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Abstract. We describe an algorithm based on a logarithmic barrier function, Newton’s method,
and linear conjugate gradients that seeks an approximate minimizer of a smooth function over the
nonnegative orthant. We develop a bound on the complexity of the approach, stated in terms of
the required accuracy and the cost of a single gradient evaluation of the objective function and/or
a matrix-vector multiplication involving the Hessian of the objective. The approach can be imple-
mented without explicit calculation or storage of the Hessian.

1 Introduction We consider the following constrained optimization problem:

(1) min f(x) subject to x ≥ 0,

where f : Rn → R is a nonconvex function, twice uniformly Lipschitz continuously
differentiable in the interior of the nonnegative orthant. We assume that explicit
storage of the Hessian ∇2f(x) for x > 0 is undesirable, but that Hessian-vector
products of the form ∇2f(x)v can be computed at any x > 0 for arbitrary vectors v.
Computational differentiation techniques [29] can be used to evaluate such products
at a cost that is a small multiple of the cost of evaluation of the gradient ∇f .

The problem (1) is well studied, with numerous algorithms being proposed over
the years, based on such strategies as active set, gradient projection, and Newton’s
method. Other possible approaches include interior-point and barrier methods, which
generate iterates that remain strictly feasible. The primal log-barrier method mini-
mizes the log-barrier function

(2) φµ(x) = f(x)− µ
n∑
i=1

log(xi),

for some decreasing sequence of positive scalars µ [27]. The function φµ can be
minimized using Newton’s method with a line search strategy that maintains strict
positivity of the components of x as well as ensuring sufficient decrease at each iter-
ation.

Our goal in this paper is to design and analyze a method with attractive worst-
case complexity guarantees comparable to those that have been attained recently for
unconstrained minimization of smooth nonconvex functions. The algorithm we de-
scribe in this paper combines the primal log-barrier formulation (2) with the Newton-
Conjugate-Gradient (“Newton-CG”) algorithm of [36]. We minimize the log-barrier
function φµ for only a single value of µ, chosen judiciously to ensure that its ap-
proximate minimizer coincides with an approximate solution to (1) that satisfies our
accuracy criteria. The Newton-CG method applied to φµ uses a safeguarded version
of the linear CG method to minimize a slightly damped second-order Taylor series
approximation of φµ at each iteration. In contrast to its application to unconstrained
optimization, the linear system is preconditioned to control the norm of its coefficient
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matrix to ensure that the number of CG iterations is bounded by a quantity that de-
pends on the accuracy of the desired solution. The safeguarded CG method monitors
its iterates for evidence of indefiniteness in the Hessian, and outputs a direction of
negative curvature for this matrix if indefiniteness is detected. If no indefiniteness is
detected, this CG procedure finds an approximate Newton step. In either case, we
do a backtracking line search along the chosen direction, and show that the decrease
in φµ at each step is sufficient to place an overall bound on the number of iterations,
allowing worst-case complexity results to be proved.

Although practical efficiency of the method is not our main concern in this paper,
we note that our method is a “long-step” interior-point method, of the kind that has
been useful in other settings.

The rest of this paper is organized as follows. Section 2 reviews related work,
puts our paper in context, and outlines our main result. In Section 3 we derive a
first- and second-order approximate optimality condition for (1). Section 4 describes
our log-barrier Newton-CG algorithm, while Section 5 presents the worst-case com-
plexity analysis for the first- and second-order approximate KKT conditions. Some
conclusions appear in Section 6.

Assumptions, Background, Notation. We assume the following throughout, con-
cerning smoothness and boundedness of f .

Assumption 1. The function f is twice uniformly Lipschitz continuously differ-
entiable on an open neighborhood of the path of the iterates and trial points. We
denote by Lg the Lipschtiz constant for ∇f and LH the Lipschitz constant for ∇2f
on this set.

Assumption 2. The function f is bounded below by flow.

Assumption 3. The iterates {xk} satisfy,

‖∇f(xk)‖ ≤ Ug, ‖∇2f(xk)‖ ≤ UH ,

for some scalars Ug > 0 and UH > 0.

(Here and throughout we use ‖ · ‖ to denote the Euclidean norm, or its induced norm
on matrices.) We observe that UH is a Lipschitz constant for the gradient of f .

For any x and y such that Assumption 1 is satisfied, we have

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖ ≤ 1

2
LH‖x− y‖2,(3)

f(y) ≤ f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(x)(y − x) +

1

6
LH‖x− y‖3.(4)

Order notation O is used in its usual sense, whereas Õ represents O with loga-
rithmic factors omitted.

We define e = (1, . . . , 1)> to be the vector of ones and ei = (0, . . . , 0, 1, 0, . . . , 0)>

to be the unit vector with 1 as the ith component and zeros elsewhere. The ith
component of a vector v is denoted by vi or [v]i. Given a vector x ∈ Rn+ (where
Rn+ is the nonnegative orthant), we denote by X the diagonal matrix formed by the
components of x, by x̄ the vector whose components are min(xi, 1),1 and by X̄ the
diagonal matrix formed from x̄. That is,

(5) X = diag (x1, x2, . . . , xn), x̄ = min(x, e), X̄ = diag (x̄1, x̄2, . . . , x̄n).

1We use a threshold of 1 for clarity of presentation. Any other positive value could be used
instead, with minimal effect on the results.
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Our algorithm seeks a point x satisfying the following approximate optimality
conditions for (1):

x > 0,(6a)

∇f(x) ≥ −εge,(6b)

‖X̄∇f(x)‖∞ ≤ εg,(6c)

X̄∇2f(x)X̄ � −εHI,(6d)

for small positive tolerances εg and εH . The conditions (6c) and (6d) differ from the
scaled gradient and Hessian conditions used elsewhere, through the substitution of
the bounded matrix X̄ for X. The theoretical basis for these conditions as well as
their relation to those used in previous works is presented in Section 3.

2 Related Work There is considerable recent work on algorithms for uncon-
strained smooth nonconvex optimization that have optimal worst-case iteration com-
plexity for finding points that satisfy approximate first- and second-order optimality
conditions. When applied to twice Lipschitz continuously differentiable functions,
classical Newton-trust-region schemes [22] require at most O

(
max

{
ε−2
g ε−1

H , ε−3
H

})
it-

erations [16] to find a point satisfying

(7) ‖∇f(x)‖ ≤ εg and λmin(∇2f(x)) ≥ −εH .

For this class of problems, the optimal iteration complexity for finding a second-

order optimal point is O
(

max
{
ε
−3/2
g , ε−3

H

})
[9, 14, 19]. This iteration complexity

was first achieved by cubic regularization of Newton’s method [34]. Numerous other
algorithms have also been proposed that match this iteration bound; see for example
[5, 13, 23, 25, 33].

Some works also account for the computational cost of each iteration, thus yielding
a bound on the overall computational complexity. A number of works have focused
on efficiently computing a solution to the cubically regularized subproblem, either
through direct matrix factorization techniques [8, 13, 34] and/or Krylov subspace
based methods [13, 26]. These approaches yield a worst case operational complexity

of O(nε
−3/2
g ) when εH = ε

1/2
g . Two independently proposed algorithms, respectively

based on adapting accelerated gradient to the nonconvex setting [11] and approxi-

mately solving the cubic regularization subproblem [1], require Õ(ε
−7/4
g ) operations

(with high probability, showing dependency only on εg) to find a point x that satisfies

(7) when εH = ε
1/2
g . The difference of a factor of ε

−1/4
g with the iteration complexity

bounds arises from the cost of computing a negative curvature direction of ∇2f(xk)
and/or the cost of solving a linear system. The probabilistic nature of the bound is due
to the introduction of randomness in the curvature estimation process. A complex-
ity bound of the same type was also established for a variant of accelerated gradient
based only on gradient calculations, that periodically adds a random perturbation to
the iterate when the gradient norm is small [32].

In another line of work, [37] developed a damped Newton algorithm which inex-
actly minimizes the Newton system by the method of conjugate gradients and requires

at most Õ(min{nε−3/2
g , ε

−7/4
g }) operations to satisfy (7), to high probability. For pur-

poses of computational complexity, this paper defines the unit of computation to be
one Hessian-vector product or one gradient evaluation. We also adopt this defini-
tion here; it relies implicitly on the observation from computational / algorithmic
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differentiation [29] that these two operations differ in cost only by a modest factor,
independent of the dimension n. In a followup to [37], the paper [36] built on tech-
niques from [10] to create a modified CG method to solve the Newton system. This
algorithm, which is a foundation of the method described in this paper, again finds

a point satisfying (7) in Õ(min{nε−3/2
g , ε

−7/4
g }) operations, to high probability, and

requires the same number of operations to find an approximate first-order critical
point deterministically.

A number of algorithms have also been proposed for constrained optimization

problems that require at most O(max{ε−3/2
g , ε−3

H }) iterations to find a point which
satisfies some first-order (and sometimes second-order) optimality conditions. Al-
though the optimality conditions vary between papers, the works [15, 17] achieve this
iteration complexity bound for some first-order optimality condition by solving a con-
strained cubic regularization subproblem at each iteration. These approaches have
been greatly simplified in recent times for problems involving “inexpensive” convex

constraints [18, 20]. A different proposal finds a first-order point in O(ε
−3/2
g ) itera-

tions for linear equality and bound constraints through the use of an active set method
[6]. When optimizing on a single face of the polytope, this method also uses a cubic
regularization model. However, these papers do not account for the cost of solving the
subproblem at each iteration, noting either that this subproblem may be NP-hard,
or suggesting that a simple first-order, gradient-based method can solve it reliably.
Many other methods have been proposed for constrained optimization which have
good worst-case iteration complexity results, such as two-phase methods [4, 12, 24],
an interior-point method [31], and augmented Lagrangian methods [7, 28, 38].

Turning to our bound-constrained problem (1), a second-order interior-point
method was proposed in [3]. This method minimizes a preconditioned second-order
trust-region model at each iteration and finds a point satisfying approximate second-

order conditions in at most O(ε
−3/2
g ) iterations when εH = ε

1/2
g . However, the first-

order conditions are strictly weaker than those used in the current work as they consist
only of feasibility of x along with a scaled gradient condition that is an “unbounded”
version of (6c) in which X̄ is replaced by X. Without additional assumptions on f ,
the absence of condition (6b) in the optimality conditions implies that sequences of
(strictly feasible) points that satisfy the scaled gradient condition may not approach
KKT points as εg approaches 0; see [30, Section 2] for a discussion of this issue. Our
approximate optimality conditions (6) here do not suffer from these issues, as we
show in Section 3. In a follow up to [3], an interior-point method for linear equal-
ity and bound constraints was described in [30]. This method, which also achieves

an iteration complexity of O(ε
−3/2
g ) (when εH = ε

1/2
g ), applies a constrained second-

order trust-region algorithm to the log-barrier function, with a (potentially) small
trust-region radius. The authors of [30] were more interested in iteration complexity
than computational complexity, but we note that each of their subproblems requires
evaluation of the Hessian (which in the worst case requires evaluation of n Hessian-
vector products, where the latter is one of our units of computational complexity),
together with Õ(n3) floating point operations associated with performing a bisection
scheme to solve the subproblem. These considerations suggest an overall worst-case

computational complexity of at least O(nε
−3/2
g ) for the algorithm of [30].

In this paper, we adapt the Newton-CG method of [36] for unconstrained opti-
mization to the problem of minimizing the primal log-barrier function (2), for a small,
fixed value of µ. We target the optimality conditions (6), which avoid enforcing tighter
conditions on Hessian and gradient components that correspond to components of x
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that are far from zero at optimality. This change allows us to solve a preconditioned
Newton system of linear equations at each iteration in which the norm of the ma-
trix can be bounded by a constant independent of iteration number. The Capped
CG method developed in [36] is used to solve this system, returning a useful search

direction in a reasonable number of iterations. When εH = ε
1/2
g , our algorithm

finds a point satisfying (6) in Õ(nε
−1/2
g + ε

−3/2
g ) iterations (Theorem 16). The com-

putational complexity, in terms of gradient evaluations/Hessian vector products, is

Õ(nε
−3/4
g + ε

−7/4
g ) for large values of n, and Õ(nε

−3/2
g ) for smaller n; see Corollary 17

and the comments following this result. The appearance of n in our complexity ex-
pressions is an apparently unavoidable consequence of using log-barrier methodology,
along with making the mildest possible assumptions on the problem (1) and the algo-
rithm. For example, we do not assume a bounded feasible set or a particular choice
of starting point (as in [30]), and we do not assume any specific rate of growth of
f as x moves away from the solution set. Still, our computational complexity rates
match (for small n) or improve on (for large n) those in [30]. Practically speaking,
our algorithm has the appealing feature that it puts minimal restrictions on the step
size, allowing the line search to take steps that are much closer to the boundary than
the current iterate.

3 Approximate Optimality Conditions We now discuss first- and second-
order optimality criteria for (1) in a form that can be related to the approximate
optimality criteria (6) that are targeted by our algorithm. We show that points sat-
isfying these necessary conditions are the limits of sequences of points that satisfy
our approximate criteria (6). We then compare our approximate criteria with sim-
ilar conditions that have been proposed previously, and argue that ours are more
appropriate.

3.1 Deriving Approximate Optimality Conditions from Exact Condi-
tions First-order conditions for x to be a solution of (1) are that there exists a vector
s∗ ∈ Rn such that

(8) ∇f(x)− s∗ = 0, (x, s∗) ≥ 0, xis
∗
i = 0 for all i = 1, 2, . . . n.

Our second-order condition is a modified version of the condition derived in [2]. It
requires the existence of a vector θ∗ such that

(9) ∇2f(x) + diag (θ∗) � 0, θ∗ ≥ 0, x2
i θ
∗
i = 0 for all i = 1, 2, . . . n.

This is equivalent to a “weak” form of second-order necessary conditions for (1),
namely [∇2f(x)]I(x)I(x) � 0, where I(x) := {i |xi > 0}. The more satisfactory

“strong” second-order conditions require testing that d>∇2f(x)d ≥ 0 for all d in the
cone defined by

{d ∈ Rn | di = 0 when xi = 0, [∇f(x)]i > 0; di ≥ 0 when xi = 0, [∇f(x)]i = 0}.

This is known to be an NP-hard problem [35].
The following result shows that a local minimizer x∗ can be expressed in terms

of the limit of sequences that satisfy approximate forms of these two optimality con-
ditions.

Theorem 1. Let f be twice continuously differentiable on the interior of Rn+. Let
x∗ be a local solution of (1). Then there exists a sequence of approximate solutions
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{xk} with xk > 0; sequences of approximate Lagrange multipliers {sk} and {θk}, with
sk ≥ 0 and θk ≥ 0; and a sequence of scalars {δk} with δk > 0 and δk → 0 such that
the following conditions hold:

xk > 0 for all k and xk → x∗,(10a)

∇f(xk)− sk → 0,(10b)

min{xki , 1}ski → 0 for all i = 1, 2, . . . n,(10c)

∇2f(xk) + diag (θk) + δkI � 0,(10d)

min{xki , 1}2θki → 0 for all i = 1, 2, . . . n.(10e)

The proof of this result follows directly from that of [30, Theorem 1] by noting that
min{xki , 1}ski ≤ xki ski and min{xki , 1}2θki ≤ (xki )2θki trivially hold for all i and k.

Theorem 1 suggests that we should declare x > 0 to be an approximate interior
solution of (1) when there exist s ∈ Rn+ and θ ∈ Rn+ such that

‖∇f(x)− s‖∞ ≤ εg,(11a)

‖X̄s‖∞ ≤ εg,(11b)

∇2f(x) + diag (θ) + εHI � 0,(11c)

‖X̄2θ‖∞ ≤ εH .(11d)

We will now describe the connection between our approximate optimality conditions
(6) and the conditions (11).

Theorem 2. Let x be a point satisfying (6). Then there exist s ∈ Rn+ and θ ∈ Rn+
such that (11) holds at x.

Proof. Let si := max{0, [∇f(x)]i} for i = 1 . . . n, so that s ∈ Rn+ and, by direct
substitution, we have (11a) and (11b). Our second-order condition (6d) is that

d>
(
X̄∇2f(x)X̄ + εHI

)
d ≥ 0, for all d ∈ Rn.

Since X̄−1 exists and is positive definite, we have

d>

(
∇2f(x) +

n∑
i=1

εH
min{xi, 1}2

eie
>
i

)
d ≥ 0, for all d ∈ Rn.

Therefore, by choosing θi = εH/min{xi, 1}2 for all i = 1, 2, . . . n, we have that θ ≥ 0
and that (11c) and (11d) are both satisfied.

3.2 Comparison with Previously Proposed Approximate Conditions
The conditions (8) and (9) directly motivate the approximate optimality conditions
for x > 0 used in the interior-point method of [30], which are

∇f(x) ≥ −εge,(12a)

‖X∇f(x)‖∞ ≤ εg,(12b)

d>
(
X∇2f(x)X +

√
εgI
)
d ≥ 0.(12c)

The scaled first-order condition (12b) and scaled second-order condition (12c) are
commonly used optimality conditions for (1) [3, 21]. However, these two conditions
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alone are insufficient to guarantee that a sequence of points that satisfies these con-
ditions as εg → 0 converges to a KKT point for f [30]. For this reason the condition
(12a) is added in [30], motivated by the first-order optimality conditions (8).

These conditions can be overly stringent for coordinates i in which xi � 0. In
this case, the complementarity condition (12b), requires |[∇f(x)]i| to be very small.
Similarly, (12c) requires that the Hessian in the subspace spanned by these coordinates
can have only minimal negative curvature. Such requirements contrast sharply with
the case of unconstrained minimization. In the limiting scenario in which all of the
coordinates of x are far from the boundary, these approximate first-order conditions
are significantly harder to satisfy than in the (equivalent) unconstrained formulation.

To remedy this situation, our approximate optimality conditions (6) contain scal-
ings by xi only when xi ∈ (0, 1]. Our conditions thus interpolate between the bound-
constrained case (when xi is small) and the unconstrained case (when xi is large)
while also controlling the norm of the matrix used in our optimality conditions.

4 Log-Barrier Newton-CG Algorithm We now give an overview of our
Log-Barrier Newton-CG (LBNCG) algorithm, defined in Algorithm 1, along with its
component parts.

The main branch in each iteration is conditional on the approximate first-order
optimality conditions, (6b) and (6c). When one or both of these conditions are not
satisfied, the Capped CG method (Algorithm 2) is applied to the damped, precondi-
tioned Newton system

(14)
(
X̄k∇2φµ(xk)X̄k + 2εHI

)
d = X̄k∇φµ(xk),

where according to the definition (2) of the barrier function φµ, we have

∇φµ(x) = ∇f(x)− µX−1e and ∇2φµ(x) = ∇2f(x) + µX−2.

Algorithm 2, which is described further in Section 4.1 and in the earlier paper [36],
returns either an approximate solution to the linear system (14), or else a direction
of sufficient negative curvature for X̄k∇2φµ(xk)X̄k.

Alternatively, when (6b) and (6c) are satisfied, a “Minimum Eigenvalue Oracle”
(Procedure 3) is invoked to certify either that the second-order optimality condition
(6d) holds at the current iterate or, if not, to return a direction v of sufficient negative
curvature for X̄k∇f(xk)X̄k. Procedure 3 may be implemented by a randomized pro-
cedure, with some probability of failure δ, in which it incorrectly certifies that (6d) is
satisfied. Further discussion of this procedure appears in Section 4.2.

However the search direction is chosen, it is scaled to obtain a step dk that satisfies
‖X−1

k X̄kd
k‖∞ ≤ β < 1. This condition guarantees that for xk > 0, we have

xk+1 = xk + X̄kd
k = Xk

(
e+X−1

k X̄kd
k
)
≥ xk(1− β) > 0,

so that all iterates lie strictly inside the positive orthant. A backtracking linesearch
is performed along the direction X̄kd

k to ensure sufficient decrease in φµ. We note
that a value of β close to its upper bound of 1 results in aggressive steps that may
approach the zero bounds closely. Steps of this kind are favored in practical interior-
point methods. We will see in later sections that a factor (1 − β) emerges in the
complexity results, leading to weaker bounds if β is too close to 1. Though we are
mindful of this effect, our focus is on the dependence on the tolerance εg. The choice
of β is independent of εg; we would not expect β to be updated in response to a
change in the tolerance εg.
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Algorithm 1 Log-Barrier Newton-Conjugate-Gradient

Inputs: Tolerance εg ∈ (0, 1); backtracking parameter θ ∈ (0, 1); starting point
x0 > 0; accuracy parameters ζr ∈ (0, 1) and ζ̄ ∈ (0, 1); maximum step scaling

β ∈ [ε
1/2
g , 1); step acceptance parameter η ∈ (0, 1);

Optional input: Scalar M̂ > 0 such that ‖∇2f(x)‖ ≤ M̂ for all x (set M̂ = 0 if not
provided);

Set εH = ε
1/2
g , µ = εg/4, cµ = ζ̄µ, Mµ = M̂ + µ;

for k = 0, 1, 2, . . . do
if [∇f(xk)]i ≤ −εg for some coordinate i or ‖X̄k∇f(xk)‖∞ > εg then

Call Algorithm 2 withH = X̄k∇2φµ(xk)X̄k, ε = εH , g = X̄k∇φµ(xk), accuracy

parameters ζr and cµ, and bound M = Mµ, to obtain outputs d̂k, d type;
if {d type=NC} then
dk ← −sgn(g>d̂k) min

{
|(d̂k)>X̄k∇2φµ(xk)X̄kd̂

k|
‖d̂k‖3

, β

‖X−1
k X̄kd̂k‖∞

}
d̂k;

else {d type=SOL}
dk ← min

{
1, β

‖X−1
k X̄kd̂k‖∞

}
d̂k;

end if
Go to Line Search;

else
Call Procedure 3 with H = X̄k∇2f(xk)X̄k, ε = εH , and M = M̂ (if provided);

if Procedure 3 certifies that λmin(X̄k∇2f(xk)X̄k) ≥ −εH then
Terminate;

else {direction of sufficient negative curvature v returned by Procedure 3}
Set dk ← −sgn(v>X̄k∇φµ(xk)) min

{
|v>X̄k∇2φµ(xk)X̄kv|, β

‖X−1
k X̄kv‖∞

}
v;

Go to Line Search;
end if

end if
Line Search: Compute a step length αk = θjk , where jk is the smallest nonneg-
ative integer such that

(13) φµ(xk + αkX̄kd
k) < φµ(xk)− η

6
α3
k‖dk‖3;

xk+1 ← xk + αkX̄kd
k;

end for

We set a number of parameters at the beginning of the algorithm, including the

particular choice εH = ε
1/2
g . This choice is commonly made in the unconstrained opti-

mization literature too, for purposes of aligning two different complexity expressions.
In our current context, this choice is embedded more deeply into the analysis, but
we keep the distinction between εH and εg to maintain the generality of individual
results. The particular choice µ = εg/4 of the barrier parameter is key to the com-

plexity result. Finally, we note that when M̂ is an upper bound on ‖∇2f(x)‖ for all
x of interest, we have

(15) ‖X̄∇2φµ(x)X̄‖ ≤ ‖X̄∇2f(x)X̄‖+ µ‖X̄X−2X̄‖ ≤ ‖∇2f(x)‖+ µ ≤ M̂ + µ,

8



so that ‖H‖ ≤Mµ for H defined as the input of Algorithm 2 in Algorithm 1.

4.1 Capped Conjugate Gradient Algorithm 2 is a safeguarded version of the
conjugate gradient (CG) procedure for either solving the linear system (H + 2εI)y =
−g, or else detecting a direction d such that d>Hd ≤ −ε‖d‖2. This method, which was
described in [36], consists of classical CG iterations plus various checks to determine
whether (a) the upper bound M on ‖H‖ is adequate, and (b) negative curvature in
H has been detected. One of the techniques for detecting negative curvature is the
too-slow-convergence criterion ‖rj‖ >

√
Tτ j/2‖r0‖ (where T and τ both depend on

the bound M). By Theorem 6, this behavior can occur only when there exists some
i ∈ {0, . . . , j − 1} such that (yj+1 − yi)>H̄(yj+1 − yi) < ε‖yj+1 − yi‖2 holds. In
this situation, Algorithm 2 returns d = yj+1 − yi as a direction of sufficient negative
curvature.

Algorithm 2 is called from Algorithm 1 with H = X̄k∇2φµ(xk)X̄k which, as we

note in (15), has norm bounded by Mµ = M̂+µ, where M̂ is the bound on ‖∇2f(xk)‖.
Hence the value of M in Algorithm 2 will never be larger than this value.

Altogether, the safeguards mentioned above and the diagonal preconditioning
strategy guarantee that Capped CG requires min{n, Õ(ε−1/2)} iterations to terminate.
A derivation of this bound is given in Section 5.1.

4.2 Minimum Eigenvalue Oracle The Minimum Eigenvalue Oracle (Proce-
dure 3) is called when the approximate first-order conditions (6b), (6c) are satisfied.
This procedure either verifies that the approximate second-order condition (6d) is
satisfied as well (in which case the algorithm terminates), or else returns a direction
of sufficient negative curvature for the scaled Hessian X̄k∇2f(xk)X̄k, along which
further progress can be made in reducing the barrier function φµ.

This procedure can be implemented via any method that finds the smallest eigen-
value of H to an absolute precision of ε/2 with probability at least 1 − δ. (A deter-
ministic implementation based on a full eigenvalue decomposition would have δ = 0.)
In Section 5.3, we will establish complexity results under this general setting, and
analyze the impact of the threshold δ.

Several possibilities for implementing Procedure 3 have been proposed in the lit-
erature, with various guarantees. In our setting, in which Hessian-vector products and
vector operations are the fundamental operations, Procedure 3 can be implemented
using the Lanczos method with a random starting vector (see [11]). The following
result from [36, Lemma 2] verifies its effectiveness.

Lemma 3. Suppose that the Lanczos method is used to estimate the smallest
eigenvalue of H starting with a random vector uniformly generated on the unit sphere,
where ‖H‖ ≤M . For any δ ∈ [0, 1), this approach finds the smallest eigenvalue of H
to an absolute precision of ε/2, together with a corresponding direction v, in at most

(17) min

{
n, 1 +

⌈
1

2
ln(2.75n/δ2)

√
M

ε

⌉}
iterations,

with probability at least 1− δ.
Procedure 3 can be implemented by outputting the approximate eigenvalue λ

for H, determined by the randomized Lanczos process, along with the corresponding
direction v, provided that λ ≤ −ε/2. When λ > −ε/2, Procedure 3 returns the
certificate that λmin(H) ≥ −ε, a conclusion that is correct with probability at least
1−δ. Conjugate gradient with a random right-hand side can be used as an alternative

9



Algorithm 2 Capped Conjugate Gradient

Inputs: Symmetric matrix H ∈ Rn×n; vector g 6= 0; damping parameter ε ∈ (0, 1);
desired relative accuracy parameter ζr ∈ (0, 1); desired accuracy cµ ∈ (0, 1);
Optional input: scalar M ≥ 0 such that ‖H‖ ≤M (set to 0 if not provided);
Outputs: d type, d;
Secondary outputs: final values of M , κ, ζ̂r, τ , and T ;
Set

H̄ := H + 2εI, κ :=
M + 2ε

ε
, ζ̂r :=

ζr
3κ
, τ :=

√
κ√

κ+ 1
, T :=

4κ4

(1−
√
τ)2

;

y0 ← 0, r0 ← g, p0 ← −g, j ← 0;
if (p0)>H̄p0 < ε‖p0‖2 then

Set d = p0 and terminate with d type=NC;
else if ‖Hp0‖ > M‖p0‖ then

Set M ← ‖Hp0‖/‖p0‖ and update κ, ζ̂r, τ, T accordingly;
end if
while TRUE do
αj ← (rj)>rj/(pj)>H̄pj ; {Begin Standard CG Operations}
yj+1 ← yj + αjp

j ;
rj+1 ← rj + αjH̄p

j ;
βj+1 ← ‖rj+1‖2/‖rj‖2;
pj+1 ← −rj+1 + βj+1p

j ; {End Standard CG Operations}
j ← j + 1;
if ‖Hpj‖ > M‖pj‖ then

Set M ← ‖Hpj‖/‖pj‖ and update κ, ζ̂r, τ, T accordingly;
else if ‖Hyj‖ > M‖yj‖ then

Set M ← ‖Hyj‖/‖yj‖ and update κ, ζ̂r, τ, T accordingly;
else if ‖Hrj‖ > M‖rj‖ then

Set M ← ‖Hrj‖/‖rj‖ and update κ, ζ̂r, τ, T accordingly;
end if
if (yj)>H̄yj < ε‖yj‖2 then

Set d← yj and terminate with d type=NC;
else if ‖rj‖ ≤ ζ̂r‖r0‖ and ‖rj‖∞ ≤ cµ then

Set d← yj and terminate with d type=SOL;
else if (pj)>H̄pj < ε‖pj‖2 then

Set d← pj and terminate with d type=NC;
else if ‖rj‖ >

√
Tτ j/2‖r0‖ then

Compute αj , y
j+1 as in the main loop above;

Find i ∈ {0, . . . , j − 1} such that

(16)
(yj+1 − yi)>H̄(yj+1 − yi)

‖yj+1 − yi‖2
< ε;

Set d← yj+1 − yi and terminate with d type=NC;
end if

end while

10



Procedure 3 Minimum Eigenvalue Oracle

Inputs: Symmetric matrix H ∈ Rn×n, tolerance ε > 0;
Optional input: Scalar M > 0 such that ‖H‖ ≤M ;
Outputs: An estimate λ of λmin(H) such that λ ≤ −ε/2, and vector v with ‖v‖ = 1
such that v>Hv = λ OR a certificate that λmin(H) ≥ −ε. In the latter case, when
the certificate is output, it is false with probability at most δ, for some δ ∈ [0, 1).

to randomized Lanczos, with essentially the same properties; see [36, Appendices A
and B].

5 Complexity Analysis This section presents complexity results for Algo-
rithm 1. Section 5.1 describes the iteration complexity of Capped CG (Algorithm 2)
and the properties of its outputs. Section 5.2 shows that Algorithm 1 deterministically
finds a point satisfying the approximate first-order optimality conditions (6b), (6c) in

at most Õ(nε
−1/2
g + ε

−3/2
g ) iterations. We also show that these conditions are satisfied

in at most Õ(nε
−3/4
g + ε

−7/4
g ) gradient evaluations and/or Hessian-vector products

when n is large and Õ(nε
−3/2
g ) operations when n is small. Finally, Section 5.3 shows

that the same type of complexity bound holds (differing in the constants) for finding a
point which satisfies all approximate optimality conditions in (6) with high probability
(rather than deterministically).

5.1 Properties of Capped CG We begin this subsection by finding a lower
bound on the norm of the right-hand side in the Newton system of Algorithm 1
(Lemma 4). We then derive a bound on the maximum number of iterations of the

Capped CG method that can occur before returning a direction d̂k, which is either an
approximate solution of (14) or a negative curvature direction for the diagonally scaled
Hessian of the log-barrier function (Lemma 5). Theorem 6 verifies that the direction
returned in the case of too-slow-decrease is in fact a vector with the required negative
curvature properties. Finally, we present a number of properties of the search direction
dk computed from the vector returned by Algorithm 2, which will be instrumental in
the complexity analysis of the following sections (Lemma 7).

Lemma 4. Let µ = εg/4 and suppose that either (6b) or (6c) is violated at xk.
Then,

(18) ‖X̄k∇φµ(xk)‖ ≥ µ.

Proof. By definition of ∇φµ(xk), we have

(19) ‖X̄k∇φµ(xk)‖ = ‖X̄k∇f(xk)− µX̄kX
−1
k e‖.

Suppose first that (6b) is not satisfied at xk. Thus, there exists at least one
coordinate i such that [∇f(xk)]i < −εg < 0. If xki ≤ 1, it follows that

x̄ki [∇f(xk)]i −
x̄ki
xki
µ = x̄ki [∇f(xk)]i − µ < −µ.

If xki > 1, we have x̄ki = 1 so that

x̄ki [∇f(xk)]i −
x̄ki
xki
µ < [∇f(xk)]i < −εg = −4µ.

11



In either case, we have from (19) that

‖X̄k∇φµ(xk)‖ ≥ µ.

Now, suppose that (6c) does not hold, so that |x̄ki [∇f(xk)]i| > εg for some i.
Thus, we have

‖X̄k∇φµ(xk)‖ ≥
∣∣∣∣x̄ki [∇f(xk)]i − µ

x̄ki
xki

∣∣∣∣ ≥ |x̄ki [∇f(xk)]i| − µ
x̄ki
xki
≥ εg − µ ≥ 3µ,

proving the result.
We now find the iteration bound on Algorithm 2 that was foreshadowed in

Section 4.1. The precise bound in the following lemma is based on a quantity
J(M, ε, ζr, cµ), for which the estimate in terms of the accuracy parameter is given
following the lemma.

Lemma 5. The number of iterations of Algorithm 2 is bounded by

min{n, J(M, ε, ζr, cµ)},

where J = J(M, ε, ζr, cµ) is the smallest integer such that

(20)
√
TτJ/2‖r0‖ ≤ min

{
ζ̂r‖r0‖, cµ

}
,

where M , ζ̂r, T , and τ are the values returned by the algorithm. If all iterates yi
generated by Algorithm 2 are stored, the number of matrix-vector multiplications re-
quired is bounded by min{n, J(M, ε, ζr, cµ)} + 1. If the iterates yi must be regen-
erated in order to define the direction d returned after (16), this bound becomes
2 min{n, J(M, ε, ζr, cµ)}+ 1.

Proof. We omit a detailed proof, as the result and proof are identical to [36,
Lemma 1] modulo a new definition of J . We need only consider the case in which
J < n, where J is the index defined in the lemma. If ‖rJ‖ >

√
TτJ/2‖r0‖, the last

termination test in Algorithm 2 ensures termination at iteration J . In the alternative
case ‖rJ‖ ≤

√
TτJ/2‖r0‖, we have by definition of J that

‖rJ‖ ≤
√
TτJ/2‖r0‖ ≤ min

{
ζ̂r‖r0‖, cµ

}
.

Therefore, ‖rJ‖ ≤ ζ̂r‖r0‖ and ‖rJ‖∞ ≤ ‖rJ‖ ≤ cµ both hold. Thus, by the termi-
nation tests in Algorithm 2, termination occurs in this case as well, completing the
proof.

We can now estimate J(M, ε, ζr, cµ) when Algorithm 2 is called by Algorithm 1
and Assumption 3 holds. Here, we have r0 = X̄k∇φµ(xk) and cµ = ζ̄µ, so that the
right-hand side of condition (20) is

(21) min
{
ζ̂r‖X̄k∇φµ(xk)‖, ζ̄µ

}
.

Using the same argument as in [36], when the minimum in (21) is achieved by the
first argument, we have

(22) J(M, ε, ζr, cµ) ≤

⌈(√
κ+

1

2

)
ln

(
144 (

√
κ+ 1)

2
κ6

ζ2
r

)⌉
= Õ

(
ε−1/2

)
.

12



On the other hand, when the minimum in (21) is achieved by the second argument,
an argument of [36] along with the bound

‖X̄k∇φµ(xk)‖ ≤ ‖X̄k∇f(xk)‖+ µ‖X̄kX
−1
k e‖ ≤ Ug + µ

√
n,

shows that

J(M, ε, ζr, cµ) ≤

⌈(√
κ+

1

2

)
ln

(
16 (
√
κ+ 1)

2
κ4(Ug + µ

√
n)2

ζ̄2µ2

)⌉
= Õ(ε−1/2).(23)

Therefore, in either case, we have that J(M, ε, ζr, cµ) ≤ Õ(ε−1/2), as claimed in
Section 4.1.

The following theorem shows that when Algorithm 2 is terminated because of
the test ‖rj‖ >

√
Tτ j/2‖r0‖, then (16) will hold for some i = 0, 1, . . . , j, so that the

outputs of Algorithm 2 are well defined.

Theorem 6. Suppose that the main loop of Algorithm 2 terminates with j = Ĵ ,
where

Ĵ ∈ {1, . . . ,min{n, J(M, ε, ζr, cµ)}},

(where J(M, ε, ζr, cµ) is defined in Lemma 5) because the fourth termination test is

satisfied and the three earlier conditions do not hold, that is, (yĴ)>H̄yĴ ≥ ε‖yĴ‖2,

(pĴ)>H̄pĴ ≥ ε‖pĴ‖2,

‖rĴ‖ > ζ̂r‖r0‖ and/or ‖rĴ‖∞ > cµ,

and

(24) ‖rĴ‖ >
√
Tτ Ĵ/2‖r0‖

where M , T , and τ are the values returned by Algorithm 2. Then yĴ+1 is computed
by Algorithm 2, and we have

(25)
(yĴ+1 − yi)>H̄(yĴ+1 − yi)

‖yĴ+1 − yi‖2
< ε, for some i ∈ {0, . . . , Ĵ − 1}.

Proof. This result follows directly from [36, Theorem 2] after noting that the
properties of Ĵ used in the proof do not depend on the definition of J(M, ε, ζr, cµ). In

particular, Ĵ simply needs to be an index such that (24) holds and the CG process has
not stopped iterating before reaching Ĵ . Thus, the result holds once we account for

the additional stopping criterion ‖rĴ‖∞ ≤ cµ in the new definition of J(M, ε, ζr, cµ).

We focus now on the main output of Algorithm 2, which is denoted by d̂k in
Algorithm 1. The properties of dk, which is obtained by scaling d̂k, are essential to
the first- and second-order complexity analysis of later sections.

Lemma 7. Let Assumption 1 hold and suppose that Algorithm 2 is invoked at
iteration k of Algorithm 1. Let dk be the vector obtained in Algorithm 1 from the
output d̂k of Algorithm 2. For each of the two possible settings of output flag d type,
we have the following.

13



1. When d type=SOL, the direction dk satisfies

εH‖dk‖2 ≤ (dk)>
(
X̄k∇2φµ(xk)X̄k + 2εHI

)
dk,(26a)

‖dk‖ ≤ 1.1ε−1
H ‖X̄k∇φµ(xk)‖,(26b)

(dk)>X̄k∇φµ(xk) = −γk(dk)>
(
X̄k∇2φµ(xk)X̄k + 2εHI

)
dk,(26c)

where γk = max
{
‖X−1

k X̄kd̂
k‖∞

β , 1
}

. If ‖X−1
k X̄kd̂

k‖∞ ≤ β holds, then dk also

satisfies

(27) ‖r̂k‖ ≤ 1

2
εHζr‖dk‖,

where r̂k is the residual of the scaled Newton system, defined by

(28) r̂k :=
(
X̄k∇2φµ(xk)X̄k + 2εHI

)
d̂k + X̄k∇φµ(xk).

2. When d type=NC, the direction dk satisfies (dk)>X̄k∇φµ(xk) ≤ 0 and

(29)
(dk)>X̄k∇2φµ(xk)X̄kd

k

‖dk‖2
≤ −‖dk‖ ≤ −εH .

Proof. For simplicity of notation, we use the following shorthand in the proof:

H = X̄k∇2φµ(xk)X̄k, g = X̄k∇φµ(xk).

Since Algorithm 1 invoked Algorithm 2, at least one of the conditions (6b) or (6c)
must be violated at xk. Thus, by Lemma 4, we have ‖g‖ ≥ µ > 0, so the iterates of
Algorithm 2 are well defined.

Consider first the case of d type=SOL. The bounds (26a) and (26b) follow by the
same argument as in the first part of the proof of [36, Lemma 3]. We now prove (26c).
The residual r̂k at the final iteration of CG procedure is orthogonal to all previous
search directions, so that (d̂k)>r̂k = 0 (see [36, Appendix A]). Since d̂k and dk are
collinear, we have (dk)>r̂k = 0, so from (28) it follows that

(30) (dk)>g = −(dk)>(H + 2εHI)d̂k.

When ‖X−1
k X̄kd̂

k‖∞ ≤ β, we have dk = d̂k, so

(dk)>g = −(dk)>(H + 2εHI)d̂k = −(dk)>(H + 2εHI)dk,

proving (26c) in this case. When ‖X−1
k X̄kd̂

k‖∞ > β, we have

dk =
β

‖X−1
k X̄kd̂k‖∞

d̂k

and thus

(dk)>g = −(dk)>(H + 2εHI)d̂k = −
‖X−1

k X̄kd̂
k‖∞

β
(dk)>(H + 2εHI)dk,

proving (26c) for this case as well.
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Turning to (27), we note first that from termination conditions of Algorithm 2

that ‖r̂k‖ ≤ ζ̂r‖g‖. Thus, using (28), we have that

‖r̂k‖ ≤ ζ̂r‖g‖ ≤ ζ̂r
(
‖(H + 2εHI)d̂k‖+ ‖r̂k‖

)
≤ ζ̂r

(
(M + 2εH)‖d̂k‖+ ‖r̂k‖

)
,

where M is the value that is returned by Algorithm 2, so that

‖r̂k‖ ≤ ζ̂r

1− ζ̂r
(M + 2εH)‖d̂k‖.

Using again that ζ̂r = ζr/(3κ) < 1/6 and the definition of ζ̂r in Algorithm 2, we have

ζ̂r

1− ζ̂r
(M + 2εH) ≤ 6

5
ζ̂r(M + 2εH) =

6

5

ζrεH
3

<
1

2
ζrεH ,

which yields (27) when we note that dk = d̂k when ‖X−1
k X̄kd̂

k‖∞ ≤ β.
In the case of d type=NC, we recall that Algorithm 1 defines

(31) dk = −sgn(g>d̂k) min

{
|(d̂k)>Hd̂k|
‖d̂k‖3

,
β

‖X−1
k X̄kd̂k‖∞

}
d̂k.

We have from positivity of the ratios in the min{·, ·} expression that

sgn(g>dk) = −sgn(g>d̂k)2 = −1,

so that g>dk ≤ 0. Next, since d̂k and dk are collinear, we have

(dk)>(H + 2εHI)(dk)

‖dk‖2
=

(d̂k)>(H + 2εHI)(d̂k)

‖d̂k‖2
≤ εH ,

so that

(32)
(dk)>H(dk)

‖dk‖2
≤ −εH .

When the min in (31) is achieved by the first term, we have

‖dk‖ =
|(d̂k)>Hd̂k|
‖d̂k‖2

≥ εH ,

proving (29) in this case. Otherwise, when the min in (31) is achieved by the second
term, we have

β = ‖X−1
k X̄kd

k‖∞ ≤ ‖X−1
k X̄kd

k‖ ≤ ‖X−1
k X̄k‖‖dk‖ ≤ ‖dk‖.

Using this bound, along with (32) and the fact that β ≥ εH (by definition), we have

‖dk‖ ≥ min

{
|(d̂k)>Hd̂k|
‖d̂k‖2

, β

}
= min

{
|(dk)>H(dk)|
‖dk‖2

, β

}
≥ min{εH , β} = εH .

In either case of the min in (31), we have ‖dk‖ ≤ −(dk)>Hdk/‖dk‖2, so that

(dk)>Hdk

‖dk‖2
≤ −‖dk‖ ≤ −εH ,

proving (29).
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5.2 First-Order Complexity Analysis We now derive a worst-case com-
plexity result for the first-order optimality condtions (6b) and (6c). We show that
when Algorithm 2 returns d type=SOL and a unit step is taken by the line search
procedure in Algorithm 1 (that is, αk = 1), either the first-order optimality conditions
hold at xk+1, or else ‖dk‖ is large enough to make significant progress in reducing the
function φµ. Theorem 13 and Corollary 14 state first-order complexity results in terms
of the number of iterations of Algorithm 1 and the number of gradient evaluations
and/or Hessian vector products, respectively.

Our results depend on the following technical result concerning the decrease of
the log-barrier term in φµ. Its proof can be found in Appendix A.1.

Lemma 8. Given x > 0, define X, X̄ as in (5), and suppose that d ∈ Rn is such
that ‖X−1X̄d‖∞ ≤ β < 1. Then,

(33) −
n∑
i=1

log(xi + x̄idi) +

n∑
i=1

log(xi)

≤ −e>X−1X̄d+
1

2
d>X̄X−2X̄d+

2− β
6(1− β)2

‖d‖3.

Our first result deals with the case in which a full step (αk = 1) is taken in
Algorithm 1.

Lemma 9. Let Assumption 1 hold and suppose that Algorithm 2 is invoked at an
iterate xk of Algorithm 1, and returns d type = SOL. Then, when the unit step is
taken (that is, xk+1 = xk + X̄kd

k), we have either

(34) ‖dk‖ ≥ cdεH , where cd = min

{
1− ζ̄

9
,

(
3

2LH

)1/2

,
1

2 (LH + 9/2 + ζr)

}
,

or else

(35) ∇f(xk+1) ≥ −εge and ‖X̄k+1∇f(xk+1)‖∞ ≤ εg.

Proof. We begin by noting that if the output d̂k from Algorithm 2 satisfies
‖X−1

k X̄kd̂
k‖∞ ≥ β then

εH ≤ β = ‖X−1
k X̄kd

k‖∞ ≤ ‖X−1
k X̄kd

k‖ ≤ ‖X−1
k X̄k‖‖dk‖ ≤ ‖dk‖,

so the claim (34) holds, since cd ≤ 1. Thus, we assume for the remainder of the proof

that ‖X−1
k X̄kd̂

k‖∞ < β and dk = d̂k, and that ‖dk‖ < cdεH . We show that the
conditions (35) hold in this case.

We start by establishing that ∇f(xk+1) ≥ −εge. Since d type = SOL, we have
that ζ̄µ ≥ ‖r̂k‖∞ where r̂k is defined in (28). Using ‖X̄kX

−2
k X̄k‖ ≤ 1 and εH‖dk‖ <

cdε
2
H = cdεg, it follows that

ζ̄µ ≥ ‖
(
X̄k∇2φµ(xk)X̄k + 2εHI

)
dk + X̄k∇φµ(xk)‖∞

= ‖X̄k

(
∇2f(xk)X̄kd

k +∇φµ(xk)
)

+ µX̄kX
−2
k X̄kd

k + 2εHd
k‖∞

≥ ‖X̄k

(
∇2f(xk)X̄kd

k +∇φµ(xk)
)
‖∞ − µ‖X̄kX

−2
k X̄kd

k‖∞ − 2εH‖dk‖∞
≥ ‖X̄k

(
∇2f(xk)X̄kd

k +∇φµ(xk)
)
‖∞ − µ‖X̄kX

−2
k X̄k‖‖dk‖ − 2εH‖dk‖

≥ ‖X̄k

(
∇2f(xk)X̄kd

k +∇φµ(xk)
)
‖∞ − µ‖dk‖ − 2εH‖dk‖

> ‖X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)
− µX̄kX

−1
k e‖∞ − cdεHµ− 2cdεg.(36)
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Since εH < 1 and µ = εg/4, we have

ζ̄µ+ cdεHµ+ 2cdεg ≤ ζ̄µ+ cdµ+ 2cdεg = µ
(
ζ̄ + 9cd

)
.

Then, by the definition of cd, ζ̄ + 9cd ≤ 1 so that ζ̄µ+ cdεHµ+ 2cdεg ≤ µ. Thus, by
substituting into (36), we obtain

(37) µ > ‖X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)
− µX̄kX

−1
k e‖∞.

By considering each component i = 1, 2, . . . , n in turn, we now show that

(38) ∇2f(xk)X̄kd
k +∇f(xk) > −µe.

When 0 < xki ≤ 1, it follows that x̄ki /x
k
i = 1, so∣∣[X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)]
i
− µ

∣∣ < µ,

so that [
X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)]
i
> 0,

establishing (38) for this component i. When xki > 1, we have x̄ki = 1 and 0 <
x̄ki /x

k
i < 1, so from (37), we have

−µ <
[
X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)]
i
− x̄ki
xki
µ <

[
X̄k

(
∇2f(xk)X̄kd

k +∇f(xk)
)]
i

=
[
∇2f(xk)X̄kd

k +∇f(xk)
]
i
,

establishing (38) for this component too.
Finally, using (3), µ = εg/4, ‖dk‖ < cdεH , cd ≤

√
3/(2LH), and ε2H = εg, together

with ‖X̄k‖ ≤ 1, we have from (38) that

∇f(xk+1) = ∇f(xk+1)−∇2f(xk)X̄kd
k −∇f(xk) +∇2f(xk)X̄kd

k +∇f(xk)

> −‖∇f(xk+1)−∇2f(xk)X̄kd
k −∇f(xk)‖e− µe

≥ −LH
2
‖X̄k‖2‖dk‖2e− µe

> −
(
LH
2
c2d +

1

4

)
εge ≥ −εge.

We now focus on the second condition, ‖X̄k+1∇f(xk+1)‖ ≤ εg. To begin, we
show that

(39) ‖X̄k+1∇f(xk+1)‖∞ ≤ 2‖X̄k∇f(xk+1)‖∞.

First, assume that xki ≤ 1 holds. Then, x̄ki = xki so that dki =
(
x̄ki /x

k
i

)
dki ≤ β < 1, so

x̄k+1
i ≤ xk+1

i = xki + x̄ki d
k
i = x̄ki (1 + dki ) < 2x̄ki .

When xki > 1, we have
x̄k+1
i ≤ 1 = x̄ki < 2x̄ki .

Applying these two cases for each coordinate i, we obtain (39). Now, recall from the

conditions stated at the start of the proof that ‖X−1
k X̄kd̂

k‖∞ < β, so that dk = d̂k,

where d̂k is the output of Algorithm 2 at iteration k. We thus have for r̂k defined by
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(28) that (27) holds, by Lemma 7. Therefore, by (3), (27), (39), ‖X̄kX
−1
k e‖∞ ≤ 1,

and ‖X̄k‖ ≤ 1, we have

‖X̄k+1∇f(xk+1)‖∞
≤ 2‖X̄k∇f(xk+1)‖∞ by (39)

= 2‖X̄k∇f(xk+1)− X̄k∇f(xk) + X̄k∇f(xk)‖∞
= 2‖X̄k∇f(xk+1)− X̄k∇f(xk)− X̄k∇2φµ(xk)X̄kd

k

− 2εHd
k + µX̄kX

−1
k e+ r̂k‖∞ by (28)

≤ 2‖X̄k

(
∇f(xk+1)−∇f(xk)−∇2f(xk)X̄kd

k
)
‖∞

+ 2µ‖X̄kX
−2
k X̄kd

k‖∞ + 4εH‖dk‖∞
+ 2µ‖X̄kX

−1
k e‖∞ + 2‖r̂k‖∞ by definition of φµ

≤ 2‖X̄k‖‖∇f(xk+1)−∇f(xk)−∇2f(xk)X̄kd
k‖

+ 2µ‖X̄kX
−2
k X̄kd

k‖+ 4εH‖dk‖+ 2µ+ 2‖r̂k‖ since ‖X̄kX
−1
k e‖∞ ≤ 1

≤ LH‖X̄kd
k‖2 + 2µ‖X̄kX

−2
k X̄k‖‖dk‖

+ 4εH‖dk‖+ 2µ+ ζrεH‖dk‖ by (3), (27), and ‖X̄k‖ ≤ 1

< LHc
2
dεg + 2µcdεH + 4cdεg + εg/2 + ζrcdεg,

where we used ‖X̄k‖ ≤ 1, ‖X̄−1
k Xk‖ ≤ 1, ‖dk‖ < cdεH , ε2H = εg, and µ = εg/4 for

the last inequality. Finally, since εH < 1, cd ≤ 1, and cd ≤ 1/ (2 (LH + 9/2 + ζr)), it
follows that

‖X̄k+1∇f(xk+1)‖∞ < LHc
2
dεg + 2µcdεH + 4cdεg + εg/2 + ζrcdεg

≤ LHcdεg + 2µcd + 4cdεg + εg/2 + ζrcdεg

≤ LHcdεg + cdεg/2 + 4cdεg + εg/2 + ζrcdεg

≤ cdεg (LH + 9/2 + ζr) + εg/2

≤ εg/2 + εg/2 = εg,

completing the proof.
Lemma 9 is useful in the following line search argument, because we need only

consider cases in which ‖dk‖ ≥ cdεH . We now show that a sufficiently long step is
taken whenever d type=SOL and xk+1 does not satisfy the approximate first-order
conditions (6b) and (6c).

Lemma 10. Suppose that Assumption 1 holds. Suppose that at iteration k of Al-
gorithm 1, we have either [∇f(xk)]i ≤ −εg for some coordinate i or ‖X̄k∇f(xk)‖∞ ≥
εg, so that Algorithm 2 is called. When Algorithm 2 outputs a direction d̂k with
d type=SOL, then either

(A) the backtracking line search terminates with αk = 1 and both (6b) and (6c)
hold at xk+1, or

(B) the backtracking line search requires at most jk ≤ jsol + 1 iterations, where

(40) jsol =

[
1

2
logθ

(
6(1− β)2

(LH + η)(1− β)2 + (2− β)

ε2H
1.1(Ug + µ

√
n)

)]
+

,

and

(41) αk‖dk‖ ≥ csolεH ,
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where

csol = min

{
cd,

6(1− β)2θ2

(LH + η)(1− β)2 + (2− β)

}
,

and cd is defined in (34).

Proof. This result follows by largely the same argument as that of the proof of
[37, Lemma 13]. The main difference is due to the result of Lemma 8 which, together
with (4), implies
(42)

φµ(xk+θjX̄kd
k)−φµ(xk) ≤ θjg>dk+

θ2j

2
(dk)>Hdk+

LH(1− β)2 + (2− β)

6(1− β)2
θ3j‖dk‖3,

where the notation g = X̄k∇φµ(xk) and H = X̄k∇2φµ(xk)X̄k is used once more.
Replacing the Taylor series expansion around f in the proof of [37, Lemma 13] with
this expression yields the result. We provide a full proof in Appendix A.2.

Now we show that a sufficiently long step always occurs when d type=NC.

Lemma 11. Suppose that Assumption 1 holds. Suppose that at iteration k of
Algorithm 1, we have either [∇f(xk)]i ≤ −εg for some coordinate i or
‖X̄k∇f(xk)‖∞ ≥ εg, so that Algorithm 2 is called. When Algorithm 2 outputs a

direction d̂k with d type=NC, then the backtracking line search requires at most jk ≤
jnc + 1 iterations, where

(43) jnc =

[
logθ

(
3(1− β)2

(LH + η)(1− β)2 + (2− β)

)]
+

,

and

(44) αk‖dk‖ ≥ cncεH ,

where

cnc = min

{
1,

3(1− β)2θ

(LH + η)(1− β)2 + (2− β)

}
.

Proof. This result follows from the same argument as the proof of [37, Lemma 1].
The main difference in the proof once again revolves around the use of (42) in place
of the Taylor expansion around f . A full proof is provided in Appendix A.3.

Next, we bound the maximum decrease in the logarithmic terms over the itera-
tions of Algorithm 1.

Lemma 12. Let ω be such that ‖x0‖∞ ≤ ω. Then for any k ≥ 0, we have

(45)

n∑
i=1

(
− log xk+1

i + log x0
i

)
≥ −n

(
logω −min

i
log x0

i

)
−
√
n

ω

k∑
j=0

αj‖dj‖.

Proof. We focus on a single coordinate i, and show that the following holds for
any k ≥ 0:

(46) − log xk+1
i + log x0

i ≥ − logω + log x0
i −

1

ω

k∑
j=0

αj |dji |.

We consider three cases.
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1: xk+1
i ≤ ω. Here we have − log xk+1

i ≥ − logω, so (46) is satisfied trivially.
2: xk+1

i > ω and xki ≤ ω. Here, we have

− log xk+1
i = − log

(
xki + αkx̄

k
i d
k
i

)
≥ − log

(
ω + αkx̄

k
i d
k
i

)
= − log

(
ω

(
1 +

1

ω
αkx̄

k
i d
k
i

))
= − logω − log

(
1 +

1

ω
αkx̄

k
i d
k
i

)
≥ − logω − 1

ω
αkx̄

k
i d
k
i

≥ − logω − 1

ω
αk|dki |,

where the second to last inequality follows by log(1 + x) ≤ x and the last by
x̄ki ≤ 1. Therefore, we have

(47) − log(xk+1
i ) + log(x0

i ) ≥ − log(ω) + log(x0
i )−

1

ω
αk|dki |,

so (46) is satisfied again.
3: xk+1

i > ω and xki > ω. For this case, we have

− log(xk+1
i ) = − log

(
xki + αkx̄

k
i d
k
i

)
= − log

(
xki

(
1 + αk

x̄ki
xki
dki

))
= − log(xki )− log

(
1 + αk

x̄ki
xki
dki

)
≥ − log(xki )− αk

x̄ki
xki
dki

≥ − log(xki )− 1

ω
αk|dki |,(48)

where the second to last inequality follows by log(1 + x) ≤ x and the last by
x̄ki ≤ 1 and xki ≥ ω. We define k̄ to be the smallest index such that xji > ω
for all j = k̄, k̄ + 1, . . . , k + 1. We have that k̄ exists, and lies in the range
{1, 2, . . . , k}. Moreover, we have that

(49) xk̄i > ω, xk̄−1
i ≤ ω.

Since (48) holds when k is replaced by any j = k̄, . . . , k, we have

(50) − log xk+1
i + log xk̄i =

k∑
j=k̄

(
− log xj+1

i + log xji

)
≥ − 1

ω

k∑
j=k̄

αj |dji |.

Since k̄ − 1 is in Case 2, because of (49), we have

− log xk̄i ≥ − logω − 1

ω
αk̄−1|dk̄−1

i |.

By adding this expression to (50), and adding log x0
i to both sides, we obtain

− log xk+1
i + log x0

i ≥ − logω + log x0
i −

1

ω

k∑
j=k̄−1

αj |dji |,

which implies (46).
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By summing (46) over all coordinates i, we obtain

n∑
i=1

(
− log(xk+1

i ) + log(x0
i )
)
≥ −

n∑
i=1

(
log(ω)− log(x0

i )
)
− 1

ω

k∑
j=0

n∑
i=1

αj |dji |

= −
n∑
i=1

(
log(ω)− log(x0

i )
)
− 1

ω

k∑
j=0

αj‖dj‖1

≥ −n
(

log(ω)−min
i

log(x0
i )
)
−
√
n

ω

k∑
j=0

αj‖dj‖,

which proves the result.
Now we are ready to bound the maximum number of iterations of Algorithm 1

that can occur before the approximate first-order optimality conditions (6a), (6b),
and (6c) are satisfied.

Theorem 13. Let Assumptions 1 and 2 hold. Then, some iterate xk generated
by Algorithm 1, where k = 0, 1, . . . , K̄1 + 1 and

K̄1 :=

⌈
12
(
µn
(
log(ω1)−mini log(x0

i )
)

+ f(x0)− flow

)
ηc3all

ε−3/2
g

⌉
,

ω1 := max

{
3
√
n

ηc2all

, ‖x0‖∞
}
,

call := min{csol, cnc},

will satisfy the conditions

(51) ∇f(xk) ≥ −εge, ‖X̄k∇f(xk)‖∞ ≤ εg.

Proof. Suppose for contradiction that at least one of the conditions in (51) is
violated for all k = 0, 1, . . . , K̄1 + 1, so that case A of Lemma 10 does not occur for
all k = 0, 1, . . . , K̄1. Algorithm 2 will be invoked at each of the first K̄1 + 1 iterates
of Algorithm 1. For each iteration l = 0, 1, . . . , K̄1 for which Algorithm 2 returns
d type=SOL, we have from Lemma 10, and the fact that case A does not occur, that
αk‖dk‖ ≥ csolεH . For each iteration l = 0, 1, . . . , K̄1 for which Algorithm 2 returns
d type=NC, we have by Lemma 11 that αk‖dk‖ ≥ cncεH . Thus, for either type of
step, we have

(52) αk‖dk‖ ≥ min{csol, cnc}εH = callεH .

Now, by (13), we have

−η
6
α3
k‖dk‖3 ≥ φµ(xk+1)−φµ(xk) = f(xk+1)−f(xk) +µ

n∑
i=1

(
− log(xk+1

i ) + log(xki )
)
.

By summing this bound over k = 0, 1, . . . , K̄1, and telescoping both terms on the
right-hand size, we obtain

−η
6

K̄1∑
k=0

α3
k‖dk‖3 ≥ f(xK̄1+1)− f(x0) + µ

n∑
i=1

(
− log(xK̄1+1

i ) + log(x0
i )
)
.
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By applying Lemma 12 with ω = ω1, we have
(53)

− η
6

K̄1∑
k=0

α3
k‖dk‖3 ≥ f(xK̄1+1)−f(x0)−µn

(
log(ω1)−min

i
log(x0

i )
)
−µ
√
n

ω1

K̄1∑
k=0

αk‖dk‖.

From the definition of ω1, we obtain

−µ
√
n

ω1

K̄1∑
k=0

αk‖dk‖ ≥ −
µηc2all

3

K̄1∑
k=0

αk‖dk‖ = −ηc
2
allε

2
H

12

K̄1∑
k=0

αk‖dk‖,

where the final equality is due to µ = εg/4 = ε2H/4. It follows that

η

6

K̄1∑
k=0

α3
k‖dk‖3 − µ

√
n

ω1

K̄1∑
k=0

αk‖dk‖ ≥
η

6

K̄1∑
k=0

αk‖dk‖
(
α2
k‖dk‖2 −

c2allε
2
H

2

)

≥ η

12

K̄1∑
k=0

αk‖dk‖c2allε
2
H

≥ η

12

K̄1∑
k=0

c3allε
3
H

=
η

12

(
K̄1 + 1

)
c3allε

3
H ,

where the second and third inequalities follow by (52). By combining this inequality
with (53), we have

f(x0)− f(xK̄1+1) + µn
(

log(ω1)−min
i

log(x0
i )
)

≥
(
K̄1 + 1

) η
12
ε3Hc

3
all

> µn
(

log(ω1)−min
i

log(x0
i )
)

+ f(x0)− flow,

where we used the definition of K̄1 and εH = ε
1/2
g for the final inequality. This

inequality contradicts the definition of flow (in Assumption 2), so our claim is proved.

Recalling that the workload of Algorithm 2 in terms of Hessian-vector products
depends on the index J defined in Lemma 5, we obtain the following corollary. (Note
the mild assumption on the value of M used at each instance of Algorithm 2, which
is satisfied provided that this algorithm is always invoked with an initial estimate of
M in the range [0, UH + µ].)

Corollary 14. Suppose that Assumptions 1, 2, and 3 hold, and let K̄1 be defined
as in Theorem 13 and J(M, εH , ζr, cµ) be as defined in Lemma 5. Suppose that the
values of M used or calculated at each instance of Algorithm 2 satisfy M ≤ UH + µ.
Then the number of Hessian-vector products and/or gradient evaluations required by
Algorithm 1 to output an iterate satisfying (51) is at most

(54) (2 min {n, J(UH + µ, εH , ζr, cµ)}+ 2) (K̄1 + 1).

If J(UH + µ, εH , ζr, cµ) < n, this bound is

(55) Õ(ε−7/4
g + nε−3/4

g ),
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while if J(UH + µ, εH , ζr, cµ) ≥ n, it is

(56) Õ(nε−3/2
g ).

Proof. From Lemma 5, the number of Hessian-vector multiplications in the main
loop of Algorithm 2 is bounded by min {n, J(UH , εH , ζr, cµ)} + 1. An additional
min {n, J(UH , εH , ζr, cµ)} Hessian-vector products may be needed to return a direc-
tion satisfying (16), if Algorithm 2 does not store its iterates yj . Each iteration also
requires a single evaluation of the gradient ∇f , giving a bound of
(2 min {n, J(UH , εH , ζr, cµ)} + 2) on the workload per iteration of Algorithm 1. Per
Theorem 13, we obtain the result (54) by multiplying this quantity by K̄1 + 1.

To obtain the estimate (55), we note from µ = εg/4 that

K̄1 = Õ(nε−1/2
g + ε−3/2

g ),

while from (22) and (23), using ε = εH = ε
1/2
g , we have for J(UH + µ, εH , ζr, cµ) < n

that

J(UH + µ, εH , ζr, cµ) = Õ(ε
−1/2
H ) = Õ(ε−1/4

g ).

We obtain (55) by substituting these estimates into (54). For (56), we have from

J(UH +µ, εH , ζr, cµ) ≥ n together with (22) and (23) that n ≤ Õ
(
ε
−1/4
g

)
. Therefore,

computational complexity is bounded by

Õ(n(nε−1/2
g + ε−3/2

g )) ≤ Õ(n(ε−3/4
g + ε−3/2

g )) = Õ(nε−3/2
g ),

as claimed

5.3 Second-Order Complexity Analysis We now find bounds on iteration
and computational complexity of finding a point that satisfies all of the approximate
optimality conditions in (6). In this section, as well as using results from Sections 5.1
and 5.2, we need to use the properties of the minimum eigenvalue oracle, Procedure 3.
To this end, we make the following generic assumption.

Assumption 4. For every iteration k at which Algorithm 1 calls Procedure 3,
and for a specified failure probability δ with 0 ≤ δ � 1, Procedure 3 either certifies
that X̄k∇2f(xk)X̄k � −εHI or finds a vector of curvature smaller than −εH/2 in at
most

(57) Nmeo := min
{
n, 1 +

⌈
Cmeoε

−1/2
H

⌉}
Hessian-vector products, with probability 1− δ, where Cmeo depends at most logarith-
mically on δ and εH .

Assumption 4 encompasses the strategies we mentioned in Section 4.2. Assuming
the bound UH on ‖H‖ is available, for both the Lanczos method with a random
starting vector and the conjugate gradient algorithm with a random right-hand side,
(57) holds with Cmeo = ln(2.75n/δ2)

√
UH/2. When a bound on ‖H‖ is not available in

advance, it can be estimated efficiently with minimal effect on the complexity bounds;
see Appendix B.3 of [36].

The next lemma guarantees termination of the backtracking line search for a
negative curvature direction. As for Lemma 10, the result is deterministic.
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Lemma 15. Suppose that Assumptions 1 and 4 hold. Suppose that at iteration k
of Algorithm 1, the search direction dk is of negative curvature type, obtained either
directly from Procedure 3 or as the output of Algorithm 2 with d type=NC. Then the
backtracking line search terminates with step length αk = θjk with jk ≤ jnc + 1, where
jnc is defined as in Lemma 11, and the decrease in the function value resulting from
the chosen step length satisfies

(58) αk‖dk‖ ≥
1

4
cncεH ,

with cnc is defined in Lemma 11.

Proof. Lemma 11 shows that the claim holds (with a factor of 1/4 to spare) when
the direction of negative curvature is obtained from Algorithm 2. When the direction
v is obtained from Procedure 3, we have by ‖v‖ = 1 that

v>X̄k∇2f(xk)X̄kv ≤ −
1

2
εH .

Then, since v>X̄kX
−2
k X̄kv ≤ 1, we have

v>X̄k∇2φµ(xk)X̄kv = v>X̄k∇2f(xk)X̄kv + µv>X̄kX
−2
k X̄kv

≤ −1

2
εH + µ ≤ −1

4
εH ,(59)

where the last inequality follows from µ = εg/4 = ε2H/4 and εH < 1. Now, when

min

{
|v>X̄k∇2φµ(xk)X̄kv|,

β

‖X−1
k X̄kv‖∞

}
= |v>X̄k∇2φµ(xk)X̄kv|,

we have ‖dk‖ = |v>X̄k∇2φµ(xk)X̄kv| ≥ εH/4. Otherwise, we have

β = ‖X−1
k X̄kd

k‖∞ ≤ ‖X−1
k X̄kd

k‖ ≤ ‖X−1
k X̄k‖‖dk‖ ≤ ‖dk‖.

By combining the two cases, and using β ≥ εH , we have

‖dk‖ ≥ min

{
1

4
εH , β

}
=

1

4
εH .

Finally, we note that in either case, we have

‖dk‖ ≤ −v>X̄k∇2φµ(xk)X̄kv = − (dk)>X̄k∇2φµ(xk)X̄kd
k

‖dk‖2
.

Therefore, we have

(dk)>X̄k∇2φµ(xk)X̄kd
k

‖dk‖2
≤ −‖dk‖ ≤ −1

4
εH .

The result can now be obtained by following the proof of Lemma 11, with 1
4εH re-

placing εH .
We are now ready to state our iteration complexity result for Algorithm 1.
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Theorem 16. Suppose that Assumptions 1, 2, and 4 hold and define

(60) ω2 := max

{
96
√
n

ηc2all

, ‖x0‖∞
}
,

and

K̄2 :=

⌈
1536

(
f(x0)− flow + µn

(
log(ω2)−mini log(x0

i )
))

ηc3all

ε−3/2
g

⌉
+ 2(61)

= Õ(nε−1/2
g + ε−3/2

g ),

where the constant call is defined in Theorem 13. Then with probability at least (1 −
δ)K̄2 , Algorithm 1 terminates at a point satisfying (6) in at most K̄2 iterations. (With
probability at most 1 − (1 − δ)K̄2 , it terminates incorrectly within K̄2 iterations at a
point for which (6a), (6b), and (6c) hold but (6d) does not.)

Proof. Algorithm 1 terminates incorrectly with probability δ at any iteration at
which Procedure 3 is called, when Procedure 3 certifies erroneously that
λmin(X̄k∇2f(xk)X̄k) ≥ −εH . Such an erroneous certificate only leads to termination.
Therefore, an erroneous certificate at iteration k means that Procedure 3 did not
produce an erroneous certificate at iterations 0 to k − 1. By a disjunction argument,
we have that the overall probability of terminating with an erroneous certificate during
the first K̄2 iterations is bounded by 1 − (1 − δ)K̄2 . Therefore, with probability at
least (1− δ)K̄2 , no incorrect termination occurs in the first K̄2 iterations.

Suppose now for contradiction that Algorithm 1 runs for K̄2 iterations without
terminating. That is, for all l = 0, 1, . . . , K̄2, we have at least one of: [∇f(xl)]i < −εg
for some coordinate i, ‖X̄l∇f(xl)‖∞ > εg, or λmin(X̄l∇2f(xl)X̄l) < −εH . Consider
the following partition of the set of iteration indices:

(62) K1 ∪ K2 ∪ K3 = {0, 1, . . . , K̄2 − 1},

where K1, K2, and K3 are defined as follows.
Case 1: K1 := {l = 0, 1, . . . , K̄2 − 1 : ∇f(xl) ≥ −εge and ‖X̄l∇f(xl)‖∞ ≤ εg}.
Case 2: K2 := {l = 0, 1, . . . , K̄2 − 1 : [∇f(xl)]i < −εg for some coordinate i

and/or ‖X̄l∇f(xl)‖∞ > εg and αl‖dl‖ ≥ (call/4)εH}.
Case 3: K3 := {l = 0, 1, . . . , K̄2 − 1 : [∇f(xl)]i < −εg for some coordinate i

and/or ‖X̄l∇f(xl)‖∞ > εg and αl‖dl‖ < (call/4)εH}.
Then, for all l ∈ K1 ∪ K2, the fact that the algorithm does not satisfy (6) at

iteration l + 1 together with Lemmas 10, 11, and 15 guarantee that

(63) αl‖dl‖ ≥ min{csol, cnc/4}εH ≥ (call/4)εH .

On the other hand, for l ∈ K3, case A of Lemma 10 must have occured. Therefore,
for any l ∈ K3, we must have ∇f(xl+1) ≥ −εge and ‖X̄l+1∇f(xl+1)‖∞ ≤ εg, so that
l + 1 ∈ K1 for l < K̄2 − 1. Thus, a sufficiently long step will be taken at the next
iteration, and we have

(64) |K3| ≤ |K1|+ 1 ≤ |K1|+ |K2|+ 1.

Now, by a similar argument to Theorem 13 that led to (53), we have
(65)

− η
6

K̄2−1∑
j=0

α3
j‖dj‖3 ≥ f(xK̄2)−f(x0)−µ

√
n

ω2

K̄2−1∑
l=0

αl‖dl‖−µn
(

log(ω2)−min
i

log(x0
i )
)
.
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Using the definition of ω2, we have

−µ
√
n

ω2

K̄2−1∑
l=0

αl‖dl‖ ≥ −
µηc2all

96

K̄2−1∑
l=0

αl‖dl‖ = −ηc
2
allε

2
H

384

K̄2−1∑
l=0

αl‖dl‖,

where the second equality is due to µ = εg/4 = ε2H/4. Therefore, we have

η

6

K̄2−1∑
l=0

α3
l ‖dl‖3 − µ

√
n

ω2

K̄2−1∑
l=0

αl‖dl‖

≥ η

6

K̄2−1∑
l=0

(
α3
l ‖dl‖3 −

c2allε
2
H

64
αl‖dl‖

)
=
η

6

∑
j∈K1∪K2

αj‖dj‖
(
α2
j‖dj‖2 −

c2allε
2
H

64

)
+
η

6

∑
l∈K3

(
α3
l ‖dl‖3 −

c2allε
2
H

64
αl‖dl‖

)
≥ 3η

384

∑
j∈K1∪K2

αj‖dj‖c2allε
2
H −

η

1536

∑
l∈K3

c3allε
3
H

≥ (|K1|+ |K2|)
3η

1536
c3allε

3
H − (|K1|+ |K2|+ 1)

η

1536
c3allε

3
H

≥
(
|K1|+ |K2| −

1

2

)
η

768
c3allε

3
H ,

where the second inequality follows by (63) and the definition of K3, while the third
inequalities follows by (63) and (64).

Thus, this inequality, (65) and |K1|+ |K2|+ |K3|−2 ≤ 2(|K1|+ |K2|−1/2), imply

f(x0)− f(xK̄2) + µn
(

log(ω2)−min
i

log(x0
i )
)

≥ (|K1|+ |K2| − 1/2)
η

768
c3allε

3
H

≥ (|K1|+ |K2|+ |K3| − 2)
η

1536
c3allε

3
H

≥
(
K̄2 − 1

) η

1536
c3allε

3
H

> f(x0)− flow + µn
(

log(ω2)−min
i

log(x0
i )
)
.

where the final inequality follows from the definition of K̄2 and εH = ε
1/2
g . The final

inequality implies that flow > f(xK̄2), which contradicts the definition of flow, proving
the claim.

The estimate K̄2 = Õ(nε
−1/2
g + ε

−3/2
g ) follows directly from µ = εg/4.

Finally, we provide a computational complexity result, a bound on the number of
Hessian-vector products and gradient evaluations necessary for Algorithm 1 to find a
point that satisfies (6).

Corollary 17. Suppose that Assumptions 1, 2, 3, and 4 hold, and let K̄2 be
defined as in (61). Suppose that the values of M used or calculated at each instance of
Algorithm 2 satisfy M ≤ UH+µ. Then with probability at least (1−δ)K̄2 , Algorithm 1
terminates at a point satisfying (6) after at most

(66) (max{2 min{n, J(UH + µ, εH , ζr, cµ)}+ 2, Nmeo}) K̄2
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Hessian-vector products and/or gradient evaluations. (With probability at most 1 −
(1 − δ)K̄2 , it terminates incorrectly with this complexity at a point for which (6a),
(6b), and (6c) hold but (6d) does not.)

Proof. The proof follows by combining Theorem 16 (which bounds the number of
iterations) with Lemma 5 and Assumption 4 (which bound the workload per iteration).

For large n, the operation bound (66) is Õ(ε
−7/4
g +nε

−3/4
g ), because the multiplier

of K̄2 in (66) is Õ(ε
−1/4
g ) while K̄2 is Õ(nε

−1/2
g +ε

−3/2
g ). For small n, the multiplier of

K̄2 in (66) is O(n), and the dominant term in K̄2 is ε
−3/2
g , leading to a computational

complexity bound of Õ(nε
−3/2
g ) for this case.

These computational complexity bounds are the same as those obtained for un-
constrained smooth minimization discussed in Section 2, except for the inclusion of

the nε
−3/4
g term for the case of large n. In the latter case, our algorithm acheives a

superior worst-case computational complexity bound to that of [30], whose worst-case

computational complexity appear to be O(nε
−3/2
g ). The nε

−3/4
g term is a consequence

of using the log-barrier term to monitor descent. It may be avoided by making an
additional assumption that f grows rapidly enough to overcome the improvement in
the logarithmic term of φµ, as x moves away from the solution set for (1) and be-
comes large. Indeed, we made such an assumption in an earlier version of the paper.
It makes the analysis somewhat more straightforward in that it allows us assume that
the iterates {xk} are bounded. However, prompted by a referee’s comment and a
desire for generality, we have dropped this assumption in the current version.

6 Discussion We have presented a log-barrier Newton-CG algorithm which
combines recent advances in complexity of algorithms for large-scale unconstrained
optimization with results on the primal log-barrier function for bound constraints.
Our algorithm uses the Capped CG method of [36] to compute Newton-type steps
for the log-barrier function, while monitoring convexity during the CG iterations to
detect possible directions of negative curvature. Once the algorithm has found a
point satisfying the first-order optimality conditions, a Minimum Eigenvalue Oracle
is used to find a direction of negative curvature for the scaled Hessian matrix or
to certify (with high probability) that the second-order optimality conditions hold
at the current iterate. Both types of steps can be computed using efficient iterative
solvers, enabling good overall computational complexity results. The resulting method

finds a point satisfying (6) in at most O(ε
−3/2
g + nε

−1/2
g ) iterations, with at most

Õ(nε
−3/2
g ) gradient evaluations and/or Hessian vector products when n is small and

at most Õ(ε
−7/4
g + nε

−3/4
g ) gradient evaluations and/or Hessian vector products for

n sufficiently large. This overall computational complexity compares favorably with
the worst-case bounds of recently proposed methods.

There are a number of ways to align our algorithm more closely with the interior-
point methods in common use. One possible extension is to embed this method in
a primal-dual interior-point framework, which is more widely used than the primal
log-barrier framework. A second is to extend the log-barrier approach to minimize φµ
for a decreasing positive sequence of values of µ, rather than the “one-shot” approach
using a small fixed value of µ that we describe in this paper. Finally, generalizations
of our approach to problems with more complex constraint sets, such as problems
with general linear constraints, remains an open problem.
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Appendix A. Proofs of Technical Results.

A.1 Proof of Lemma 8. Proof. For scalar y > −1, define g(y) = − log(1+y).

We have g′(y) = −1/(1+y), g′′(y) = 1/(1+y)2 and g(3)(y) = −2/(1+y)3. By Taylor’s
theorem, we have

(67) g(y) = g(0) + yg′(0) +
1

2
y2g′′(0) +

1

2

∫ y

0

(y − t)2g(3)(t)dt.

Substituting t = yu and using |y| ≤ β < 1, we have

1

2

∫ y

0

(y − t)2g(3)(t)dt = −y
∫ 1

0

(y − yu)2 du

(1 + yu)3
≤ |y|3

∫ 1

0

(1− u)2 du

(1− βu)3
.

Now, since (1−u)2 is monotonically decreasing in u and 1/(1−βu)3 is monotonically
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increasing in u, we can apply Chebyshev’s integral inequality:

|y|3
∫ 1

0

(1− u)2 du

(1− βu)3
≤ |y|3

[∫ 1

0

(1− u)2du

] [∫ 1

0

du

(1− βu)3

]
=
|y|3

3

[∫ 1

0

du

(1− βu)3

]
=
|y|3

6

1

β

(
1

(1− β)2
− 1

)
=
|y|3

6

2− β
(1− β)2

.

By combining with (67), we obtain

− log(1 + y) ≤ −y +
1

2
y2 +

|y|3

6

2− β
(1− β)2

.

Now, for some coordinate i, let y = (x̄i/xi) di. Clearly, we have |y| ≤ β so

− log

(
1 +

x̄i
xi
di

)
≤ − x̄i

xi
di +

1

2

(
x̄i
xi
di

)2

+
| x̄ixi di|

3

6

2− β
(1− β)2

≤ − x̄i
xi
di +

1

2

(
x̄i
xi
di

)2

+
|di|3

6

2− β
(1− β)2

(68)

holds. By the properties of logarithms, we have

− log

(
xi

(
1 +

x̄i
xi
di

))
= − log(xi + x̄idi) = − log(xi)− log

(
1 +

x̄i
xi
di

)
.

By rearranging this inequality and substituting from (68), we have

− log (xi + x̄idi) + log(xi) ≤ −
x̄i
xi
di +

1

2

(
x̄i
xi
di

)2

+
|di|3

6

2− β
(1− β)2

.

By summing this inequality over i = 1, 2, . . . , n, we obtain

−
n∑
i=1

log (xi + x̄idi) +

n∑
i=1

log(xi)

≤ −e>X−1X̄d+
1

2
d>X̄X−2X̄d+

n∑
i=1

|di|3

6

2− β
(1− β)2

= −e>X−1X̄d+
1

2
d>X̄X−2X̄d+

2− β
6(1− β)2

‖d‖33

≤ −e>X−1X̄d+
1

2
d>X̄X−2X̄d+

2− β
6(1− β)2

‖d‖3,

where ‖d‖3 denotes the `3 norm of d. (The final inequality follows from ‖d‖3 ≤ ‖d‖2).

A.2 Proof of Lemma 10. Proof. For simplicity of notation, we again use

H = X̄k∇2φµ(xk)X̄k and g = X̄k∇φµ(xk) in the proof.
Suppose first that the unit step length αk = 1 is accepted. Then, if ‖dk‖ < cdεH ,

it follows from Lemma 9 that both (6b) and (6c) hold at xk+1, so we are in case A.
Otherwise, the statment of case B holds by

αk‖dk‖ = ‖dk‖ ≥ cdεH ≥ csolεH .
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For the remainder of the proof, we assume that αk < 1. Recall from the statement
of Lemma 7 that

γk = max

{
‖X−1

k X̄kd̂
k‖∞

β
, 1

}
.

For any j ≥ 0 such that the sufficient decrease condition (13) does not hold, we have
from (4), (26a), (26c), and Lemma 8 that

− η

6
θ3j‖dk‖3

≤ φµ(xk + θjX̄kd
k)− φµ(xk)

≤ θj∇f(xk)>X̄kd
k +

θ2j

2
(dk)>X̄k∇2f(xk)X̄kd

k +
LH
6
θ3j‖X̄kd

k‖3 by (4)

− µθje>X−1
k X̄kd

k +
µθ2j

2
(dk)>X̄kX

−2
k X̄kd

k +
µ(2− β)

6(1− β)2
θ3j‖dk‖3 by Lemma 8

= θjg>dk +
θ2j

2
(dk)>Hdk +

LH
6
θ3j‖X̄kd

k‖3 +
µ(2− β)

6(1− β)2
θ3j‖dk‖3

= −θjγk(dk)> (H + 2εHI) dk +
θ2j

2
(dk)>Hdk by (26c)

+
LH
6
θ3j‖X̄kd

k‖3 +
µ(2− β)

6(1− β)2
θ3j‖dk‖3

= −θj
(
γk −

θj

2

)
(dk)> (H + 2εHI) dk − θ2jεH‖dk‖2

+
LH
6
θ3j‖X̄kd

k‖3 +
µ(2− β)

6(1− β)2
θ3j‖dk‖3

≤ −θjγkεH‖dk‖2 +
1

2
θ2jεH‖dk‖2 − θ2jεH‖dk‖2 by (26a)

+
LH(1− β)2 + (2− β)

6(1− β)2
θ3j‖dk‖3 by µ < 1

≤ −θjγkεH‖dk‖2 +
LH(1− β)2 + (2− β)

6(1− β)2
θ3j‖dk‖3.

Therefore, for any j ≥ 0 at which sufficient decrease is not attained, we have by
rearranging terms in the inequality above and using the definition of γk that

(LH + η)(1− β)2 + (2− β)

6(1− β)2
θ2j ≥ max

{
‖X−1

k X̄kd̂
k‖∞

β
, 1

}
εH‖dk‖−1

≥ εH‖dk‖−1.(69)

Evaluating this expression at j = 0, we have that

(70) ‖dk‖ ≥ 6(1− β)2

(LH + η)(1− β)2 + (2− β)
εH .

From (26b), we have

‖dk‖ ≤ 1.1ε−1
H ‖g‖ ≤ 1.1ε−1

H (‖X̄k∇f(xk)‖+ µ‖X̄kX
−1
k e‖) ≤ 1.1ε−1

H (Ug + µ
√
n),
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where we used ‖X̄k‖ ≤ 1, ‖∇f(xk)‖ ≤ Ug, and ‖X̄kX
−1
k e‖ ≤

√
n in the final in-

equality. Thus, for any j > jsol we have from definition (40) and this bound on ‖dk‖
that

θ2j < θ2jsol ≤ 6(1− β)2

(LH + η)(1− β)2 + (2− β)

ε2H
1.1(Ug + µ

√
n)

≤ 6(1− β)2εH
(LH + η)(1− β)2 + (2− β)

‖dk‖−1.

Therefore, (69) cannot be satisfied for any j > jsol so the line search must terminate
with αk = θjk for some 1 ≤ jk ≤ jsol + 1. The previous index jk − 1 satisfies (69), so
we also have

θ2(jk−1) =
θ2jk

θ2
≥ 6(1− β)2εH

(LH + η)(1− β)2 + (2− β)
‖dk‖−1.

It follows that

αk‖dk‖ = θjk‖dk‖ ≥
(

6(1− β)2θ2εH
(LH + η)(1− β)2 + (2− β)

)1/2

‖dk‖1/2

≥ 6(1− β)2θ2

(LH + η)(1− β)2 + (2− β)
εH

holds, where the final inequality comes from (70) and θ < 1. Thus, the conclusion
holds in this case as well and the proof is complete.

A.3 Proof of Lemma 11. Proof. We again use the notation

H = X̄k∇2φµ(xk)X̄k and g = X̄k∇φµ(xk) in this proof.
We begin by noting that when the unit step, αk = 1, is taken, we have

αk‖dk‖ = ‖dk‖ ≥ εH ,

where the inequality follows from (29).
In the remainder of the proof, we assume that the unit step length is not accepted.

Then, for any j ≥ 0 such that (13) does not hold, we have from (4) and (29) along
with the result of Lemma 8 that

− η

6
θ3j‖dk‖3

≤ φµ(xk + θjX̄kd
k)− φµ(xk)

≤ θj∇f(xk)>X̄kd
k +

θ2j

2
(dk)>X̄k∇2f(xk)X̄kd

k +
LH
6
θ3j‖X̄kd

k‖3 by (4)

− µθje>X−1
k X̄kd

k +
µθ2j

2
(dk)>X̄kX

−2
k X̄kd

k +
µ(2− β)

6(1− β)2
θ3j‖dk‖3 by Lemma 8

= θjg>dk +
θ2j

2
(dk)>Hdk +

LH
6
θ3j‖X̄kd

k‖3 +
µ(2− β)

6(1− β)2
θ3j‖dk‖3

≤ −θ
2j

2
‖dk‖3 +

LH(1− β)2 + (2− β)

6(1− β)2
θ3j‖dk‖3, by (29) and µ < 1.

By rearranging this expression, we have for all such j that

θj ≥ 3(1− β)2

(LH + η)(1− β)2 + (2− β)
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which is true only for j ≤ jnc. Thus, the line search must terminate for some jk ≤
jnc + 1. Since the line search failed to stop at iteration jk − 1, we must have

θjk−1 =
θjk

θ
≥ 3(1− β)2

(LH + η)(1− β)2 + (2− β)
.

Therefore, using ‖dk‖ ≥ εH from (29), we have that

αk‖dk‖ = θjk‖dk‖ ≥ 3(1− β)2θ

(LH + η)(1− β)2 + (2− β)
εH

as required.
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