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ABSTRACT

We show that the minimizers of regularized quadratic functions restricted to their natural
Krylov spaces increase in Euclidean norm as the spaces expand.

1 Introduction

Given a real symmetric, possibly indefinite, matrix H and vector g, we are concerned
with Krylov methods for approximating the global solution of the possibly nonconvex
regularization problem

minimize Q(z;0,p) := tz" Hz + 9"z + 1o|]? (1.1)
zelR"

where 0 > 0 p > 2 and || - || is the Euclidean norm— note that @ is bounded below over
IR", and the global minimizer is well defined. Such methods have been advocated by a
number of authors, e.g., [1-3,7]. Here we are interested in how the norms of the estimates
of the solution, and the corresponding “multipliers” o||z|[P~2, evolve as the Krylov process
proceeds. The main utility is that these estimates provide useful predictions for the mul-
tipliers as the Krylov subspace expands [8]. Our result is an analogue of that obtained by
Luksan, Matonoha and Vléek [10] for the trust-region subproblem.

2 The main result

We start with four vital lemmas that we use to prove our main result. The first shows
a simple property of the conjugate gradient method. We use the generic notation B > 0
(resp. B > 0) to mean that the real, symmetric matrix B is positive definite (resp. positive
semi-definite).
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Lemma 2.1. Given a real symmetric matrix B and real vector g, let

Ky(B, g) := span {g, By, .. .,Bkilg} ,

k > 1, be the k-th Krylov subspace generated by B and the vector g, and let the
columns of Vj, provide an orthonormal basis for K (B, g). Letting ¢ > k > 1, suppose
that

VBV, =0 (2.1)
and define
rp, = argmin  Q(z) := iz’ Br + g’ x.
2eKy(B,g)
Then
[zl < flaell

Proof. This follows from [4, Thm.7.5.1] as the requirement there, namely that
pLBp, > 0 for specific vectors pr € Ki(B,g), is implied by the more general as-
sumption (2.1). O

Note that this is a generalization of [11, Thm.2.1] that relaxes the requirement that B be

everywhere positive definite to be so merely over the evolving Krylov subspaces of interest.

Our second lemma compares Krylov subspaces of the matrices B and B + pul for some
e IR.

Lemma 2.2. [10, Lem.2.3]. Let B, g and Ky, be as in Lemma 2.1, and p € IR. Then

Ke(B+ pl,g) = Ki(B, g). (2.2)

Next, we state a crucial relation between the values of the Lagrange multipliers and
the norms of the direction vectors.



Lemma 2.3. [10, Lem.2.5]. Suppose that the columns of Vj, provide an orthonormal
basis for K, (H, g) for given real symmetric H and real g. Let V' HV, + p,I, u; € IR,
i € {1,2}, be symmetric and positive definite. Let

z(p;) = arg min Q,, (v) = Lo’ (H + pl)z + g"z.
xeKy(H,g)

Then
po < py if and only if [[zx(p2)|| > [J2x ().

Out final lemma indicates that the evolving minimizers are unique.

Lemma 2.4. Let H, g and V} be as in Lemma 2.3, and let the grade [9] m < n be
the maximum dimension of the evolving Krylov spaces Kr(H,g), k = 1,...,n. Then
VIHV, + il = 0 for all 1 < k < m.

Proof. Using the Lanczos orthonormal basis, we have that VI HV, = T, for an
irreducible tridiagonal matrix T} for k = 1,...,m. It then follows [4, Thm.7.5.12] that
the “hard case” cannot occur, and thus that the only possible root p; of the secular
equation for the problem [5, Sec.2.2] satisfies j, > —Amin(7T%), where Ay, denotes the
leftmost eigenvalue of its symmetric matrix argument. O

We are now in a position to state and prove our main theorem.

Theorem 2.5. Given a real symmetric matrix H, vector g and scalars ¢ > 0 and
p> 2, let

z; = argmin Q(z;0,p) =o' Hr + g'x + Lo||z|”,
vek;(H.g)

and let
pj = ollz; |~ (2:3)
for 7 > 1. Then ug < pp and ||ag|| < ||z for 1 <k <l <m.

Proof. Let V; be as in the statement of Lemma 2.3. The vector z; = Vjy; is a
minimizer of the j-th regularization subproblem if and only if
VI(H + p;1)Vyy; = =Vihg, VI(H+ pI)V; = 0, and p; = olly;||P~2, (2.4)

and the minimizer is unique since V;"(H + p;I)V; = 0 from Lemma 2.4 [5, Thm.2].
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Consider two integers k£ and ¢ for which 1 < k </ < m.

Since we have V,I' (H + juxI)Vi = 0 and VI (H + p,I)Vy = 0, and as Ki(H + pxl, g) =
Ki(H,g) by Lemma 2.2, it follows from (2.4) that z;, is also the (unique) solution of
the constrained minimization problem

7, = argmin  Q, (), where Q,(z) = 1z'(H + ul)z + g"z.
Z‘EIC]C(H,Q)

Assume that ;> pg, which implies that VI (H + upI)Vy = 0. Let

we(pr) = argmin - @, ().
xe’CZ(va)

Then it follows from Lemma 2.1 that

el < llze(u) - (2.5)

But since py < g, Lemma 2.3 gives that

lzeCue) | < [lzeuo)ll = [lzel]- (2.6)
Hence using the definition (2.3) and combining the inequalities (2.5) and (2.6)
pe = ollzil|P7* < ollwdP* = pe <

which is a contradiction. Thus p, < p has to hold. It then follows from the definition
(2.3) that ||zg|| < ||z O

The monotonic behaviour of the multipliers py, was predicted in [8, Lem.2.6] when p = 3,
but the proof suggested there relied on [10, Thm.2.6], which appears to have a minor flaw—
the proof depends on [11, Thm.2.1], but applies this at one point to an indefinite H + 1.
Lemma 2.1 avoids this issue, and the same result fixes the proof of [10, Thm.2.6].

3 Comments and conclusions

We have shown that the norms of the approximations generated by well-known Krylov
methods for solving the regularization problem (1.1) increase monotonically as the dimen-
sion of the Krylov spaces expands. This implies that the corresponding “multipliers” also
increase, and is useful as estimates of these multipliers are crucial when solving the Krylov
subproblem; in particular, as the multiplier for the k-th problem is a lower bound for the
k+1-st, Newton-like iterations will converge both globally and rapidly to p; when started
from gy if additionally g > Amin(Tky1). [, §3]. Knowledge of the monotonic nature of
these quantities is also important when deriving convergence bounds [6] for such methods.

We warn readers that in exceptional circumstances, namely that g is orthogonal to
the eigenspace corresponding to the leftmost eigenvalue of H and o is insufficiently large,
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the global minimizer of (1.1) will not lie in K,,(H,g), and p,, will underestimate the
optimal multiplier. This (zero-probability) possibility is often referred to as the “hard
case” | [3, §6,1], and, despite their popularity, might be viewed as an unavoidable defect of
Krylov methods.

The main result here may trivially be extended for Krylov methods to

minimize Q(z;0,p, M) :=

tTHe + gz + %JHSUH?W,
zelR™

1
2

for given symmetric M = 0, where ||z|%, := 27 M=, so long as we instead consider the
Krylov spaces K(M'H, M~'g). Tt is well known that this may be achieved using the
M-preconditioned Lanczos method [3, Sec.6.3]. In particular, if

z;= argmin  Q(zjo,p, M) and p; = ollz; |57
ze,;(M~1H,M~1g)

it follows (using the transformation = < M32z) that

pr < e and ||z < 2] as

for 1 <k < /¢ < mjust as in Theorem 2.5.
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