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Abstract

The supply of pharmaceuticals is one important factor in a functioning health care
system. In the German health care system, the chambers of pharmacists are legally
obliged to ensure that every resident can find an open pharmacy at any day and night
time within an appropriate distance. To that end, the chambers of pharmacists create
an out-of-hours plan for a whole year in which every pharmacy has to take over some
24 hours shifts. These shifts are important for a reliable supply of pharmaceuticals
in the case of an emergency but also unprofitable and stressful for the pharmacists.
Therefore, an efficient planning that meets the needs of the residents and reduces the
load of shifts on the pharmacists is crucial.

In this paper, we present a model for the assignment of out-of-hours services
to pharmacies, which arises from a collaboration with the Chamber of Pharmacists
North Rhine. Since the problem, which we formulate as an MILP, is very hard to
solve for large-scale instances, we propose several tailored solution approaches. We
aggregate mathematically equivalent pharmacies in order to reduce the size of the
MILP and to break symmetries. Furthermore, we use a rolling horizon heuristic in
which we decompose the planning horizon into a number of intervals on which we
iteratively solve subproblems. The rolling horizon algorithm is also extended by an
intermediate step in which we discard specific decisions made in the last iteration.

A case study based on real data reveals that our approaches provide nearly optimal
solutions. The model is evaluated by a detailed analysis of the obtained out-of-hours
plans.

Keywords: Pharmacies, Scheduling, Out-of-Hours Service, Rolling Horizon,
Aggregation, MIP

1. Introduction

Germany is a welfare state and by law every resident is granted health care ser-
vices [I]. These services include on the one hand medical treatment and on the other
hand the supply of pharmaceuticals, which is provided primarily by pharmacies. To
ensure that the population is supplied with pharmaceuticals at any time of the day,
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all pharmacies are obliged by law to be open 24/7 [2]. However, the responsible
chambers of pharmacists have the possibility to daily exempt a part of the phar-
macies from this duty outside the regular opening hours, provided that the supply
of pharmaceuticals is guaranteed by the remaining pharmacies [2]. The pharmacies
which are not exempted are called out-of-hours pharmacies and the task of being
open all day is called out-of-hours service.

Since most pharmacists in Germany are self-employed, performing an out-of-hours
service is a burden, as a highly qualified pharmacist must be present during the whole
24 hours shift, while the demand by the customers is usually relatively low outside
the regular opening hours. Accordingly, the out-of-hours service on the one hand is
rather unprofitable and stressful from the pharmacist’s point of view, but on the other
hand very important for the supply of the residents in emergency situations. This
implies the need for an out-of-hours plan, which specifies the days a pharmacy has
an out-of-hours service. The plan has to guarantee a good supply for the residents,
but it should also be efficient in the sense that it assigns as few out-of-hours services
as possible, out-of-hours pharmacies are not geographically close, and the burden on
the pharmacists is evenly distributed.

Currently, most chambers of pharmacists in Germany divide their planning area
into small districts in which they organize the out-of-hours service locally as a rotation
of the included pharmacies [3]. This planning approach has the advantage that the
coordinators of the districts have a good understanding of the local circumstances but
it also has a number of drawbacks. Since the districts are planned independently, it
is possible that two pharmacies that are close to each other but in different districts
have an out-of-hours service on the same day. This leads to an oversupply for the
corresponding area and many unnecessary out-of-hours services, as also pointed out
in [4].

The chamber of pharmacists of the area North Rhine in Germany, formerly divided
into 69 local districts [5], performs an algorithm-based planning since the beginning
of 2014. This already resulted in a reduction of the total number of out-of-hours
services of more than 20% [5]. Since the algorithms are not based on mathematical
optimization techniques, the planning still has optimization potential. This potential
lies not only in a further reduction of the number of out-of-hours services, but also
in the satisfaction of all planning constraints. These are hard to meet altogether
without mathematical optimization.

Related Work. The planning of out-of-hours services is at the intersection of cover-
ing and rostering problems. Considering only a single day of the time horizon, the
planning can be seen as a facility location problem, where we choose a subset of
pharmacies to cover the residents. Much work in the operations research literature
focuses on the location of health care facilities like hospitals [6], health care facilities
in general [7,[8], or the location of speciality care services within a health care network
[9]. An analysis of various modeling approaches for such location problems can be
found in [I0]. A comprehensive survey is given in [I1] and [12].

Considering that we have to assign out-of-hours services not only once, but for
every day of the time horizon, the planning of out-of-hours pharmacies can be seen
as a rostering problem. In the literature, rostering problems are extensively studied
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for hospital staff like nurses or physicians [13], 14}, 15]. The problems are similar in
the sense that we have to assign shifts while reducing the workload of the staff and
guaranteeing the care of the residents. However, the planning of out-of-hours services
has a different structure, as pharmacies are much more inhomogeneous compared to
nurses or physicians. A pharmacy’s capability to cover an area depends only on its
location, which may differ vastly from pharmacy to pharmacy. In contrast, there are
usually only few types of nurses or physicians considered for the respective rostering
problems. Due to these structures, the modeling of the planning of out-of-hours
services for pharmacies is much different.

Despite its importance for the health care sector, the planning of out-of-hours
services for pharmacies has not yet gained much attention in the operations research
literature. To the best of our knowledge, all contributions come from a group of
researchers from Turkey [4, [I6] [I7], which introduced the planning as the Pharmacy
Duty Scheduling Problem (PDS). The setting for the Turkish and German pharma-
cies is similar in the sense that the chambers of pharmacists organize the service
decentrally in small local districts. However, the PDS differs considerably from the
problem proposed in this paper, which is why we introduce a different name for the
latter. In the PDS, the authors retain the historical structure given by the local
districts and assign on each day in each district exactly one out-of-hours service to
one of the pharmacies. The resulting model is described as a multi duty variation
of the p-median problem. The objective is to minimize the sum of the distances
between aggregated customer nodes and their nearest out-of-hours pharmacy. Most
importantly, in contrast to our model, the number of services performed by the phar-
macists is fixed and there are no regulations regarding periods of rest between two
out-of-hours services of the same pharmacy. The PDS has been solved using variable
neighborhood search [16], tabu search [I7] and branch and price [4].

Our Contribution. In this paper, we present a model for the assignment of out-of-
hours services to pharmacies, which arises from a collaboration with the Chamber of
Pharmacists North Rhine. The problem of constructing an out-of-hours plan includes
aspects of covering and independent set problems, among others. These subprob-
lems are additionally expanded over a planning horizon and linked by time-based
constraints. Since the planning of out-of-hours services includes many NP-hard sub-
problems, it is not surprising that the problem itself is also N'P-hard. We will formally
show that it is even N'P-hard to decide whether there exists a feasible plan, i.e., in
contrast to the included subproblems, it is not trivial to even compute any solution.

In order to construct out-of-hours plans, we formulate the problem as a mixed
integer linear program (MILP). Because the MILP becomes too big and too difficult
to solve for large real-world instances by state-of-the-art solvers, we propose a refor-
mulation via aggregation of mathematically equivalent pharmacies. Aggregation is
a common technique for reducing the size of large-scale optimization problems [18].
In most cases, such an approach results in a more tractable model but also in an
inexact simplification of the original problem. Therefore, an optimal solution to the
aggregated model is in general of high quality, but not optimal for the original prob-
lem. In our case, the aggregation is exact in the sense that an optimal solution to
the aggregated model corresponds to an optimal solution of the original model. The



aggregation results not only in a reduction of the size of the MILP to be solved,
but also breaks many symmetries, a typical challenge in large-scale mathematical
programming [19].

In addition to the aggregation, we present a rolling horizon approach that uses
a time-based decomposition of the planning horizon into smaller subproblems. We
consider an iteratively increasing subinterval of the planning horizon and compute
an out-of-hours plan for each subinterval. In each iteration, the services assigned
in previous iterations are fixed in order to reduce the number of decisions and thus
the complexity of the problem. We proceed until the subinterval equals the whole
planning horizon, which results in a solution of the original planning problem. In the
past, rolling horizon algorithms have already been successfully applied to large-scale
optimization problems including planning horizons. In [20] and [21], rolling horizon
algorithms are used in which the planning horizon is decomposed into two intervals.
The first interval, which increases iteratively, is considered exactly, while the second
interval is considered as a relaxed version via time-based aggregation and serves as
a look-ahead. Our approach is different, as we do not consider a relaxation of the
whole remaining planning horizon, but use a look-ahead of an interval of additional
days which we also consider exactly. This is similar to the approach in [13] and fits
the repetitive structure of our planning problem, due to which it is less beneficial
to consider all remaining days. Another possibility to divide the planning of out-of-
hours services into more tractable subproblems is via spatial decomposition, where the
original problem is split with respect to the location and not the time [22]. Again, due
to the repetitive structure of the planning, we think that the rolling horizon approach
fits better than a spatial decomposition. The drawback of the rolling horizon approach
is that we loose exactness and most likely do not obtain an optimal solution. This is
compensated by the advantage of a significant speed up of the solution process and
good practical results. Furthermore, we enhance the rolling horizon approach with an
extension that reduces the impact of suboptimal decisions made in early iterations.
In the extension, we free a subset of former fixed variables before each iteration. In
contrast to most rolling horizon approaches, the subset of freed variables does not
only include fractional variables, but also binary variables which are chosen by solving
an intermediate optimization problem. The unfixing enlarges the solution space in
the following iterations and usually allows for much better solutions. Additionally,
the freed variables are chosen such that the complexity of the subsequent problems
does not increase.

We test our approaches extensively on a real-world instance with more than 2000
pharmacies provided by the Chamber of Pharmacists North Rhine. We will see that
both the aggregation and decomposition approaches are beneficial for the compu-
tation of out-of-hours services and provide us high quality solutions in short time.
Especially the unfixing of variables improves the performance of our rolling horizon
approach. This idea may also be used to enhance the performance of rolling horizon
approaches for other optimization problems.

We test in detail the influence of input parameters on the performance of our
algorithms as well as the resulting plans. Finally, we study the plans regarding their
practicability, analyzing coverage properties from the customer’s perspective and the
distribution of the out-of-hours services from the perspective of pharmacists.
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Although this paper focuses on pharmacies, our models and approaches can also
be applied to other real-world problems where we need to cover an area with services
that changing providers offer from decentral locations. In Germany, the out-of-hours
service of general practitioners is generally performed in a central location. However,
pediatricians and dentists partially offer an out-of-hours service that is similar to the
one of the pharmacies. Other examples include on-call duties, e.g. of care services or
janitorial services, which are performed from home.

Outline. The paper is structured as follows. We describe the model for the planning
of out-of-hours services in Section In Section we formulate the MILP and
introduce the decomposition approaches. The computational study using the real-
world instance is presented in Section [} Finally, we conclude the paper with a
discussion on the model and the approaches.

2. Problem Definition and Notation

For the planning of the out-of-hours service, we consider a set of pharmacies P
and a time horizon T = {1,...,T}, normally a whole year, consisting of the days to
be planned. We identify an out-of-hours plan with a mapping F : T — 27, where
F (t) C P is the subset of pharmacies that have an out-of-hours service on day ¢ € 7.
If pharmacy p € P has an out-of-hours service on day ¢ € T, i.e., p € F (t), then we
say that p is an out-of-hours pharmacy on day t.

In consultation with the Chamber of Pharmacists North Rhine, an out-of-hours
plan has to fulfill the following conditions regarding the coverage of residents and a
fair distribution among pharmacies. We start with a short summary and then discuss
the requirements in detail.

o Covering municipality centers: There is at least one out-of-hours pharmacy in
the vicinity of each municipality center. The allowed distance depends on the
municipality. (Figure [1a)

e Meeting demand in larger cities: Multiple out-of-hours pharmacies are needed
to meet the demand of residents in larger cities. The number of pharmacies
needed is city-specific and may vary for different days. (Figure

o Minimum distances between out-of-hours pharmacies: Distances between out-
of-hours pharmacies ensure that they are geographically dispersed. (Figure

e Periods of rest between services of the same pharmacy: Periods of rest pre-
vent that pharmacies are assigned out-of-hours services on consecutive days.

(Figure

e Equitable distribution within municipalities: An equitable assignment of ser-
vices within the municipalities creates fairness among and satisfaction of the
pharmacists.

o Minimum number of services per pharmacy: FEach pharmacy participates with
a minimum number of out-of-hours services.



Under the above conditions, which we define in the next paragraphs in more detail,
we are aiming to construct a plan that is efficient in the sense that we assign as few
out-of-hours services as possible. Accordingly, we look for a plan F : T — 27 that
minimizes ), |F (t)|. We call this problem the Out-of-Hours Planning Problem
(OHP).

Covering Municipality Centers. In order to guarantee a comprehensive supply of
pharmaceuticals, we consider the centers of the municipalities in the planning area
as reference points for the location of the residents. Based on legal requirements for
the planning of out-of-hours services in the region North Rhine, we demand that for
every municipality center on every day there is an out-of-hours pharmacy within a
given distance [23].

Note that by law every pharmacy needs to have a standardized inventory to guar-
antee the supply of pharmaceuticals during the out-of-hours service. Furthermore,
there will always be only one pharmacist in an out-of-hours pharmacy, regardless
of its size. Hence, only the location of a pharmacy is relevant for the planning of
out-of-hours services and we consider all pharmacies to be equal except for their
location.

More formally, let M be the set of municipalities to be covered. We define dis-
tances § : (P U M)2 — Q>0 between all pairs of municipalities and pharmacies, which
represent the distances of the shortest paths between these locations in the road net-
work. Note that the distances are metric, i.e., it holds § (v1,v3) < 6 (vy,v2)+9 (va, v3)
for all vy, vq,v3 € V, but not necessarily symmetric due to one-way roads.

For all municipalities m € M, §°°V (m) € Q> is the cover radius, that is the max-
imum distance allowed from the municipality to the nearest out-of-hours pharmacy.
We say that p € P can cover m € M if it holds ¢ (m, p) < 6°Y (m) and define C (m) =
{peP|d(m,p) <6 (m)} as the set of pharmacies that can cover m (highlighted
in Figure [la). Additionally, the set C (p) = {m € M | (m,p) < 6%V (m)} consists
of all municipalities that are covered by p. Furthermore, we say that a municipality
is covered in plan F : T — 27 on day t € T if at least one pharmacy p € C (m) has
an out-of-hours service on day t, i.e., C'(m) N F (t) # 0. In a feasible out-of-hours
plan F every municipality has to be covered every day, i.e., C (m)N F (t) # @ for all
m € M and t € T. Note that a pharmacy does not necessarily have to be within
the boundaries of a municipality in order to cover it and that the cover radius may
vary for different municipalities according to the number of residents, the density of
pharmacies in the area, and other characteristics.

Meeting Demand in Larger Cities. For some municipalities which represent larger
cities, one out-of-hours pharmacy cannot guarantee a sufficient supply of pharma-
ceuticals for the whole municipality. Every day we require a minimum number of
out-of-hours pharmacies that are located within the boundaries of these municipali-
ties. In contrast to the covering of municipality centers, the demand of larger cities
cannot be met by pharmacies that are located outside the municipalities, because
according to the Chamber of Pharmacists North Rhine, residents in cities are less
willing to move to another municipality.

For the modeling, we denote with P (m) C P the set of all pharmacies within
the boundaries of a municipality m € M (highlighted in Figure . Accordingly,
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Figure 1: Pharmacies that can cover the center of a municipality (a) and meet the demand of larger
cities (b). For the sake of simplicity, the distances in (a) are shown as the crow flies.

m (p) € M denotes the municipality a pharmacy p € P is located in. Furthermore,
we define for every municipality m € M and day ¢ € T a minimum demand for
out-of-hours pharmacies d (m,t) € Z>¢. Note that the minimum demand is always
zero for municipalities with few residents and pharmacies. Additionally, it may vary
depending on the considered day, since we tend to need more out-of-hours pharmacies
on Sundays and holidays when other pharmacies are regularly closed. A feasible out-
of-hours plan F : T — 27 assigns for all municipalities m € M and all days t € T
at least d (m, t) services to pharmacies within the municipality, i.e., |P (m) N F ()] >
d(m,t) forallme MandteT.

Minimum Distances Between Out-of-Hours Pharmacies. Assigning an out-of-hours
service to two geographically close pharmacies on the same day usually has only a
minor positive effect to the residents. Furthermore, it is undesirable for the phar-
macists from an economical perspective, since they have to share their customers. A
solution that minimizes the number of out-of-hours services tends to avoid assigning
out-of-hours services to neighboring pharmacies, as they often cover the same munic-
ipalities. Nevertheless, it is possible that a pair of close pharmacies is with respect to
the coverage conditions equal to a pair of pharmacies that are further apart. Espe-
cially in larger cities, where we assign several services in order to meet the demand,
we need to make sure that the out-of-hours pharmacies are spread out. Therefore,
we prohibit out-of-hours services on the same day for pharmacies that are too close
to each other.

We define conflicting pharmacies that cannot have an out-of-hours service on the
same day. To do so, we introduce for each municipality m € M a value §°°™ (m) € Q>¢
that is the minimum distance for an out-of-hours pharmacy p € P (m) to the next
out-of-hours pharmacy p’ € P\ {p}. Just like the cover radius, the minimum dis-
tances depend on the municipalities, since in general we have areas that differ in
the density of pharmacies. We define two pharmacies p # p’ € P to be conflicting
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Figure 2: Minimum distance between two out-of-hours pharmacies on the same day (a). Period of
rest of five days (b).

if 6 (p,p") < min {6 (m (p)),d°" (m(p'))} and define the set of conflicting phar-
macy pairs C = {{p,p’} SP |p#p', §(p,p') <min{5°" (m(p)),0°" (m (p))}}.
For a pharmacy p € P, we define the set of conflicting pharmacies as C(p) =
{p€P|{p,p’} €C}. In a feasible out-of-hours plan F : 7 — 2%, it must hold
{p,p'} € F(¢) for all conflicting pairs {p,p’} € C and all days t € 7. Stated other-
wise, F (t) is an independent set in the graph (P,C).

Periods of Rest Between Services of the Same Pharmacy. Since an out-of-hours ser-
vice implies a 24-hours shift that is often followed by normal opening times, a phar-
macy should not be assigned a service on consecutive days or days close to each other.
Therefore, we have for all municipalities m € M a value r (m) € Z>o which defines
the period of rest, that is the minimum number of days between two out-of-hours
services of the same pharmacy p € P (m). The period of rest depends on the munic-
ipality, as we may not be able to grant a large number of days of rest in areas with
few pharmacies. A feasible out-of-hours plan F : 7 — 2% has to guarantee these
periods of rest, i.e., for all pharmacies p € P and days t 2t € T = {1,...,T} with
[t —¢| <r(m(p)) it must hold p ¢ F (t)NF (t').

Equitable distribution within municipalities. As pointed out in the legal commen-
tary [24], based on the general principle of equality, the out-of-hours services that are
unattractive to the pharmacists should be assigned in a fair manner. The definition
of a fair plan strongly depends on the personal viewpoint of each pharmacist and is in
general difficult to measure and not trivial to incorporate into optimization problems.
A review of inequity averse optimization is given in [25]. According to the chamber of
pharmacists of the area North Rhine, the pharmacists evaluate an out-of-hours plan
based on the number of services assigned to them during the time horizon. They ex-
pect that another pharmacy within the same municipality is assigned not much fewer
services. Therefore, the Chamber of Pharmacists North Rhine demands that all phar-
macies within the same municipality are assigned a similar number of out-of-hours



services.

For all municipalities m € M, we introduce values e (m) € Zx>( representing equity
coefficients which bound the difference in the number of services that two pharmacies
p,p’ € P(m) belonging to municipality m can have. Furthermore, for a pharmacy
p € P and aplan F : T — 27, we define Sp(p) = {t € T |p€ F ()} as the set
of days on which p has an out-of-hours service. We say that an out-of-hours plan
F : T — 2% is equitable if it holds ||Sr (p)| — |SF (p)|| < e(m(p)) for all pairs
p,p’ € P with m (p) = m (p').

Minimum Number of Services per Pharmacy. Since the authorities designing an out-
of-hours plan are legally obliged to assign out-of hours services to all pharmacies [24],
we have to ensure that all pharmacies participate appropriately in the service.

We introduce a minimum number of services n™i* & Z>o that all pharmacies
should be assigned. We say that a plan F : T — 27 fulfills the minimum number
of services condition if it holds |Sp (p)| > n™™® for all p € P. We will see in the
case study in Section [f] that enforcing equity within municipalities is not sufficient to
guarantee that all pharmacies perform out-of-hours services, as there can be whole
municipalities in which no pharmacy is assgined a service. Conversely, setting a
minimum number of services does not necessarily lead to an equitable distribution
within municipalities.

The Out-of-Hours Planning Problem. The following definition summarizes the prob-
lem statement.

Definition 1. For the planning of out-of-hours services, we are given a time horizon
T ={1,...,T}, aset of pharmacies P, a set of municipalities M and metric distances
§: (PUM)® Q>0 between these locations. Furthermore, we are given cover radii
0%V : M — >0, municipality affiliations m : P =+ M, demands d : M x T — Z>o,
minimum distances between out-of-hours pharmacies §°°* : M — Qx, periods of
rest 1 : M — Z>o as well as equity coeflicients e : M — Q>¢ and a minimum
number of services n™" € Zsq. The Out-of-Hours Planning Problem (OHP) consists
in finding an out-of-hours plan F : 7 — 2% that fulfills the constraints defined above
and minimizes the number of assigned services >, |F (t)|.

The OHP is a combination of the classical A'P-hard set cover and independent
set problems and also includes structures of scheduling problems. Hence, it is not
surprising that the OHP itself is also hard to solve. The theorem below classifies the

complexity of the OHP more precisely. The proof is given in

Theorem 2. The problem of deciding whether there exists a solution to an OHP
instance is strongly N'P-complete. This holds already for periods of rest r = 1 and
without considering demands, conflicts, equity, and minimum numbers of services,
ie,d=0,8°"=0, e=o00 and n™* = 0.

In the next section, we propose exact and heuristic approaches for solving the OHP
based on different MILP formulations, aggregation techniques as well as a time-based
decomposition.
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3. Solution Approaches

In this section, we state an MILP formulation to solve the OHP as well as two
more approaches to handle the size of the OHP instance tested in our real-world case
study in Section [4

3.1. An MILP Formulation for the OHP

We present an MILP formulation that contains binary decision variables z,: €
{0,1} to indicate whether or not pharmacy p € P is assigned an out-of-hours service
on day t € 7T. Therefore, a vector x € {O,l}‘mm implies an out-of-hours plan
F:T — 27 with F(t) ={p € P | xp = 1} for t € T. To model the equity in an easy
way, we introduce two auxiliary variables g, > 0 and Y, = 0 for each municipality
m € M that bound the maximum number (minimum number, respectively) of out-
of-hours services assigned to a pharmacy p € P (m) within the municipality. The
proposed MILP formulation reads as follows

min Z Z Tpt (1a)

peP teT

s.t. > ap>1 YmeM,teT, (1b)
peC(m)

Z Tp > d(m,t) YmeM,teT, (1c)
pEP(m)

Tpt + Tpy < 1 Vi{p,p'} €C,teT, (1d)
t+r(m(p))

T <1 VpeP,1<t<T—r(m(p), (le)

t/=t

ym(p) < prt < gm(p) Vp € Pa (1f)
teT

Um —y,, <e(m) Ym e M, (1g)

Y, > pmin VYm € M, (1h)

xp € {0,1} VpeP,teT, (1i)

Ym>y,, =0 Ym e M. (13)

The objective function sums over all decision variables and therefore counts
the number of services assigned to the pharmacies over the time horizon. The con-
straints ([1b]) ensure that every municipality is covered every day. The inequalities
guarantee that the demand of every municipality is met every day. Due to the con-
straints , conflicting pharmacies cannot have an out-of-hours service on the same
day. The inequalities ensure that the rest periods are respected. The con-
straints demand that the number of services assigned to a pharmacy p € P (m)
is between Y. and ¥,,. Together with the constraints @, this guarantees that the

10



difference in the number of services assigned to two pharmacies of the same mu-
nicipality is bounded as desired. Lastly, the constraints guarantee that every
pharmacy is assigned at least the minimum number of out-of-hours services.

In the following, we say that x € {0, 1}|P||T| is a solution to the MILP above,
since the remaining variables are only auxiliary variables and can be computed from
the x,; variables.

On the positive side, we will see that the above MILP provides a very good
integrality gap for our real-world case study in Section [} On the negative side, the
model becomes large when considering all pharmacies and the whole time horizon
of 365 days, such that we were not even able to solve the LP relaxation within a
time limit of one day. Additionally, the planning of the out-of-hours services contains
many symmetries that can complicate the solution process.

In the subsequent Sections [3.2] and we will present a reformulation that re-
duces the symmetries as well as the size of the MILP and propose a heuristic for the
construction of out-of-hours plans.

3.2. Aggregating Equivalent Pharmacies

We already mentioned that the planning of out-of-hours services is highly sym-
metrical. Kocatiirk and Ozpeynirci [I6] pointed out that for the Pharmacy Duty
Scheduling Problem, a feasible solution can be permuted to roughly O (T!) equiva-
lent solutions by swapping the whole assignment for different days. In our case, this
is not possible, as the period of rest constraints and the demand constraints ,
which vary for different days, prohibit an arbitrary swapping of days. However, swap-
ping services of pharmacies in similar locations may result in a feasible out-of-hours
plan of the same solution value.

Consider two pharmacies within the same municipality that are located close to
each other such that they can cover the same set of municipalities, are in conflict with
each other and have the same conflicts with other pharmacies. Since all pharmacies
are considered equal regarding the of out-of-hours service, except for their location,
both pharmacies can be considered mathematically equivalent in the sense that if we
manipulate a feasible plan by swapping all services of the two pharmacies, we again
obtain a feasible plan. This symmetry can reduce the performance of MILP solvers
dramatically, see [19] for more information. We will however use this structure to
reduce the size of the MILP formulation given in Section [3.I] by replacing such sets
of pharmacies by a single artificial pharmacy.

Definition 3. We call two pharmacies p1,ps € P equivalent and write p; ~ po if
they are in the same municipality m (p1) = m (p2), cover the same municipalities
C (p1) = C (p2) and satisfy C (p1) U {p1} = C(p2) U{p2}. Let p* = {p1,...,pn} be a
subset of pharmacies. We call p* a superpharmacy if for all pairs p1,ps € P it holds
P1~ Pp2.

For the coverage and conflicts, it is irrelevant which pharmacy of the superphar-
macy we assign a service to. Therefore, we decompose the planning into two steps.
First, we consider the superpharmacies as a single pharmacy to which we may assign
more out-of-hours services, but due to the conflicts within the superpharmacy only
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one service per day. Then we split the services assigned to the superpharmacy among
the corresponding pharmacies.

According to the definition, a single pharmacy p € P also defines a superpharmacy
{p} . Therefore, we can partition the set of pharmacies P into a set of superpharmacies
Ps with P = Lﬂpseps p°. For the sake of simplicity, in the first step we solely construct
plans based on a partition of P into superpharmacies P*. This way we do not have
to distinguish between superpharmacies and pharmacies.

In order to plan based on a partition P* of P into superpharmacies, we have to
update our notation. We say that a superpharmacy p® € P*® can cover a municipal-
ity m € M if the pharmacies aggregated within p® can cover m, i.e., p* C C(m).
Accordingly, we define the set of superpharmacies that can cover m as C®(m) =
{p* € P5 | p* C C(m)}. Furthermore, we say that a superpharmacy p® € P° lies
within a municipality m € M if the pharmacies aggregated within p® lie within
m, i.e., p° C P (m). Then we define the set of superpharmacies that lie within m as
Ps (m)={p® € P*|p* C P(m)} and conversely m (p®) as the municipality in which
p® € P? lies. We consider two superpharmacies p$,p5 € P® in conflict if the ag-
gregated pharmacies are in conflict, i.e., {p1,p2} € C for all p; € p} and ps € pj.
Accordingly, we define C3={{p3,p3} C P* | {p1,p2} € C for p1 € p},p2 € p5}.

For a given partition into superpharmacies P®, we include the superpharmacies
into the MILP given in Section by replacing the variables x € {0, 1}|PHT| with
decision variables z° € {0, 1}'7)5”7—‘ indicating for every superpharmacy p° € P° and
day t € T whether p® is assigned an out-of-hours service on that day. Furthermore,
we restrict the continuous variables ¥,,,y > 0 to integer variables ¥,y € Z>o,

zm, =m 5
since, in contrast to the MILP given in Section [3.I} we cannot assume these variables
to be integer solely due to the structure of the MILP. In the proof of the exactness
of this approach, we will see that the integrality is crucial for the splitting of services
assigned to the superpharmacies. Here, g5, and y°® bound the maximum number
(minimum number, respectively) of out-of-hours services performed by a pharmacy
p € P (m) after splitting the services assigned to the superpharmacies p* € P® (m)
among the corresponding pharmacies. The resulting superpharmacy MILP reads
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min Z Z Topsy (2a)

pSEPSteET
s.t. doooap,>1 Yme M, teT, (2b)
p*ECS(m)
> oap, >d(mit) YmeMteT, (20)
p*EP*(m)
T+ g < 1 Vit ph} EChtET, (2d)
t4r(m(p")
e < |17 VPR EPLLISt ST —r(m(p*)), (2e)
t'=t
1 - s
Yy S T 2 Wt S Ty V0T € P, ()
teT
Un—y,, <e(m)  VmeM, (28)
yS > nmin VYm e M, (2h)
Tpey € {0, 1} VpP e PAteT, (2i)
Uor ¥’ € Lo Ym € M. (2))

In the objective function, as well as in the constraints to , we simply replace
the pharmacy variables by the ones for the superpharmacies. The inequalities (2]
allow the assignment of up to |p®| services to a superpharmacy p® € P* in an interval
of r(m (p®)) + 1 consecutive days, since we will later split the services among [p|
pharmacies. With the constraints , we again bound the number of services that
we assign to superpharmacies within a municipality and take into account that we
can assign a superpharmacy p® € P® more services according to its size |p®|. The
inclusion of the factor |p1T\ is the reason why we cannot assume integrality for 7, and

Y Y
the same as in the original MILP, but with replaced variables gy, and y

The following result shows that the superpharmacy MILP is equivalent to the
original MILP in Section 3.1} Furthermore, the proof gives instructions on how to

convert a solution of the superpharmacy MILP to a solution of the original MILP.

S

in contrast to the variables #,,, Y, The remaining inequalities (@ and 1) are
nd y

Proposition 4. For ecvery solution (ms,gs,gs) of the superpharmacy MILP, there

exists a solution (az:7 y,y) of the original MILP with the same objective value and vice
versa.

Proof. Let (ms, 4, ys) be a solution to the superpharmacy MILP. For a superphar-

macy p* = {pi1,...,pn} € P° that consists of n pharmacies, let {t1,...,t,} =
{t €T |5 = 1} with ¢ < --- < t; be the set of days on which we assign services
to p°. In order to meet the period of rest constraints, we split the services among the
pharmacies included in p® in a cyclic way, i.e., we reassign the days t1,t,+1,tan+1,-- -
to pharmacy p1, the days t2, ¢, 42, tant2, ... to pharmacy pe and so on. By construc-
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tion, we reassign each service to exactly one included pharmacy and therefore obtain
They = D _peps Tpt- One can easily see that both solutions have the same objective value
and that the constraints (1b) and (lc|) are satisfied by replacing z; vt with >° . xpt
Furthermore, we violate no conﬂlcts since, also by replacmg 5ep with > pep®

in (2d)), we obtain even stronger inequalities than the ones in . Now, assume We
violate a period of rest constraint . Then there exists a pharmacy p €p® e P®
and two days t; < t; € T with t; —t; <7 (m(p)) and s, = 2, = 1. But then there
exist at least n — 1 = |p®| — 1 days t between ¢; and ¢; with z5., = 1 and we have

Z?—Tt(m(p ) ;> |p | + 1 which contradicts the constraints li For the equlty, we

simply deﬁne y = ¢° and y = y° and therefore satisfy the constraints 1 g) to

By construction, we have ),y € {Lm DoieT® pStJ ) [W D oieT Thst } for all
pharmacies p € p* € P5. Then in combination with l) and the definition of §°, y°,
which we restricted to integral values, it follows that we satisfy the constraints ([1f).

Let (x, 7, g) be a solution to the original MILP. Then we define z}:, = ZpEps Tpt

for all p* € P% and t € T. Since all pharmacies within a superpharmacy are in
conflict, at most one of them can have an out-of-hours service on a fixed day. Hence,
we have z° € {0, 1}‘PSHT| . Again, by replacing 2}, with 37 _ .z, we see that both
solutions have the same objective value and that the constraints and are
met. Furthermore, the conflicts are respected since a violation of the constraints
would imply that there exist two pharmacies p; € p§ and ps € p§ with {p;,p2} € C
and zp,; + Tp,e = 2, which is a contradiction to the constraints . For the rest
periods we have

t+r(m(p®)) t+r(m(p))
Z Tpep = Z Z Tpp Z 1= p°|
t'=t pEP®  t'=t pEDP®

for all p* € P® and 0 < t < T — r(m(p°®)). Regarding the equity, we set 75, =

maxp,e p(m) { > rer Tpt  and y> =minepn y{> e @pt } - Then we obtain
G = [ e ANtz S =Y
) = \p | peP(m(p*)) teT ! - ‘ps| pEPS,tET ‘ S| teT K

and analogously v (%) < \TII > T Tpsy for all p* € P°. By construction and due

to the constraints 1} it holds #° < § and y* > y. Therefore, since the inequali-
ties and are satisfied, the constraints and are also satisfied. O

Note that for every fractional solution (ms,gjs,gs) to the LP relaxation of the

superpharmacy MILP , there exists a fractional solution (a:, U, g) to the LP relax-
ation of the original MILP given by y = 7° and y = y° as well as x; = ﬁxzst for
all p € P and t € T, where p° € P? is chosen such that p € p*. Thus, the reduced size
of the formulation does not come at the cost of a weaker LP relaxation. In fact, the

relaxation of the superpharmacy MILP is even stronger because of the strengthened
inequalities (2d)).
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Since the number of variables and constraints of the superpharmacy MILP
decreases for partitions P° of P with fewer superpharmacies, we are interested in
superpharmacies that contain many pharmacies. We call a superpharmacy pj C P
maximal if there exists no other superpharmacy p5 C P with pj C p5. Fortunately,
there exists a unique partition P® of P into maximal superpharmacies that we obtain
by greedily aggregating equivalent pharmacies. For three pharmacies p,p’,p” € P
with p ~ p’ and p’ ~ p”, it follows p ~ p”. Hence, for two maximal superpharmacies
p; # pd C P, it must hold p} Npd = 0, since otherwise p5 U p§ would also be
a superpharmacy, contradicting the maximality of p; or p§. It follows that every
pharmacy is contained in exactly one maximal superpharmacy, which shows that it is
sufficient to extend a superpharmacy greedily until there exists no further pharmacy
to add.

3.8. Rolling Horizon Approach

For instances that consist of many pharmacies and a long time horizon, the
MILP given in Section becomes very large, even if we use the superphar-
macy approach of Section [3.2] to reduce its size. Therefore, we decompose the OHP
into smaller, tractable pieces.

The decision variables zp¢, 2, belonging to different days ¢,¢' € T are solely
connected by the periods of rest, the equity, and minimum number of services con-
straints. Intuitively, the choice of x,; € {0, 1} becomes less important for the choice
of i € {0,1} for days [t — ¢'| > r (m (p)) that are far apart from each other, because
they are not connected directly by a period of rest constraint. This raises the idea
that we may end up with an out-of-hours plan not too far from an optimal solution if
we plan the first days of the time horizon without paying too much attention to later
days. An approach that often leads to high quality solutions for planning problems
with such characteristics is the use of a rolling horizon algorithm. The general idea
of rolling horizon algorithms is to divide a problem with a large time horizon into a
sequence of smaller subproblems in which one considers only a part of the time hori-
zon. By fixing decisions arising from the solution of the subproblems and extending
the considered part of the time horizon, one iteratively tries to compute a solution
for the original problem.

For solving an instance of the OHP, we split the time horizon 7 into intervals
T={1,....;60}U{t1 +1,...,t2}U---U{tx +1,...,T}. We determine for each day

t € {1,...,t1} a set of out-of-hours pharmacies F (¢) C P, fix these services and
plan the next interval {¢t; + 1,...,t2} while respecting the constraints arising from
the assignments already made for {1,...,#1}.

Rolling horizon algorithms usually use some kind of look-ahead, such that the
decisions made in the current iteration also consider subsequent iterations. This
can be achieved, for example, by relaxing the original problem for the remainder
of the time horizon through aggregation [2I]. In our approach, we do not consider
a relaxation for the remaining days but instead include an additional interval into
our subproblem. We start with the computation of a partial solution on the days
{1,...;t1} U {t1 +1,...,ta} but then only fix services assigned in the first interval
{1,...,t1}. By doing this, we pay attention to the direct connection induced by the
periods of rest, which are arguably the most restrictive temporal constraints for our
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problem. We do not consider further days, as we want to keep the subproblems small
and more days in a relaxed version do not give much additional information since the
planning is somewhat repetitive.

For the computation of the partial plans on a subset of days 7/ = {1,..., 7'} C T,
respecting services S (p) C T already assigned to the pharmacies p € P, we use an
MILP as follows

min Z Z Tpt + Z Muv,, (3a)

peEP teT’ meM
s.t. Yooz >1 vme M, teT, (3b)
peC(m)
> ap > d(m,t) VYmeM,teT, (3¢)
pEP(m)
Tpt + Tprt <1 V{p,p/} € C,t S T/, (3(:1)
t+r(m
N el (3¢)
i = 1<t<T' —r(m(p),
Ynnipy S D ot < i) + V() WP E P, (3f)
teT’
T/
I —y, < F(?w Vm e M, (3g)
minT/
y > {" - W Vm e M, (3h)
T =1 VpeP,teS(p), (3i)
zpr € {0,1} Vpe Pt € T\S(p), (3i)
ﬂm,gm > 0 VYm € M, (31{)
Um € Z>g VYm e M. (31)

In addition to the restriction of the time horizon to 7, we fix the variables x,; = 1 if
we already assigned p € P a service on t € T in a previous iteration, i.e., t € S (p).
Note that we do not force z,; = 0 even if we already considered ¢ € 7’ in a previous
iteration and did not assign p € P a service on day t. This gives us more freedom when
satisfying the constraints and Regarding the equity, we introduce variables
Um € Z>g for all m € M that allow a violation of the constraints but are penalized
by a big constant M € Z>q in the objective . By doing so, we guarantee that the
MILP will not be infeasible for an interval {1,...,7"} due to the equity constraints.
This is reasonable, since we may be able to balance the out-of-hours plan in the
following iterations. We call the planning problem in which we allow, but punish,
a violation of the equity constraints the equity relazed OHP. Note that we scale
the equity coefficients included in the constraints (3g)) and the minimum number of
services to assign in the inequalities (3h)). The logic behind the scaling is that we do
not want to assign a pharmacy many services within one iteration just in order to
meet the minimum number of services constraint . Instead, we want to encourage
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Algorithm 1: Rolling horizon heuristic for the computation of out-of-hours
plans.

Input: An OHP instance and a set of days {t;,...,tx} C T
Output: A solution z € {0, 1}‘7)”7—‘ to the equity relaxed OHP or ()

Initialize S (p) = 0 for all p € P and ty11 = T
for i e {1,...,k} do
Set T/ =A{1,...,tix1};
if there exists a solution to the MILP (E/ then
Compute a solution z € {0, 1}‘P||T' :
Update S (p) ={t € {1,...,t;} | xpr = 1};
end
end

if x is a feasible out-of-hours plan then
| return z

end
else

| return (
end

a useful assignment of these services, evenly distributed over the whole time horizon,
which relieves other pharmacies with more services. For the equity, it would be
unreasonable to allow a difference using unscaled equity coefficients e (m) within the
first time intervals, because this restricts us in the planning of the following time
intervals.

Algorithm [1| states the rolling horizon algorithm, which uses the above MILP .
Note that we only consider a so called forward rolling horizon approach, i.e., we
always start at the beginning of the planning horizon, since in practice the planning
is restricted by additional periods of rest constraints arising from previous planning
periods.

3.4. Deletion of Equity Services

A potential problem of Algorithm [I] is that we fix services which are not neces-
sary for the coverage solely to satisfy the equity and minimum number of services
constraints within one iteration. These fixed equity services raise the total number of
out-of-hours services and take away the possibility to satisfy the corresponding con-
straints in a later iteration by assigning more useful services. To resolve this problem,
we extend Algorithm [I| with an additional step within each iteration of the for-loop
in which we delete such equity services from S (p) for p € P.

We want to delete as many services as possible while still satisfying all constraints
but the ones for the equity and minimum number of services. Since we are restricted to
services in S (p), we do not have to consider the conflict constraints and periods of
rest inequalities , as they are always satisfied by the choice of S (p) . Therefore, we
are only left with the covering constraints and can formulate the deletion of equity
services as a covering problem in which we want to retain a minimum number of
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services. Covering problems are NP-hard in general but in our practical case the
problem of deleting equity services remains tractable. This is due to the fact that all
days can be considered independently, as we have no more linking constraints, and
the number of services per day is relatively small. In our case study, we will handle
the deletion problem in iteration i € {1,..., k} by directly solving the following MILP

min Z Z Tpt (4a)

peEP te{l,....t;}

s.t. Z Tpr > 1 Vme M,te{l,... t;}, (4b)
peC(m)

Z Tpr > d(m,t) Yme M, te{l,...,t;}, (4c)
pEP (M)

Tpr =0 VpeP,t ¢S (p) (4d)

zp € {0,1} VYpeP,te S(p). (4de)

In each iteration except the last of the extended algorithm, after solving the
MILP H and setting S (p), we compute an optimal solution = € {0, 1}‘73‘“ to the
MILP (4)) and again update S (p) = {t € {1,...,¢;} | xpt = 1}. The sets S (p) contain
no more equity services after the deletion step but the remaining services were planned
with the equity and minimum number of services constraints in mind.

Although Algorithm [1| may return a solution that violates equity constraints or
may terminate without finding a solution at all, we will see that, for the instances
tested in our real-world case study and a proper size of intervals, it computes solutions
with a small optimality gap and few violations of equity constraints. A benefit of the
approach is that it tends to distribute the services assigned to a pharmacy evenly
over the time horizon, since, even with the deletion of equity services, we encourage
equity in each iteration.

Note that the superpharmacy approach of Section [3.2] can be easily adapted for
the MILP and combined with the rolling horizon heuristic.

4. Case Study

In this section, we study the performance of our approaches from Section [3] and
the effect of the input parameters on the resulting plans of a real-world test instance.
Finally, we will analyze the plans regarding their coverage properties and the distri-
bution of the out-of-hours services. All tests are implemented in Java 8 on a Linux
Ubuntu 14.04 distribution with kernel version 3.13 and run on an Intel® Core™i7-
3770 CPU @ 3.4 GHZ with 32 GB RAM. We use CPLEX version 12.6.3 [20] to solve
the MILPs.

4.1. Setup of the Computational Study

Our test instance is based on the planning of out-of-hours services for the year
2017 in the area of North Rhine in Germany. Accordingly, our time horizon is 7 =
{1,...,365}. The Chamber of Pharmacists North Rhine provided a set of |P| =
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Figure 3: Geographical distribution of the pharmacies (red dots) and the municipalities (yellow
squares).

2291 pharmacies that existed in October 2016 and |M| = 165 municipalities, see
Figure 8] The set of municipalities ranges from large cities such as Cologne in the
mid-east of North Rhine, containing about one million residents and 244 pharmacies,
to rural municipalities in the Eifel region in the south-west, containing a few thousand
residents and often only one pharmacy. Data on the affiliation m : P — M of
pharmacies and distances § : (P U ./\/l)2 — Qx>0 on the road network is fixed by the
geographical properties of the instance and provided by the Chamber of Pharmacists
North Rhine.

The cover radii §°°Y : M — Q>¢, minimum distances 6°°" : M — Q>( and peri-
ods of rest r : M — Z>¢ are defined via a classification of the municipalities into four
categories: large cities, medium-sized towns, small towns and rural municipalities.
For each category, the Chamber of Pharmacists North Rhine sets the three param-
eters based on legal restrictions or experience from prior planning periods. These
parameters are then applied to the municipalities according to their category. Ta-
ble [I] shows the parameters and the number of municipalities for each category as
well as the number of pharmacies within the municipalities belonging to the corre-
sponding category. The minimum distances, which determine the conflicts between
out-of-hours pharmacies, range from 2 km for larger cities, where pharmacies are typ-
ically clustered, to 7 km for rural areas. Conversely, the periods of rest range from
15 days in larger cities to 5 days in rural areas, where few pharmacies usually have to
perform more services. The cover radii range from 10 km for larger cities to 30 km for
rural municipalities. For three municipalities in remote areas, we increase the cover
radii up to 10%, since otherwise the number of covering pharmacies would be too
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large medium-sized  small rural

total . L
city town town  municipality
#municipalities 165 22 101 34 8
#pharmacies 2291 1408 799 70 14
cover radius §°°v - 10 km 15 km 20 km 30 km
period of rest r - 15 days 7 days 7 days 5 days
minimum distance §<°" - 2 km 4 km 4 km 7 km

Table 1: Numbers of municipalities and pharmacies as well as parameters by categories.

small for the period of rest. Together with the distances between municipalities and
pharmacies, the cover radii give us sets of covering pharmacies C' (m) for all m € M
with sizes ranging from 10 to 237 pharmacies. From this, we know that there are
pharmacies that perform at least 37 services over the course of the year.

In contrast to the parameters defined above, the demands d : M x T — Z>( are
individually set by the chamber of pharmacists for each municipality. The demands
are zero year-round for 117 of the 165 municipalities and go up to 9 services per day
for the city of Cologne. Summing over the demands of all days ), s d(m,t) for
a municipality m € M and dividing by the number of pharmacies |P (m)| included
gives us a lower bound on the average number of services per pharmacy going up to
20.28 for one of the municipalities.

For our first computational experiments, we choose n = 10 as the minimum
number of services per pharmacy. This value is based on existing plans of the Cham-
ber of Pharmacists North Rhine. Since the Chamber of Pharmacists North Rhine
aims to equally split the burden for all pharmacies within one municipality, we choose
equity coefficients e = 1, i.e., the difference in the number of services assigned to two
pharmacies within the same municipality cannot exceed one.

As we already mentioned, the basic MILP becomes very large for the given
instance. In fact, CPLEX is not able to solve the LP relaxation in the root node of the
branching tree within a time limit of one day. Nevertheless, CPLEX found a feasible
solution that assigns 32,451 services, using primal heuristics in parallel while trying
to solve the LP relaxation. In the following, we test combinations of the approaches
from Section [3] namely the aggregation of pharmacies as well as the rolling horizon
algorithm with its extension, and show that they are more reliable and lead to better
results in less time.

The aggregation of pharmacies into superpharmacies, as proposed in Section [3.2
reduces the size of the MILP drastically. We can partition the set of |P| = 2291
pharmacies into |P%| = 1745 superpharmacies, thus reducing the number of binary
decision variables by almost a quarter. Here, 1414 pharmacies p € P constitute
their own superpharmacy {p} € P® and 877 pharmacies can be aggregated into 331
superpharmacies of size greater than or equal to two, with the largest superpharmacy
containing 9 pharmacies. Table [2| shows the size of the constraint matrix for both
MILPs after CPLEX performed its preprocessing and demonstrates the impact of
the superpharmacies. As a result of the reduction, CPLEX is able to solve the LP

min

20



#Trows #columns  #mnonzero entries
original MILP 1D 4,181,984 836,380 22,658,004
superpharmacy MILP 1,060,723 637,036 14,630, 106

Table 2: Size of the constraint matrices after preprocessing of CPLEX.

relaxation of the superpharmacy MILP within 42,955 seconds. From the relaxed
solution, we deduce that a feasible out-of-hours plan assigns at least 30,078 services
among the pharmacies, which is 7.3% below the number of services assigned by the
plan computed with the original MILP ((1)) in 24 hours. Surprisingly, in contrast to the
computation using the original MILP we did not obtain a feasible integer solution
within a time limit of one day. Although this may suggest that the aggregation of
pharmacies is counterproductive for the computation of plans, we will see that the
superpharmacies perform well together with the rolling horizon approach.

In order to test the rolling horizon approach, we need to define a penalty parameter
M for the violation of the equity constraints and intervals in which we partition the
time horizon. For the penalty parameter, we choose M = 1000, which seems to
be large enough so that an optimal solution to the equity relaxed OHP, if possible,
violates no equity constraint. For the partition of the time horizon, we set a number
of intervals 2 < I < T and divide the time horizon 7 into intervals of lengths
that are equal except for rounding, i.e., T = {1, ey L%J} U {L%J +1,..., L?J} U

- U {LWJ +1,... ,T}. Note that the choice of I = 2 corresponds to a single

computation of the whole time horizon since we always consider two intervals in
Algorithm [I} We test the values I € {2,...,52}, thus starting with the whole time
horizon for the sake of comparison and ending with an interval length of one week.
For a comprehensive test of the performance of our approaches, we perform four
computations for every value I € {2,...,52} using the following four algorithms
arising of the possible combinations of the approaches proposed in Section

DEFAULT Algorithm DEFAULT makes no use of superpharmacies (cf. Sec-
tion [3.2) and does not delete equity services (cf. Section [3.4).

DEeLEQ Algorithm DELEQ also makes no use of superpharmacies but does
delete equity services.

Sup Algorithm SUP uses superpharmacies but does not delete equity
services.
SuprDELEQ Algorithm SUPDELEQ uses superpharmacies and also deletes eq-

uity services.

We set an aggregated time limit of 10,000 seconds for the computation of the MILPs .
This reflects on the one hand, that we compute plans for a whole year and thus the
construction of a plan does not have to be finished within few seconds. On the other
hand, the computation should not take too long, since the algorithms are intended for
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a decision support. We expect that the decision makers have to perform many compu-
tations during the planning process, all with different input parameters and possibly
new, tailored constraints for special cases among the pharmacies and municipalities.

Although the use of superpharmacies, deletion of equity services, and division into
many intervals may cause some overhead in time, they do not dictate the complexity
of the whole solution process. Therefore, we only consider the time taken to solve the
MILPs . Let I’ be the number of iterations left and 7" the aggregated time it took
to solve the previous MILPs. We set the time limit for the next MILP computation
as %O,’T/. Accordingly, the time limit for each iteration is at least 1?3010 and time
saved in earlier iterations can be used for subsequent computations. Instead of using
excessive time trying to prove optimality in each iteration, we terminate each MILP
computation if we reach an optimality gap of 0.1%. By doing this, we save time for
later, maybe more problematic iterations.

4.2. Performance of the Solution Approaches

In the following, we analyze the quality of the solutions obtained by the algorithms,
i.e., the number of services assigned and the number of violated equity constraints. We
pay particular attention to the reliability of our approaches and examine if the solution
quality varies heavily for the choices of I € {2,...,52} or if the performance is stable
for a range of numbers of intervals. Furthermore, we compare the computational time
of the algorithms. Exact values, corresponding to the plots within this section, are
given in Table [B:4] and Table [B:5] in

Figure [a] shows for all solutions the number of services that we assign among the
pharmacies as well as the lower bound of 30,078 services, which equals the optimal
solution value of the LP relaxation rounded up. A gap in the graph of an approach
indicates that we did not obtain a solution for the corresponding number of intervals.
Additionally, an unfilled circle indicates that we obtained a solution that violates the
equity constraints, which is penalized in MILP (3]). Figure [4b|shows for all solutions
the sum of violations )\ vm, scaled logarithmically if greater than zero.

Apparently, the partial problems remain too hard to solve for a small number
of large intervals. While the computations in which we use the superpharmacies
consistently result in an out-of-hours plan, most of them violate the equity constraints
for small I. If we do not use superpharmacies, then we sometimes obtain no plan at
all after 10, 000 seconds. This indicates that the use of superpharmacies has a positive
effect on the reliability of our algorithms. The same holds for the deletion of equity
services. This additional step not only reduces the number of services assigned, but
also results more frequently in plans that are not violated, compared to the algorithms
in which we do not delete equity services. This is a logical consequence, since the
absence of fixed equity services gives us more freedom to equalize an out-of-hours plan
in later iterations. The algorithms in which we delete the equity services are also less
sensitive to a variation in the number of intervals I, that is, we also obtain high
quality solutions for large numbers I. This is in contrast to the algorithms in which
we do not delete these services and therefore require equity in all I — 1 iterations.

Starting from I = 12, SUPDELEQ returns consistently very good results that are
also feasible, except for I = 18. The most efficient feasible plan that we obtain through
this approach is computed for I = 15 and assigns only 30,174 services, resulting
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in a gap of 0.3192% compared to the lower bound. Even for I = 52, where we
consider many small intervals and therefore tend to make more bad decisions during
the planning, we obtain an out-of-hours plan that only assigns 30,300 services. For
comparison, DEFAULT computes a plan that assigns 31, 538 services for I = 52.

DELEQ leads to similar results for I > 14 and for I = 15 even to the best known
feasible solution, which assigns 30,170 services. Compared to the real plan used by
the Chamber of Pharmacists North Rhine in 2017, which assigns 33, 574 services and
does not satisfy all constraints, this is a reduction of 10.1%.

Figure [4c| shows the total time required for the MILP computations. For I > 14,
both approaches in which we delete equity services perform not only similar regarding
the total number of services but also terminate before the time limit of 10, 000 seconds.
If we consider I = 23 as an outlier then the same holds for both approaches in which
we do not delete equity services for I > 22. This suggests that in general it makes no
difference whether we use superpharmacies or not as long as the intervals are small
enough to be solvable without superpharmacies. This is an expected result since
the original MILP and the superpharmacy MILP are equivalent. However,
the outcome could have been different if the formulations led CPLEX to construct
solutions of different structure.

A result that was less expected is that the deletion of equity services speeds up
the MILP computations, even though we fix fewer services from previous iterations.
Even more surprisingly, the time saved by the deletion exceeds the savings achieved
by using superpharmacies. We already mentioned that the deletion of equity services
results in less violations of the equity constraints. Since the optimal solutions of the
LP relaxations mostly do not violate any equity constraints, even for later iterations
in which we fix many services, it is much harder and time-consuming to close the
optimality gap if we cannot avoid the violation of an equity constraint. Therefore, it
is easier to close the optimality gap if we delete equity services, which significantly
reduces the computation time.

We summarize that, at least for the tested setting, using superpharmacies and
deleting equity services speeds up the rolling horizon algorithm which enables us to
find good solutions in less time within each iteration. Furthermore, the deletion of
equity services makes the rolling horizon algorithm more reliable, since it reduces
the total number of services assigned by fixing fewer bad decisions made in earlier
intervals.

4.3. Influence of Input Parameters

In the following, we study the influence of the minimum number of services n™* €
Z>o and equity coefficients e : M — Q> on the resulting plans and also on the
performance of our approaches. We choose these parameters for our analysis, as
the Chamber of Pharmacists North Rhine requires the corresponding constraints but
left a specification of these parameters open for discussion. Additionally, since both
should ensure a balanced load on the pharmacies, it is particularly interesting to see
how the plan changes if we adjust the level of balancing that we demand from a plan.

To test the influence of the minimum number of services, we consider the same
setting as in the previous section except that we choose values n™" € {0,1,...,15}.
We solve the resulting problems by using the two approaches that performed best
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Figure 5: Total numbers of services assigned for all solutions. Solutions that violate equity con-
straints are displayed as unfilled circles (a). Time required to compute the solutions (b).

in the previous section, namely DELEQ and SUPDELEQ. For each approach, we use
a number of I € {12,24} intervals, since we find it intuitive to consider intervals
that have a length of one month, or half a month respectively. Additionally, both
approaches showed a stable performance around I = 24 and the superpharmacy
approach resulted in solutions of high quality for I > 12 and worse solutions for
I < 11, which is why this breakpoint is of particular interest. We denote with
12DELEQ and 24DELEQ the use of approach DELEQ together with a partition into
12 intervals, or 24 intervals respectively. Analogously, we denote with 12SUPDELEQ
and 24SUPDELEQ the use of 12 or 24 intervals together with SUPDELEQ. Exact
results are given in Table [B.6]in

Figure [ba] shows the total number of services assigned in the resulting plans.
Additionally, it shows a lower bound on the number of services for the particular value
of ™ which we obtain by solving the LP relaxation in the root node considering the
whole time horizon. It becomes clear that the minimum number of services n™" has
a large effect on the total number of services and the corresponding constraints ((3hl)
are an actual restriction, even for low values of n™". Although we don’t know the
value of an optimal integer solution, we can deduce that an optimal solution for
n™in € {0, 1,2} assigns not more than two services to at least one pharmacy since the
best known integer solutions have lower values than the lower bound for n™" = 3.
The values of the relaxed solutions even suggest that there may be pharmacies to
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which an optimal plan would assign no services at all. Furthermore, we observe that
the slope defined by the total number of services depending on the minimum number
of services rises with increasing n™?. This is due to the fact that the constraints
are relevant for only a few pharmacies for low n™" and the number of pharmacies
that are affected by these constraints rises with the value of n™i".

The minimum number of services n™™ has not only an effect on the total num-
ber of services but also on the performance of our algorithms. For n™" = 15, we
find no out-of-hours plan within the time limit using I = 24. The small intervals
often give us not enough freedom to meet the highly restricting minimum number
constraints , leading to some infeasible subproblems, for example here in the first
iteration. The following subproblem becomes harder to solve, since we fix no services
and additionally have a rather small time limit, as we distribute the remaining time
on many intervals. These problems propagate through all iterations, which is why we
obtain no plan after the last iteration.

Apart from this, the problems tend to be easier to solve and require less com-
putation time for high values n™", as shown in Figure One intuitive reason for
this is that a high minimum number of services raises the value of the LP relaxation
more than it raises the value of an optimum integral solution, since the latter assigns
more services anyway. Furthermore, we observe that the solutions for the LP relax-
ation tend to be less fractional for high n™". For example, the solution of the LP
relaxation within the first iteration of the algorithm for n™ = 0 using I = 12 and
superpharmacies contains a total of 8863 integer infeasible variables, i.e., variables
that should be integer but take fractional values. For n™" = 10, the number of
integer infeasible variables is only 1998. In practice, it is advantageous to have an
LP relaxation solution that has few integer infeasible variables, since some primal
heuristics in state-of-the-art MILP solvers perform better if the relaxed solution is
almost integer. An example for this is the feasibility pump [27], which tries to convert
the optimum solution of the LP relaxation to a feasible integer solution.

Once more, the difficult instances highlight the advantages of using superphar-
macies, as these approaches perform better than the approaches in which we do not
use them. We want to emphasize that the plans computed with 12SUPDELEQ often
assign more services than the plans obtained by 12DELEQ but they are much better
regarding the violation of the equity constraints and thus have consistently better ob-
jective values. For n™® € {1,3,4}, the plans computed with 12SUPDELEQ violate
no equity constraints and for n™" = 7, we only have a violation of Y omem Vm = 2,
wh'ile the plans computed with 12DELEQ each have a violation )\, vm > 334 for
n™" < 10, i.e., on average two per municipality.

To test the equity coeflicients, we set the minimum number of services back to
n™" = 10 and choose e = 0,...,5 as a global parameter that is the same for all
municipalities. We use the approaches from above to solve the resulting instances of
the OHP. Exact results are given in Table [B7]in

We show the total number of services assigned in the computed plans as well as
the corresponding lower bounds in Figure [6a] As expected, forcing all pharmacies
within a municipality to perform an equal number of out-of-hours services leads to a
significant increase in the total number of services assigned in the computed plans.
Additionally, none of the plans is feasible regarding the equity constraints. The most
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Figure 6: Total numbers of services assigned for all solutions. Solutions that violate equity con-
straints are displayed as unfilled circles (a). Time required to compute the solutions (c).

efficient plan with respect to the number of services, computed by 12SUPDELEQ, has
a violation of } (v, = 476, i.e., on average 2.88 per municipality, and is thus
highly infeasible. The other three plans each have a cumulative violation of only 2
but are much less efficient. Since the optimality gap is quite large, it remains unclear
if an optimal integer solution is equally inefficient or if the rolling horizon algorithms
simply make too many bad decisions.

Surprisingly, compared to e = 1, the number of services assigned does not decrease
much with higher equity coefficients. This holds both for the lower bounds and the
solutions computed by the rolling horizon algorithms. So, in contrast to the minimum
number of services, where a rising value of n™™ leads to significantly more services,
the cost of stricter equity constraints is only marginal as long as we do not choose
e = 0. Regarding the time required by the algorithms, shown in Figure [6D] the
problems tend to get easier to solve for higher e, where it is easier to satisfy the
equity constraints.

Overall, the effect of the equity coefficients seems to be not as strong compared
to the impact of the minimum number of services n™i",

4.4. Discussion of the Out-of-Hours Plans

In the following, we analyze the plans computed in Section [£:3] regarding their
coverage properties and the distribution of the services among the pharmacies, i.e.,
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pMit =0 pmit =5 pmin =10 ™" =15 Real Plan 2017
total number of services 26,520 27,712 30, 186 36,224 33,574
mean distance to nearest pharmacy 8,705 m 8,456 m 8,030 m 7,559 m 7,204 m

Table 3: Total number of out-of-hours services assigned and the mean distance from the center of

the municipalities to the next out-of-hours pharmacies over the course of the year. For each value
n™ " we consider the best solution computed in the previous section.

their practicability. We start with a comparison of the plans on the global level. More
precisely, we analyze how many pharmacies perform a specific number of services and
how many municipalities are covered by a pharmacy that is on average not farther
away than a specific number of kilometers. After that, we have a closer look at certain
municipalities and groups of pharmacies.

We have already seen in Figure [6a] that a variation of the equity coefficients
e =1,...,5has nearly no effect on the global level regarding the number of distributed
services. Furthermore, choosing e = 0 is not reasonable from a practical point of view,
as the number of additional services compared to e = 1 is disproportionate to the
additional equity. Hence, for our evaluation on the global level, we only consider fixed
equity coefficients e = 1, together with a varying minimum number of services n™,
For each value n™® € {0,5,10,15}, we consider the plan computed in Section
that has the best objective value, i.e., the best plan computed by the algorithms
12DELEQ, 12SUPDELEQ, 24DELEQ, 24SUPDELEQ.

First, we analyze the distribution of out-of-hours services among the pharmacies.
As a reminder, Table[3|shows for all four computed plans and the real plan of 2017 the
total number of services assigned to all pharmacies. Figure [T gives a more detailed
view by showing for our plans the proportion of pharmacies for that the number of out-
of-hours services over the course of the year is not greater than a specific value. The
plan for n™ = 0 assigns no services at all to 6.4% of the pharmacies and 18.8% of all
pharmacies are assigned less than five services. In the last section, we already noted
that the minimum number constraints (3h)) are an actual restriction for the planning.
From this, we conclude that it is not a coincidence that we assign so many pharmacies
few or even no services. For our model, these pharmacies are in an unfavorable
geographical position and assigning these pharmacies an out-of-hours service is not
an optimal choice with respect to the total number of services. This means that we
cannot distribute the services more evenly without loosing some efficiency. Note that
we observe this effect, although the plan meets the equity constraints with e = 1.
It follows that the minimum number of services constraints cannot be omitted when
applying the equity constraints.

Since an optimal plan assigns as few services as possible to pharmacies in an
unfavorable location, it is not surprising that the introduction of a minimum number
of services n™" results in many pharmacies that perform exactly n™" out-of-hours
services. For n™" = 5 we assign 20.3% of the pharmacies exactly n™" services.
For n™™ = 10, this proportion increases to 34.7% and even to 84.5% for n™™ = 15.
Of course, forcing such a high number of pharmacies to perform additional out-of-
hours services reduces the efficiency of the plan but makes it also fairer. While 6.5%
of the pharmacies perform more than 20 services for n™" = 0, this proportion is
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min

nearly halved for n™™*" = 15 to only 3.3% of all pharmacies. Unfortunately, this effect
vanishes for pharmacies with a lot of services. For example, the number of pharmacies
with 40 services or more is lower in the plan for ™" = 0 compared to the one for
n™® = 15. Apparently, these highly occupied pharmacies are not in the vicinity of
pharmacies with nearly no services that could take over some out-of-hours services.

As a comparison, on the one hand, the real plan used by the Chamber of Phar-
macists North Rhine in 2017 assigns more than 20 services to 10% of the pharmacies,
which is more than twice as much as in the plan for n™® = 10. On the other hand, no
pharmacy has to perform more than 40 services (1.8% in the plan for n™* = 10). In
the real plan, the cover radii 6°° (m) are locally adapted with respect to the number
of pharmacies that are in the vicinity of a municipality m € M. This improves the
coverage for municipalities with many pharmacies around and relieves highly occupied
pharmacies in rural areas.

In addition to a higher fairness, the minimum number of services has also a positive
effect on the coverage of the residents. Table [3] shows for all plans the mean distance
that residents have to travel to get from the center of a municipality to the nearest
out-of-hours pharmacy. We choose to only consider the mean distance, since the
covering constraints already prohibit distances that are too long. Figure[7h|gives
us a better understanding which municipalities benefit the most from the minimum
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number of services. The plot shows for all plans the proportion of municipalities for
which the mean distance to the next out-of-hours pharmacy over the course of the
year is below a specific value. We see that the effect on the mean distance is primarily
observable for municipalities with a mean distance of more than 4 km. This is due
to the fact that municipalities with a very low mean distance are usually larger cities
with a positive minimum demand d > 0 that already forces the pharmacies within
the municipalities to perform several out-of-hours services. In our opinion, this is a
positive effect, since the municipalities that previously had a bad coverage benefit the
most from the minimum number of services. For example, for the two municipalities
with the worst coverage, the mean distance to the nearest out-of-hours pharmacy is
reduced by 1.5 km each in the plan for n™" = 10 compared to the plan with n™* = 0.

In Figure |8 we display the mean distances to the nearest out-of-hours pharmacies
for individual municipalities as well as the number of services each pharmacy performs
for values n™" = 0 and n™® = 10. In Figure [8al we see that municipalities with a
bad coverage are primarily located in rural areas with few close pharmacies and
also often in border areas. Municipalities in border areas not only usually have
fewer pharmacies in their vicinity, the nearby pharmacies also tend to perform less
out-of-hours services. We can observe this in Figure for the pharmacies around
Dahlem, the southernmost municipality in North Rhine. This is due to the fact that
pharmacies in border areas cover fewer municipalities and therefore are not so relevant
within our model. While we cannot influence the number of nearby pharmacies, a
minimum number of services guarantees that pharmacies in the border area also
participate in the out-of-hours service and improve the coverage of the corresponding
municipalities. For Dahlem, this results in a reduction of the mean distance from
21.3 km to 19.8 km.

Besides the pharmacies in border areas, pharmacies that perform nearly no ser-
vices are mostly located in municipalities close to a larger city. The municipalities
covered by these pharmacies often can also be covered by the pharmacies within the
city. It is efficient to cover the surrounding municipalities by the pharmacies within
the city, as they have to perform services anyway in order to meet the demand con-
straints . Here, a minimum number of services leads to a better coverage of the
municipalities near cities, as the residents do have to travel less often into the cities.
The effect on the municipalities can be seen by comparing, for example, the coverage
of the municipalities east of Diisseldorf, in the middle of North Rhine, or north of
Aachen, in the west of North Rhine.

While a higher minimum number of services is beneficial for the coverage of the
residents, the additional services are not always assigned in an efficient way. This can
be seen when comparing the plan computed for ™" = 15 with the real plan of 2017.
Although our plan assigns more services, the mean distance from a municipality to the
nearest pharmacy is 7.6 km, compared to 7.2 km in the real plan. This is due to the
already mentioned adapted cover radii 6°°¥ (m), which are lowered for the real plan
for municipalities m € M that have many pharmacies in their vicinity. However, as
the cover radii are increased for rural municipalities, the real plan has a worse coverage
of these rural municipalities compared to our plans. For example, the mean distance
to the next out-of-hours pharmacy from the municipality Monschau is 11.9 km in
our plan for n™" = 10 and 16.2 km in the real plan. In order to improve the mean
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coverage of our plans, while preserving the superior coverage of rural municipalities,
we could lower the cover radius §°°V (m) for municipalities m € M for which the
covering pharmacies p € C (m) perform less than n™" services when the minimum
number of services constraints are not enforced. This would lead to a more natural
assignment of services that would improve the coverage and are not distributed for
fairness reasons alone.

The effect of the minimum number of services on the fairness can be seen in the
north of Aachen. In the plan for n™® = 0, there are several pharmacies that perform
more than 30 services, while many surrounding pharmacies perform less than five
services. In the plan for n™" = 10, these previously highly occupied pharmacies
perform only ten to 14 services, just like the surrounding pharmacies.

Although the minimum number of services balances the number of services as-
signed to different pharmacies within the same area, the plan for n™" = 10 still has
some large local differences. In the rural Eifel region, in the south of North Rhine,
there are two pharmacies (colored black in Figure within one municipality per-
forming 58 and 59 services. In contrast to this, there are other pharmacies within a
different municipality few kilometers to the north which cover nearly the same mu-
nicipalities and are assigned only around 20 out-of-hours services. In practice, such
a plan would not be approved by the pharmacists. Considering the most critical mu-
nicipality covered by the highly occupied pharmacies, i.e., the municipality with the
smallest number of covering pharmacies, we could reduce the burden via a redistribu-
tion to around 43 services. Here, the decision makers need to define some additional
constraints such that the out-of-hours plan is not only fair within the municipalities
but also beyond their borders.

The equity coefficients e, which we did not consider so far, since they have a low
impact on the global properties of the resulting plans, are also a key parameter for the
local fairness that decision makers have to consider. Figure[J]shows the pharmacies of
Aachen and the Eifel region, which we analyzed above, for the plan using n™" = 10
and e = 5. Note that we change the coloring of the pharmacies compared to the
one used in Figure [§ in order to highlight the difference in the numbers of services
assigned to the pharmacies in Aachen. We see two pharmacies (colored yellow) in
the southernmost area of Aachen which are assigned 16 services, while all other
pharmacies in Aachen only perform eleven or twelve services. This is due to the
fact that these two pharmacies can cover Monschau, the critical municipality we
considered above. If we would not apply the equity constraints at all then the two
pharmacies in Aachen could potentially perform even more services, resulting in an
inequitable distribution within Aachen but reliving the highly occupied pharmacies in
the Eifel region. We conclude that the equity constraints are necessary to guarantee
that competing pharmacies within the same municipality have the same conditions.
However, omitting the equity constraints or choosing a higher equity coefficient can
be regarded as fairer in some locations, as we have the possibility to relieve highly
occupied pharmacies within other municipalities.
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Figure 9: Pharmacies in Aachen and the Eifel region colored depending on the number of services
performed.

5. Conclusions

In this paper, we proposed a mathematical model for the planning of out-of-hours
services for pharmacies. To solve the problem, we presented an MILP formulation
as well as problem specific solution approaches. In our aggregation approach, we
identify pharmacies that are equivalent within our model and combine them into one
artificial superpharmacy. This reduces not only the number of decision variables in
our MILP but also avoids symmetric solutions. For our rolling horizon approach,
we partition the planning period into a number of intervals. We obtain a plan by
reducing the original problem to the intervals and sequentially computing plans for the
subproblems. Furthermore, we proposed an extension to the rolling horizon algorithm
in which we discard services that were assigned in the previous iterations solely to
satisfy equity constraints.

Our approaches have proven to be very effective in our computational study.
Here, we obtained in short computational time nearly optimal solutions in the tests
conducted for a large-scale real-world instance. One reason for the effectiveness of
our approaches is the strength of the MILP formulation. We have seen that its LP
relaxation provides a lower bound on the total number of out-of-hours services that
is extremely close to the number of services assigned in our solutions. For future
work, it would be interesting to evaluate whether this property also applies for other
practical instances or if our setting is special in this regard. For instances with a
larger integrality gap, a problem-specific algorithm for computing lower bounds can
be used to evaluate the potential of an optimal plan.

The computed plans are interesting on the one hand because they show the po-
tential savings in the total number of out-of-hours services. For example, the best
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plan computed in Section [4.2] assigns 10.1% services less compared to the actual plan
in North Rhine for 2017. On the other hand, the results show that it is possible
to compute a plan that satisfies all constraints set by the Chamber of Pharmacists
North Rhine, which was unclear before. Since we are able to reliably compute good
solutions, the decision makers can test different parameters for the planning, analyze
their effect on the plan and learn which restrictions are satisfiable. The out-of-hours
services saved by the efficient planning may then also be redistributed to improve the
coverage of the residents.

In our case study, we already tested different parameters for a minimum number
of services each pharmacy has to perform. Introducing such a minimum number
results in higher total number of services but in return also in a lower mean distance
between the centers of the municipalities and the nearest out-of-hours pharmacy.
Additionally, we observed that the distribution of the services on the pharmacies
tends to be fairer for a higher minimum number. Nevertheless, there can still be
large differences in the number of services assigned to pharmacies within the same
region. These differences are mostly local problems, which the decision makers may
resolve with tailored additional constraints. For future work, it would be interesting
to extend the model with an integrated solution that guarantees equity globally and
also considers fairness regarding weekends and holidays.
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Appendix A. Proof of Theorem2|

The OHP is in NP, since we only have to verify a polynomial number of con-
straints that are easy to evaluate in order to decide if a solution is feasible to the OHP.
We proof the N'’P-hardness by a reduction from the k Disjoint Set Covers Problem
(k-DSC).

Proof. For the k-DSC we are given a finite basic set Z, a family of subsets J C 2% and
a positive integer k € Z>5. The task is to determine whether there exists a partition
of J into k disjoint subsets that cover Z, i.e., 7 = J1 W--- W Jp with Z = UJGJi J
for all i € {1,...,k}. The k-DSC is strongly N'P-complete for all k € Z>o [28].

Let (Z,J,k) be a given k-DSC instance. We construct an OHP instance by iden-
tifying the municipalities M with the basic elements Z, as both need to be covered,
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and the pharmacies P with the family of subsets J, because they cover the phar-
macies and the basic elements respectively. Accordingly, for each element ¢ € 7 we
introduce one municipality m; and for each set J € J we introduce one pharmacy

py. We define metric distances

5 (p,p') =1, for p,p’ € P,
§(m,m’") =1, for m,m’ € P,
(ml,pJ) 1, for py € P,m; € M with i € J,
(mi,py) =2, for py € P,m; € M withi ¢ J

d (pJ7 m’L) o
6 (ps,m;) =46
on the arcs and set the cover radii 6°° (m) = 1 for all m € M. Then we obtain
C(m;) = {p;€PlieJ} for all m; € M, i.e., a pharmacy p; € P can cover a
municipality m; € M if the corresponding subset J € J contains the element i € Z.
Furthermore, we define the time horizon 7 = {1,...,k} and the periods of rest
r(m) = k — 1 for all m € M. The remaining parameters are defined so that the
corresponding constraints are not relevant for the reduction. We choose m : P — M
arbitrary, 5" =0, d =0, e : M — Q>0 arbitrary and n™" = 0.

Now, let {J1,- -+ , Ji} be a feasible solution to the k-DSC instance. Then we define
an out-of-hours plan for the constructed OHP instance by F (t) = {p; € P | J € Ji}
fort € T ={1,...,k}. Since each J; is a cover for Z, by construction every munici-
pality is covered on every day. Furthermore, each pharmacy is assigned exactly one
out-of-hours service. Therefore, the plan is equitable and we violate no constraints
regarding the periods of rest. Since no municipality has a positive demand, there
are no conflicts between the pharmacies and we have no constraints on the minimum
number of services, the plan is a feasible solution.

Let I : T — 2% be a feasible solution to the constructed OHP instance. For t €
{1,....k—1} we define J, = {J € J | ps € F (t)} and Jp = J\ (Ute{l,...,kfl} jt) .
Due to the periods of rest7 each pharmacy is assigned at most one out-of-hours service.
Hence, we have J = J1 W - - W Jg. Additionally, since each municipality is covered on
every day, by construction we have Z = J ;. J for all t € {1,...,k}. We conclude
that {J1,- -, Jx} is a feasible solution to the %-DSC instance.

Note that, since the k-DSC is already NP-hard for £ = 2, we have shown the
statement especially for r = 1. O

Appendix B. Computational Results

The following tables list the exact results of the computations performed in Sec-
tion [l
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