ + αℓq

ℓ]− xℓ

αℓ‖qℓ‖
satisfies

lim
ℓ→∞

rℓ = q.

Proof. We first simplify the assumptions by replacing qℓ with qℓ/‖qℓ‖ and αℓ with αℓ‖qℓ‖.
Then the assumptions on the qℓ and αℓ take the form

‖qℓ‖ = 1, αℓ > 0 for all ℓ,

lim
ℓ→∞

qℓ = q, lim
ℓ→∞

αℓ = 0,

rℓ =
π[xℓ + αℓq

ℓ]− xℓ

αℓ

.

By Proposition 10.1, |rℓ| ≤ |qℓ|, and by assumption,

rℓi = qℓi = 0 for i 6∈ I+(x
ℓ).

Since the qℓ are bounded and αℓ → 0, Proposition 10.1 also implies that for sufficiently
large ℓ,

rℓi =





0 if xi = xℓi = xi,
max(0, qℓi) if xi = xℓi < xi,
min(qℓi , 0) if xi < xℓi = xi,
qℓi if xi < xℓi < xi.

In view of (73), this implies rℓi = qℓi for i ∈ I+(x
ℓ) and sufficiently large ℓ. Taking the limit,

we find rℓ → q, as claimed. ⊓⊔

11 Convergence – bound constrained case

11.1 Theorem. Let f be continuously differentiable, with Lipschitz continuous gradient
g. Let xℓ denote the value of x in Algorithm 9.1 after its ℓth update. Then one of the
following three cases holds:

32

(i) The iteration stops after finitely many steps at a stationary point.

(ii) We have

lim
ℓ→∞

f(xℓ) = f̂ ∈ R, inf
ℓ≥0

‖gred(xℓ)‖∗ = 0.

Some limit point x̂ of the xℓ satisfies f(x̂) = f̂ ≤ f(x0) and gred(x̂) = 0.

(iii) supℓ≥0 ‖xℓ‖ = ∞.

Proof. If the algorithm stops after finitely many steps, the stopping condition implies that
we have a stationary point; hence (i) holds. Thus we may assume that infinitely many
iterations.

For the point x, the working set I, the direction q, and the tangent direction p given by
(68) at iteration ℓ before updating I, we write xℓ, Iℓ, q

ℓ, and pℓ, respectively. Since function

values decrease monotonically by construction, the infimum f̂ of the f(xℓ) is finite, and we
have

lim
ℓ→∞

f(xℓ) = f̂ . (74)

For any index set I, we consider the set LI of indices ℓ satisfying

I = Iℓ = I+(x
ℓ) 6= I(xℓ)

and distinguish two cases, depending on the amount of zigzagging.

Case 1 (limited zigzagging): All LI are finite. Since every ℓ for which the ℓth iteration is
freeing belongs to some LI and there are only finitely many possibilities for I, the number
of freeing iterations is finite. Thus there is a number Nf such that no iteration with index

ℓ > Nf is freeing. Algorithm 9.1 and (66) imply that Iℓ = I(xℓ) for ℓ > Nf . Therefore
a line search in iteration ℓ > Nf never frees an already active bound; hence bounds can

only be fixed. This can happen only finitely many times; so there is an N such that I(xℓ)
remains fixed for all ℓ > N ,

Iℓ = I(xℓ) = I for ℓ > N, (75)

and no bound is fixed for ℓ > N . Therefore the line search accepts a point on the initial
ray of the bent search path, where p(α) = p is given by (68). By (69), Theorem 3.1 implies
that there is a number δ′ > 0 such that

(f(xℓ)− f(xℓ+1))‖pℓ‖2
(g(xℓ)Tpℓ)2

≥ δ′ for all ℓ > N.

(59) and (60) hold by the specification of Algorithm 9.1, and (70) follows by Proposition
10.2. Using (60), (70), and (66) (the latter holds by the remark after Algorithm 9.1), we
find that for all ℓ > N ,

f(xℓ)− f(xℓ+1) ≥ δ′
(g(xℓ)TpℓIℓ

‖pℓIℓ‖
)2

= δ′
(gIℓ(xℓ)TpℓIℓ

‖pℓIℓ‖
)2

≥ δ′
(
δ‖gIℓ(xℓ)‖∗

)2

≥ δ′
(
δρ‖gred(xℓ)‖∗

)2

≥ ∆ := δ′(δργ∗)2,

33

where
γ∗ := inf

ℓ≥0
‖gred(xℓ)‖∗. (76)

For ℓ → ∞, (74) implies that the left hand side tends to zero, hence ∆ = 0 and therefore

γ∗ = 0. Thus there is a subsequence xℓk with ‖gred(xℓ)‖∗ → γ∗ = 0, and since the xℓ

are bounded, we may assume (by deleting part of the subsequence) that the subsequence

converges, xℓk → x̂. Now Theorem 8.2 implies that gred(x̂) = 0. Thus (ii) holds.

Case 2 (unlimited zigzagging): Some LI is an infinite set. Handling this case requires a
detailed look at what happens at the bounds. Since all conditions used in Algorithm 9.1
and Algorithm 3.3 are invariant under appropriate scaling we may assume w.l.o.g. that all
directions qℓ are scaled such that

‖qℓ‖ = 1. (77)

According to Algorithm 9.1, (60) and (64) hold. (64) and Proposition 10.2 imply (70) and

pℓ = qℓ for ℓ ∈ LI . (78)

If the xℓ are unbounded, (iii) holds and we are done. Otherwise the set of tuples [xℓ, qℓ] is
bounded. Thus there is an infinite sequence ℓk ∈ LI (k = 1, 2, . . .) such that, for k → ∞,

xℓk → x̂, qℓk → q.

Using (74), we find f(x̂) = f̂ , and we have

‖q‖ = 1, qi = 0 for i 6∈ I. (79)

Taking limits in (59), and in (70), (60) gives ‖qI‖ = ‖q‖ = 1 and gT q = gTI qI ≤ −δ‖gI‖∗.

Assume for the moment that
gI 6= 0. (80)

Then we conclude that
gT q < 0. (81)

We write αℓ, and µℓ for the step size α chosen by the line search and the Goldstein quotient
at iteration ℓ,

µℓ := µ(αℓ) =
f(xℓ+1)− f(xℓ)

αℓg(xℓ)Tpℓ
. (82)

µℓ is bounded away from zero by the line search since the accepted step size satisfies the
descent condition (9).

Since g(xℓk)Tpℓk → gT q 6= 0 by (81), we find from (78) that

αℓk =
f(xℓk+1)− f(xℓk)

µℓkg(x
ℓk)T qℓk

→ 0 for k → ∞. (83)

Now Proposition 10.3 applies since by (59), qℓi = 0 for i 6∈ I. Using (77), we therefore find

that, by definition of rℓ,

xℓk+1 = π[xℓk + αℓkq
ℓk] = xℓk + αℓkr

ℓk ,

34

rℓk → q.

Taylor expansion gives

f(xℓk+1) = f(xℓk + αℓkr
ℓk) = f(xℓk) + αℓkg(x

ℓk)T rℓk +O(α2
ℓk
) for ℓk ∈ LI .

Comparing with (82), we find

µℓk =
f(xℓk+1)− f(xℓk)

αℓkg(x
ℓk)T qℓk

=
g(xℓk)T rℓk +O(αℓk)

g(xℓk)T qℓk
→ 1.

But this contradicts the fact that the line search of Algorithm 3.3 guarantees µℓ|µℓ−1| ≥ β.
Thus our assumption (80) cannot hold, and we have gI = 0. By (67),

gI(x
ℓ) = gIℓ(x

ℓ) = gred(x
ℓ) for ℓ ∈ LI .

Since LI is infinite, this implies that inf
ℓ
‖gI(xℓ)‖∗ = 0. As in case 1, we now conclude that

gred(x̂) = 0 and (ii) holds. ⊓⊔

The assumption that x is bounded, or the weaker assumption that for a given initial iterate
x0, the set {x ∈ x : f(x) ≤ f(x0)} is compact, implies the boundedness of the sequence xℓ,
so that (i) or (ii) holds. (We conjecture that when neither (i) or (ii) holds then fℓ → −∞.)

The typical situation. is that there is only one limit point x̂, so that xℓ → x̂. In exact
arithmetic, the stationary points found are usually local minimizers as convergence of a
subsequence to a nonminimizing stationary point is unstable under arbitrarily small generic
perturbations. Thus one usually converges to a single local minimizer. In finite precision,
one typically ends up anywhere in a region where the reduced gradient is dominated by noise
due to rounding errors, so that the theory (which assumes exact arithmetic) no longer gives a
reliable description of the finite precision behavior. This may in particular happen in very
flat regions of the feasible domain where there is no nearby stationary point; numerical
misconvergence is then possible. However, all optimization methods using only function
values and gradients necessarily face this kind of difficulties.

Theorem 8.2 says that in case of convergence to a nondegenerate stationary point, all
strongly active variables are ultimately fixed. Thus zigzagging through changes of the
active set (as in the examples of Section 6) cannot occur infinitely often.

References

[1] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned con-
jugate gradient method. Numerische Mathematik 48 (1986), 499–523. [23]

[2] D.P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM J. Control Opimization 20 (1982), 221–246. [3, 27]

35

[3] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16 (1995), 1190. [27]

[4] Paul Calamai and Jorge Moré. Projected gradient methods for linearly constrained
problems. Mathematical Programming 39 (sep 1987), 93–116. [27]

[5] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Global convergence of a class of trust
region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25
(1988), 433. [3]

[6] J. C. Dunn. On the convergence of projected gradient processes to singular critical
points. J. Optim. Theory Appl. 55 (1987), 203–216. [27]

[7] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Com-

puter J. 7 (1964), 149–154. [22, 24]

[8] A. Goldstein and J. Price. An effective algorithm for minimization. Numer. Math. 10
(1967), 184–189. [3]

[9] A.A. Goldstein. On steepest descent. J. SIAM, Ser. A: Control 3 (1965), 147–151. [6]

[10] W.W. Hager and H. Zhang. A new active set algorithm for box constrained optimiza-
tion. SIAM J. Optimization 17 (2006), 526–557. [3, 27]

[11] W.W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific
J. Optimization 2 (2006), 35–58. [22]

[12] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bur. Stand. 49 (1952), 409–436. [22, 23]

[13] M. Kimiaei, A. Neumaier, and B. Azmi. LMBOPT – A limited memory method for
bound-constrained optimization. Technical report, University of Vienna (2019). [3, 11]

[14] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media
(2006). [2]

[15] P.M. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Math. Programming 46 (1990), 321–328.
[19]

[16] W. Warth and J. Werner. Effiziente Schrittweitenfunktionen bei unrestringierten Op-
timierungsaufgaben. Computing 19 (1977), 59–72. [3, 9, 11]

[17] P. Wolfe. Convergence conditions for ascent methods. SIAM Rev. 11 (1969), 226–235.
[3]

36

