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ABSTRACT

We show that the minimizers of regularized quadratic functions restricted to their natural

Krylov spaces increase in Euclidean norm as the spaces expand.

1 Introduction

Given a real symmetric, possibly indefinite, matrix H and vector g, we are concerned

with Krylov methods for approximating the global solution of the possibly nonconvex

regularization problem

minimize
x∈IRn

Q(x; σ, p) := 1

2
xTHx+ gTx+ 1

p
σ‖x‖p (1.1)

where σ > 0 p > 2 and ‖ · ‖ is the Euclidean norm— note that Q is bounded below over

IRn, and the global minimizer is well defined. Such methods have been advocated by a

number of authors, e.g., [1–3,7]. Here we are interested in how the norms of the estimates

of the solution, and the corresponding “multipliers” σ‖x‖p−2, evolve as the Krylov process

proceeds. The main utility is that these estimates provide useful predictions for the mul-

tipliers as the Krylov subspace expands [8]. Our result is an analogue of that obtained by

Lukšan, Matonoha and Vlček [10] for the trust-region subproblem.

2 The main result

We start with four vital lemmas that we use to prove our main result. The first shows

a simple property of the conjugate gradient method. We use the generic notation B � 0

(resp. B ≻ 0) to mean that the real, symmetric matrix B is positive definite (resp. positive

semi-definite).
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Lemma 2.1. Given a real symmetric matrix B and real vector g, let

Kk(B, g) := span
{

g, Bg, . . . , Bk−1g
}

,

k ≥ 1, be the k-th Krylov subspace generated by B and the vector g, and let the

columns of Vk provide an orthonormal basis for Kk(B, g). Letting ℓ ≥ k ≥ 1, suppose

that

V T
ℓ BVℓ ≻ 0 (2.1)

and define

xk = arg min
x∈Kk(B,g)

Q(x) := 1

2
xTBx+ gTx.

Then

‖xk‖ ≤ ‖xℓ‖.

Proof. This follows from [4, Thm.7.5.1] as the requirement there, namely that

pTkBpk > 0 for specific vectors pk ∈ Kk(B, g), is implied by the more general as-

sumption (2.1). ✷

Note that this is a generalization of [11, Thm.2.1] that relaxes the requirement that B be

everywhere positive definite to be so merely over the evolving Krylov subspaces of interest.

Our second lemma compares Krylov subspaces of the matrices B and B + µI for some

µ ∈ IR.

Lemma 2.2. [10, Lem.2.3]. Let B, g and Kk be as in Lemma 2.1, and µ ∈ IR. Then

Kk(B + µI, g) = Kk(B, g). (2.2)

Next, we state a crucial relation between the values of the Lagrange multipliers and

the norms of the direction vectors.
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Lemma 2.3. [10, Lem.2.5]. Suppose that the columns of Vk provide an orthonormal

basis for Kk(H, g) for given real symmetric H and real g. Let V T
k HVk + µiI, µi ∈ IR,

i ∈ {1, 2}, be symmetric and positive definite. Let

xk(µi) = arg min
x∈Kk(H,g)

Qµi
(x) := 1

2
xT (H + µI)x+ gTx.

Then

µ2 ≤ µ1 if and only if ‖xk(µ2)‖ ≥ ‖xk(µ1)‖.

Out final lemma indicates that the evolving minimizers are unique.

Lemma 2.4. Let H , g and Vk be as in Lemma 2.3, and let the grade [9] m ≤ n be

the maximum dimension of the evolving Krylov spaces Kk(H, g), k = 1, . . . , n. Then

V T
k HVk + µkI ≻ 0 for all 1 ≤ k ≤ m.

Proof. Using the Lanczos orthonormal basis, we have that V T
k HVk = Tk for an

irreducible tridiagonal matrix Tk for k = 1, . . . , m. It then follows [4, Thm.7.5.12] that

the “hard case” cannot occur, and thus that the only possible root µk of the secular

equation for the problem [5, Sec.2.2] satisfies µk > −λmin(Tk), where λmin denotes the

leftmost eigenvalue of its symmetric matrix argument. ✷

We are now in a position to state and prove our main theorem.

Theorem 2.5. Given a real symmetric matrix H , vector g and scalars σ > 0 and

p > 2, let

xj = arg min
x∈Kj(H,g)

Q(x; σ, p) := 1

2
xTHx+ gTx+ 1

p
σ‖x‖p,

and let

µj = σ‖xj‖
p−2 (2.3)

for j ≥ 1. Then µk ≤ µℓ and ‖xk‖ ≤ ‖xℓ‖ for 1 ≤ k ≤ ℓ ≤ m.

Proof. Let Vj be as in the statement of Lemma 2.3. The vector xj = Vjyj is a

minimizer of the j-th regularization subproblem if and only if

V T
j (H + µjI)Vjyj = −V

T
j g, V T

j (H + µjI)Vj � 0, and µj = σ‖yj‖
p−2, (2.4)

and the minimizer is unique since V T
j (H + µjI)Vj ≻ 0 from Lemma 2.4 [5, Thm.2].
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Consider two integers k and ℓ for which 1 ≤ k ≤ ℓ ≤ m.

Since we have V T
k (H + µkI)Vk ≻ 0 and V T

ℓ (H + µℓI)Vℓ ≻ 0, and as Kk(H + µkI, g) =

Kk(H, g) by Lemma 2.2, it follows from (2.4) that xk is also the (unique) solution of

the constrained minimization problem

xk = arg min
x∈Kk(H,g)

Qµk
(x), where Qµ(x) = 1

2
xT (H + µI)x+ gTx.

Assume that µk > µℓ, which implies that V T
ℓ (H + µkI)Vℓ ≻ 0. Let

xℓ(µk) = arg min
x∈Kℓ(H,g)

Qµk
(x).

Then it follows from Lemma 2.1 that

‖xk‖ ≤ ‖xℓ(µk)‖. (2.5)

But since µℓ < µk, Lemma 2.3 gives that

‖xℓ(µk)‖ ≤ ‖xℓ(µℓ)‖ = ‖xℓ‖. (2.6)

Hence using the definition (2.3) and combining the inequalities (2.5) and (2.6)

µk = σ‖xk‖
p−2 ≤ σ‖xℓ‖

p−2 = µℓ < µk

which is a contradiction. Thus µk ≤ µℓ has to hold. It then follows from the definition

(2.3) that ‖xk‖ ≤ ‖xℓ‖. ✷

The monotonic behaviour of the multipliers µk was predicted in [8, Lem.2.6] when p = 3,

but the proof suggested there relied on [10, Thm.2.6], which appears to have a minor flaw—

the proof depends on [11, Thm.2.1], but applies this at one point to an indefinite H + µI.

Lemma 2.1 avoids this issue, and the same result fixes the proof of [10, Thm.2.6].

3 Comments and conclusions

We have shown that the norms of the approximations generated by well-known Krylov

methods for solving the regularization problem (1.1) increase monotonically as the dimen-

sion of the Krylov spaces expands. This implies that the corresponding “multipliers” also

increase, and is useful as estimates of these multipliers are crucial when solving the Krylov

subproblem; in particular, as the multiplier for the k-th problem is a lower bound for the

k+1-st, Newton-like iterations will converge both globally and rapidly to µk+1 when started

from µk if additionally µk > λmin(Tk+1). [5, §3]. Knowledge of the monotonic nature of

these quantities is also important when deriving convergence bounds [6] for such methods.

We warn readers that in exceptional circumstances, namely that g is orthogonal to

the eigenspace corresponding to the leftmost eigenvalue of H and σ is insufficiently large,
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the global minimizer of (1.1) will not lie in Km(H, g), and µm will underestimate the

optimal multiplier. This (zero-probability) possibility is often referred to as the “hard

case”, [3, §6,1], and, despite their popularity, might be viewed as an unavoidable defect of

Krylov methods.

The main result here may trivially be extended for Krylov methods to

minimize
x∈IRn

Q(x; σ, p,M) := 1

2
xTHx+ gTx+ 1

p
σ‖x‖pM ,

for given symmetric M ≻ 0, where ‖x‖2M := xTMx, so long as we instead consider the

Krylov spaces K(M−1H,M−1g). It is well known that this may be achieved using the

M-preconditioned Lanczos method [3, Sec.6.3]. In particular, if

xj = arg min
x∈Kj(M−1H,M−1g)

Q(x; σ, p,M) and µj = σ‖xj‖
p−2
M ,

it follows (using the transformation x←M
1

2x) that

µk ≤ µℓ and ‖xk‖M ≤ ‖xℓ‖M

for 1 ≤ k ≤ ℓ ≤ m just as in Theorem 2.5.
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