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Abstract

The supply of pharmaceuticals is one important factor in a functioning health care
system. In the German health care system, the chambers of pharmacists are legally
obliged to ensure that every resident can find an open pharmacy at any day and night
time within an appropriate distance. To that end, the chambers of pharmacists create
an out-of-hours plan for a whole year in which every pharmacy has to take over some
24 hours shifts. These shifts are important for a reliable supply of pharmaceuticals
in the case of an emergency but also unprofitable and stressful for the pharmacists.
Therefore, an efficient planning that meets the needs of the residents and reduces the
load of shifts on the pharmacists is crucial.

In this paper, we present a model for the assignment of out-of-hours services
to pharmacies, which arises from a collaboration with the Chamber of Pharmacists
North Rhine. Since the problem, which we formulate as an MILP, is very hard to
solve for large-scale instances, we propose several tailored solution approaches. We
aggregate mathematically equivalent pharmacies in order to reduce the size of the
MILP and to break symmetries. Furthermore, we use a rolling horizon heuristic in
which we decompose the planning horizon into a number of intervals on which we
iteratively solve subproblems. The rolling horizon algorithm is also extended by an
intermediate step in which we discard specific decisions made in the last iteration.

A case study based on real data reveals that our approaches provide nearly optimal
solutions. The model is evaluated by a detailed analysis of the obtained out-of-hours
plans.

Keywords: Pharmacies, Scheduling, Out-of-Hours Service, Rolling Horizon,
Aggregation, MIP

1. Introduction1

Germany is a welfare state and by law every resident is granted health care ser-2

vices [1]. These services include on the one hand medical treatment and on the other3

hand the supply of pharmaceuticals, which is provided primarily by pharmacies. To4

ensure that the population is supplied with pharmaceuticals at any time of the day,5
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all pharmacies are obliged by law to be open 24/7 [2]. However, the responsible6

chambers of pharmacists have the possibility to daily exempt a part of the phar-7

macies from this duty outside the regular opening hours, provided that the supply8

of pharmaceuticals is guaranteed by the remaining pharmacies [2]. The pharmacies9

which are not exempted are called out-of-hours pharmacies and the task of being10

open all day is called out-of-hours service.11

Since most pharmacists in Germany are self-employed, performing an out-of-hours12

service is a burden, as a highly qualified pharmacist must be present during the whole13

24 hours shift, while the demand by the customers is usually relatively low outside14

the regular opening hours. Accordingly, the out-of-hours service on the one hand is15

rather unprofitable and stressful from the pharmacist’s point of view, but on the other16

hand very important for the supply of the residents in emergency situations. This17

implies the need for an out-of-hours plan, which specifies the days a pharmacy has18

an out-of-hours service. The plan has to guarantee a good supply for the residents,19

but it should also be efficient in the sense that it assigns as few out-of-hours services20

as possible, out-of-hours pharmacies are not geographically close, and the burden on21

the pharmacists is evenly distributed.22

Currently, most chambers of pharmacists in Germany divide their planning area23

into small districts in which they organize the out-of-hours service locally as a rotation24

of the included pharmacies [3]. This planning approach has the advantage that the25

coordinators of the districts have a good understanding of the local circumstances but26

it also has a number of drawbacks. Since the districts are planned independently, it27

is possible that two pharmacies that are close to each other but in different districts28

have an out-of-hours service on the same day. This leads to an oversupply for the29

corresponding area and many unnecessary out-of-hours services, as also pointed out30

in [4].31

The chamber of pharmacists of the area North Rhine in Germany, formerly divided32

into 69 local districts [5], performs an algorithm-based planning since the beginning33

of 2014. This already resulted in a reduction of the total number of out-of-hours34

services of more than 20% [5]. Since the algorithms are not based on mathematical35

optimization techniques, the planning still has optimization potential. This potential36

lies not only in a further reduction of the number of out-of-hours services, but also37

in the satisfaction of all planning constraints. These are hard to meet altogether38

without mathematical optimization.39

Related Work. The planning of out-of-hours services is at the intersection of cover-40

ing and rostering problems. Considering only a single day of the time horizon, the41

planning can be seen as a facility location problem, where we choose a subset of42

pharmacies to cover the residents. Much work in the operations research literature43

focuses on the location of health care facilities like hospitals [6], health care facilities44

in general [7, 8], or the location of speciality care services within a health care network45

[9]. An analysis of various modeling approaches for such location problems can be46

found in [10]. A comprehensive survey is given in [11] and [12].47

Considering that we have to assign out-of-hours services not only once, but for48

every day of the time horizon, the planning of out-of-hours pharmacies can be seen49

as a rostering problem. In the literature, rostering problems are extensively studied50
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for hospital staff like nurses or physicians [13, 14, 15]. The problems are similar in51

the sense that we have to assign shifts while reducing the workload of the staff and52

guaranteeing the care of the residents. However, the planning of out-of-hours services53

has a different structure, as pharmacies are much more inhomogeneous compared to54

nurses or physicians. A pharmacy’s capability to cover an area depends only on its55

location, which may differ vastly from pharmacy to pharmacy. In contrast, there are56

usually only few types of nurses or physicians considered for the respective rostering57

problems. Due to these structures, the modeling of the planning of out-of-hours58

services for pharmacies is much different.59

Despite its importance for the health care sector, the planning of out-of-hours60

services for pharmacies has not yet gained much attention in the operations research61

literature. To the best of our knowledge, all contributions come from a group of62

researchers from Turkey [4, 16, 17], which introduced the planning as the Pharmacy63

Duty Scheduling Problem (PDS). The setting for the Turkish and German pharma-64

cies is similar in the sense that the chambers of pharmacists organize the service65

decentrally in small local districts. However, the PDS differs considerably from the66

problem proposed in this paper, which is why we introduce a different name for the67

latter. In the PDS, the authors retain the historical structure given by the local68

districts and assign on each day in each district exactly one out-of-hours service to69

one of the pharmacies. The resulting model is described as a multi duty variation70

of the p-median problem. The objective is to minimize the sum of the distances71

between aggregated customer nodes and their nearest out-of-hours pharmacy. Most72

importantly, in contrast to our model, the number of services performed by the phar-73

macists is fixed and there are no regulations regarding periods of rest between two74

out-of-hours services of the same pharmacy. The PDS has been solved using variable75

neighborhood search [16], tabu search [17] and branch and price [4].76

Our Contribution. In this paper, we present a model for the assignment of out-of-77

hours services to pharmacies, which arises from a collaboration with the Chamber of78

Pharmacists North Rhine. The problem of constructing an out-of-hours plan includes79

aspects of covering and independent set problems, among others. These subprob-80

lems are additionally expanded over a planning horizon and linked by time-based81

constraints. Since the planning of out-of-hours services includes many NP-hard sub-82

problems, it is not surprising that the problem itself is alsoNP-hard. We will formally83

show that it is even NP-hard to decide whether there exists a feasible plan, i.e., in84

contrast to the included subproblems, it is not trivial to even compute any solution.85

In order to construct out-of-hours plans, we formulate the problem as a mixed86

integer linear program (MILP). Because the MILP becomes too big and too difficult87

to solve for large real-world instances by state-of-the-art solvers, we propose a refor-88

mulation via aggregation of mathematically equivalent pharmacies. Aggregation is89

a common technique for reducing the size of large-scale optimization problems [18].90

In most cases, such an approach results in a more tractable model but also in an91

inexact simplification of the original problem. Therefore, an optimal solution to the92

aggregated model is in general of high quality, but not optimal for the original prob-93

lem. In our case, the aggregation is exact in the sense that an optimal solution to94

the aggregated model corresponds to an optimal solution of the original model. The95
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aggregation results not only in a reduction of the size of the MILP to be solved,96

but also breaks many symmetries, a typical challenge in large-scale mathematical97

programming [19].98

In addition to the aggregation, we present a rolling horizon approach that uses99

a time-based decomposition of the planning horizon into smaller subproblems. We100

consider an iteratively increasing subinterval of the planning horizon and compute101

an out-of-hours plan for each subinterval. In each iteration, the services assigned102

in previous iterations are fixed in order to reduce the number of decisions and thus103

the complexity of the problem. We proceed until the subinterval equals the whole104

planning horizon, which results in a solution of the original planning problem. In the105

past, rolling horizon algorithms have already been successfully applied to large-scale106

optimization problems including planning horizons. In [20] and [21], rolling horizon107

algorithms are used in which the planning horizon is decomposed into two intervals.108

The first interval, which increases iteratively, is considered exactly, while the second109

interval is considered as a relaxed version via time-based aggregation and serves as110

a look-ahead. Our approach is different, as we do not consider a relaxation of the111

whole remaining planning horizon, but use a look-ahead of an interval of additional112

days which we also consider exactly. This is similar to the approach in [13] and fits113

the repetitive structure of our planning problem, due to which it is less beneficial114

to consider all remaining days. Another possibility to divide the planning of out-of-115

hours services into more tractable subproblems is via spatial decomposition, where the116

original problem is split with respect to the location and not the time [22]. Again, due117

to the repetitive structure of the planning, we think that the rolling horizon approach118

fits better than a spatial decomposition. The drawback of the rolling horizon approach119

is that we loose exactness and most likely do not obtain an optimal solution. This is120

compensated by the advantage of a significant speed up of the solution process and121

good practical results. Furthermore, we enhance the rolling horizon approach with an122

extension that reduces the impact of suboptimal decisions made in early iterations.123

In the extension, we free a subset of former fixed variables before each iteration. In124

contrast to most rolling horizon approaches, the subset of freed variables does not125

only include fractional variables, but also binary variables which are chosen by solving126

an intermediate optimization problem. The unfixing enlarges the solution space in127

the following iterations and usually allows for much better solutions. Additionally,128

the freed variables are chosen such that the complexity of the subsequent problems129

does not increase.130

We test our approaches extensively on a real-world instance with more than 2000131

pharmacies provided by the Chamber of Pharmacists North Rhine. We will see that132

both the aggregation and decomposition approaches are beneficial for the compu-133

tation of out-of-hours services and provide us high quality solutions in short time.134

Especially the unfixing of variables improves the performance of our rolling horizon135

approach. This idea may also be used to enhance the performance of rolling horizon136

approaches for other optimization problems.137

We test in detail the influence of input parameters on the performance of our138

algorithms as well as the resulting plans. Finally, we study the plans regarding their139

practicability, analyzing coverage properties from the customer’s perspective and the140

distribution of the out-of-hours services from the perspective of pharmacists.141
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Although this paper focuses on pharmacies, our models and approaches can also142

be applied to other real-world problems where we need to cover an area with services143

that changing providers offer from decentral locations. In Germany, the out-of-hours144

service of general practitioners is generally performed in a central location. However,145

pediatricians and dentists partially offer an out-of-hours service that is similar to the146

one of the pharmacies. Other examples include on-call duties, e.g. of care services or147

janitorial services, which are performed from home.148

Outline. The paper is structured as follows. We describe the model for the planning149

of out-of-hours services in Section 2. In Section 3, we formulate the MILP and150

introduce the decomposition approaches. The computational study using the real-151

world instance is presented in Section 4. Finally, we conclude the paper with a152

discussion on the model and the approaches.153

2. Problem Definition and Notation154

For the planning of the out-of-hours service, we consider a set of pharmacies P155

and a time horizon T = {1, . . . , T} , normally a whole year, consisting of the days to156

be planned. We identify an out-of-hours plan with a mapping F : T → 2P , where157

F (t) ⊆ P is the subset of pharmacies that have an out-of-hours service on day t ∈ T .158

If pharmacy p ∈ P has an out-of-hours service on day t ∈ T , i.e., p ∈ F (t) , then we159

say that p is an out-of-hours pharmacy on day t.160

In consultation with the Chamber of Pharmacists North Rhine, an out-of-hours161

plan has to fulfill the following conditions regarding the coverage of residents and a162

fair distribution among pharmacies. We start with a short summary and then discuss163

the requirements in detail.164

• Covering municipality centers: There is at least one out-of-hours pharmacy in165

the vicinity of each municipality center. The allowed distance depends on the166

municipality. (Figure 1a)167

• Meeting demand in larger cities: Multiple out-of-hours pharmacies are needed168

to meet the demand of residents in larger cities. The number of pharmacies169

needed is city-specific and may vary for different days. (Figure 1b)170

• Minimum distances between out-of-hours pharmacies: Distances between out-171

of-hours pharmacies ensure that they are geographically dispersed. (Figure 2a)172

• Periods of rest between services of the same pharmacy: Periods of rest pre-173

vent that pharmacies are assigned out-of-hours services on consecutive days.174

(Figure 2b)175

• Equitable distribution within municipalities: An equitable assignment of ser-176

vices within the municipalities creates fairness among and satisfaction of the177

pharmacists.178

• Minimum number of services per pharmacy: Each pharmacy participates with179

a minimum number of out-of-hours services.180
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Under the above conditions, which we define in the next paragraphs in more detail,181

we are aiming to construct a plan that is efficient in the sense that we assign as few182

out-of-hours services as possible. Accordingly, we look for a plan F : T → 2P that183

minimizes
∑

t∈T |F (t)| . We call this problem the Out-of-Hours Planning Problem184

(OHP).185

Covering Municipality Centers. In order to guarantee a comprehensive supply of186

pharmaceuticals, we consider the centers of the municipalities in the planning area187

as reference points for the location of the residents. Based on legal requirements for188

the planning of out-of-hours services in the region North Rhine, we demand that for189

every municipality center on every day there is an out-of-hours pharmacy within a190

given distance [23].191

Note that by law every pharmacy needs to have a standardized inventory to guar-192

antee the supply of pharmaceuticals during the out-of-hours service. Furthermore,193

there will always be only one pharmacist in an out-of-hours pharmacy, regardless194

of its size. Hence, only the location of a pharmacy is relevant for the planning of195

out-of-hours services and we consider all pharmacies to be equal except for their196

location.197

More formally, let M be the set of municipalities to be covered. We define dis-198

tances δ : (P ∪M)
2 → Q≥0 between all pairs of municipalities and pharmacies, which199

represent the distances of the shortest paths between these locations in the road net-200

work. Note that the distances are metric, i.e., it holds δ (v1, v3) ≤ δ (v1, v2)+δ (v2, v3)201

for all v1, v2, v3 ∈ V, but not necessarily symmetric due to one-way roads.202

For all municipalities m ∈M, δcov (m) ∈ Q≥0 is the cover radius, that is the max-203

imum distance allowed from the municipality to the nearest out-of-hours pharmacy.204

We say that p ∈ P can cover m ∈M if it holds δ (m, p) ≤ δcov (m) and define C (m) =205

{p ∈ P | δ (m, p) ≤ δcov (m)} as the set of pharmacies that can cover m (highlighted206

in Figure 1a). Additionally, the set C (p) = {m ∈M | δ (m, p) ≤ δcov (m)} consists207

of all municipalities that are covered by p. Furthermore, we say that a municipality208

is covered in plan F : T → 2P on day t ∈ T if at least one pharmacy p ∈ C (m) has209

an out-of-hours service on day t, i.e., C (m) ∩ F (t) 6= ∅. In a feasible out-of-hours210

plan F every municipality has to be covered every day, i.e., C (m) ∩ F (t) 6= ∅ for all211

m ∈ M and t ∈ T . Note that a pharmacy does not necessarily have to be within212

the boundaries of a municipality in order to cover it and that the cover radius may213

vary for different municipalities according to the number of residents, the density of214

pharmacies in the area, and other characteristics.215

Meeting Demand in Larger Cities. For some municipalities which represent larger216

cities, one out-of-hours pharmacy cannot guarantee a sufficient supply of pharma-217

ceuticals for the whole municipality. Every day we require a minimum number of218

out-of-hours pharmacies that are located within the boundaries of these municipali-219

ties. In contrast to the covering of municipality centers, the demand of larger cities220

cannot be met by pharmacies that are located outside the municipalities, because221

according to the Chamber of Pharmacists North Rhine, residents in cities are less222

willing to move to another municipality.223

For the modeling, we denote with P (m) ⊆ P the set of all pharmacies within224

the boundaries of a municipality m ∈ M (highlighted in Figure 1b). Accordingly,225
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(a) (b)

Figure 1: Pharmacies that can cover the center of a municipality (a) and meet the demand of larger
cities (b). For the sake of simplicity, the distances in (a) are shown as the crow flies.

m (p) ∈ M denotes the municipality a pharmacy p ∈ P is located in. Furthermore,226

we define for every municipality m ∈ M and day t ∈ T a minimum demand for227

out-of-hours pharmacies d (m, t) ∈ Z≥0. Note that the minimum demand is always228

zero for municipalities with few residents and pharmacies. Additionally, it may vary229

depending on the considered day, since we tend to need more out-of-hours pharmacies230

on Sundays and holidays when other pharmacies are regularly closed. A feasible out-231

of-hours plan F : T → 2P assigns for all municipalities m ∈ M and all days t ∈ T232

at least d (m, t) services to pharmacies within the municipality, i.e., |P (m) ∩ F (t)| ≥233

d (m, t) for all m ∈M and t ∈ T .234

Minimum Distances Between Out-of-Hours Pharmacies. Assigning an out-of-hours235

service to two geographically close pharmacies on the same day usually has only a236

minor positive effect to the residents. Furthermore, it is undesirable for the phar-237

macists from an economical perspective, since they have to share their customers. A238

solution that minimizes the number of out-of-hours services tends to avoid assigning239

out-of-hours services to neighboring pharmacies, as they often cover the same munic-240

ipalities. Nevertheless, it is possible that a pair of close pharmacies is with respect to241

the coverage conditions equal to a pair of pharmacies that are further apart. Espe-242

cially in larger cities, where we assign several services in order to meet the demand,243

we need to make sure that the out-of-hours pharmacies are spread out. Therefore,244

we prohibit out-of-hours services on the same day for pharmacies that are too close245

to each other.246

We define conflicting pharmacies that cannot have an out-of-hours service on the247

same day. To do so, we introduce for each municipalitym ∈M a value δcon (m) ∈ Q≥0248

that is the minimum distance for an out-of-hours pharmacy p ∈ P (m) to the next249

out-of-hours pharmacy p′ ∈ P\ {p} . Just like the cover radius, the minimum dis-250

tances depend on the municipalities, since in general we have areas that differ in251

the density of pharmacies. We define two pharmacies p 6= p′ ∈ P to be conflicting252
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Figure 2: Minimum distance between two out-of-hours pharmacies on the same day (a). Period of
rest of five days (b).

if δ (p, p′) ≤ min {δcon (m (p)) , δcon (m (p′))} and define the set of conflicting phar-253

macy pairs C = {{p, p′} ⊆ P | p 6= p′, δ (p, p′) ≤ min {δcon (m (p)) , δcon (m (p′))}} .254

For a pharmacy p ∈ P, we define the set of conflicting pharmacies as C (p) =255

{p′ ∈ P | {p, p′} ∈ C} . In a feasible out-of-hours plan F : T → 2P , it must hold256

{p, p′} * F (t) for all conflicting pairs {p, p′} ∈ C and all days t ∈ T . Stated other-257

wise, F (t) is an independent set in the graph (P, C) .258

Periods of Rest Between Services of the Same Pharmacy. Since an out-of-hours ser-259

vice implies a 24-hours shift that is often followed by normal opening times, a phar-260

macy should not be assigned a service on consecutive days or days close to each other.261

Therefore, we have for all municipalities m ∈ M a value r (m) ∈ Z≥0 which defines262

the period of rest, that is the minimum number of days between two out-of-hours263

services of the same pharmacy p ∈ P (m). The period of rest depends on the munic-264

ipality, as we may not be able to grant a large number of days of rest in areas with265

few pharmacies. A feasible out-of-hours plan F : T → 2P has to guarantee these266

periods of rest, i.e., for all pharmacies p ∈ P and days t 6= t′ ∈ T = {1, . . . , T} with267

|t− t′| ≤ r (m (p)) it must hold p /∈ F (t) ∩ F (t′) .268

Equitable distribution within municipalities. As pointed out in the legal commen-269

tary [24], based on the general principle of equality, the out-of-hours services that are270

unattractive to the pharmacists should be assigned in a fair manner. The definition271

of a fair plan strongly depends on the personal viewpoint of each pharmacist and is in272

general difficult to measure and not trivial to incorporate into optimization problems.273

A review of inequity averse optimization is given in [25]. According to the chamber of274

pharmacists of the area North Rhine, the pharmacists evaluate an out-of-hours plan275

based on the number of services assigned to them during the time horizon. They ex-276

pect that another pharmacy within the same municipality is assigned not much fewer277

services. Therefore, the Chamber of Pharmacists North Rhine demands that all phar-278

macies within the same municipality are assigned a similar number of out-of-hours279
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services.280

For all municipalitiesm ∈M, we introduce values e (m) ∈ Z≥0 representing equity281

coefficients which bound the difference in the number of services that two pharmacies282

p, p′ ∈ P (m) belonging to municipality m can have. Furthermore, for a pharmacy283

p ∈ P and a plan F : T → 2P , we define SF (p) = {t ∈ T | p ∈ F (t)} as the set284

of days on which p has an out-of-hours service. We say that an out-of-hours plan285

F : T → 2P is equitable if it holds ||SF (p)| − |SF (p′)|| ≤ e (m (p)) for all pairs286

p, p′ ∈ P with m (p) = m (p′) .287

Minimum Number of Services per Pharmacy. Since the authorities designing an out-288

of-hours plan are legally obliged to assign out-of hours services to all pharmacies [24],289

we have to ensure that all pharmacies participate appropriately in the service.290

We introduce a minimum number of services nmin ∈ Z≥0 that all pharmacies291

should be assigned. We say that a plan F : T → 2P fulfills the minimum number292

of services condition if it holds |SF (p)| ≥ nmin for all p ∈ P. We will see in the293

case study in Section 4 that enforcing equity within municipalities is not sufficient to294

guarantee that all pharmacies perform out-of-hours services, as there can be whole295

municipalities in which no pharmacy is assgined a service. Conversely, setting a296

minimum number of services does not necessarily lead to an equitable distribution297

within municipalities.298

The Out-of-Hours Planning Problem. The following definition summarizes the prob-299

lem statement.300

Definition 1. For the planning of out-of-hours services, we are given a time horizon301

T = {1, . . . , T} , a set of pharmacies P, a set of municipalitiesM and metric distances302

δ : (P ∪M)
2 → Q≥0 between these locations. Furthermore, we are given cover radii303

δcov :M→ Q≥0, municipality affiliations m : P →M, demands d :M× T → Z≥0,304

minimum distances between out-of-hours pharmacies δcon : M → Q≥0, periods of305

rest r : M → Z≥0 as well as equity coefficients e : M → Q≥0 and a minimum306

number of services nmin ∈ Z≥0. The Out-of-Hours Planning Problem (OHP) consists307

in finding an out-of-hours plan F : T → 2P that fulfills the constraints defined above308

and minimizes the number of assigned services
∑

t∈T |F (t)| .309

The OHP is a combination of the classical NP-hard set cover and independent310

set problems and also includes structures of scheduling problems. Hence, it is not311

surprising that the OHP itself is also hard to solve. The theorem below classifies the312

complexity of the OHP more precisely. The proof is given in Appendix A.313

Theorem 2. The problem of deciding whether there exists a solution to an OHP314

instance is strongly NP-complete. This holds already for periods of rest r ≡ 1 and315

without considering demands, conflicts, equity, and minimum numbers of services,316

i.e., d ≡ 0, δcon ≡ 0, e ≡ ∞ and nmin = 0.317

In the next section, we propose exact and heuristic approaches for solving the OHP318

based on different MILP formulations, aggregation techniques as well as a time-based319

decomposition.320
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3. Solution Approaches321

In this section, we state an MILP formulation to solve the OHP as well as two322

more approaches to handle the size of the OHP instance tested in our real-world case323

study in Section 4.324

3.1. An MILP Formulation for the OHP325

We present an MILP formulation that contains binary decision variables xpt ∈326

{0, 1} to indicate whether or not pharmacy p ∈ P is assigned an out-of-hours service327

on day t ∈ T . Therefore, a vector x ∈ {0, 1}|P||T | implies an out-of-hours plan328

F : T → 2P with F (t) = {p ∈ P | xpt = 1} for t ∈ T . To model the equity in an easy329

way, we introduce two auxiliary variables ȳm ≥ 0 and y
m
≥ 0 for each municipality330

m ∈ M that bound the maximum number (minimum number, respectively) of out-331

of-hours services assigned to a pharmacy p ∈ P (m) within the municipality. The332

proposed MILP formulation reads as follows333

min
∑
p∈P

∑
t∈T

xpt (1a)

s.t.
∑

p∈C(m)

xpt ≥ 1 ∀m ∈M, t ∈ T , (1b)

∑
p∈P (m)

xpt ≥ d (m, t) ∀m ∈M, t ∈ T , (1c)

xpt + xp′t ≤ 1 ∀ {p, p′} ∈ C, t ∈ T , (1d)
t+r(m(p))∑

t′=t

xpt′ ≤ 1 ∀p ∈ P, 1 ≤ t ≤ T − r (m (p)) , (1e)

y
m(p)

≤
∑
t∈T

xpt ≤ ȳm(p) ∀p ∈ P, (1f)

ȳm − ym ≤ e (m) ∀m ∈M, (1g)

y
m
≥ nmin ∀m ∈M, (1h)

xpt ∈ {0, 1} ∀p ∈ P, t ∈ T , (1i)
ȳm, ym ≥ 0 ∀m ∈M. (1j)

The objective function (1a) sums over all decision variables and therefore counts334

the number of services assigned to the pharmacies over the time horizon. The con-335

straints (1b) ensure that every municipality is covered every day. The inequalities (1c)336

guarantee that the demand of every municipality is met every day. Due to the con-337

straints (1d), conflicting pharmacies cannot have an out-of-hours service on the same338

day. The inequalities (1e) ensure that the rest periods are respected. The con-339

straints (1f) demand that the number of services assigned to a pharmacy p ∈ P (m)340

is between y
m

and ȳm. Together with the constraints (1g), this guarantees that the341
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difference in the number of services assigned to two pharmacies of the same mu-342

nicipality is bounded as desired. Lastly, the constraints (1h) guarantee that every343

pharmacy is assigned at least the minimum number of out-of-hours services.344

In the following, we say that x ∈ {0, 1}|P||T | is a solution to the MILP above,345

since the remaining variables are only auxiliary variables and can be computed from346

the xpt variables.347

On the positive side, we will see that the above MILP provides a very good348

integrality gap for our real-world case study in Section 4. On the negative side, the349

model becomes large when considering all pharmacies and the whole time horizon350

of 365 days, such that we were not even able to solve the LP relaxation within a351

time limit of one day. Additionally, the planning of the out-of-hours services contains352

many symmetries that can complicate the solution process.353

In the subsequent Sections 3.2 and 3.3, we will present a reformulation that re-354

duces the symmetries as well as the size of the MILP and propose a heuristic for the355

construction of out-of-hours plans.356

3.2. Aggregating Equivalent Pharmacies357

We already mentioned that the planning of out-of-hours services is highly sym-358

metrical. Kocatürk and Özpeynirci [16] pointed out that for the Pharmacy Duty359

Scheduling Problem, a feasible solution can be permuted to roughly O (T !) equiva-360

lent solutions by swapping the whole assignment for different days. In our case, this361

is not possible, as the period of rest constraints (1e) and the demand constraints (1c),362

which vary for different days, prohibit an arbitrary swapping of days. However, swap-363

ping services of pharmacies in similar locations may result in a feasible out-of-hours364

plan of the same solution value.365

Consider two pharmacies within the same municipality that are located close to366

each other such that they can cover the same set of municipalities, are in conflict with367

each other and have the same conflicts with other pharmacies. Since all pharmacies368

are considered equal regarding the of out-of-hours service, except for their location,369

both pharmacies can be considered mathematically equivalent in the sense that if we370

manipulate a feasible plan by swapping all services of the two pharmacies, we again371

obtain a feasible plan. This symmetry can reduce the performance of MILP solvers372

dramatically, see [19] for more information. We will however use this structure to373

reduce the size of the MILP formulation given in Section 3.1 by replacing such sets374

of pharmacies by a single artificial pharmacy.375

Definition 3. We call two pharmacies p1, p2 ∈ P equivalent and write p1 ∼ p2 if376

they are in the same municipality m (p1) = m (p2) , cover the same municipalities377

C (p1) = C (p2) and satisfy C (p1) ∪ {p1} = C (p2) ∪ {p2} . Let ps = {p1, . . . , pn} be a378

subset of pharmacies. We call ps a superpharmacy if for all pairs p1, p2 ∈ P it holds379

p1 ∼ p2.380

For the coverage and conflicts, it is irrelevant which pharmacy of the superphar-381

macy we assign a service to. Therefore, we decompose the planning into two steps.382

First, we consider the superpharmacies as a single pharmacy to which we may assign383

more out-of-hours services, but due to the conflicts within the superpharmacy only384
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one service per day. Then we split the services assigned to the superpharmacy among385

the corresponding pharmacies.386

According to the definition, a single pharmacy p ∈ P also defines a superpharmacy387

{p} . Therefore, we can partition the set of pharmacies P into a set of superpharmacies388

Ps with P =
⊎

ps∈Ps ps. For the sake of simplicity, in the first step we solely construct389

plans based on a partition of P into superpharmacies Ps. This way we do not have390

to distinguish between superpharmacies and pharmacies.391

In order to plan based on a partition Ps of P into superpharmacies, we have to392

update our notation. We say that a superpharmacy ps ∈ Ps can cover a municipal-393

ity m ∈ M if the pharmacies aggregated within ps can cover m, i.e., ps ⊆ C (m) .394

Accordingly, we define the set of superpharmacies that can cover m as Cs (m) =395

{ps ∈ Ps | ps ⊆ C (m)} . Furthermore, we say that a superpharmacy ps ∈ Ps lies396

within a municipality m ∈ M if the pharmacies aggregated within ps lie within397

m, i.e., ps ⊆ P (m) . Then we define the set of superpharmacies that lie within m as398

P s (m)={ps ∈ Ps | ps ⊆ P (m)} and conversely m (ps) as the municipality in which399

ps ∈ Ps lies. We consider two superpharmacies ps
1, p

s
2 ∈ Ps in conflict if the ag-400

gregated pharmacies are in conflict, i.e., {p1, p2} ∈ C for all p1 ∈ ps
1 and p2 ∈ ps

2.401

Accordingly, we define Cs={{ps
1, p

s
2} ⊆ Ps | {p1, p2} ∈ C for p1 ∈ ps

1, p2 ∈ ps
2} .402

For a given partition into superpharmacies Ps, we include the superpharmacies403

into the MILP given in Section 3.1 by replacing the variables x ∈ {0, 1}|P||T | with404

decision variables xs ∈ {0, 1}|P
s||T | indicating for every superpharmacy ps ∈ Ps and405

day t ∈ T whether ps is assigned an out-of-hours service on that day. Furthermore,406

we restrict the continuous variables ȳm, ym ≥ 0 to integer variables ȳs
m, y

s
m
∈ Z≥0,407

since, in contrast to the MILP given in Section 3.1, we cannot assume these variables408

to be integer solely due to the structure of the MILP. In the proof of the exactness409

of this approach, we will see that the integrality is crucial for the splitting of services410

assigned to the superpharmacies. Here, ȳs
m and ys

m
bound the maximum number411

(minimum number, respectively) of out-of-hours services performed by a pharmacy412

p ∈ P (m) after splitting the services assigned to the superpharmacies ps ∈ P s (m)413

among the corresponding pharmacies. The resulting superpharmacy MILP reads414
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min
∑

ps∈Ps

∑
t∈T

xs
pst (2a)

s.t.
∑

ps∈Cs(m)

xs
pst ≥ 1 ∀m ∈M, t ∈ T , (2b)

∑
ps∈P s(m)

xs
pst ≥ d (m, t) ∀m ∈M, t ∈ T , (2c)

xs
ps
1t

+ xs
ps
2t
≤ 1 ∀ {ps

1, p
s
2} ∈ Cs, t ∈ T , (2d)

t+r(m(ps))∑
t′=t

xs
pst′ ≤ |ps| ∀ps ∈ Ps, 1 ≤ t ≤ T − r (m (ps)) , (2e)

ys
m(ps)

≤ 1

|ps|
∑
t∈T

xs
pst ≤ ȳs

m(ps) ∀ps ∈ Ps, (2f)

ȳs
m − ys

m
≤ e (m) ∀m ∈M, (2g)

ys
m
≥ nmin ∀m ∈M, (2h)

xs
pst ∈ {0, 1} ∀ps ∈ Ps, t ∈ T , (2i)

ȳs
m, y

s
m
∈ Z≥0 ∀m ∈M. (2j)

In the objective function, as well as in the constraints (2b) to (2d), we simply replace415

the pharmacy variables by the ones for the superpharmacies. The inequalities (2e)416

allow the assignment of up to |ps| services to a superpharmacy ps ∈ Ps in an interval417

of r (m (ps)) + 1 consecutive days, since we will later split the services among |ps|418

pharmacies. With the constraints (2f), we again bound the number of services that419

we assign to superpharmacies within a municipality and take into account that we420

can assign a superpharmacy ps ∈ Ps more services according to its size |ps| . The421

inclusion of the factor 1
|ps| is the reason why we cannot assume integrality for ȳs

m and422

ys
m
, in contrast to the variables ȳm, ym. The remaining inequalities (2g) and (2h) are423

the same as in the original MILP, but with replaced variables ȳs
m and ys

m
.424

The following result shows that the superpharmacy MILP is equivalent to the425

original MILP in Section 3.1. Furthermore, the proof gives instructions on how to426

convert a solution of the superpharmacy MILP to a solution of the original MILP.427

Proposition 4. For every solution
(
xs, ȳs, ys

)
of the superpharmacy MILP, there428

exists a solution
(
x, ȳ, y

)
of the original MILP with the same objective value and vice429

versa.430

Proof. Let
(
xs, ȳs, ys

)
be a solution to the superpharmacy MILP. For a superphar-431

macy ps = {p1, . . . , pn} ∈ Ps that consists of n pharmacies, let {t1, . . . , tq} =432 {
t ∈ T | xs

pst = 1
}
with t1 < · · · < tq be the set of days on which we assign services433

to ps. In order to meet the period of rest constraints, we split the services among the434

pharmacies included in ps in a cyclic way, i.e., we reassign the days t1, tn+1, t2n+1, . . .435

to pharmacy p1, the days t2, tn+2, t2n+2, . . . to pharmacy p2 and so on. By construc-436
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tion, we reassign each service to exactly one included pharmacy and therefore obtain437

xs
pst =

∑
p∈ps xpt. One can easily see that both solutions have the same objective value438

and that the constraints (1b) and (1c) are satisfied by replacing xs
pst with

∑
p∈ps xpt.439

Furthermore, we violate no conflicts, since, also by replacing xs
pst with

∑
p∈ps xpt440

in (2d), we obtain even stronger inequalities than the ones in (1d). Now, assume we441

violate a period of rest constraint (1e). Then there exists a pharmacy p ∈ ps ∈ Ps
442

and two days ti < tj ∈ T with tj − ti ≤ r (m (p)) and xpti = xptj = 1. But then there443

exist at least n − 1 = |ps| − 1 days t between ti and tj with xs
pst = 1 and we have444 ∑t+r(m(ps))

t′=ti
xs
pst′ ≥ |ps|+ 1 which contradicts the constraints (2e). For the equity, we445

simply define ȳ = ȳs and y = ys and therefore satisfy the constraints (1g) to (1h).446

By construction, we have
∑

t∈T xpt ∈
{⌊

1
|ps|
∑

t∈T x
s
pst

⌋
,
⌈

1
|ps|
∑

t∈T x
s
pst

⌉}
for all447

pharmacies p ∈ ps ∈ Ps. Then in combination with (2f) and the definition of ȳs, ys,448

which we restricted to integral values, it follows that we satisfy the constraints (1f).449

Let
(
x, ȳ, y

)
be a solution to the original MILP. Then we define xs

pst =
∑

p∈ps xpt450

for all ps ∈ Ps and t ∈ T . Since all pharmacies within a superpharmacy are in451

conflict, at most one of them can have an out-of-hours service on a fixed day. Hence,452

we have xs ∈ {0, 1}|P
s||T |

. Again, by replacing xs
pst with

∑
p∈ps xpt, we see that both453

solutions have the same objective value and that the constraints (1b) and (1c) are454

met. Furthermore, the conflicts are respected since a violation of the constraints (2d)455

would imply that there exist two pharmacies p1 ∈ ps
1 and p2 ∈ ps

2 with {p1, p2} ∈ C456

and xp1t + xp2t = 2, which is a contradiction to the constraints (1d). For the rest457

periods we have458

t+r(m(ps))∑
t′=t

xs
pst′ =

∑
p∈ps

t+r(m(p))∑
t′=t

xpt′
(1e)
≤
∑
p∈ps

1 = |ps|

for all ps ∈ Ps and 0 ≤ t ≤ T − r (m (ps)) . Regarding the equity, we set ȳs
m =459

maxp∈P (m)

{∑
t∈T xpt

}
and ys

m
= minp∈P (m)

{∑
t∈T xpt

}
. Then we obtain460

ȳs
m(ps) =

|ps|
|ps|

max
p∈P (m(ps))

{∑
t∈T

xpt

}
≥ 1

|ps|
∑

p∈ps,t∈T
xpt =

1

|ps|
∑
t∈T

xs
pst

and analogously ys
m(ps)

≤ 1
|ps|
∑

t∈T x
s
pst for all ps ∈ Ps. By construction and due461

to the constraints (1f), it holds ȳs ≤ ȳ and ys ≥ y. Therefore, since the inequali-462

ties (1g) and (1h) are satisfied, the constraints (2g) and (2h) are also satisfied.463

Note that for every fractional solution
(
xs, ȳs, ys

)
to the LP relaxation of the464

superpharmacy MILP (2), there exists a fractional solution
(
x, ȳ, y

)
to the LP relax-465

ation of the original MILP (1) given by ȳ = ȳs and y = ys as well as xpt = 1
|ps|x

s
pst for466

all p ∈ P and t ∈ T , where ps ∈ Ps is chosen such that p ∈ ps. Thus, the reduced size467

of the formulation does not come at the cost of a weaker LP relaxation. In fact, the468

relaxation of the superpharmacy MILP is even stronger because of the strengthened469

inequalities (2d).470
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Since the number of variables and constraints of the superpharmacy MILP (2)471

decreases for partitions Ps of P with fewer superpharmacies, we are interested in472

superpharmacies that contain many pharmacies. We call a superpharmacy ps
1 ⊆ P473

maximal if there exists no other superpharmacy ps
2 ⊆ P with ps

1 ( ps
2. Fortunately,474

there exists a unique partition Ps of P into maximal superpharmacies that we obtain475

by greedily aggregating equivalent pharmacies. For three pharmacies p, p′, p′′ ∈ P476

with p ∼ p′ and p′ ∼ p′′, it follows p ∼ p′′. Hence, for two maximal superpharmacies477

ps
1 6= ps

2 ⊆ P, it must hold ps
1 ∩ ps

2 = ∅, since otherwise ps
1 ∪ ps

2 would also be478

a superpharmacy, contradicting the maximality of ps
1 or ps

2. It follows that every479

pharmacy is contained in exactly one maximal superpharmacy, which shows that it is480

sufficient to extend a superpharmacy greedily until there exists no further pharmacy481

to add.482

3.3. Rolling Horizon Approach483

For instances that consist of many pharmacies and a long time horizon, the484

MILP (1) given in Section 3.1 becomes very large, even if we use the superphar-485

macy approach of Section 3.2 to reduce its size. Therefore, we decompose the OHP486

into smaller, tractable pieces.487

The decision variables xpt, xpt′ belonging to different days t, t′ ∈ T are solely488

connected by the periods of rest, the equity, and minimum number of services con-489

straints. Intuitively, the choice of xpt ∈ {0, 1} becomes less important for the choice490

of xpt′ ∈ {0, 1} for days |t− t′| > r (m (p)) that are far apart from each other, because491

they are not connected directly by a period of rest constraint. This raises the idea492

that we may end up with an out-of-hours plan not too far from an optimal solution if493

we plan the first days of the time horizon without paying too much attention to later494

days. An approach that often leads to high quality solutions for planning problems495

with such characteristics is the use of a rolling horizon algorithm. The general idea496

of rolling horizon algorithms is to divide a problem with a large time horizon into a497

sequence of smaller subproblems in which one considers only a part of the time hori-498

zon. By fixing decisions arising from the solution of the subproblems and extending499

the considered part of the time horizon, one iteratively tries to compute a solution500

for the original problem.501

For solving an instance of the OHP, we split the time horizon T into intervals502

T = {1, . . . , t1} ∪ {t1 + 1, . . . , t2} ∪ · · · ∪ {tk + 1, . . . , T} . We determine for each day503

t ∈ {1, . . . , t1} a set of out-of-hours pharmacies F (t) ⊆ P, fix these services and504

plan the next interval {t1 + 1, . . . , t2} while respecting the constraints arising from505

the assignments already made for {1, . . . , t1} .506

Rolling horizon algorithms usually use some kind of look-ahead, such that the507

decisions made in the current iteration also consider subsequent iterations. This508

can be achieved, for example, by relaxing the original problem for the remainder509

of the time horizon through aggregation [21]. In our approach, we do not consider510

a relaxation for the remaining days but instead include an additional interval into511

our subproblem. We start with the computation of a partial solution on the days512

{1, . . . , t1} ∪ {t1 + 1, . . . , t2} but then only fix services assigned in the first interval513

{1, . . . , t1} . By doing this, we pay attention to the direct connection induced by the514

periods of rest, which are arguably the most restrictive temporal constraints for our515
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problem. We do not consider further days, as we want to keep the subproblems small516

and more days in a relaxed version do not give much additional information since the517

planning is somewhat repetitive.518

For the computation of the partial plans on a subset of days T ′ = {1, . . . , T ′} ⊆ T ,
respecting services S (p) ⊆ T ′ already assigned to the pharmacies p ∈ P, we use an
MILP as follows

min
∑
p∈P

∑
t∈T ′

xpt +
∑

m∈M
Mvm (3a)

s.t.
∑

p∈C(m)

xpt ≥ 1 ∀m ∈M, t ∈ T ′, (3b)

∑
p∈P (m)

xpt ≥ d (m, t) ∀m ∈M, t ∈ T ′, (3c)

xpt + xp′t ≤ 1 ∀ {p, p′} ∈ C, t ∈ T ′, (3d)
t+r(m(p))∑

t′=t

xpt′ ≤ 1
∀p ∈ P,
1 ≤ t ≤ T ′ − r (m (p)) ,

(3e)

y
m(p)

≤
∑
t∈T ′

xpt ≤ ȳm(p) + vm(p) ∀p ∈ P, (3f)

ȳm − ym ≤
⌈
e (m)T ′

T

⌉
∀m ∈M, (3g)

y
m
≥
⌈
nminT ′

T

⌉
∀m ∈M, (3h)

xpt = 1 ∀p ∈ P, t ∈ S (p) , (3i)
xpt ∈ {0, 1} ∀p ∈ P, t ∈ T ′\S (p) , (3j)

ȳm, ym ≥ 0 ∀m ∈M, (3k)

vm ∈ Z≥0 ∀m ∈M. (3l)

In addition to the restriction of the time horizon to T ′, we fix the variables xpt = 1 if519

we already assigned p ∈ P a service on t ∈ T in a previous iteration, i.e., t ∈ S (p) .520

Note that we do not force xpt = 0 even if we already considered t ∈ T ′ in a previous521

iteration and did not assign p ∈ P a service on day t. This gives us more freedom when522

satisfying the constraints 3g and 3h. Regarding the equity, we introduce variables523

vm ∈ Z≥0 for allm ∈M that allow a violation of the constraints (1f) but are penalized524

by a big constant M ∈ Z≥0 in the objective (3a). By doing so, we guarantee that the525

MILP will not be infeasible for an interval {1, . . . , T ′} due to the equity constraints.526

This is reasonable, since we may be able to balance the out-of-hours plan in the527

following iterations. We call the planning problem in which we allow, but punish,528

a violation of the equity constraints the equity relaxed OHP. Note that we scale529

the equity coefficients included in the constraints (3g) and the minimum number of530

services to assign in the inequalities (3h). The logic behind the scaling is that we do531

not want to assign a pharmacy many services within one iteration just in order to532

meet the minimum number of services constraint (1h). Instead, we want to encourage533
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Algorithm 1: Rolling horizon heuristic for the computation of out-of-hours
plans.
Input: An OHP instance and a set of days {t1, . . . , tk} ⊆ T
Output: A solution x ∈ {0, 1}|P||T | to the equity relaxed OHP or ∅
Initialize S (p) = ∅ for all p ∈ P and tk+1 = T ;
for i ∈ {1, . . . , k} do

Set T ′ = {1, . . . , ti+1};
if there exists a solution to the MILP (3) then

Compute a solution x ∈ {0, 1}|P||T
′|;

Update S (p) = {t ∈ {1, . . . , ti} | xpt = 1};
end

end
if x is a feasible out-of-hours plan then

return x
end
else

return ∅
end

a useful assignment of these services, evenly distributed over the whole time horizon,534

which relieves other pharmacies with more services. For the equity, it would be535

unreasonable to allow a difference using unscaled equity coefficients e (m) within the536

first time intervals, because this restricts us in the planning of the following time537

intervals.538

Algorithm 1 states the rolling horizon algorithm, which uses the above MILP (3).539

Note that we only consider a so called forward rolling horizon approach, i.e., we540

always start at the beginning of the planning horizon, since in practice the planning541

is restricted by additional periods of rest constraints arising from previous planning542

periods.543

3.4. Deletion of Equity Services544

A potential problem of Algorithm 1 is that we fix services which are not neces-545

sary for the coverage solely to satisfy the equity and minimum number of services546

constraints within one iteration. These fixed equity services raise the total number of547

out-of-hours services and take away the possibility to satisfy the corresponding con-548

straints in a later iteration by assigning more useful services. To resolve this problem,549

we extend Algorithm 1 with an additional step within each iteration of the for-loop550

in which we delete such equity services from S (p) for p ∈ P.551

We want to delete as many services as possible while still satisfying all constraints552

but the ones for the equity and minimum number of services. Since we are restricted to553

services in S (p), we do not have to consider the conflict constraints (3d) and periods of554

rest inequalities (3e), as they are always satisfied by the choice of S (p) . Therefore, we555

are only left with the covering constraints and can formulate the deletion of equity556

services as a covering problem in which we want to retain a minimum number of557
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services. Covering problems are NP-hard in general but in our practical case the558

problem of deleting equity services remains tractable. This is due to the fact that all559

days can be considered independently, as we have no more linking constraints, and560

the number of services per day is relatively small. In our case study, we will handle561

the deletion problem in iteration i ∈ {1, . . . , k} by directly solving the following MILP562

min
∑
p∈P

∑
t∈{1,...,ti}

xpt (4a)

s.t.
∑

p∈C(m)

xpt ≥ 1 ∀m ∈M, t ∈ {1, . . . , ti} , (4b)

∑
p∈P (m)

xpt ≥ d (m, t) ∀m ∈M, t ∈ {1, . . . , ti} , (4c)

xpt = 0 ∀p ∈ P, t /∈ S (p) (4d)
xpt ∈ {0, 1} ∀p ∈ P, t ∈ S (p) . (4e)

In each iteration except the last of the extended algorithm, after solving the563

MILP (3) and setting S (p) , we compute an optimal solution x ∈ {0, 1}|P|ti to the564

MILP (4) and again update S (p) = {t ∈ {1, . . . , ti} | xpt = 1} . The sets S (p) contain565

no more equity services after the deletion step but the remaining services were planned566

with the equity and minimum number of services constraints in mind.567

Although Algorithm 1 may return a solution that violates equity constraints or568

may terminate without finding a solution at all, we will see that, for the instances569

tested in our real-world case study and a proper size of intervals, it computes solutions570

with a small optimality gap and few violations of equity constraints. A benefit of the571

approach is that it tends to distribute the services assigned to a pharmacy evenly572

over the time horizon, since, even with the deletion of equity services, we encourage573

equity in each iteration.574

Note that the superpharmacy approach of Section 3.2 can be easily adapted for575

the MILP (3) and combined with the rolling horizon heuristic.576

4. Case Study577

In this section, we study the performance of our approaches from Section 3 and578

the effect of the input parameters on the resulting plans of a real-world test instance.579

Finally, we will analyze the plans regarding their coverage properties and the distri-580

bution of the out-of-hours services. All tests are implemented in Java 8 on a Linux581

Ubuntu 14.04 distribution with kernel version 3.13 and run on an Intel® Core™i7-582

3770 CPU @ 3.4 GHZ with 32 GB RAM. We use CPLEX version 12.6.3 [26] to solve583

the MILPs.584

4.1. Setup of the Computational Study585

Our test instance is based on the planning of out-of-hours services for the year586

2017 in the area of North Rhine in Germany. Accordingly, our time horizon is T =587

{1, . . . , 365} . The Chamber of Pharmacists North Rhine provided a set of |P| =588
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Figure 3: Geographical distribution of the pharmacies (red dots) and the municipalities (yellow
squares).

2291 pharmacies that existed in October 2016 and |M| = 165 municipalities, see589

Figure 3. The set of municipalities ranges from large cities such as Cologne in the590

mid-east of North Rhine, containing about one million residents and 244 pharmacies,591

to rural municipalities in the Eifel region in the south-west, containing a few thousand592

residents and often only one pharmacy. Data on the affiliation m : P → M of593

pharmacies and distances δ : (P ∪M)
2 → Q≥0 on the road network is fixed by the594

geographical properties of the instance and provided by the Chamber of Pharmacists595

North Rhine.596

The cover radii δcov :M→ Q≥0, minimum distances δcon :M→ Q≥0 and peri-597

ods of rest r :M→ Z≥0 are defined via a classification of the municipalities into four598

categories: large cities, medium-sized towns, small towns and rural municipalities.599

For each category, the Chamber of Pharmacists North Rhine sets the three param-600

eters based on legal restrictions or experience from prior planning periods. These601

parameters are then applied to the municipalities according to their category. Ta-602

ble 1 shows the parameters and the number of municipalities for each category as603

well as the number of pharmacies within the municipalities belonging to the corre-604

sponding category. The minimum distances, which determine the conflicts between605

out-of-hours pharmacies, range from 2 km for larger cities, where pharmacies are typ-606

ically clustered, to 7 km for rural areas. Conversely, the periods of rest range from607

15 days in larger cities to 5 days in rural areas, where few pharmacies usually have to608

perform more services. The cover radii range from 10 km for larger cities to 30 km for609

rural municipalities. For three municipalities in remote areas, we increase the cover610

radii up to 10%, since otherwise the number of covering pharmacies would be too611
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total
large medium-sized small rural
city town town municipality

#municipalities 165 22 101 34 8

#pharmacies 2291 1408 799 70 14

cover radius δcov - 10 km 15 km 20 km 30 km
period of rest r - 15 days 7 days 7 days 5 days
minimum distance δcon - 2 km 4 km 4 km 7 km

Table 1: Numbers of municipalities and pharmacies as well as parameters by categories.

small for the period of rest. Together with the distances between municipalities and612

pharmacies, the cover radii give us sets of covering pharmacies C (m) for all m ∈M613

with sizes ranging from 10 to 237 pharmacies. From this, we know that there are614

pharmacies that perform at least 37 services over the course of the year.615

In contrast to the parameters defined above, the demands d :M×T → Z≥0 are616

individually set by the chamber of pharmacists for each municipality. The demands617

are zero year-round for 117 of the 165 municipalities and go up to 9 services per day618

for the city of Cologne. Summing over the demands of all days
∑

t∈T d (m, t) for619

a municipality m ∈ M and dividing by the number of pharmacies |P (m)| included620

gives us a lower bound on the average number of services per pharmacy going up to621

20.28 for one of the municipalities.622

For our first computational experiments, we choose nmin = 10 as the minimum623

number of services per pharmacy. This value is based on existing plans of the Cham-624

ber of Pharmacists North Rhine. Since the Chamber of Pharmacists North Rhine625

aims to equally split the burden for all pharmacies within one municipality, we choose626

equity coefficients e ≡ 1, i.e., the difference in the number of services assigned to two627

pharmacies within the same municipality cannot exceed one.628

As we already mentioned, the basic MILP (1) becomes very large for the given629

instance. In fact, CPLEX is not able to solve the LP relaxation in the root node of the630

branching tree within a time limit of one day. Nevertheless, CPLEX found a feasible631

solution that assigns 32, 451 services, using primal heuristics in parallel while trying632

to solve the LP relaxation. In the following, we test combinations of the approaches633

from Section 3, namely the aggregation of pharmacies as well as the rolling horizon634

algorithm with its extension, and show that they are more reliable and lead to better635

results in less time.636

The aggregation of pharmacies into superpharmacies, as proposed in Section 3.2,637

reduces the size of the MILP drastically. We can partition the set of |P| = 2291638

pharmacies into |Ps| = 1745 superpharmacies, thus reducing the number of binary639

decision variables by almost a quarter. Here, 1414 pharmacies p ∈ P constitute640

their own superpharmacy {p} ∈ Ps and 877 pharmacies can be aggregated into 331641

superpharmacies of size greater than or equal to two, with the largest superpharmacy642

containing 9 pharmacies. Table 2 shows the size of the constraint matrix for both643

MILPs after CPLEX performed its preprocessing and demonstrates the impact of644

the superpharmacies. As a result of the reduction, CPLEX is able to solve the LP645
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#rows #columns #nonzero entries
original MILP (1) 4, 181, 984 836, 380 22, 658, 004

superpharmacy MILP (2) 1, 060, 723 637, 036 14, 630, 106

Table 2: Size of the constraint matrices after preprocessing of CPLEX.

relaxation of the superpharmacy MILP (2) within 42, 955 seconds. From the relaxed646

solution, we deduce that a feasible out-of-hours plan assigns at least 30, 078 services647

among the pharmacies, which is 7.3% below the number of services assigned by the648

plan computed with the original MILP (1) in 24 hours. Surprisingly, in contrast to the649

computation using the original MILP (1), we did not obtain a feasible integer solution650

within a time limit of one day. Although this may suggest that the aggregation of651

pharmacies is counterproductive for the computation of plans, we will see that the652

superpharmacies perform well together with the rolling horizon approach.653

In order to test the rolling horizon approach, we need to define a penalty parameter654

M for the violation of the equity constraints and intervals in which we partition the655

time horizon. For the penalty parameter, we choose M = 1000, which seems to656

be large enough so that an optimal solution to the equity relaxed OHP, if possible,657

violates no equity constraint. For the partition of the time horizon, we set a number658

of intervals 2 ≤ I ≤ T and divide the time horizon T into intervals of lengths659

that are equal except for rounding, i.e., T =
{

1, . . . ,
⌊
T
I

⌋}
∪
{⌊

T
I

⌋
+ 1, . . . ,

⌊
2T
I

⌋}
∪660

· · · ∪
{⌊

(I−1)T
I

⌋
+ 1, . . . , T

}
. Note that the choice of I = 2 corresponds to a single661

computation of the whole time horizon since we always consider two intervals in662

Algorithm 1. We test the values I ∈ {2, . . . , 52} , thus starting with the whole time663

horizon for the sake of comparison and ending with an interval length of one week.664

For a comprehensive test of the performance of our approaches, we perform four665

computations for every value I ∈ {2, . . . , 52} using the following four algorithms666

arising of the possible combinations of the approaches proposed in Section 3:667

Default Algorithm Default makes no use of superpharmacies (cf. Sec-668

tion 3.2) and does not delete equity services (cf. Section 3.4).669

DelEq Algorithm DelEq also makes no use of superpharmacies but does670

delete equity services.671

Sup Algorithm Sup uses superpharmacies but does not delete equity672

services.673

SupDelEq Algorithm SupDelEq uses superpharmacies and also deletes eq-674

uity services.675

We set an aggregated time limit of 10,000 seconds for the computation of the MILPs (3).676

This reflects on the one hand, that we compute plans for a whole year and thus the677

construction of a plan does not have to be finished within few seconds. On the other678

hand, the computation should not take too long, since the algorithms are intended for679
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a decision support. We expect that the decision makers have to perform many compu-680

tations during the planning process, all with different input parameters and possibly681

new, tailored constraints for special cases among the pharmacies and municipalities.682

Although the use of superpharmacies, deletion of equity services, and division into683

many intervals may cause some overhead in time, they do not dictate the complexity684

of the whole solution process. Therefore, we only consider the time taken to solve the685

MILPs (3). Let I ′ be the number of iterations left and T ′ the aggregated time it took686

to solve the previous MILPs. We set the time limit for the next MILP computation687

as 10000−T ′

I′ . Accordingly, the time limit for each iteration is at least 10000
I−1 and time688

saved in earlier iterations can be used for subsequent computations. Instead of using689

excessive time trying to prove optimality in each iteration, we terminate each MILP690

computation if we reach an optimality gap of 0.1%. By doing this, we save time for691

later, maybe more problematic iterations.692

4.2. Performance of the Solution Approaches693

In the following, we analyze the quality of the solutions obtained by the algorithms,694

i.e., the number of services assigned and the number of violated equity constraints. We695

pay particular attention to the reliability of our approaches and examine if the solution696

quality varies heavily for the choices of I ∈ {2, . . . , 52} or if the performance is stable697

for a range of numbers of intervals. Furthermore, we compare the computational time698

of the algorithms. Exact values, corresponding to the plots within this section, are699

given in Table B.4 and Table B.5 in Appendix B.700

Figure 4a shows for all solutions the number of services that we assign among the701

pharmacies as well as the lower bound of 30, 078 services, which equals the optimal702

solution value of the LP relaxation rounded up. A gap in the graph of an approach703

indicates that we did not obtain a solution for the corresponding number of intervals.704

Additionally, an unfilled circle indicates that we obtained a solution that violates the705

equity constraints, which is penalized in MILP (3). Figure 4b shows for all solutions706

the sum of violations
∑

m∈M vm, scaled logarithmically if greater than zero.707

Apparently, the partial problems remain too hard to solve for a small number708

of large intervals. While the computations in which we use the superpharmacies709

consistently result in an out-of-hours plan, most of them violate the equity constraints710

for small I. If we do not use superpharmacies, then we sometimes obtain no plan at711

all after 10, 000 seconds. This indicates that the use of superpharmacies has a positive712

effect on the reliability of our algorithms. The same holds for the deletion of equity713

services. This additional step not only reduces the number of services assigned, but714

also results more frequently in plans that are not violated, compared to the algorithms715

in which we do not delete equity services. This is a logical consequence, since the716

absence of fixed equity services gives us more freedom to equalize an out-of-hours plan717

in later iterations. The algorithms in which we delete the equity services are also less718

sensitive to a variation in the number of intervals I, that is, we also obtain high719

quality solutions for large numbers I. This is in contrast to the algorithms in which720

we do not delete these services and therefore require equity in all I − 1 iterations.721

Starting from I = 12, SupDelEq returns consistently very good results that are722

also feasible, except for I = 18. The most efficient feasible plan that we obtain through723

this approach is computed for I = 15 and assigns only 30, 174 services, resulting724

22



30
07

8

31
00

0

32
00

0

33
00

0

34
00

0

35
00

0

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

34
36

38
40

42
44

46
48

50
52

N
um

be
r
of

In
te
rv
al
s

TotalNumberofServices

A
pp

ro
ac
h

D
ef

au
lt

D
el

E
q

S
u
p

S
u
pD

el
E
q

Fe
as
ib
ili
ty

U
nv

io
la
te
d

V
io
la
te
d

(a
)

011010
0

10
00

10
00

0

10
00

00

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

34
36

38
40

42
44

46
48

50
52

N
um

be
r
of

In
te
rv
al
s

TotalNumberofViolationsScaledLogarithmically

A
pp

ro
ac
h

D
ef

au
lt

D
el

E
q

S
u
p

S
u
pD

el
E
q

(b
)

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

2
4

6
8

10
12

14
16

18
20

22
24

26
28

30
32

34
36

38
40

42
44

46
48

50
52

N
um

be
r
of

In
te
rv
al
s

TimeRequiredforMILPComputations

A
pp

ro
ac
h

D
ef

au
lt

D
el

E
q

S
u
p

S
u
pD

el
E
q

(c
)

F
ig
ur
e
4:

T
ot
al

nu
m
be

rs
of

se
rv
ic
es

as
si
gn

ed
fo
r
al
l
so
lu
ti
on

s
as

w
el
l
as

th
e
lo
w
er

bo
un

d
3
0
0
7
8
.
So

lu
ti
on

s
th
at

vi
ol
at
e
eq
ui
ty

co
ns
tr
ai
nt
s
ar
e
di
sp
la
ye
d

as
un

fil
le
d
ci
rc
le
s
(a
).

T
ot
al

nu
m
be

r
of

vi
ol
at
io
ns

of
eq
ui
ty

co
ns
tr
ai
nt
s
fo
r
al
l
so
lu
ti
on

s,
re
pr
es
en
te
d
w
it
h
lo
ga
ri
th
m
ic

sc
al
in
g
(b
).

T
im

e
re
qu

ir
ed

to
so
lv
e
th
e
M
IL
P
s
(c
).

23



in a gap of 0.3192% compared to the lower bound. Even for I = 52, where we725

consider many small intervals and therefore tend to make more bad decisions during726

the planning, we obtain an out-of-hours plan that only assigns 30, 300 services. For727

comparison, Default computes a plan that assigns 31, 538 services for I = 52.728

DelEq leads to similar results for I ≥ 14 and for I = 15 even to the best known729

feasible solution, which assigns 30, 170 services. Compared to the real plan used by730

the Chamber of Pharmacists North Rhine in 2017, which assigns 33, 574 services and731

does not satisfy all constraints, this is a reduction of 10.1%.732

Figure 4c shows the total time required for the MILP computations. For I ≥ 14,733

both approaches in which we delete equity services perform not only similar regarding734

the total number of services but also terminate before the time limit of 10, 000 seconds.735

If we consider I = 23 as an outlier then the same holds for both approaches in which736

we do not delete equity services for I ≥ 22. This suggests that in general it makes no737

difference whether we use superpharmacies or not as long as the intervals are small738

enough to be solvable without superpharmacies. This is an expected result since739

the original MILP (1) and the superpharmacy MILP (2) are equivalent. However,740

the outcome could have been different if the formulations led CPLEX to construct741

solutions of different structure.742

A result that was less expected is that the deletion of equity services speeds up743

the MILP computations, even though we fix fewer services from previous iterations.744

Even more surprisingly, the time saved by the deletion exceeds the savings achieved745

by using superpharmacies. We already mentioned that the deletion of equity services746

results in less violations of the equity constraints. Since the optimal solutions of the747

LP relaxations mostly do not violate any equity constraints, even for later iterations748

in which we fix many services, it is much harder and time-consuming to close the749

optimality gap if we cannot avoid the violation of an equity constraint. Therefore, it750

is easier to close the optimality gap if we delete equity services, which significantly751

reduces the computation time.752

We summarize that, at least for the tested setting, using superpharmacies and753

deleting equity services speeds up the rolling horizon algorithm which enables us to754

find good solutions in less time within each iteration. Furthermore, the deletion of755

equity services makes the rolling horizon algorithm more reliable, since it reduces756

the total number of services assigned by fixing fewer bad decisions made in earlier757

intervals.758

4.3. Influence of Input Parameters759

In the following, we study the influence of the minimum number of services nmin ∈760

Z≥0 and equity coefficients e : M → Q≥0 on the resulting plans and also on the761

performance of our approaches. We choose these parameters for our analysis, as762

the Chamber of Pharmacists North Rhine requires the corresponding constraints but763

left a specification of these parameters open for discussion. Additionally, since both764

should ensure a balanced load on the pharmacies, it is particularly interesting to see765

how the plan changes if we adjust the level of balancing that we demand from a plan.766

To test the influence of the minimum number of services, we consider the same767

setting as in the previous section except that we choose values nmin ∈ {0, 1, . . . , 15} .768

We solve the resulting problems by using the two approaches that performed best769
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Figure 5: Total numbers of services assigned for all solutions. Solutions that violate equity con-
straints are displayed as unfilled circles (a). Time required to compute the solutions (b).

in the previous section, namely DelEq and SupDelEq. For each approach, we use770

a number of I ∈ {12, 24} intervals, since we find it intuitive to consider intervals771

that have a length of one month, or half a month respectively. Additionally, both772

approaches showed a stable performance around I = 24 and the superpharmacy773

approach resulted in solutions of high quality for I ≥ 12 and worse solutions for774

I ≤ 11, which is why this breakpoint is of particular interest. We denote with775

12DelEq and 24DelEq the use of approach DelEq together with a partition into776

12 intervals, or 24 intervals respectively. Analogously, we denote with 12SupDelEq777

and 24SupDelEq the use of 12 or 24 intervals together with SupDelEq. Exact778

results are given in Table B.6 in Appendix B.779

Figure 5a shows the total number of services assigned in the resulting plans.780

Additionally, it shows a lower bound on the number of services for the particular value781

of nmin, which we obtain by solving the LP relaxation in the root node considering the782

whole time horizon. It becomes clear that the minimum number of services nmin has783

a large effect on the total number of services and the corresponding constraints (3h)784

are an actual restriction, even for low values of nmin. Although we don’t know the785

value of an optimal integer solution, we can deduce that an optimal solution for786

nmin ∈ {0, 1, 2} assigns not more than two services to at least one pharmacy since the787

best known integer solutions have lower values than the lower bound for nmin = 3.788

The values of the relaxed solutions even suggest that there may be pharmacies to789
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which an optimal plan would assign no services at all. Furthermore, we observe that790

the slope defined by the total number of services depending on the minimum number791

of services rises with increasing nmin. This is due to the fact that the constraints (3h)792

are relevant for only a few pharmacies for low nmin and the number of pharmacies793

that are affected by these constraints rises with the value of nmin.794

The minimum number of services nmin has not only an effect on the total num-795

ber of services but also on the performance of our algorithms. For nmin = 15, we796

find no out-of-hours plan within the time limit using I = 24. The small intervals797

often give us not enough freedom to meet the highly restricting minimum number798

constraints (3h), leading to some infeasible subproblems, for example here in the first799

iteration. The following subproblem becomes harder to solve, since we fix no services800

and additionally have a rather small time limit, as we distribute the remaining time801

on many intervals. These problems propagate through all iterations, which is why we802

obtain no plan after the last iteration.803

Apart from this, the problems tend to be easier to solve and require less com-804

putation time for high values nmin, as shown in Figure 4c. One intuitive reason for805

this is that a high minimum number of services raises the value of the LP relaxation806

more than it raises the value of an optimum integral solution, since the latter assigns807

more services anyway. Furthermore, we observe that the solutions for the LP relax-808

ation tend to be less fractional for high nmin. For example, the solution of the LP809

relaxation within the first iteration of the algorithm for nmin = 0 using I = 12 and810

superpharmacies contains a total of 8863 integer infeasible variables, i.e., variables811

that should be integer but take fractional values. For nmin = 10, the number of812

integer infeasible variables is only 1998. In practice, it is advantageous to have an813

LP relaxation solution that has few integer infeasible variables, since some primal814

heuristics in state-of-the-art MILP solvers perform better if the relaxed solution is815

almost integer. An example for this is the feasibility pump [27], which tries to convert816

the optimum solution of the LP relaxation to a feasible integer solution.817

Once more, the difficult instances highlight the advantages of using superphar-818

macies, as these approaches perform better than the approaches in which we do not819

use them. We want to emphasize that the plans computed with 12SupDelEq often820

assign more services than the plans obtained by 12DelEq but they are much better821

regarding the violation of the equity constraints and thus have consistently better ob-822

jective values. For nmin ∈ {1, 3, 4} , the plans computed with 12SupDelEq violate823

no equity constraints and for nmin = 7, we only have a violation of
∑

m∈M vm = 2,824

while the plans computed with 12DelEq each have a violation
∑

m∈M vm ≥ 334 for825

nmin ≤ 10, i.e., on average two per municipality.826

To test the equity coefficients, we set the minimum number of services back to827

nmin = 10 and choose e ≡ 0, . . . , 5 as a global parameter that is the same for all828

municipalities. We use the approaches from above to solve the resulting instances of829

the OHP. Exact results are given in Table B.7 in Appendix B.830

We show the total number of services assigned in the computed plans as well as831

the corresponding lower bounds in Figure 6a. As expected, forcing all pharmacies832

within a municipality to perform an equal number of out-of-hours services leads to a833

significant increase in the total number of services assigned in the computed plans.834

Additionally, none of the plans is feasible regarding the equity constraints. The most835
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Figure 6: Total numbers of services assigned for all solutions. Solutions that violate equity con-
straints are displayed as unfilled circles (a). Time required to compute the solutions (c).

efficient plan with respect to the number of services, computed by 12SupDelEq, has836

a violation of
∑

m∈M vm = 476, i.e., on average 2.88 per municipality, and is thus837

highly infeasible. The other three plans each have a cumulative violation of only 2838

but are much less efficient. Since the optimality gap is quite large, it remains unclear839

if an optimal integer solution is equally inefficient or if the rolling horizon algorithms840

simply make too many bad decisions.841

Surprisingly, compared to e ≡ 1, the number of services assigned does not decrease842

much with higher equity coefficients. This holds both for the lower bounds and the843

solutions computed by the rolling horizon algorithms. So, in contrast to the minimum844

number of services, where a rising value of nmin leads to significantly more services,845

the cost of stricter equity constraints is only marginal as long as we do not choose846

e ≡ 0. Regarding the time required by the algorithms, shown in Figure 6b, the847

problems tend to get easier to solve for higher e, where it is easier to satisfy the848

equity constraints.849

Overall, the effect of the equity coefficients seems to be not as strong compared850

to the impact of the minimum number of services nmin.851

4.4. Discussion of the Out-of-Hours Plans852

In the following, we analyze the plans computed in Section 4.3 regarding their853

coverage properties and the distribution of the services among the pharmacies, i.e.,854
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nmin = 0 nmin = 5 nmin = 10 nmin = 15 Real Plan 2017
total number of services 26, 520 27, 712 30, 186 36, 224 33, 574

mean distance to nearest pharmacy 8, 705 m 8, 456 m 8, 030 m 7, 559 m 7, 204 m

Table 3: Total number of out-of-hours services assigned and the mean distance from the center of
the municipalities to the next out-of-hours pharmacies over the course of the year. For each value
nmin, we consider the best solution computed in the previous section.

their practicability. We start with a comparison of the plans on the global level. More855

precisely, we analyze how many pharmacies perform a specific number of services and856

how many municipalities are covered by a pharmacy that is on average not farther857

away than a specific number of kilometers. After that, we have a closer look at certain858

municipalities and groups of pharmacies.859

We have already seen in Figure 6a that a variation of the equity coefficients860

e ≡ 1, . . . , 5 has nearly no effect on the global level regarding the number of distributed861

services. Furthermore, choosing e ≡ 0 is not reasonable from a practical point of view,862

as the number of additional services compared to e ≡ 1 is disproportionate to the863

additional equity. Hence, for our evaluation on the global level, we only consider fixed864

equity coefficients e ≡ 1, together with a varying minimum number of services nmin.865

For each value nmin ∈ {0, 5, 10, 15} , we consider the plan computed in Section 4.3866

that has the best objective value, i.e., the best plan computed by the algorithms867

12DelEq, 12SupDelEq, 24DelEq, 24SupDelEq.868

First, we analyze the distribution of out-of-hours services among the pharmacies.869

As a reminder, Table 3 shows for all four computed plans and the real plan of 2017 the870

total number of services assigned to all pharmacies. Figure 7a gives a more detailed871

view by showing for our plans the proportion of pharmacies for that the number of out-872

of-hours services over the course of the year is not greater than a specific value. The873

plan for nmin = 0 assigns no services at all to 6.4% of the pharmacies and 18.8% of all874

pharmacies are assigned less than five services. In the last section, we already noted875

that the minimum number constraints (3h) are an actual restriction for the planning.876

From this, we conclude that it is not a coincidence that we assign so many pharmacies877

few or even no services. For our model, these pharmacies are in an unfavorable878

geographical position and assigning these pharmacies an out-of-hours service is not879

an optimal choice with respect to the total number of services. This means that we880

cannot distribute the services more evenly without loosing some efficiency. Note that881

we observe this effect, although the plan meets the equity constraints with e ≡ 1.882

It follows that the minimum number of services constraints cannot be omitted when883

applying the equity constraints.884

Since an optimal plan assigns as few services as possible to pharmacies in an885

unfavorable location, it is not surprising that the introduction of a minimum number886

of services nmin results in many pharmacies that perform exactly nmin out-of-hours887

services. For nmin = 5, we assign 20.3% of the pharmacies exactly nmin services.888

For nmin = 10, this proportion increases to 34.7% and even to 84.5% for nmin = 15.889

Of course, forcing such a high number of pharmacies to perform additional out-of-890

hours services reduces the efficiency of the plan but makes it also fairer. While 6.5%891

of the pharmacies perform more than 20 services for nmin = 0, this proportion is892
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Figure 7: The proportion of pharmacies that perform a specific number or fewer services (a). The
proportion of municipalities for which the mean distance to the next out-of-hours pharmacy is less
than or equal to the specific value (b).

nearly halved for nmin = 15 to only 3.3% of all pharmacies. Unfortunately, this effect893

vanishes for pharmacies with a lot of services. For example, the number of pharmacies894

with 40 services or more is lower in the plan for nmin = 0 compared to the one for895

nmin = 15. Apparently, these highly occupied pharmacies are not in the vicinity of896

pharmacies with nearly no services that could take over some out-of-hours services.897

As a comparison, on the one hand, the real plan used by the Chamber of Phar-898

macists North Rhine in 2017 assigns more than 20 services to 10% of the pharmacies,899

which is more than twice as much as in the plan for nmin = 10. On the other hand, no900

pharmacy has to perform more than 40 services (1.8% in the plan for nmin = 10). In901

the real plan, the cover radii δcov (m) are locally adapted with respect to the number902

of pharmacies that are in the vicinity of a municipality m ∈ M. This improves the903

coverage for municipalities with many pharmacies around and relieves highly occupied904

pharmacies in rural areas.905

In addition to a higher fairness, the minimum number of services has also a positive906

effect on the coverage of the residents. Table 3 shows for all plans the mean distance907

that residents have to travel to get from the center of a municipality to the nearest908

out-of-hours pharmacy. We choose to only consider the mean distance, since the909

covering constraints (1b) already prohibit distances that are too long. Figure 7b gives910

us a better understanding which municipalities benefit the most from the minimum911
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number of services. The plot shows for all plans the proportion of municipalities for912

which the mean distance to the next out-of-hours pharmacy over the course of the913

year is below a specific value. We see that the effect on the mean distance is primarily914

observable for municipalities with a mean distance of more than 4 km. This is due915

to the fact that municipalities with a very low mean distance are usually larger cities916

with a positive minimum demand d > 0 that already forces the pharmacies within917

the municipalities to perform several out-of-hours services. In our opinion, this is a918

positive effect, since the municipalities that previously had a bad coverage benefit the919

most from the minimum number of services. For example, for the two municipalities920

with the worst coverage, the mean distance to the nearest out-of-hours pharmacy is921

reduced by 1.5 km each in the plan for nmin = 10 compared to the plan with nmin = 0.922

In Figure 8, we display the mean distances to the nearest out-of-hours pharmacies923

for individual municipalities as well as the number of services each pharmacy performs924

for values nmin = 0 and nmin = 10. In Figure 8a, we see that municipalities with a925

bad coverage are primarily located in rural areas with few close pharmacies and926

also often in border areas. Municipalities in border areas not only usually have927

fewer pharmacies in their vicinity, the nearby pharmacies also tend to perform less928

out-of-hours services. We can observe this in Figure 8b for the pharmacies around929

Dahlem, the southernmost municipality in North Rhine. This is due to the fact that930

pharmacies in border areas cover fewer municipalities and therefore are not so relevant931

within our model. While we cannot influence the number of nearby pharmacies, a932

minimum number of services guarantees that pharmacies in the border area also933

participate in the out-of-hours service and improve the coverage of the corresponding934

municipalities. For Dahlem, this results in a reduction of the mean distance from935

21.3 km to 19.8 km.936

Besides the pharmacies in border areas, pharmacies that perform nearly no ser-937

vices are mostly located in municipalities close to a larger city. The municipalities938

covered by these pharmacies often can also be covered by the pharmacies within the939

city. It is efficient to cover the surrounding municipalities by the pharmacies within940

the city, as they have to perform services anyway in order to meet the demand con-941

straints (1c). Here, a minimum number of services leads to a better coverage of the942

municipalities near cities, as the residents do have to travel less often into the cities.943

The effect on the municipalities can be seen by comparing, for example, the coverage944

of the municipalities east of Düsseldorf, in the middle of North Rhine, or north of945

Aachen, in the west of North Rhine.946

While a higher minimum number of services is beneficial for the coverage of the947

residents, the additional services are not always assigned in an efficient way. This can948

be seen when comparing the plan computed for nmin = 15 with the real plan of 2017.949

Although our plan assigns more services, the mean distance from a municipality to the950

nearest pharmacy is 7.6 km, compared to 7.2 km in the real plan. This is due to the951

already mentioned adapted cover radii δcov (m) , which are lowered for the real plan952

for municipalities m ∈ M that have many pharmacies in their vicinity. However, as953

the cover radii are increased for rural municipalities, the real plan has a worse coverage954

of these rural municipalities compared to our plans. For example, the mean distance955

to the next out-of-hours pharmacy from the municipality Monschau is 11.9 km in956

our plan for nmin = 10 and 16.2 km in the real plan. In order to improve the mean957
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Figure 8: Properties for the plan computed for nmin = 0 (a and b) as well as properties for the
plan with nmin = 10 (c and d). Each municipality is displayed and colored depending on the
mean distance from the municipality center to the nearest out-of-hours pharmacy (a and c). Each
pharmacy is colored depending on the number of services performed (b and d).
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coverage of our plans, while preserving the superior coverage of rural municipalities,958

we could lower the cover radius δcov (m) for municipalities m ∈ M for which the959

covering pharmacies p ∈ C (m) perform less than nmin services when the minimum960

number of services constraints are not enforced. This would lead to a more natural961

assignment of services that would improve the coverage and are not distributed for962

fairness reasons alone.963

The effect of the minimum number of services on the fairness can be seen in the964

north of Aachen. In the plan for nmin = 0, there are several pharmacies that perform965

more than 30 services, while many surrounding pharmacies perform less than five966

services. In the plan for nmin = 10, these previously highly occupied pharmacies967

perform only ten to 14 services, just like the surrounding pharmacies.968

Although the minimum number of services balances the number of services as-969

signed to different pharmacies within the same area, the plan for nmin = 10 still has970

some large local differences. In the rural Eifel region, in the south of North Rhine,971

there are two pharmacies (colored black in Figure 8d) within one municipality per-972

forming 58 and 59 services. In contrast to this, there are other pharmacies within a973

different municipality few kilometers to the north which cover nearly the same mu-974

nicipalities and are assigned only around 20 out-of-hours services. In practice, such975

a plan would not be approved by the pharmacists. Considering the most critical mu-976

nicipality covered by the highly occupied pharmacies, i.e., the municipality with the977

smallest number of covering pharmacies, we could reduce the burden via a redistribu-978

tion to around 43 services. Here, the decision makers need to define some additional979

constraints such that the out-of-hours plan is not only fair within the municipalities980

but also beyond their borders.981

The equity coefficients e, which we did not consider so far, since they have a low982

impact on the global properties of the resulting plans, are also a key parameter for the983

local fairness that decision makers have to consider. Figure 9 shows the pharmacies of984

Aachen and the Eifel region, which we analyzed above, for the plan using nmin = 10985

and e ≡ 5. Note that we change the coloring of the pharmacies compared to the986

one used in Figure 8 in order to highlight the difference in the numbers of services987

assigned to the pharmacies in Aachen. We see two pharmacies (colored yellow) in988

the southernmost area of Aachen which are assigned 16 services, while all other989

pharmacies in Aachen only perform eleven or twelve services. This is due to the990

fact that these two pharmacies can cover Monschau, the critical municipality we991

considered above. If we would not apply the equity constraints at all then the two992

pharmacies in Aachen could potentially perform even more services, resulting in an993

inequitable distribution within Aachen but reliving the highly occupied pharmacies in994

the Eifel region. We conclude that the equity constraints are necessary to guarantee995

that competing pharmacies within the same municipality have the same conditions.996

However, omitting the equity constraints or choosing a higher equity coefficient can997

be regarded as fairer in some locations, as we have the possibility to relieve highly998

occupied pharmacies within other municipalities.999
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Figure 9: Pharmacies in Aachen and the Eifel region colored depending on the number of services
performed.

5. Conclusions1000

In this paper, we proposed a mathematical model for the planning of out-of-hours1001

services for pharmacies. To solve the problem, we presented an MILP formulation1002

as well as problem specific solution approaches. In our aggregation approach, we1003

identify pharmacies that are equivalent within our model and combine them into one1004

artificial superpharmacy. This reduces not only the number of decision variables in1005

our MILP but also avoids symmetric solutions. For our rolling horizon approach,1006

we partition the planning period into a number of intervals. We obtain a plan by1007

reducing the original problem to the intervals and sequentially computing plans for the1008

subproblems. Furthermore, we proposed an extension to the rolling horizon algorithm1009

in which we discard services that were assigned in the previous iterations solely to1010

satisfy equity constraints.1011

Our approaches have proven to be very effective in our computational study.1012

Here, we obtained in short computational time nearly optimal solutions in the tests1013

conducted for a large-scale real-world instance. One reason for the effectiveness of1014

our approaches is the strength of the MILP formulation. We have seen that its LP1015

relaxation provides a lower bound on the total number of out-of-hours services that1016

is extremely close to the number of services assigned in our solutions. For future1017

work, it would be interesting to evaluate whether this property also applies for other1018

practical instances or if our setting is special in this regard. For instances with a1019

larger integrality gap, a problem-specific algorithm for computing lower bounds can1020

be used to evaluate the potential of an optimal plan.1021

The computed plans are interesting on the one hand because they show the po-1022

tential savings in the total number of out-of-hours services. For example, the best1023
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plan computed in Section 4.2 assigns 10.1% services less compared to the actual plan1024

in North Rhine for 2017. On the other hand, the results show that it is possible1025

to compute a plan that satisfies all constraints set by the Chamber of Pharmacists1026

North Rhine, which was unclear before. Since we are able to reliably compute good1027

solutions, the decision makers can test different parameters for the planning, analyze1028

their effect on the plan and learn which restrictions are satisfiable. The out-of-hours1029

services saved by the efficient planning may then also be redistributed to improve the1030

coverage of the residents.1031

In our case study, we already tested different parameters for a minimum number1032

of services each pharmacy has to perform. Introducing such a minimum number1033

results in higher total number of services but in return also in a lower mean distance1034

between the centers of the municipalities and the nearest out-of-hours pharmacy.1035

Additionally, we observed that the distribution of the services on the pharmacies1036

tends to be fairer for a higher minimum number. Nevertheless, there can still be1037

large differences in the number of services assigned to pharmacies within the same1038

region. These differences are mostly local problems, which the decision makers may1039

resolve with tailored additional constraints. For future work, it would be interesting1040

to extend the model with an integrated solution that guarantees equity globally and1041

also considers fairness regarding weekends and holidays.1042
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Appendix A. Proof of Theorem21129

The OHP is in NP, since we only have to verify a polynomial number of con-1130

straints that are easy to evaluate in order to decide if a solution is feasible to the OHP.1131

We proof the NP-hardness by a reduction from the k Disjoint Set Covers Problem1132

(k-DSC).1133

Proof. For the k-DSC we are given a finite basic set I, a family of subsets J ⊆ 2I and1134

a positive integer k ∈ Z≥2. The task is to determine whether there exists a partition1135

of J into k disjoint subsets that cover I, i.e., J = J1 ] · · · ] Jk with I =
⋃

J∈Ji
J1136

for all i ∈ {1, . . . , k} . The k-DSC is strongly NP-complete for all k ∈ Z≥2 [28].1137

Let (I,J , k) be a given k-DSC instance. We construct an OHP instance by iden-
tifying the municipalitiesM with the basic elements I, as both need to be covered,
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and the pharmacies P with the family of subsets J , because they cover the phar-
macies and the basic elements respectively. Accordingly, for each element i ∈ I we
introduce one municipality mi and for each set J ∈ J we introduce one pharmacy
pJ . We define metric distances

δ (p, p′) = 1, for p, p′ ∈ P,
δ (m,m′) = 1, for m,m′ ∈ P,

δ (pJ ,mi) = δ (mi, pJ) = 1, for pJ ∈ P,mi ∈M with i ∈ J,
δ (pJ ,mi) = δ (mi, pJ) = 2, for pJ ∈ P,mi ∈M with i /∈ J

on the arcs and set the cover radii δcov (m) = 1 for all m ∈ M. Then we obtain1138

C (mi) = {pJ ∈ P | i ∈ J} for all mi ∈ M, i.e., a pharmacy pJ ∈ P can cover a1139

municipality mi ∈ M if the corresponding subset J ∈ J contains the element i ∈ I.1140

Furthermore, we define the time horizon T = {1, . . . , k} and the periods of rest1141

r (m) = k − 1 for all m ∈ M. The remaining parameters are defined so that the1142

corresponding constraints are not relevant for the reduction. We choose m : P →M1143

arbitrary, δcon ≡ 0, d ≡ 0, e :M→ Q≥0 arbitrary and nmin = 0.1144

Now, let {J1, · · · ,Jk} be a feasible solution to the k-DSC instance. Then we define1145

an out-of-hours plan for the constructed OHP instance by F (t) = {pJ ∈ P | J ∈ Jt}1146

for t ∈ T = {1, . . . , k} . Since each Jt is a cover for I, by construction every munici-1147

pality is covered on every day. Furthermore, each pharmacy is assigned exactly one1148

out-of-hours service. Therefore, the plan is equitable and we violate no constraints1149

regarding the periods of rest. Since no municipality has a positive demand, there1150

are no conflicts between the pharmacies and we have no constraints on the minimum1151

number of services, the plan is a feasible solution.1152

Let F : T → 2P be a feasible solution to the constructed OHP instance. For t ∈1153

{1, . . . , k − 1} we define Jt = {J ∈ J | pJ ∈ F (t)} and Jk = J \
(⋃

t∈{1,...,k−1} Jt
)
.1154

Due to the periods of rest, each pharmacy is assigned at most one out-of-hours service.1155

Hence, we have J = J1] · · ·]Jk. Additionally, since each municipality is covered on1156

every day, by construction we have I =
⋃

J∈Jt
J for all t ∈ {1, . . . , k} . We conclude1157

that {J1, · · · ,Jk} is a feasible solution to the k-DSC instance.1158

Note that, since the k-DSC is already NP-hard for k = 2, we have shown the1159

statement especially for r ≡ 1.1160

Appendix B. Computational Results1161

The following tables list the exact results of the computations performed in Sec-1162

tion 4.1163
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