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This paper develops an exact solution algorithm for the Multiple Sequence Alignment (MSA) problem.

In the first step, we design a dynamic programming model and use it to construct a novel Multi-valued

Decision Diagrams (MDD) representation of all pairwise sequence alignments (PSA). PSA MDDs are then

synchronized using side constraints to model the MSA problem as a Mixed-Integer Program (MIP), for the

first time, in polynomial space complexity. Two bound-based filtering procedures are developed to reduce

the size of the MDDs, and the resulting MIP is solved using logic-based Benders decomposition. For a more

effective algorithm, we develop a two-phase solution approach. In the first phase we use optimistic filtering

to quickly obtain a near-optimal bound, which we then use for exact filtering in the second phase to prove

or obtain an optimal solution. Numerical results on benchmark instances show that our algorithm solves

several instances to optimality for the first time, and in case optimality cannot be proven, considerably

improves upon a state-of-the-art heuristic MSA solver. Comparison to an existing state-of-the-art exact MSA

algorithm shows that our approach is more time efficient and yields significantly smaller optimality gaps.

Key words : Keywords: Multiple sequence alignment; Multi-valued decision diagrams; Decision diagram

filtering; Optimistic filtering; Logic-based Benders decomposition.

1. Introduction

Sequence alignment is a fundamental problem in computational biology, but also finds

application in other fields such as high frequency trading, speech recognition, and computer

vision. The problem involves comparing a number of sequences, with the objective of finding

their best alignment. A sequence s is defined as a string of characters s :=
〈
c1, . . . , c|s|

〉
with a meaningful order, for example, representing a DNA, RNA, or protein molecule in

the context of computational biology. The optimal alignment of a set of sequences S is

obtained by inserting gaps “−” into each sequence s ∈ S, such that all sequences achieve

the same length and their similar regions overlap.

The Pairwise Sequence Alignment (PSA) problem consists of finding the best alignment

between a pair of sequences (s, s′), and as a generalization, the Multiple Sequence Align-
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ment (MSA) problem involves aligning a set S≥ 3 of sequences. The output of the sequence

alignment problem is a matrix with |S| rows, where each row corresponds to a sequence

s ∈ S, and each column corresponds to a set of aligned characters. Two characters cis, c
j
s′,

or a character cis and a gap symbol “−”, are aligned if they are placed in the same column

of the MSA matrix. An alignment is feasible if and only if it satisfies the following two

requirements:

1. Order requirement: Ignoring the gap characters “−”, the row associated with a

sequence s ∈ S must be identical to sequence s, and preserve the order of its characters〈
c1
s, . . . , c

|s|
s

〉
.

2. Column alignment requirement: Each set of aligned characters belongs to exactly one

column, and any column must contain at least one character cis ∈ s, s∈ S.

A feasible alignment is optimal if it gives the highest objective value with respect to the

scoring function. The scoring function assigns a reward for matching two characters, and

penalizes alignments of characters to gaps. The reward of aligning different characters is

determined by a predefined substitution matrix. Different substitution matrices result in

different optimal solutions, and are used to accommodate various user objectives.

The penalty of aligning characters to gaps is primarily dependent on the user objective,

and may be a constant, or a function of the number of consecutive gap alignments (Vingron

and Waterman 1994). In affine or convex gap penalty functions, an opening gap alignment,

i.e., a gap alignment immediately after an alignment of characters, is penalized by the

opening penalty. An extension of a gap alignment is thereafter penalized by the extension

penalty, which is a linear function in affine, or a convex function in convex gap penalties.

To obtain the overall alignment score for MSA, a popular technique is the Sum-of-Pairs

objective template. In this template, the objective value is the sum of the rewards or

penalties assigned to all pairs of aligned characters and gaps. Note that a pair of aligned

gaps is not assigned any reward or penalty. Regardless of the scoring template, solving

MSA is proven to be NP-complete (Wang and Jiang 1994), and is also challenging in

practice. Thus, the majority of research in solving MSA is dedicated to heuristic algorithms

(Katoh et al. 2017, Hung et al. 2015, Sievers et al. 2011, Chakraborty and Bandyopadhyay

2013, Magis et al. 2014). Although heuristic methods are fast and accommodate large-size

problems, they fail to give any guarantee on the solution quality. In fact, the quality of

heuristic solutions has been shown to be often far below the optimal solution on benchmark
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instances (Thompson et al. 2011, Nuin et al. 2006). As higher quality alignments offer

significantly more insight into relationship of sequences, it is desirable to develop algorithms

with higher accuracy. This motivates the development of algorithms that attempt to solve

MSA exactly and guarantee optimality.

To the best of our knowledge, three exact solution approaches exist for MSA. Namely,

the Dynamic Programming (DP) approach introduced by Needleman and Wunsch (1970);

the Integer Programming (IP) approach of the Maximum Weight Trace (MWT) problem

introduced by Kececioglu (1993) and solved exactly by Althaus et al. (2006); and the

convex optimization approach of Yen et al. (2016). Although exact approaches may be slow

compared to heuristics, they are guaranteed to reach the optimal solution eventually, even

for large-size problems. However, a major bottleneck of existing exact MSA algorithms

is their exponential space requirement, which is generally too high to allow the solution

algorithm to fit in memory for large-size problems.

The DP algorithm models the MSA problem as a |S| dimensional cube of size n =

max
s∈S
{|s|}, with a memory requirement of O(n|S|) which is too space consuming to even

model small sized instances. The convex optimization approach also has exponential space

requirements, and is limited to solving small-sized sequences of length below 50 in prac-

tice. Similarly, the MWT approach has exponential space requirements, with a worst-case

O(|S|n|S|) space complexity.

The most successful exact approach for MSA is the branch-and-cut algorithm devel-

oped for the MWT problem (Althaus et al. 2006). Althaus et al. (2006) consider small to

medium sized problems with 4 to 6 sequences and a total number of 300 to 600 characters.

The branch-and-cut algorithm works well on benchmark instances with high degrees of

similarity, and is able to solve those to optimality within a short amount of time. However,

the algorithm does not converge for instances with lower degrees of similarity within 10

hours of computation, and terminates with 16-580% gaps to optimality. For such instances,

heuristic solutions with good quality are generated by optimizing over a carefully chosen

subset of the feasible solutions.

In this paper, we follow the Sum-of-Pairs template and develop an algorithm for global

sequence alignment (Needleman and Wunsch 1970). As in most MSA algorithms, our

algorithm may accommodate local alignment (Smith and Waterman 1981) or any objective

template using straightforward modifications.
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In the first step, we develop a DP model and use it to construct a novel representation

of the MSA problem using Multi-valued Decision Diagrams (MDD). Decision diagrams

were originally used for circuit design problems as a compact graphical representations of

Boolean functions (Lee 1959, Bryant 1986). In recent years, decision diagrams have been

successfully used to represent the set of feasible solutions of discrete optimization problems

(Becker et al. 2005, Bergman et al. 2014, 2016, Cire and van Hoeve 2013, Darwiche and

Marquis 2004, Bouquet and Jégou 1995, Cayrol et al. 1998).

An MDD approach to MSA possesses a number of advantages not available for exist-

ing DP, IP, or convex optimization approaches. Using the order preserved in MDDs, the

structure of sequences may be exploited to remove a set of infeasible alignments prior to

optimization. This is not case in the MWT algorithm for example, which identifies and

removes such solutions iteratively by branch and cut on a linear program (Reinert et al.

1997, Althaus et al. 2006, Kececioglu et al. 2000). Using the MDD representation of PSA of

all pairs (s, s′) : s, s′ ∈ S, we model the MSA problem in worst-case O(|S|2n3) space for affine

gap penalty functions and O(|S|2n4) for convex gap penalty functions, while existing exact

approaches require a worst-case exponential space. This is a significant improvement, as it

allows to model and potentially solve larger sized problems (in particular for affine penalty

functions), even though they may not be solved to optimality in a reasonable amount of

time.

We consider the MSA problem as the synchronized PSA of all pairs (s, s′) : s, s′ ∈ S.

More specifically, PSA MDDs are used as the underlying network structure to formulate

the MSA problem as a Mixed-Integer Program (MIP), and their solution is synchronized

using side constraints. Transforming DP models into an equivalent MIP formulation was

introduced by Martin (1987), Martin et al. (1990), and shown to be an effective modeling

approach. The resulting MIP in our paper is a collection of longest path problems with

side constraints, and hard to solve in general.

To lower the solution difficulty, we first attempt to reduce the size of the feasible solution

set by removing non-optimal solutions embedded in the PSA MDDs. We develop two

bound-based filtering procedures using the Carrillo and Lipman (1988) lower bound, and

an upper bound based on linear programming strengthened through additive bounding

(Fischetti and Toth 1989). To the best of our knowledge, this is the first upper bounding

procedure used to prune infeasible or non-optimal solutions in the MSA problem. We show
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that these filtering procedures complement each other, and in particular, additive bounding

filtering is able to prune a significant number of solutions even after the Carrillo-Lipman

filtering procedure is used. The MSA MIP is defined on the filtered PSA MDDs, and solved

using a logic-based Benders decomposition algorithm (Hooker and Ottosson 2003).

For a more effective solution algorithm, we develop a two phase approach. In the first

phase, we aggressively filter the PSA MDDs using an optimistic guess for the optimal

solution objective. This allows us to optimize over a considerably smaller solution set

and quickly find quality solutions (in most considered instances, optimal or near-optimal).

Using the bound obtained by the optimal solution of the first phase, we exactly filter the

PSA MDDs in the second phase to prove optimality of the first phase solution, or find an

optimal solution.

We show that our algorithm is able to solve several benchmark instances to optimality

(with respect to our considered objective functions). For instances not solved withing the

imposed time limit, a primal heuristic embedded in the Benders decomposition algorithm

generates feasible MSA solutions, which significantly improve alignment accuracy com-

pared to a state-of-the-art MSA heuristic solver. The solution algorithm is compared to

the best exact approach of the literature, and shown to optimally solve or reach lower gaps

to optimality on almost all considered instances.

The rest of the paper is structured as follows. Section 2 models the PSA problem as

a DP model, and uses that model to represent the PSA problem as an MDD. Section 3

shows how to synchronize PSA MDDs to model the MSA problem as an MIP, discusses

the filtering procedures used to prune non-optimal solutions, and designs the two phase

solution algorithm. In section 4, we develop the logic-based Benders decomposition and

primal heuristic algorithms. Section 5 gives the numerical results on benchmark instances,

and the paper is finally concluded in Section 6.

2. A DP model and MDD representation for the PSA problem

In this section, we develop a DP model for the PSA of sequences s, s′ ∈ S. Our model is

similar to the matrix-format DP model of Needleman and Wunsch (1970) (in particular

when gap penalties are linear); however, our DP model is better suited to develop an MDD

representation of PSA. For clarity, we first define the DP model for the case of linear gap

penalty functions, and thereafter expand the model to affine and convex settings.
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a) Associating variables to characters b) Example variable assignment c) Output PSA matrix
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𝒙𝟏 = 𝑻𝒙𝟐 = −𝒙𝟑 = 𝑮

Figure 1 Example variable association and assignment, and corresponding output PSA matrix.

2.1. Dynamic programming model for the PSA problem

For a PSA alignment of sequences (s, s′), we define x as a tuple of discrete variables

(x1, . . . , xi, . . . , x|s|), one for each character cis : 1 ≤ i ≤ |s|. Variables xi are associated

with finite domains Di, defined as the possible alignment decisions for cis, i.e., Di ={
c1
s′, . . . , c

|s′|
s′ ,−

}
. Assigning xi to a value in Di represents aligning character cis to some char-

acter cjs′ ,1≤ j ≤ |s′|, or to the gap symbol “−”. For example, for the PSA of the sequences

in Figure 1.a, we define three variables x1, . . . , x3 with the domains Di = {G,T,R,−} , i=

1, . . . ,3. A PSA solution is thus represented by a feasible assignment to tuple x. For exam-

ple, x̄ = (x̄1, x̄2, x̄3) = (T,−,G) represents the alignment made in Figure 1.b, with the

output alignment matrix shown in Figure 1.c.

To determine the optimal assignment for x, we solve the PSA problem using a DP with

i= 1, . . . , |s| stages, where at each stage i, a decision is made for the value of xi. The model

is formulated by backwards induction, i.e., stages i = 1, . . . , |s| (consequently variables

x1, . . . , x|s|) correspond to the alignment decision for characters c
|s|
s , . . . , c1

s, respectively. The

PSA DP model has the following elements:

• state spaces Si, for i= 0, . . . , |s|+ 1;

• transition functions Ti : Si−1×Di→Si, for i= 1, . . . , |s|;
• transition reward functions Ri : Si−1×Si→R, i= 1, . . . , |s|+ 1;

and is written as:

max
z,x

∑
i=1,...,|s|+1

Ri(zi−1, zi) (1)

s.t. zi = Ti(zi−1, xi) i= 1, . . . , |s|, (2)

z0 = |s′|+ 1, z|s|+1 = 0 (3)

zi ∈ Si, xi ∈Di i= 1, . . . , |s|. (4)

The alignment variables x1, . . . , x|s| are regarded as controls, where a control xi takes the

DP system from state zi−1 ∈ Si−1 to state zi = Ti(zi−1, xi) and accumulates a reward/penalty
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Initialize:
(𝒛𝟎= 𝟒)

Terminate:
(𝒛𝟒= 𝟎)

Figure 2 Example DP transition function values.

Ri(zi−1, zi). We define states zi as the position j of the last non-gap alignment made to a

character cjs′. That is, zi = j, where cjs′ is the last non-gap alignment decision for a character

ci
′
s , i
′ ≤ i. Following this definition, the transition functions are defined as:

Ti(zi−1, xi) =

{
j if xi = cjs′, and

zi−1 if xi =−.

The DP model is initiated from state z0 = |s′|+ 1 and terminated at state z|s|+1 = 0. For

example, Figure 2 shows the transition values for the example PSA of Figure 1.b.

PSA feasibility is satisfied by ensuring that zi ≤ zi−1 for any transition zi = Ti(zi−1, xi),

as proved in Lemma 1. State spaces Si are defined as the set of possible state values for zi

at stage i of the DP model. Therefore, S0 = {|s′|+ 1}, S|s|+1 = {0}, and Si = {|s′|+ 1, . . . ,1}

for all 1≤ i≤ |s|.

Lemma 1 A transition from a state zi−1 to a state zi is feasible if and only if zi ≤ zi−1.

Proof The “only if” direction holds due to the well-known Markovian property of the

DP solution for PSA. The “if” direction holds as any alignment such that j = zi−1 > zi = j′

implies an alignment of character ci
′
s , i
′ ≤ i− 1 to cjs′ , and cis to cj

′

s′, j > j′, and violates the

order requirement. �

The transition reward function R(zi−1, zi) is designed to accumulate a gap penalty if

zi = zi−1. To model character alignment rewards, we first point out that the proposed DP

model explicitly determines gap alignment decisions for characters cis only, and it does

not explicitly determine the gap alignment decisions for characters cjs′. Gap alignments for

characters cjs′ are however implied by non-gap alignment decisions for characters cis. For

example, in Figure 3 the alignment of c4
s =M implies that characters c3

s′ , c
4
s′, c

5
s′ are aligned

with gap symbols. To capture the penalty of such implied gap alignments, R(zi−1, zi) is

designed to accumulate a gap penalty of a length zi − zi−1 − 1 gap, in addition to the

explicit character alignment reward for characters cis.
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Figure 3 The alignment shown by the dashed arc implies gap alignments of characters cjs′ , j = 3,4,5 (circled).

2.2. Extension to affine and convex gap penalty functions

The state definition zi of the previous section is only sufficient for a linear gap penalty

function. To accommodate more complex penalty functions such as affine or convex, we

are required to define additional state values for variables zi. In particular gap opening

and extension penalties are unequal in such functions. Therefore, to correctly penalize gap

alignments at stage i of the DP model, we are required to distinguish whether a gap or a

non-gap alignment is made at stage i− 1. In case a non-gap alignment is made at stage

i−1, a gap alignment at stage i is penalized by the opening gap penalty. Similarly, if a gap

alignment is made at stage i− 1, an extension gap penalty is incurred for gap alignments

at stage i.

To distinguish gap and non-gap alignments at each stage, we introduce negative state

values zi < 0, and associate them to gap alignments. That is, a negative state zi < 0 denotes

that a gap alignment is made at stage i−1. In this setting, a character alignment is modeled

by a transition from a positive or negative state value zi−1, to a positive state value zi > 0.

Opening gap alignments are modeled by a transition from a positive state value zi−1 > 0

to a negative state value zi < 0; and gap extension alignments are modeled by transition

between negative state values zi < 0, zi−1 < 0. Similar to before, a transition zi = Ti(zi−1, xi)

is feasible (permitted) if and only if 0≤ zi < |zi−1| for character alignments, or zi =−|zi−1|
for gap alignments.

The state spaces Si for the DP model with affine penalty functions are defined as follows.

For stage i= 1, we define S1 = {−(|s′|+ 1),1, . . . , |s′|}, where a state 1≤ z1 ≤ |s′| indicates

that c
|s|
s is aligned to character cz1s′ ; and state z1 = −(|s′| + 1) indicates an opening gap

alignment for c
|s|
s . Note that gap extension alignments are not possible at stage i= 1. For

stages i = 2, . . . , |s|, we define Si = {−(|s′|+ 1),−|s′|, . . . ,−1,1, . . . , |s′|}, with a negative

state value −|s′| ≤ zi ≤−1 representing a gap alignment at stage i− 1. Figure 4.a. shows

example transitions (represented by arcs) between different state values zi (represented by

nodes) for affine penalty functions.

Unlike an affine penalty function where gap extension penalties incurred at stage i are

equal regardless of the number of consecutive gap alignments prior to stage i, a convex
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Figure 4 A PSA MDD with layers Li corresponding to state spaces Si, and variables xi (transitions Ti) corre-

sponding to arcs (u, v)∈Ap. The highlighted path corresponds to an alignment (x̄1, x̄2, x̄3) = (c1s′ ,−, c2s′)

.

penalty function gives different penalties when extending gaps of different lengths. To

accommodate a convex penalty function we must thus keep track of the number of con-

secutive gap alignments prior to stage i, in addition to representing gap states by negative

values. This is done by redefining state variables zi from single values j, to size-two tuples

(j, g). The definition of values j is consistent with the case of affine penalty functions,

and the newly introduced state gap length value g denotes the number of consecutive gap

alignments made prior to state zi. Using values (j, g) we can correctly calculate the cost of

convex gap penalties in Ri(zi−1, zi).

To define the state spaces Si for convex gap penalties, we first define Si =

{(−|s′| − 1, i) , (1,0), . . . , (|s′|,0),} ,1 ≤ i ≤ |s′|, which denote character alignments by zi =

(j,0) : j > 0, and the possibility of no character alignment (i consecutive gap alignments)

before stage i by zi = (−|s′| − 1, i). To represent gap alignment states, we add state val-

ues {(−1, i′), . . . , (−|s′|, i′),} to Si for every value of i′ ∈ {1, . . . , i}, as there are a possible

i′ number of possible values for g at stage i. Figure 4.b shows example transitions (rep-

resented by arcs) between different state values zi (represented by nodes) for a convex

penalty functions.

This concludes the definition of the proposed DP model for PSA. The next section uses

the designed DP model to represent PSA as a MDD.
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2.3. MDD representation for the PSA problem

This section uses the PSA DP model to represent the PSA of a pair of sequences p= (s, s′)

as an MDD. For succinctness, we mainly discuss the MDD representation for the DP model

with affine penalty functions. The extension to convex penalty functions is straightforward.

A PSA MDD Mp = (U p,Ap) is a layered directed acyclic graph, where U p is its set of

nodes, and Ap is its set of arcs. Set U p is partitioned into layers (L0, . . . ,L|s|+1), such that

layers Li : 1 ≤ i ≤ |s| correspond to stages 1 ≤ i ≤ |s| of the DP model, and contain one

node per value of state spaces Si. For example, Layers L0 and L|s|+1 consist of single nodes,

namely the root node r ∈ L0 (z0 = |s′|+ 1), and the terminal node t ∈ L|s|+1 (z|s|+1 = 0),

which are used to initialize and terminate the PSA, respectively.

Nodes u ∈ Li : 1 ≤ i ≤ |s|, represent the possible values that zi can take at stage i of

the DP formulation. For example, for the DP formulation with affine penalty function, we

create |S1|= |s′|+ 1 nodes for layer L1, and |Si|= 2|s′|+ 1 nodes for layers Li : 2≤ i≤ |s′|.

A node u∈Li : 0≤ i≤ |s|+1 thus represents a specific state value in Si, denote as state(u).

Transitions from states in Si−1, i.e., nodes u ∈ Li−1, to states in Si, i.e., nodes v ∈ Li, are

represented by arcs (u, v) ∈Ap. Arcs (u, v) ∈Ap model the assignment of a value in Di to

control variables xi, and take the system from state(u) to state(v) = Ti(state(u), xi). As

in the DP model, transitioning to a node v : state(v)> 0 at stage i, implies an alignment

of cis to character c
state(v)
s′ . Transitioning from node u to a node v : state(v)< 0 implies an

opening gap alignment if state(u)> 0, or an extension gap alignment if state(u)< 0.

Following the DP model, PSA feasibility is ensured by creating an arc (u, v) only if

state(v)< |state(u)| for character alignments, or state(v) =−|state(u)| for gap alignments.

By this representation, any path from r to t corresponds to a feasible PSA solution, as

the satisfaction of the order and column alignment requirements are guaranteed by the

definition of transition functions state(v) = Ti(state(u), xi). Moreover, the MDD models all

possible feasible PSA solutions, as its arcs model all feasible transitions of the DP model.

Figures 4.a, 4.b show the MDD representation of the example PSA in Figure 1, with

the correspondence of layers Li to state spaces Si, arcs (u, v) to transitions state(v) =

Ti(state(u), xi), and nodes u∈Li to state values zi, for affine and convex penalty functions

respectively. The example alignment x = (G,−, T ) corresponds to the highlighted path

from the root node r to the terminal node t in both MDDs. Note that the structure of any

two PSA MDDs Mp,Mp′, respectively modeling the alignment of sequence pairs (s1, s2),
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(s3, s4), is identical if |s1|= |s3|, |s2|= |s4|. In particular, Figure 4 shows the MDD structure

for any two sequences (s, s′) such that |s|= 3, |s′|= 3.

To implement the reward/penalty of alignments we use weighted MDDs, where arcs

(u, v)∈Ap are associated to values wuv =Ri(state(u), state(v)). The length of an r-t path

is thus the objective value
∑

i=1,...,|s|+1

Ri(zi−1, zi). Consequently, the longest r-t path cor-

responds to optimal PSA solution x̂. Proposition 1 proves that the PSA MDD correctly

models the PSA problem.

Proposition 1 The PSA MDD is a valid representation for the PSA problem.

Proof The PSA MDD mimics the DP model for the PSA problem by modeling all

states by nodes u ∈ Ap, and all feasible transitions by arcs (u, v). The transition reward

functions are also captured by weights wuv on arcs (u, v) ∈Ap. As the DP model is valid

for the PSA problem, the PSA MDD is a valid representation of the PSA problem. �

We next prove in Proposition 2 that our PSA MDDs are reduced. An MDD is reduced if

there are no equivalent nodes in any of its layers Li (Wegener 2000). Two nodes u,u′ in a

layer Li are equivalent if there is a one to one equivalence between the set of u-t paths, and

the set of u′-t paths. For equivalent nodes u,u′, we can delete node u′ and all its outgoing

arcs (u′, v) : v ∈ Li+1, and redirect its incoming arcs (v,u′) : v ∈ Li−1 to node u, without

altering the decision structure of the MDD.

Proposition 2 The PSA MDD representation above is reduced by construction.

Proof By construction, state(u) 6= state(u′) for any pair of nodes u,u′ ∈ Li, i =

0, . . . , |s|+ 1. As arcs (u, v) ∈ Ap are constructed based on state(u), no two single nodes

u,u′ ∈ Li have a common set of outgoing arcs (i.e., arcs representing the same decision

and the same weights wuv). Therefore, no two paths u-t, u′-t are equivalent for any nodes

u′, u∈U p. �

The current definition of a PSA MDD models all feasible PSA solutions in O(n3), O(n4)

space complexity for affine and convex penalty functions, respectively. Although the entire

PSA MDDs are required in order to model an exact solution approach for MSA (discussed

in the next section), the space complexity of the algorithm may be reduced if we are

interested in only finding an optimal PSA. To that end, we prove in Lemma 2, that for

PSA the only required information at stage i of the DP model is the longest path values

leading to nodes u∈Li−1.
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Lemma 2 Let I↓(u) denote the value of a longest r-u path. Values I↓(u)∈Li are the only

information required to solve the PSA problem.

Proof Proof is by induction on stages i of the DP model. The statement is trivial

for stage i = 1. Assume the statement holds for stage i > 1. For any node v ∈ Li+1 we

have by definition of the longest path, I↓(v) = max
u:(u,v)∈Ap

{
I↓(u) +wuv

}
. By the principal of

mathematical induction, the statement holds for any stage i. �

The DP model is thus only required to keep in memory |Li−1|+ |Li| number of values at

each stage i, and update the partial optimal PSA at every step similar to the algorithm of

Hirschberg (1975). This gives a space complexity of O(n),O(n2) for the PSA problem with

affine or convex penalty gaps, which is consistent with the best complexity proven for the

PSA problem with linear penalty costs in Hirschberg (1975).

3. Solving the MSA problem using synchronized PSA MDDs
3.1. Modeling the MSA problem as an MIP

The MSA problem may be viewed as the simultaneous alignment of all possible PSAs. In

this section, we show how to synchronize all PSA MDDs for an exact solution to the MSA

problem. We consider 1≤ s≤ |S| − 1 and s+ 1≤ s′ ≤ |S|, and let set P be the union set of

all pairs p= (s, s′). We construct all pairwise MDDsMp : p∈ P, and define M = (U c,Ac) as

the union of all pairwise MDDsMp, where U c =
⋃
p∈P
U p,Ac =

⋃
p∈P
Ap. Observe that the worst-

case space complexity of M is O(|S|2n3),O(|S|2n4) for affine and convex penalty functions,

respectively. To simultaneously solve the PSA MDDs, we first formulate the MIP model

below, defined on set M:

max
∑

(u,v)∈Ac

wuvyuv (5)

s.t.
∑

u:(r,u)∈Ap

yru = 1 ∀p∈ P, (6)

∑
u:(u,t)∈Ap

yut = 1 ∀p∈ P, (7)

∑
u:(u,v)∈Ap

yuv−
∑

u:(v,u)∈Ap

yvu = 0 ∀p∈ P,∀v ∈U p \ {r, t} , (8)

yuv ∈ {0,1} ∀(u, v)∈Ac. (9)

Here, yuv is a binary variable defined for arcs (u, v) ∈ Ac, determining whether arc (u, v)

is part of the optimal solution or not. The objective function (5) maximizes the reward of
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all pairs of character alignments (sum-of-pair score), and constraints (6)-(8) preserve the

required flow in the longest path problems defined on M, the union of disjoint directed

acyclic graphs Mp.

Solving the above MIP corresponds to finding the shortest paths in all PSA problems

independently, and is likely infeasible with respect to the order requirement in MSA. To

enforce the order requirement, we add additional continuous column variables πi
s ≥ 0,

which denote the column placement of character cis in the output MSA matrix. We enforce

constraints (10) and (11), which ensure that any aligned characters cis, c
j
s′ are placed into

the same column of the MSA matrix (i.e., πi
s = πj

s′). Here, M denotes a big number, defined

as M =
∑
s∈S
|s| in our computational experiments.

πi
s ≤ π

j
s′ +M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

yuv

 ∀p= (s, s′),∀(i, j)∈ (s, s′), (10)

πj
s′ ≤ π

i
s +M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

yuv

 ∀p= (s, s′),∀(i, j)∈ (s, s′). (11)

Finally, we add constraints (12), which enforce the order requirement between columns of

the MSA matrix.

πi
s ≤ πi+1

s − 1 ∀k,∀i= {1, . . . , |s| − 1} (12)

This gives a constrained longest path formulation:

P: {(5)|(6)− (12), π≥ 0} ,

to solve MSA. Note that although variables πi
s are continuous, in a solution for P they

take integer values due to their integer upper and lower bounds. The worst-case space

complexity of model P is consistent with the size of M, which is lower than the worst-

case exponential space requirements of all current exact MSA algorithms for |S| > 3, in

particular for linear or affine gap penalty functions. To prove correctness, Theorem 3 proves

that constraints (6)-(12) are sufficient to enforce the feasibility requirements of MSA, and

Corollary 1 proves that the solution of P is an exact MSA solution.
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Proposition 3 An MSA matrix satisfies the MSA feasibility requirements, if and only if

constraints (6)-(12) are satisfied.

Proof If the MSA matrix satisfies the MSA feasibility requirement, we can construct

solution vector ȳ by setting π̄i
s = j,∀s ∈ S,∀i ∈ s, where character cis is placed in column

j of the MSA matrix. Solutions ȳ, π̄ satisfy constraints (6)-(12), as all aligned characters

are placed in the same column of the matrix, and the order of columns satisfy constraint

(12). For the converse, we can construct a feasible MSA matrix using the ordering given

by solution π̄. All aligned characters have equal π̄ and thus fall into the same column, and

all columns satisfy the order requirement enforced by constraint (12). �

Corollary 1 The solution of P is an exact MSA solution.

Proof By Theorem 3, P optimizes over the set of all feasible MSA solutions. Thus, the

optimal solution to P is an optimal MSA solution. �

Despite its polynomial model size, solving P to optimality is only practically feasible for

small-sized instances when using a generic MIP solver. To increase the solution efficiency,

we next introduce filtering algorithms to prune and reduce the size of M by removing arcs

(u, v)∈Ac (consequently variables yuv) which cannot be part of an optimal MSA solution.

3.2. MDD filtering procedures for the MSA problem

Bound-based filtering is an effective method in reducing the size of large-scale problems

(Detienne et al. 2016, 2015). For decision diagrams, filtering refers to the process of iden-

tifying and deleting arcs (u, v) which do not contribute to a feasible or optimal solution

(Hoda et al. 2010, Andersen et al. 2007, Cayrol et al. 1998). Any r-t path using such arcs is

either infeasible or not optimal. Therefore, we may delete arc (u, v) without removing any

feasible or optimal solution. By construction, all arcs (u, v)∈Ap may be part of a feasible

MSA solution. Therefore, the the PSA MDDs are already filtered in that sense. However,

not all arcs can participate in an optimal MSA solution. We use two bounds to filter M

based on optimality, namely the Carrillo and Lipman (1988) lower bound, and the additive

bounding Fischetti and Toth (1989) upper bound.

3.2.1. Carrillo-Lipman lower bound As the first method, we use the well-known Car-

rillo and Lipman (1988) lower bound to reduce the size of each pairwise MDD Mp. The
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procedure generates a lower bound on the objective value of any Mp, and removes any

solution that violates that lower bound.

Let ȳ be a feasible MSA solution, which may be obtained using any fast heuristic method,

e.g., MUSCLE (Edgar 2004). Further, let ŷp be the optimal PSA solution of any Mp, and

let f(ȳ) denote the objective value of solution ȳ. Carrillo and Lipman (1988) prove that

f(ȳ)−
∑

p′:p′ 6=p

f(ȳp
′
) is a valid lower bound for the PSA of pair p, and any PSA solution that

violates this bound cannot be part of an optimal MSA solution. Formally,

f(ȳp)≥ f(ȳ)−
∑

p′:p′ 6=p

f(ŷp
′
), (13)

holds for all p ∈ P. Now, let I↓(u) denote the value of a longest path from root r to node

u ∈ U p. Similarly, let I↑(u) denote the value of a longest path from a node u ∈ U p to

terminal t. Using lower bound (13), we filter PSA MDDs Mp by deleting arcs (u, v) such

that:

I↓(u) +wuv + I↑(v)< f(ȳ)−
∑

p′:p′ 6=p

f(ŷp
′
).

Lastly, we delete any node u∈U c, which does not have any incoming arc (v,u)∈M or any

outgoing arc (u, v)∈M.

3.2.2. Additive bounding upper bound Although solving P is time-consuming, solv-

ing its Linear Programming (LP) relaxation is efficient. The LP relaxation of P is obtained

by replacing the binary constraints (9), with 0≤ yuv ≤ 1. The solution of this LP relaxation

may be used in filtering procedures for decision diagrams, using the additive bounding

procedure (Fischetti and Toth 1989, Kinable et al. 2017).

Given an optimization problem P, additive bounding solves a series of relaxations

P̃1, . . . P̃k of P, such that P̃1 is defined with respect to the original objective coefficients and

P̃k′ receives as objective coefficients the reduced costs obtained from P̃k′−1, for k′ = 2, . . . , k.

Fischetti and Toth (1989) show that the sum of the bounds from P̃1 to P̃k is a valid bound

for P.

In the context of our problem, we combine the LP relaxation of P with the discrete

relaxation defined by (5)-(9), i.e., the longest path formulation on the pairwise PSA MDDs.

First, we solve the LP relaxation of P, and denote the resulting upper bound by f̃(P), its
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optimal solution by ỹ, and the reduced cost of variable yuv by µuv. We then associate with

each arc (u, v)∈A a weight w̃uv defined as

w̃uv =

{
µuv if ỹuv = 0, and

0 otherwise.

Observe that w̃uv ≤ 0 for all (u, v)∈A since P is a maximization problem. Given a feasible

solution ȳ for P with objective value f(ȳ), the additive bound

f̃(P ) +
∑

(u,v)∈A

w̃uvyuv, (14)

is a valid upper bound for P, i.e. f(ȳ)≤ f̃(P ) +
∑

(u,v)∈A w̃uvyuv.

We can now define an MDD arc filtering rule as follows. Let Ĩ↓(u) denote the value of

a of a longest path, with respect to weights w̃uv, from root node r ∈UP to a node u∈U p.

Similarly, let Ĩ↑(v) denote the value of a longest path, with respect to weights w̃uv, from a

node v ∈U p to terminal node t∈U p. Using the upper bound (14), we filter the MDD M p

by deleting any arcs (u, v) such that:

Ĩ↓(u) + w̃uv + Ĩ↑(v)< f(ȳ)− f̃(P ).

As before, we delete any node u ∈ U c that does not have any incoming arc (v,u) ∈M or

any outgoing arc (u, v)∈M.

3.2.3. Filtering the MDD during construction It is more efficient (in both time and

memory) to filter M during its construction, rather than build M and filter it thereafter.

To that end, we can use the Carrillo-Lipman filtering procedure to filter the PSA MDDs

during their construction, as its bound can be calculated before construction of the PSA

MDDs. In particular, we can calculate the optimal PSA of all pairs p= (s, s′), and generate

a heuristic solution ȳ (e.g. using MUSCLE) to obtain the Carrilo-Lipman bound (13),

without constructing the PSA MDDs. The only MDD-dependant step is calculating values

I↓(u), I↑(v) that are used to determine whether an arc (u, v) is constructed or not (filtered).

Values I↓(u) can be calculated during construction, as the PSA MDDs are built incre-

mentally from the root node r to the terminal node t. However, values I↑(v) cannot be

calculated from the MDDs before they are fully constructed. Fortunately, it is possible

to calculate these values using a matrix-format PSA DP method, similar to that of Mott
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Figure 5 Example matrix format for PSA, and update procedure for for cell C4,3.

(1999) and Needleman and Wunsch (1970). The matrix-format DP method is suitable

to calculate values I↑(v) due to its forward induction on aligning characters c1
s, c

2
s, . . . , c

|s|
s

(recall that the PSA MDD follows a backwards induction). In the interest of space, we

refer the interested reader to Mott (1999) and Needleman and Wunsch (1970) for thorough

explanations of matrix-format PSA procedure, and briefly discuss the modified algorithm

to calculate values I↑(v) in our paper.

We create a (|s|+ 1)× (|s′|+ 1) alignment matrix, such as the example given in Figure

5 for |s|= |s′|= 3. In the matrix-format PSA, the value of cell Cji at row j and column i of

the matrix gives the objective of the best PSA alignment of the first i−1 characters cis ∈ s
to the first j− 1 characters cjs′ ∈ s′. To accommodate affine and convex penalty functions,

we additionally define gji as the number of consecutive gap alignments contributing to the

value of cell Cji. Note that gji may be reduced to a binary value in affine penalty functions,

as the penalty of extending a gap does not depend on the length of that gap. Lastly, we

define function G(g,x) which gives a g length gap penalty cost plus an alignment reward

based on the decision x.

The value of C00 is initialized to zero, with g00 = 0, and the values of the first row

and column cells are calculated as consecutive gap alignments: C0i = G (i,−) , g0i = i, Cj0 =

G(j,−), gj0 = j. The rest of the cells are calculated incrementally by a DP procedure as

Cji = max{Fji,Hji}, where Hji = max
j′<j

{
Cj′,i−1 +G(j− j′− 1, cj

′

s′)
}
, gji = gj′,i−1 + j − j′ − 1,

and Fji = max
i′<i
{Cj,i′ +G(i− i′− 1,−)} , gji = gji′ +i−i′−1. Values gji are updated according

to whichever value Fji or Hji gives Cji. Figure 5 shows an example schema of determining

these values for cell C43. Finally, cell C|s′|+1,|s|+1 gives the optimal PSA objective.

The calculated values of cells Cji can be used to exactly determine values I↑(v). By

definition, I↑(v), v ∈ Li, state(v) = j > 0 is the value of the longest path from node v to

terminal t. This path corresponds to the best PSA alignment of the first i− 1 characters
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cis ∈ s to the first j−1 characters cjs′ ∈ s′, i.e. Cji. However, observe that the above procedure

assumes no prior gaps leading to a cell Cji when calculating its value. For example, when

calculating C01, the gap penalty is calculated according to a gap of length 1 in G(1,−),

which gives an opening gap penalty. Although this is correct for I↑(v), v ∈ Li, state(v) =

j > 0, it is an incorrect value for I↑(v), v ∈Li, state(v) = j < 0. This is because extending a

gap leading to node v by g additional gaps is not equal to opening a gap of length g in affine

or convex penalty functions. In order to calculate values I↑(v), v ∈Li, state(v) = j < 0, we

need to build other matrices.

For affine penalty functions, it is sufficient to build an extra PSA matrix with the assump-

tion that all cells Cji proceed a gap of length one. The function G(g,x) thus calculates an

extension gap penalty when calculating the value of cells Cji. The values calculated in this

new matrix are used to determine values I↑(v), v ∈Li, state(v) = j < 0.

For PSA with a convex penalty function, the extension gap penalty additionally depends

on the number of consecutive gaps leading to nodes v : state(v)< 0. To exactly calculate

values I↓(u), u∈Li, state(u) = (j, g), j < 0 we must solve |s| number of PSA matrices, one

per possible value of gap lengths g, which takes a relatively long time. A compromise

between time and quality of our estimate for values I↓(u) is to solve 2 PSA matrices.

The original matrix assumes that i > 0, g = 0 to exactly calculate I↓(u), u ∈ Li, state(u) =

(j,0), j > 0, and for the other matrix we assume i < 0, g = |s| − i − 1 to give an upper

bound for the values of I↓(u), u ∈ Li, state(u) = (j, g), j < 0. That is, as |s| − i− 1 is the

maximum possible value of g at stage i, all values of the second matrix are an upper

bound to the exact values of I↓(u), u∈Li, state(u) = (j, g′), j < 0, g′ < g due to the convex

property of the penalty function. Using the values of this second matrix, we estimate all

values I↑(v), v ∈Li, state(v) = j < 0 and filter the PSA MDD during construction. After a

PSA MDD is constructed using the estimated values I↑(v), we exactly calculate all values

I↓(u), and re-filter the MDD.

This concludes the procedure to filter the PSA MDDs during construction. The next

section discussed how to use the filtering procedures for a more effective two phase solution

for MSA.

3.2.4. Two phase solution algorithm for MSA based on optimistic filtering Initial

numerical results showed that the filtering algorithms do not prune a significant number

of arcs (u, v) ∈M, when using (commercial) heuristic solvers to provide the bound f(ȳ).
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Unfortunately, obtaining solutions with higher quality quickly is not possible for large-size

instances using any other method in the literature.

On the bright side, the discussed filtering procedures do not require the explicit align-

ments of an MSA solution ȳ, and operate only using its objective value f(ȳ). Therefore, it

is not required to explicitly generate a solution to filter M, and it is possible to use a guess

for the value f(ȳ). A guess f g is valid if f g ≤ f(ŷ), where ŷ is an optimal MSA solution. A

valid guess close to the optimal objective value f(ŷ) leads to considerable pruning of M,

and consequently a smaller problem to solve. On the other hand, if the guess is invalid,

i.e., f g > f(ŷ), the filtering procedures may delete the optimal solution ŷ from M. In case

of an invalid guess, the solution of P may turn out to be a local optimal solution, or in

the worst-case P becomes infeasible and does not contain any feasible MSA solutions.

The validity of f g cannot be determined unless the optimal value f(ŷ) is known. How-

ever, it is possible to ensure that P is feasible after optimistic filtering, by ensuring that

it contains at least one feasible MSA solution. A straightforward, yet time-consuming,

approach to determine the feasibility of P after optimistic filtering is to directly solve P

using an MIP solver, and observe the result. A much faster approach is to check whether

the filtered M contains some feasible solution ȳ, which guarantees that P is feasible. This

is done by ensuring all arcs (u, v) corresponding to variables yuv ∈ ȳ : ȳuv = 1 remain in the

filtered M.

We consider checking whether M contains the best found feasible solution ȳ (e.g., the

solution generated by a heuristic solver). If M does not contain ȳ, we reduce the optimistic

guess f g by a step size stp (e.g., one which is chosen heuristically), and re-run the filtering

procedures using the updated guess f g− stp. This procedure is repeated until M contains

solution ȳ, in which case the feasibility of P is guaranteed.

The optimal solution ŷo of P on the resulting optimistically filtered M, may be a local

optimal if f g > f(ŷ). To ensure global optimality, we solve the MSA problem in two phases.

In the first phase, we perform optimistic filtering on M and solve P to generate a possibly

local optimal solution ŷo. In the second phase, we check global optimality by using the

first phase solution bound f(ŷo) to filter M. As ŷo is a feasible MSA solution, the resulting

filtered M is guaranteed to contain an optimal MSA solution ŷ. The solution of P in the

second phase either proves optimality of ŷo, or generates an optimal solution ŷ for the

MSA problem.
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The first phase optimal solution ŷo is guaranteed to have a higher objective value f(ŷo)≥
f(ȳ), where ȳ is generated by any heuristic MSA solver, proven in Lemma 3. In fact, it

is noteworthy to say that our numerical results show that either ŷ = ŷo or f(ŷo) is in

worst-case within 97% of the global optimal objective f(ŷ).

Lemma 3 The solution ŷo generated by solving P on an optimistically filtered M satisfies

f(ŷo)≥ f(ȳ), where ȳ is any feasible MSA solution.

Proof In the first phase M is guaranteed to contain the best found feasible solution,

e.g., ȳ. Therefore, solving P on M generates a solution ŷo which is either ŷo = ȳ, or satisfies

f(ŷo)> f(ȳ) due to the maximization objective (5). �

This concludes the filtering procedures for M. The filtered M is expected to be of smaller

size and consequently leads to an easier problem to solve. However, solving P on the filtered

M is still hard and time consuming using a commercial MIP solver. Our next step to reduce

solution difficulty is to use Benders decomposition.

4. Logic-based Benders Decomposition for solving synchronized PSA
MDDs

4.1. Logic-based Benders decomposition

In this section, we design a decomposition algorithm to solve model P more effectively

than a generic MIP solver. Based on the structure of model P, we propose using logic-

based Benders decomposition (Hooker 2002). We refer the interested reader to Hooker and

Ottosson (2003) for a thorough explanation of logic-based Benders decomposition.

As the first step, P is reformulated such that it only contains binary variables yuv. This

is done by relaxing constraints (10)-(12), and moving them to subproblem:

SP: max
{

0Tπ | (10)− (12), π≥ 0
}
.

This gives the relaxed master problem:

RMP: max{(5) | (6)− (9)} .

The solution ȳ of RMP may or may not satisfy the MSA order requirement, i.e., con-

straints (10)-(12). To check this, DSP the dual of SP, is solved at ȳ:

min M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

ȳuv


∑

(s,s′)

∑
(i,j)∈(s,s′)

αij
(s,s′)− γ

ij
(s,s′)

+
∑

s∈S,i∈s

βi
s (15)
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s.t.
∑

s′∈S:s′>s

∑
j∈s′

α1j
(s,s′)−

∑
s′∈S:s′>s

∑
j∈s′

γ1j
(s,s′) +β1

s ≥ 0 ∀s∈ S, (16)

∑
s′∈S:s′>s

∑
j∈s′

αij
(s,s′)−

∑
s′∈S:s′>s

∑
j∈s′

γij(s,s′)−β
i
s +βi+1

s ≥ 0

∀s∈ S,∀i∈ s : 2≤ i≤ |s| − 1, (17)∑
s′∈S:s′>s

∑
j∈s′

α
|s|j
(s,s′)−

∑
s′∈S:s′>s

∑
j∈s′

γ
|s|j
(s,s′)−β

|s|
s ≥ 0 ∀s∈ S, (18)

αij
(s,s′), γ

ij
(s,s′) ≥ 0 ∀(s, s′),∀(i, j)∈ (s, s′), (19)

βi
s ≥ 0 ∀s,∀i∈ s. (20)

where variables αij
(s,s′), γ

ij
(s,s′), β

i
s correspond to the dual variables associated with constraints

(10), (11), (12), respectively. If DSP is feasible, then ȳ is a feasible solution for P. Other-

wise, if DSP is unbounded, a Benders feasibility cut (21) is generated and added to RMP

to remove the infeasible solution.

M

∑
(s,s′)

∑
(i,j)∈(s,s′)

ᾱij
(s,s′)− γ̄

ij
(s,s′)


1−

∑
(u,v)∈Ap:u∈Lpi ,

state(v)=j

yuv

≥− ∑
s∈S,i∈s

β̄i
s (21)

We consider any feasible solution generated by the MIP solver when solving RMP, and

add a corresponding cut (21) to RMP if that solution is an infeasible MSA solution. The

Benders algorithm iterates until the solution of RMP leads to a feasible (not unbounded)

solution for DSP, which indicates an optimal solution for P.

Solving RMP is significantly easier than solving P. However, the rate of convergence to

the optimal solution is slow, and it takes many feasibility cuts (21) to reach the optimal

solution. Cuts (21) tend to remove one infeasible solution per iteration of the algorithm,

and given the difficulty of solving RMP at each iteration, this approach is not effective. To

generate stronger cuts, we develop logic-based column alignment cuts, which are added to

RMP together with constraints (21). Our column-alignment cuts are in fact a projection

of the“generalized transitivity inequalities” used in Althaus et al. (2006) onto the MDD

variable space.

Column alignment cuts are designed to enforce the alignment of a pair of characters

cis, c
j
s′, if those characters are both aligned with a third character cks′′ . Although this align-

ment is guaranteed for P due to constraints (10), (11), it is not enforced when constraints
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(10), (11) are relaxed, i.e., in RMP. Cuts enforcing this alignment can thus be used to

increase the solution quality of RMP and aid in improving convergence. We model such

cuts by considering a triple of characters
(
cis, c

j
s′, c

k
s′′

)
of sequence pairs p = (s, s′), p′ =

(s, s′′), p′′ = (s′, s′′), and imposing the following constraints:∑
u:u∈Lp

′
i

∑
v:(u,v)∈Ap′ ,
state(v)=k

yuv +
∑

u:u∈Lp
′′

j

∑
v:(u,v)∈Ap′′ ,
state(v)=k

yuv ≤ 1 +
∑

u:u∈Lpi

∑
v:(u,v)∈Ap,
state(v)=j

yuv (22)

Proposition 1 proves that the triple consideration of sequences (s, s′, s′′) is sufficient to

ensure correct column alignment for any number of sequences above three.

Theorem 1 It suffices to consider all
(|S|

3

)
triples of sequences, to ensure correct column

alignment in MSA, for any number of sequences.

Proof Consider a graph with nodes denoting characters c and arcs denoting alignment

of characters. A column in the MSA matrix corresponds to a set of connected nodes in

the graph. Observe that aligned characters respect the column alignment requirement if

the induced subgraph of their nodes forms a clique. If constraints (22) are satisfied, then

for any connected component, all induced sub-components of size three are cliques. This

implies that the component is itself a clique. �

It is possible to generate all possible cuts (22) a priori and add them to RMP; however,

doing so makes RMP much harder to solve. In fact, adding all such cuts makes the LP

relaxation of RMP unsolvable within 10 hours of computation, even for small instances.

On the other hand, not all cuts (22) contribute to the solution of RMP, and most are

non-binding for its optimal solution. We can thus only add a subset of these constraints

to RMP, and achieve the same results in much lower computation time. The problem is

that we do not know beforehand which cuts (22) are binding, and this is only observed

given a solution to RMP.

We thus add cuts (22) to RMP as logic-based cuts within the Benders decomposition

algorithm. At each iteration, in addition to Benders feasibility cuts (21), we generate

violated cuts (22) and add them to RMP. The separation procedure to generate cuts (22)

involves modeling the alignment determined by the solution of RMP as a graph (following

the same design as in the proof of Theorem 1), and finding any triple of nodes which do not

form a clique for any connected component. As proven in Althaus et al. (2006), the time
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complexity of finding such cuts is bounded by O(n4). Figure 6 shows the overall Benders

decomposition algorithm. Note that the heuristic procedure shown in Figure 6 is discussed

in Section 4.3.

4.2. Warm-starting the logic-based Benders decomposition algorithm

The Benders decomposition algorithm solves RMP once per iteration. Repeatedly solving

RMP is time consuming, and lowers the effectiveness of the algorithm. Moreover, cuts

generated in early iterations of Benders decomposition tend to be of low quality, and not

worth the computational effort of solving RMP. One approach to increase the effectiveness

of Benders decomposition is to warm-start the relaxed master problem (McDaniel and

Devine 1977). The warm-start algorithm is an iterative process that consists of solving the

LP relaxation of RMP at each iteration, and adding to it violated column alignments

cuts (22), and Benders feasibility cuts (21). The warm-start algorithm iterates until there

is no improvement in the LP bound f̃(P). Warm-starting enables fast generation of valid

cuts, without the need to solve an MIP problem at each iteration. The resulting master

problem has a tighter linear relaxation, and is used to start the Benders decomposition.

Warm-starting has additional benefits for our problem, as it provides opportunities to

further reduce the size of M using the additive bounding filtering procedure. At each iter-

ation of the warm-start algorithm, the LP relaxation of RMP gives an updated objective

bound f̃(P) and reduced costs µuv. These solutions can be used in the additive bounding

filtering procedure to further filter M. At each iteration, RMP is redefined to optimize

over the newly filtered M, which is smaller in size and easier to solve. Figure 7 gives the

overall warm-start algorithm.

4.3. Primal heuristic procedure to generate feasible MSA solutions

As the last component of our solution framework, we develop a heuristic procedure that

modifies an infeasible MSA solution ỹ derived from RMP, to generate a feasible MSA
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solution ȳ. The heuristic is executed within the Benders decomposition, and used to possi-

bly generate solutions ȳ with higher quality than those generated by heuristic MSA solvers.

Such solutions ȳ are used to update the incumbent, and provide better bounds f(ȳ) for

the MDD filtering algorithms.

The heuristic algorithm procedure consists of two steps. In the first step, the algorithm

removes a set of alignments from the infeasible solution ỹ, such that the resulting solu-

tion does not violate MSA requirements. To determine which set of alignments should be

removed, we sort all made alignments ỹuv = 1 in ascending order of their objective coeffi-

cient wuv. We then remove alignments in the sorted order until the resulting solution does

not violate MSA requirements.

In the second step, we use the feasible solution generated in the first step, and add to it

any possible feasible alignments that improve the overall objective. This is done by feeding

the solution to a heuristic solver, e.g MUSCLE (Edgar 2004), to refine the alignment.

The heuristic procedure is executed for every feasible solution generated by the MIP

solver when solving RMP, in each iteration of the Benders algorithm. At any point, if

the heuristic solution improves the bound f(x̄) (or f g in optimistic filtering) used in the

filtering procedures, we re-filter M using the new bound.

This concludes all procedures for the complete MSA solution algorithm, summarized in

Figure 8. The second phase to check global optimality is executed after the first phase

converges to an optimal solution. The second phase is identical to the first phase algorithm,
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with the exception of using the generated solution of the first phase for exact filtering,

instead of the guessed bounds used to optimistically filter the PSA MDDs.

5. Numerical Experiments

In this section, we describe two sets of numerical experiments on our MDD solution

approach for MSA. In our first set of experiments, we consider an affine penalty function

and analyze the performance of solving instances from BaliBASE benchmark version 4

(BaliBASE4 2017). We evaluate the effects of the filtering algorithms in reducing the size

of Mc, and compare the quality of our solutions to a state-of-the-art heuristic MSA solver.

In our second set of numerical tests, we consider both convex and affine penalty functions

and compare our algorithm to the best exact approach in the literature on instances from

BaliBASE benchmark version 1.

5.1. Experimental setup

For alignment rewards we use the BLOSUM62 substitution matrix, and for our convex

penalty function we use 8+2g+2
√
g, where g is the length of a gap in the alignment. This

function is adopted from Althaus et al. (2006), and shown to provide accurate alignments.

For our tests using an affine penalty function, we use 12 + 2.24g, where the opening and

extension penalties are obtained from a least squares regression approximation of function

8 + 2g+ 2
√
g, for gap lengths g= 1, ...,50.

For optimistic filtering, we heuristically choose a step size of stp=

∑
p
f(ŷp)−f(ȳ)

(|S|∗75/4−50)
, where ȳ

is the solution obtained from a heuristic MSA solver. We use two independent optimistic

guesses for the Carrillo-Lipman (f g
CL) and additive bounding (f g

AB) filtering procedures. An

initial value of
∑
p

f(ŷp)− stp is used for both guesses. At any time during the warm-start
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algorithm, if f g
AB turns out to be greater than the value of the LP objective f̃(P), we set

f g
AB = f̃(P)− stp.

All algorithms are coded in C++, CPLEX 12.7.1 is used as the commercial MIP solver,

and MUSCLE 3.8.31 (Edgar 2004) is used as the commercial MSA heuristic solver. MUS-

CLE was chosen as it consistently provided the best alignment for our objective setting

compared to other heuristic solvers. All tests are executed on a PC with Intel Xeon E5345

2.33 GHz processor, with 24GB of memory on an Ubuntu 14.04.6 platform. Tests are

limited to one thread of the CPU, and a 10 hour time limit is chosen for the overall com-

putation time for each instance. Our algorithm is open-source and available to download1.

5.2. Experiments on Balibase benchmark 4 and comparison to Muscle

For our first set of experiments, we use the latest BaliBASE benchmark, i.e. version 4

(BaliBASE4 2017), and initially limit our tests to instances with at most 1000 total number

of characters, i.e.,
∑
s∈S
|s| ≤ 1000. We then attempt to solve number of the largest size

instance that can fit in our system memory, to investigate the limits of our algorithm in

solving larger sized problems. All test in this section use an affine gap penalty function, as

to the best of our knowledge no commercial heuristic solver accommodates convex penalty

functions.

5.2.1. Effects of filtering algorithms To evaluate the effects of the filtering algorithm,

we report in Figure 9 the relative size of the filtered Mc compared to its original size,

in terms of number of arcs |Ac| and nodes |N c|. Results are reported both for optimistic

filtering in the first phase, and exact filtering in the second phase (for instances that did

not reach the time limit in the first phase).

Results show that the filtering algorithms filter a considerable number of nodes and arcs

in most instances, in particular using the additive bounding filtering procedure. On average,

the Carrillo-Lipman filtering procedure filters a considerable 94.5% of arcs, and 74.6% of

nodes in M for optimistic filtering. The additive bounding filtering procedure is performed

after the Carrillo-Lipman filtering, and filters on average 47.3% of the remaining arcs, and

31.1% of the remaining nodes in the filtered M. In exact filtering for the second phase,

the Carrillo-Lipman filtering procedure filters 75.4% of arcs, and 52.8% of nodes, with

the additive bounding filtering procedure filtering 98.2%, 88.9% of the remaining arcs and

1 https://github.com/aminhn/MSAMDD
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Figure 9 Effects of filtering algorithms on the size of Mc.

nodes, respectively. It is noteworthy that in some instances the Carrillo-Lipman filtering

procedure does not filter many nodes and arcs, but the additive bounding procedure is still

able to considerably filter M.

5.2.2. Comparison to MUSCLE Table 1 reports results on the CPU time, and accu-

racy of the proposed algorithm compared to the heuristic MSA solver MUSCLE. Instances

are divided into two groups, with the first group reporting results for any instance in the

benchmark with less than 1000 total characters, and the second group reporting results for

a number of larger-sized instances, up to 1500 total number of characters. The “Tot-CPU”

column reports the total CPU time (phase one plus phase two). The “Conv-Gap” col-

umn reports the Benders convergence gap of the first phase, calculated as 100(f(RMP)−f(ȳ))
f(ȳ)

,

where ȳ is the best found solution. Note that f(RMP) may not be the global upper bound

in phase one due to optimistic filtering. Column “Impr-Mus” reports the percentage of

improvement
100(f(ȳ)−f(ȳh))

f(ȳh)
made by our algorithm compared to the initial heuristic solu-

tion ȳh generated by MUSCLE. The final columns report the CPU time, global optimality

gap, and improvement of solution ȳ in the second phase compared to the optimal solution

of the first phase. For the latter, a 0% improvement indicates that the first phase solution

was in fact the global optimal MSA solution, and a dash indicates that the second phase

was not executed, as the first phase reached the imposed time limit.

The majority of CPU-time was spent in the warm-start algorithm and solving the MIP

formulation of RMP. On average, 50.5% of the time was consumed in the warm-start

algorithm, and 42.8% of the total CPU time was spent solving RMP. The primal heuristic
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Table 1 Results on Balibase benchmark 4, and comparison to MUSCLE. CPU time is given for the overall

algorithm, phase one, and phase two. The convergence gap (Cnv-Gap) in phase one, and improvement of the

best found solution compared to MUSCLE (Imp-Mus). The last columns give the CPU time and global optimality

gap in phase two, and improvement of the best found solution compared to phase one (Impr-Ph1).

Instance Tot-CPU
Phase one Phase two

CPU Cnv-Gap% Imp-Mus% CPU Gap% Imp-Ph1%

BB11001 (4/345) 7 4 0 285.8 3 0 0

BB11002 (8/784) 36,993 36,993 24.4 17.5 - - -

BB11009 (4/864) 36,553 36,553 13.0 0 - - -

BB11013 (5/358) 36,140 36,140 13.2 19 - - -

BB11021 (4/469) 36,176 36,176 35.8 0 - - -

BB11022 (4/472) 36,234 36,234 11.3 4 - - -

BB11025 (4/331) 36,106 36,106 11.0 16.4 - - -

BB11029 (4/408) 13,030 7,998 0 22.2 5,033 0 0

BB11035 (5/487) 36,118 36,118 39.0 0 - - -

BB12003 (8/570) 1,474 327 0 12.3 1,147 0 0

BB12006 (4/928) 490 384 0 9.2 106 0 0

BB12009 (5/563) 2,302 669 0 25.7 1,633 0 0.84

BB12014 (9/875) 36,645 36,645 6.7 16.2 - - -

BB12020 (4/502) 104 66 0 28.6 38 0 0

BB12021 (6/454) 378 105 0 33 272 0 0

BB12024 (4/973) 649 493 0 17.7 156 0 0

BB12025 (4/808) 36,268 36,268 28.0 0 - - -

BB12032 (9/595) 12,419 9,561 0 165 2,858 0 0

BB12040 (5/661) 261 123 0 20.2 138 0 0

BB12041 (7/795) 36,114 36,114 684.8 76.9 - - -

BB40010 (9/981) 38,258 38,258 0 0.9 - - -

BB11012 (4/1456) 5,329 4,806 0 21.4 523 0 0

BB11028 (10/1588) 36,215 36,215 46.0 0 - - -

BB12012 (4/1494) 38596 38596 20.1 0 - - -

BB12036 (7/1467) 3,873 1,558 0 6.8 2,315 0 0

procedure generally spends a few minutes, on average 3.9% of total CPU-time, and on

average improves the solution generated by MUSCLE by 33.3%. Improvement is as high

as 285.8% such as in instance BB11001, which was solved within 7 seconds.

Out of the 24 considered instances, the algorithm solves 12 instances to optimality. This

is true for instances with as many as 9 sequences, or 1467 total characters. In 11 of the 12
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instances solved, the solution found in phase one proved to be the global optimum, with

the remaining instance within 99.16% of global optimality. To the best of our knowledge,

our algorithm is the first to solve these Benchmarks to global optimality, for our con-

sidered affine objective function. The convergence gap is generally low for instances that

did not converge within the 10 hour time limit, with the exception of instances BB12041.

Our conjecture is that the upper bound in such instances is relatively tight, and the gap

percentages are mainly due to lower quality incumbents solutions.

It is noteworthy that all instances with less than 1000 total characters used at most

4GB of memory, with the larger instances using up to 9GB of memory. Attempting to

solve larger instances with 2000 total characters failed due to the algorithms exhausting

the 24GB system memory.

5.3. Experiments on Balibase benchmark 1 and comparison to the MWT

For a comparison to the best exact approach in the literature, we compare to the MWT

algorithm of Althaus et al. (2006). We do not compare to the DP approach as it does

not scale to the size of our considered instances, or the convex optimization approach of

Yen et al. (2016) which is limited to aligning sequences of length at most 50. We also

do not report results of solving the original model P directly using a commercial solver

(e.g. CPLEX), or a classical Benders decomposition algorithm without logic-based cuts

21. These algorithms performed poorly, and terminated with considerably high gaps to

optimality within the imposed time limit, even smaller instances.

Unfortunately, Althaus et al. (2006) were not able to find and send us the MWT algo-

rithm, and so we base our comparison on their reported results for the BaliBASE bench-

mark version 1. We remark that CPU time results of Althaus et al. (2006) were reported in

2006, and although their CPU has higher clock speed of 3.06GHz compared to our 2.33GHz

(note that we limit our tests to one core of the CPU for fairer comparison), their results

are still likely faster when executed on today’s PCs. Moreover, for a fairer comparison, we

analyzed the speedup from CPLEX 9.0 used in the MWT branch-and-cut algorithm to

CPLEX 12.7.1 used in our algorithm.2 This is measured by the speedup of solving the linear

relaxation of our RMP for all considered instances. Note that the only relevant speedup

involves the solution of linear programs, as “the running time for the branch-and-cut algo-

rithm was dominated by the time required for solving the LPs” (Althaus et al. 2006), and

2 We thank Ed Klotz for sharing the CPLEX 9.0 library.
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Table 2 Results on Balibase benchmark 1 and comparison to MWT. Results include the reported CPU time,

adjusted CPU time due to CPLEX version (CPU-adj) and optimality gap for MWT, CPU time, convergence gap

(phase one gap), and global optimality gap (phase two gap) for our MDD approach under affine and convex

penalty functions. The last column (Imp-Aff) gives the improvement of the best found solution under the convex

penalty function, over the best found solution under the affine penalty function evaluated by the convex function.

Instance
MWT (convex) MDD (affine) MDD (convex)

CPU CPU-adj Gap% CPU Cnv-Gap% Gap% CPU Cnv-Gap% Gap% Imp-Aff%

1aho (5/320) 194 [147, 165] 0 17 0 0 44 0 0 0.02

1csp (5/339) 2 [2, 2] 0 14 0 0 28 0 0 0

1dox (4/374) 428 [325, 364] 0 29 0 0 43 0 0 1.35

1fkj (5/517) 315 [239, 268] 0 64 0 0 186 0 0 0

1fmb (4/400) 2 [2, 2] 0 20 0 0 26 0 0 0

1krn (5/390) 17 [13, 14] 0 35 0 0 44 0 0 0

1plc (5/470) 34 [26, 29] 0 49 0 0 91 0 0 0

2fxb (5/287) 4 [3, 3] 0 5 0 0 15 0 0 0

2mhr (5/572) 30 [23, 26] 0 76 0 0 215 0 0 0

9rnt (5/499) 20 [15, 17] 0 40 0 0 78 0 0 0

1aab (4/291) 16 [12, 14] 0 2 0 0 8 0 0 0

1fjlA (6/398) 471 [358, 400] 0 67 0 0 91 0 0 0.32

1hfh (5/606) 1,782 [1,354, 1,515] 0 188 0 0 1,352 0 0 0.16

1hpi (4/293) 469 [356, 399] 0 9 0 0 19 0 0 0.94

1csy (5/510) 564 [429, 479] 0 120 0 0 430 0 0 0

1pfc (5/560) 2,438 [1,853, 2,072] 0 287 0 0 1,106 0 0 0.92

1tgxA (4/239) 128 [97, 109] 0 17 0 0 27 0 0 0.38

1ycc (4/426) 36,124 [27,454, 30,705] 14.1 505 0 0 1,584 0 0 0.59

3cyr (4/414) 415 [315, 353] 0 37 0 0 102 0 0 0.83

451c (5/400) 45,186 [34,341, 38,408] 582.7 21,482 0 0 37,184 88.3 - -11.02

1aboA (5/297) 36,494 [27,735, 31,020] 38.1 36,002 18.8 - 36,003 39.3 - -21.01

1idy (5/269) 37,402 [28,426, 31,792] 24.2 22,776 0 0 36,003 4.1 - -2.01

1r69 (4/277) 36,375 [27,645, 30,919] 17.2 5,554 0 0 12,647 0 0 0

1tvxA (4/242) 37,713 [28,662, 32,056] 60.06 36,005 0 1.9 36,006 12.3 - -10.06

1ubi (4/327) 37,851 [28,767, 32,173] 37.7 19,541 0 0 36,001 7.0 - -7.52

1wit (5/484) 38,264 [29,081, 32,524] 16.2 1,098 0 0 12,281 0 0 1.27

2trx (4/362) 36,006 [27,365, 30,605] 50.05 158 0 0 479 0 0 0

no MIP is solved in any part of the MWT algorithm to the best of our understanding. Our

results showed that the geometric mean of CPU time for CPLEX 12.7.1 is 15.4% to 24.0%

faster than CPLEX 9. This range is obtained by considering all instances (15.4%), or only

instances which had a solution time above 1 second (24%). We therefore adjust the CPU

time of (Althaus et al. 2006) by a reporting a speedup range between 15.4% to 24% for

their reported times.

Table 2 reports the comparison of the MDD and MWT approaches. Following the setting

of Althaus et al. (2006), instances are divided into three groups, where the first group
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consists of similar sequences with identity > 35%, group two sequences have 20 − 40%

identity, and group three consists of dissimilar sequences with < 25% identity. Results are

evaluated based on the total CPU time, and gap to optimality (Gap%). We also report

the convergence gap (Cnv-Gap) of our MDD approach in the first phase. We perform test

under both an affine and convex penalty function. For the remainder of this section, we

refer to the MDD algorithm under the convex or affine penalty function as the convex

or affine MDD algorithm, respectively. Results of the convex MDD algorithm are used as

comparison to the results of the MWT approach, and results of the affine MDD algorithm

serve as an approximation to the optimal convex solution. To evaluate the quality of this

approximation, the last column of Table 2 reports the improvement of the best found

solution using the convex MDD algorithm ȳcnv, over the best found solution of the affine

MDD algorithm ȳaff . This is done by calculating the objective of ȳaff using the convex

penalty function, and obtaining the percentage of improvement compared to ȳcnv.

Results show that our algorithm is competitive with the MWT approach in aligning the

highly similar sequences of the first two group of instances. The MWT approach is effective

for such instances, as the root node value of its branch-and-cut tree is near optimal (in

some instances optimal), and not many cuts and branches are required to converge to the

the optimal solution. For such instances, MUSCLE is also able to produce high quality

solutions which are either optimal or near optimal. Using the initial heuristic solutions,

The convex MDD approach is able to significantly filter Mc, and also solves all instances

within a few minutes.

The MWT approach is not effective for instances with low similarity, and does not solve

such instances withing 10 hours of computation. The convex MDD algorithm solves 22

out of the 27 instances to optimality, and reaches relatively low optimality gaps in the

remaining instances, except for instances 451c and 1aboA. In general, the MWT approach

requires many cuts and branches to reach the optimal solution if its root node objective

is not near optimal. For this reason, it may be the case that the results of the MWT

algorithm do not improve significantly when solving harder instances, even using today’s

faster PCs.

The MDD approach performs well under an affine penalty function setting. The affine

MDD algorithm is able to solve all but 2 of the instances, and reaches low gaps in the

unsolved instances. The solution time is also considerably lower compared to the convex
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MDD algorithm, while solution quality remains high. The solutions obtained from the

affine MDD algorithm are in most cases within 99% of the optimal convex solution. In fact,

for harder instances not solved to optimality by the convex MDD algorithm, the affine

MDD algorithm generates better results evaluated under a convex penalty function.

In terms of memory requirements, the affine MDD algorithm uses at most 4GB for

any instance solved using the affine penalty function. The memory requirement is much

higher for the convex MDD algorithm, with the 451c instance consuming close to 22GB

of memory. This shows that although our MDD approach has a worst-case polynomial

space complexity, its initial memory consumption is much higher compared to the MWT

algorithm.

To summarize the numerical experiments, our MDD approach to MSA gives favorable

results compared to the best exact approach in the literature, and closes a number of

benchmark instances for the first time under our considered convex and affine penalty

functions. For instances not solved to optimality, our algorithm is able to generate solutions

with much higher quality compared to a state-of-the-art heuristic MSA solver.

6. Conclusion

This paper developed an exact solution approach for the Multiple Sequence Alignment

(MSA) problem. We considered MSA as the simultaneous solution to all Pairwise Sequence

Alignments (PSA), which are modeled by dynamic programming and represented using

Multi-valued Decision Diagrams (MDD). We used the collection of all PSA MDDs as the

underlying graph structure to represent the MSA problem as a Mixed-Integer Program

(MIP). The MIP problem synchronizes the solution to all PSA MDDs using side con-

straints, for the first time, in polynomial space complexity.

We designed two filtering procedures to reduce the size of the feasible set and lead to

easier problems to solve. Using the filtering procedures, we increased the effectiveness of

our algorithm by developing a two phase solution approach. In the first phase, the PSA

MDDs are filtered aggressively using an optimistic guess for the bound used in the filtering

procedures, resulting in a heuristic optimization. The advantage of optimistic filtering is

that it filters a considerable size of the feasible solution set and enables a relatively fast

algorithm to obtain near optimal solutions. On average, 96.3% of arcs, and 81.1% of nodes

in our PSA MDDs were pruned using optimistic filtering, while not pruning the optimal
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solution in almost all solved instances. Global optimality is ensured by re-running the

algorithm in a second phase with exact filtering using the bound from the first phase

optimal solution.

Lastly, we designed a logic-based Benders decomposition algorithm to solve P. We devel-

oped a fast primal heuristic and integrated it into the Benders decomposition algorithm.

On average, our heuristic solver improved the solution quality of a state-of-the-art MSA

heuristic solver by 33.3%, and was able to improve the solution of 19 out of the 25 instances

considered. The logic-based Benders algorithm was able to solve 37 out of 51 Benchmark

instances for an affine penalty function, and close them for the first time.
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