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Abstract

The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that
satisfy a given single linear inequality with non-negative coefficients.
This paper provides a comprehensive overview of knapsack polytopes.
We discuss basic polyhedral properties, (lifted) cover and other valid
inequalities, cases for which complete linear descriptions are known,
geometric properties for small dimensions, and connections to indepen-
dence systems. We also discuss the generalization to (mixed-)integer
knapsack polytopes and variants. The results from the literature are
complemented by some new results, examples, and open questions.

Keywords: knapsack polytope, cover inequality, lifting, separation problem,
complete linear description, independence systems

Introduction

The 0/1 knapsack problem consists of selecting items with given weights and
profits such that the sum of the weights does not exceed a certain capacity
and the sum of the profits is maximized. If the weights of the n items are
given by a = (a1,...,a,)" € R", the capacity by 8 € Ry and the profits by
c=(c1,...,cy)" € R, it can be written as max{c'z : x € K%’}, where

K% ={ze{0,1}" : a"z < B}

is the 0/1 knapsack set associated with weights a and capacity f.
The knapsack problem is of fundamental importance in discrete optimiza-
tion and has several features that make it unique. First, it is weakly NP-hard,



but can be solved by dynamic programming in pseudo-polynomial time O(n (3)
(ifae 2y, B €Zy)orOne) (if c € Z7), where ¢ is some upper bound on the
optimal objective, e.g., ¢1 + -+ - + ¢y, see, e.g., Kellerer et al. [77, Lemma 2.3.1
and Lemma 2.3.2|. Thus, it serves as an intermediate problem with respect
to its complexity status. Second, the problem is easily described, but has
a rich structure depending on the weights and profits. Third, it appears as
a subproblem in general binary programs max{c'z : Az <b, = € {0,1}"}.
To derive cutting planes for such programs, one can, for example, take any
row a'z < B of the system Az < b and investigate the knapsack problem
defined by a'z < . Fourth, since it has a combinatorial structure (or is
combined with additional combinatorial constraints) but has general coeffi-
cients, it serves as a bridge between combinatorial optimization and integer
programming.

As a consequence, the literature on knapsack problems is huge, studying
algorithmic, polyhedral, and computational questions. While the algorithmic
side has been treated, for instance, in the book by Kellerer et al. [77] or
Martello and Toth [91], we are not aware of an overview on polyhedral
research. One motivation for this article was the appearance of special
knapsack problems, whose polyhedral structure was studied [70] or even a
complete linear description was found [69]. In this context, we (unsuccessfully)
searched for an overview article on knapsack polytopes.

With this article we try to bridge this gap by providing an overview on
the 0/1 knapsack polytope

P%% = conv (K“’B),

i.e., the convex hull of all feasible solutions of the knapsack problem. Whenever
the knapsack inequality is clear from the context, we write K and P instead
of K%% and P%?, respectively.

In the following, we concentrate on the most investigated 0/1 case, but
also cover the integer case or combinations of the knapsack problem and other
constraints. In the integer case, the variables can attain any non-negative
integer value (possibly with upper bounds). This case is of less practical
importance and fewer polyhedral results exist for this case. However, it
is of theoretical interest because the feasible region (possibly with slack
variables) of every bounded integer program can be represented as the integer
points fulfilling box constraints and a single linear equation, see Bradley [22].
Furthermore, a large variety of knapsack variants exists and covering all
results seems hard; however, a selection of variants is covered in Section 10.

The selected topics of this paper and their presentation are naturally
subjective. We try to be comprehensive for the important results, mentioning
many other ones on the way. Sometimes, we will just refer to the literature
for details.

The topics are structured in the following way: Section 1.1 starts with
some basic results on the knapsack polytope. Afterwards, cover inequalities



are introduced and we discus whether these inequalities define facets of the
knapsack polytope in Section 1.2. Limits on the size of integer formulations
are investigated in Section 2. In Section 3, the fundamentals on lifting are
reviewed and illustrated for the case of cover inequalities. In practice, valid
inequalities are generated on the fly, which is covered in Section 4. While
complete linear descriptions of the knapsack polytope are treated in Section 5,
Section 6 provides geometric properties of knapsack polytopes. Since the
feasible set of a knapsack problem forms an independence system, there is a
close connection between these two problems. In Section 7, we discuss the
question of how to recognize whether an independence system arises from a
knapsack or when a knapsack defines a matroid. In Section 8 and Section 9
we change the focus to the case where variables are no longer required to
be binary but integer or mixed-integer valued, respectively. Variants of the
knapsack problem are presented in Section 10. Finally, we close with some
conclusions and open questions in Section 11.

Since this is an overview paper, the focus is on results from the literature.
We provide proofs for some results where the required space is reasonably
small. Moreover, we complement the literature results by some new material.
For instance, most content in Section 2 and Section 6 as well as Lemma 20,
Proposition 22 and Corollary 31 are new. Moreover, we provide running
examples and present everything in a unified notation. Finally, we pose some
open questions to stimulate further research.

Throughout this article, we assume basic knowledge of polyhedral theory
and integer programming. There are numerous books that provide an intro-
duction, for example, Schrijver [110], Nemhauser and Wolsey [98], or Korte
and Vygen |79].

Notation. If not stated differently, n is a positive integer that denotes the
dimension of the knapsack polytope’s ambient space. We denote by IN, Z,
and R the set of all positive integers, integers, and real numbers, respectively;
Z, and R, denote the set of non-negative integers and real numbers, respec-
tively. The set {1,...,k} of the first k positive integers is denoted by [k],
where [0] = @. Moreover, we define [k]o := [k] U {0}. The characteristic
vector of a set S C [n] is denoted by x°. In particular, we denote the all-ones
vector Y™ by 1 and the i-th unit vector x1* by e’. Given a set S C [n], we
abbreviate the sum ) ;g x; by £(S). This in particular means x(@) = 0.
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1 General Polyhedral Structure

In this section, we review basic polyhedral properties of arbitrary 0/1 knapsack
polytopes. While Section 1.1 provides fundamental properties like dimension
and facets that can be derived from trivial inequalities, Section 1.2 focuses
on facets of knapsack polytopes that are based on cover inequalities. Most
parts of the presented results were already published in the 1970s.

1.1 Basic Properties

Before stating polyhedral properties of knapsack polytopes, we discuss basic
assumptions that can be made about the data a € R™ and 8 € R without
loss of generality.

Assumption 1. We have 0 < a; < 8 for alli € [n] and a1 + -+ + a, > B.

Observation 2. Let a € R™ and 8 € R. Assumption 1 can be guaranteed

by performing the following preprocessing steps in the specified order:

(a) If a; < 0, we can complement variable z; (i.e., replacing it by 1 — ;).
Note that this step implies an increase of the value of of 8 by |a;|.

(b) If a; = 0, we can remove object i, since P%? is (equivalent to) the
Cartesian product of a knapsack polytope on variables [n] \ {i} and the
interval [0, 1], i.e., variable i does not contribute to the relevant structure
of P%#8,

(¢) If a; > 8, we can remove object i, since x; = 0 in all solutions.

If B8 <0 or g =0, the polytope is empty or consists of the null vector only,
respectively. Furthermore, if a; + - - - 4 a,, < 8, then P%# = [0, 1]™.

Note that we have defined a knapsack polytope via a “less-than-or-equal’-
constraint a'z < . By complementing variables, it is also possible to
consider a'x > S knapsacks, i.e., the corresponding polytopes are affinely
equivalent. Furthermore, for equality constrained knapsacks it holds that

conv{z € {0,1}" : o'z =} =
conv{z € {0,1}" : a'z < B} Nconv{z € {0,1}" : a'z > B},

i.e., it suffices to understand the <- and >-polytopes. For this reason, we will
only consider <-polytopes. For basic results on equality constrained knap-
sacks, e.g., concerning their dimensions and basic facet defining inequalities,
we refer the reader to Lee [82].

To be able to characterize facet defining inequalities of knapsack polytopes,
it is necessary to know their dimension. A characterization of their dimension
as well as a characterization which trivial inequalities z; > 0 and z; < 1,
i € [n], are facet defining is provided in the following lemma.

Lemma 3. Let a € R} and 3 € Ry.



(a) The knapsack set K® is down-monotone, i.c., if v € K% and y < x
with y € {0,1}", then y € K% as well.

(b) Let H:={i € [n] : a; > B}. Then dim(P*%) =n — |H|.

(c) For each i € [n], z; > 0 defines a facet of P“P if and only if i ¢ H.

(d) Foreachi € [n], x; <1 defines a facet if and only if i ¢ H and a;+a; <
forall j € [n]\ (HU{i}).

Proof. Throughout this proof, we use the notation K = K%# and P = P%P.
Although all results can be found in the literature, e.g., Part (b), (¢), and (d)
follow from Hammer et al. [62, Proposition 1-3| and Statement (d) also
appears in Balas [10, Proposition 2|, we provide proofs to make this survey
self-contained and use the same notation.

(a) Let z € K and y € {0,1}" fulfill y < x. Since a > 0, we have a'z > a'y.
Thus, y is feasible as well.

(b) If i € H, then z; = 0 for every vertex of P. Thus, dim(P) < n — |H|.
Moreover, if a; < 8, i € [n], then ¢! € P. Together with 0 this forms
n — |H| 4+ 1 affinely independent points and thus dim(P) > n — |H|.

(¢) Because x; > 0 is an implicit equation for every i € H, it cannot define a
facet of P. Conversely, if i ¢ H, the points 0 and e’ for £ € [n]\ (H U {i})
are n — |H| affinely independent vectors contained in P. Since they fulfill
x; > 0 with equality and dim(P) = n — |H|, the claim follows.

(d) Suppose i ¢ H and a; + a; < 8 for all j € [n]\ (H U {i}). Then the
points e’ and e’ + ¢’ j € [n]\ (H U {i}) are n — |H| affinely independent
feasible points satisfying x; < 1 with equality, i.e., z; < 1 defines a facet.
Conversely, if z; < 1 defines a facet, then ¢ ¢ H (otherwise z; = 0 for
every solution). If a; +a; > f for j € [n]\ (H U {i}), then z; <1 is
dominated by the valid inequality z; + z; < 1, contradicting z; < 1
defining a facet. O

Remark 4. Note that Assumption 1 and Lemma 3(b) guarantee that P%?
is full-dimensional. Conversely, if a > 0 and P%P is full-dimensional, then
et € PP and a; < B for all i € [n].

Example 5. Consider the knapsack inequality
aTm:4x1+5x2+6m3+7x4+9m5§13:6, (1)

which will serve as a running example throughout this survey. Because
a; < (8 for all ¢ € [5], the set H defined in Lemma 3 is empty. Hence,
the knapsack polytope P%? is full-dimensional (Lemma 3(b)) and all non-
negativity inequalities z; > 0 define facets (Lemma 3(c)). Among all upper
bound inequalities z; < 1, only x1 < 1 defines a facet (Lemma 3(d)). Finally,
the only feasible 0/1 points satisfying the knapsack inequality a "z < 8 with



equality are (1,0,0,0,1)T, (0,0,1,1,0)". Thus, a'z < 3 defines a face of
dimension 1.

Remark 6. Different knapsack constraints a' x < 8 might lead to the same
knapsack set/polytope, e.g., if a € ZI} and € Z have a greatest common
divisor at least 2. Sometimes it is also possible to increase components of a
or decrease [3 without changing the knapsack set/polytope, e.g., x1 +2x9 < 2
can be replaced by 2x1 + 2x9 < 2 and then by x1 + 22 < 1.

In the following, we investigate properties of general facet defining in-
equalities of P%?. An inequality ¢z < 7 is called homogeneous if v = 0 and
non-homogeneous otherwise.

Lemma 7. [62, Proposition 4] Let a € R and § € Ry. If PP s full-
dimensional, the only homogeneous facet defining inequalities P*? are (posi-
tive multiples of ) the trivial inequalities —x; <0, i € [n].

Proof. Lemma 3(c¢) shows that —x; < 0 defines a facet for all ¢ € [n].
Conversely, assume ¢' 2 < 0 defines a facet of P = P%#. Since P is full-
dimensional and a > 0, ¢/ € P holds for all j € [n]. Thus, ¢; < 0 for all
J € [n], and the claim follows if exactly one ¢; < 0. Therefore assume there
exist distinct j, £ € [n] with ¢; < 0 and ¢, < 0. Then for any Z € P with
¢'z = 0, it follows that z; = 2y = 0, since otherwise ¢'z < 0. Thus, the
facet defined by ¢’z <0 is contained in the facets defined by —x; <0 and

—xp < 0, a contradiction. ]

Lemma 8. [62, Proposition 5] Let a € R, and B € Ry such that PaB s g
full-dimensional knapsack polytope, and let ¢'x < ~ define a facet of P%P
with v #0. Then v >0 and 0 < ¢; <+ for alli € [n].

Proof. Since 0 € P = P%? ~ £ 0. Thus, v > 0.

For the sake of contradiction, assume ¢; < 0 for some i € [n]. Then
there exists & € P N {0,1}" such that ¢'# = v and #; = 1 (otherwise the
inequality would be dominated by x; > 0). Due to Lemma 3(a),  — €' € P.
However, ¢! (Z—e¢') = ¢ Z—¢; > 7, a contradiction to the validity of ¢ "z < 7.
Conversely, if ¢; > 7 for some i € [n], then z; = 0 for all feasible solutions.
Hence, the face defined by ¢’z < v would be contained in the facet defined

by x; > 0, contradicting ¢' 2 < v being facet defining. O

In analogy to Lemma 3(a), Lemma 8 enables us to prove a monotonicity
result for knapsack polytopes.

Corollary 9. Let a € R} and 8 € Ry. The knapsack polytope PaB s
down-monotone, i.e., if & € P*? and 0 <y < x, then y € PP,

Tt is easy to construct examples in which a'« < 8 does not support P*# (defines a
face of dimension —1), e.g., 2x1 + 22 < 3.



Proof. If P = P%? is not full-dimensional, there exists i € [n] with P C
{z € R} : x; = 0}, which implies 0 = y; = x;. Iteratively projecting on the
remaining indices produces a full-dimensional polytope.

Let P be full-dimensional. It is sufficient to prove that y fulfills every
facet defining inequality ¢'z < of P. If v = 0, Lemma 7 implies that the
inequality is equivalent to a trivial inequality, which is fulfilled because y > 0.
Otherwise, by Lemma 8, ¢ > 0. Thus, ¢'y < ¢' 2z < v holds. O

Note that the results of Lemmas 3, 7, and 8 also follow from general
statements for independence systems (or equivalently set covering problems),
see, e.g., Conforti and Laurent 28|, Balas and Ng [11], Laurent [80], and
Sassano [109].

A general approach towards understanding general knapsack polytopes
with integral coefficients is via so-called master knapsack polytopes. The
master 0/1 knapsack polytope Py is the knapsack polytope associated to the
knapsack inequality

szzéﬂ (2)

where K; = 1+ ng, i.e., K; is the smallest integer exceeding g and the binary
variable z’ corresponds to the jth variable with coefficient . The following
result is due to Hammer et al. [63] as stated by Hammer and Peled [64].2

Observe that any knapsack inequality 'z < 8 with a € Z7, 8 € Z,
is represented in (2): For i € [B], let A; == {¢ € [n] : ay = i} and define
Iog=1{(,j) :i€[B], 7=1,...,|4}. Then the knapsack polytope P*"
is isomorphic to the face of Py that is defined by xz =0, (4,j) ¢ I,p.
Consequently, if we are given a complete linear description of Pjs, we can
directly deduce a complete linear description of arbitrary knapsack polytopes.
Hammer and Peled [64] provide a complete description of Py if 8 < 7. In
general, however, a complete linear description is not available and one needs
to take the knowledge on a concrete knapsack into account to find facet
defining inequalities.

In contrast to the knapsack polytope P, the polytope corresponding to
the standard LP relaxation

Pp= {33‘ S [0, 1]” : ClTl' < B}

is well understood. If Assumption 1 holds, the knapsack inequality o'z < 3
and the lower bound constraints z; > 0, 7 € [n], are always facet defining.
The upper bound constraint x; < 1 is facet defining, provided a; < f.
Thus, Prp has at least n + 1 and at most 2n + 1 facets. Moreover, a
complete characterization of the vertices of Ppp is available, which translates

2We could not access this reference online.



Dantzig’s [31]| characterization of optimal LP solutions into the language of
polyhedra.

Proposition 10. Let Assumption 1 hold. The vector & € [0,1]" is a vertex
of Prp if and only if there exist disjoint sets Iy, Iy C [n] with [lyUL1| >n—1
such that a(I1) < B, a; > f—a(l1) for j € [n]\ (IoUI1), and for everyi € [n]
we have
0, if 1 € I,
Il_ji = ]., ZfZ € Il,
B%fh), if i ¢ IpU .

Proof. Every basis B of a vertex & of P p consists of n linearly independent
constraints from the system a'x <B,0<xz<1. Sincez; <1andz; >0
cannot both be contained in B, each basis contains at most n box constraints.
Moreover, because there is exactly one non-box constraint in the LP relaxation,
B contains at least n — 1 box constraints. Hence, at least n — 1 entries of &
are integral.

Let Iy and I; be the lower and upper bound constraints contained in B,
respectively. If all entries of Z are integral, then a(l;) < f since Z is a
vertex of Ppp, and also the remaining properties given in the statement of the
proposition hold. Otherwise, there exists exactly one j € [n] with z; € (0,1).
Inserting the fixings Iy and I; and solving the knapsack equation (since it is
contained in B in this case) for x; yields z; = 6%511) Since z; € (0,1), we
conclude a; >  — a(l1) and even a(l;) < .

To prove the reverse direction, one readily verifies that the box constraints
corresponding to Iy and I; as well as the knapsack constraint (if z; ¢ Z)
form a basis for z provided a; >  — a(l;) and a(l;) < 8 hold. O

Statements about certain inequalities, which will be introduced below,
require the following ordering of coefficients.

Assumption 11. The coefficients of the knapsack inequality are sorted non-
decreasingly, i.e., a1 < ags < --- < ap.

At the end of this section, we pose some research questions; to the best
of our knowledge these are currently open, but partial answers are discussed
afterwards.

(Q1) How many different knapsack polytopes do (asymptotically) exist (w.r.t.
affine or 0/1 equivalence)?

(Q2) In general it is NP-hard to decide whether the defining inequality
a'z < B defines a non-empty face of P, since one needs to determine
whether the equality knapsack has a solution. Are there efficient
sufficient conditions to guarantee binary feasibility of o'z = 3 or that
a'xz < 8 defines a facet?



(Q3) Is there a characterization of possible operations on the defining inequal-
ity such that the knapsack set/polytope does not change, cf. Remark 67
This would try to characterize the set

{@B) e RY x Ry : K% = k&P,

Concerning Question (Q3), Bradley et al. [23] show that the solutions of
the linear inequality system

a(F) < B, F C {0,1}" with a(F) < 3,
alC) > B +1, C C {0,1}" with a(C) > B+ 1,
0<a; <ag<--- <ap

are exactly the ones that define the same knapsack polytope as a'z < 3,
provided Assumption 11 holds. Thus, for a concrete knapsack instance, (Q3)
can be answered, whereas general operations/manipulations of the knapsack
inequality that yield the same knapsack polytope are unknown.

1.2 Covers

One of the most important class of valid inequalities for knapsack polytopes
is given by cover inequalities, which are discussed in this section.

Definition 12. Let a € R’} and 8 € Ry. A set C C [n] is called a cover
of P%# if a(C) > B. It is called minimal if it does not contain a proper subset
that is a cover, i.e., C'\ {i} is not a cover for any i € C'. The corresponding
(minimal) cover inequality is

z(C) <|C|—1.

Cover inequalities are clearly valid for P%?, see, e.g., Crowder et al. [29].
Moreover, the set of box constraints and all minimal cover inequalities provides
an integer formulation for the knapsack set, since for a point £ € {0,1}"
with a' % > 3, the cover {i € [n] : #; = 1} contains a minimal cover, whose
cover inequality is violated by Z.

Example 13 (Example 5 continued). Consider again the knapsack inequal-
ity (1) given by 421 + 529 + 623 + Tx4 + 95 < 13. The corresponding
minimal covers are

Ci=1{1,2,3), Co=1{1,2,4}, Cs=1{1,3,4}, Cu=1{234)},
Cs = {275}7 Ce = {375}7 Cr = {47 5}

The set C' = {1,2,3,4} is a cover, but not a minimal cover since C; C C.
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By analyzing minimal cover inequalities of knapsack polytopes, one is
able to derive faces of the knapsack polytope. To this end, we restrict the
knapsack polytope to the variables that are contained in the cover and obtain
the following result, which has been implicitly shown by Padberg [99].

Proposition 14. Let a € R} and B8 € Ry be such that PP s full-
dimensional, and let C be a minimal cover w.r.t. the knapsack inequal-
ity a'x < B. Then x(C) < |C| — 1 defines a facet of the knapsack polytope

Pc = conv {x € {0,1}¢ : Zamﬁz‘ < 5}7

ieC
and it defines a face of P“P of dimension at least |C| — 1.

Proof. Since P*? is full-dimensional, the same holds for Po. The |C| affinely
independent vectors 1 — e, i € C, fulfill the minimal cover inequality with
equality. Thus, z(C) < |C| — 1 defines a facet of Py and a face of P*# of
dimension at least |C| — 1. O

In general, minimal cover inequalities need not define facets of P. In Sec-
tion 3, however, we will see that so-called lifting can render these inequalities
to be facet defining.

To strengthen the integer formulation of P%# via minimal cover inequali-
ties and to derive facet defining inequalities, we refine the concept of minimal
covers.

Definition 15. Let a € R}, 3 € Ry, and let Assumption 11 hold. Then a
cover C' = {iy,... i}, where i1 < ig < -+ < iy, is called strong if C is a
minimal cover and

a(C) —a;, +a; <pB

for every j € [ir — 1] \ C. Moreover, the extension of a (not necessarily
strong) cover C' = {iy, ..., i} is the set E(C) := CU {ix +1,...,n}. Since
the weights a; are sorted non-decreasingly, the extension inequality

2(E(C)) =z(C)+z({ix+1,...,n}) <|C] -1 (3)
is valid for P.

Example 16 (Example 5 continued). Note that Assumption 11 holds in
this example. The strong covers are C7, C5, Cg, and C7. To see this
for C5 = {2,5}, we check Definition 15:

a(C5)—a,~k+aj <14-947=12<13=4,
for every j € {1,3,4} since ay =7 =max{ay : £ € [i — 1]\ C5}.

The minimal cover C3, however, is not strong, because removing item 4
from and adding item 2 to the cover produces an infeasible collection of items.

11



Further details on (extension inequalities of) strong covers are provided
by Balas [10]. Moreover, there exists a complete characterization of the cases
in which extension inequalities define facets of P®#.

Theorem 17 (Balas [10]). Let a € R}, 8 € Ry, and let Assumption 11
hold. Let E C [n] contain at least two elements and let k € [n|. Then the
inequality ©(E) < k—1 defines a facet of P%P if and only if it is the extension
inequality of a strong cover C' = {iy, ... ik} with iy <ig < --- < i and

a(C) — Qi) — Qj,_y T ap < ﬁ (4)

Note that (E) < k — 1 in Theorem 17 is valid in both cases (either it
defines a facet or it arises from a strong cover). A characterization equivalent
to Theorem 17 in terms of independence systems is given by Laurent [80,
Proposition 3.11 and 3.14].

Example 18 (Example 5 continued). As seen in Example 16, the strong
covers of the running example are {C1,C5, Cg, C7}. Their extensions are

E(Cy) =11,2,3,4,5}, E(Cs) ={2,5},
E(Cﬁ) = {3> 5}a E(C7) = {4a 5}'

Condition (4) of Theorem 17 yields:

Ci)—az—azs+a;=15—6—-5+9=13 <13,
Cs)—as—ag+as;=14—9—-5+9=9<13,
)
)

S

a
a(Cg) —as —a3+a5=15—-9—-6+9=9<13,

C;)—as—ag4+a5=16—-9—-7+9=9<13.

S

(
(
(
(

Thus, all inequalities z(E(C;)) < |C;| — 1 for i € {1,5,6,7} define facets and
these are the only facet defining inequalities of the form x(E) < k — 1.

(Q4) Can one obtain a characterization of knapsacks for which the cover
inequalities provide a complete linear description of P%8?

(Q5) How strong is the formulation using (minimal) cover inequalities (e.g.,
in terms of LP-gap)?

2 Binary Formulations Based on Strong Covers

A set of linear inequalities Az < b separating K = K%# and {0,1}"\ K is
called a binary formulation of K, i.e., K = {zx € {0,1}" : Az < b}. Using the
concept of (extensions of) strong covers, one can find a minimum size binary
formulation of K all of whose inequalities have left-hand side coefficients that
are either 0 or 1, so-called 0/1-binary formulations. Such formulations are
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interesting, since they are usually numerically more stable than the original
inequality, if the latter contains large numbers. Moreover, these inequalities
have a simple interpretation since they encode cardinality restrictions on
subsets of variables. The following result is due to Glover [48| as stated by
Wolsey [123].

Theorem 19 (Glover [48]). Let a € R and B € Ry. Let Assumption 11
hold and let & be the set of all strong covers of K%B. Then

z(E(C)) <|C|—=1 forallCe&

is a 0/1-binary formulation of K*? of minimum size. That is, there is no
smaller set of inequalities with 0/1-coefficients on the left-hand side that
enforces that a binary vector is contained in K.

Note that Balas [10] cites Glover’s result in a different way by restricting
the strong covers in Theorem 19 to the set

G={Ce6: BEC)¢ E(C) forall ¢' € &\ {C} with |C] = |C"|}.

Thus, if & C &, the size of Balas’s version of the binary formulation in
Theorem 19 is smaller than in Wolsey’s version, which would be a contradiction
to the minimality of the formulation. However, this discrepancy cannot occur.

Lemma 20. Let C and C be distinct strong covers for the knapsack defined
by a'z < B with |C| = |C|. Then neither E(C) C E(C) nor E(C) C E(C)
holds.

Proof. Let C and C be two distinct strong covers with k = |C| = |C|.
Let C = {iy,...,ix} and C = {j1,...,5%}, where i1 < iy < --- < i} and
J1 < jo2 <+ < ji. By symmetry, it suffices to show E(C) € E(C) to prove
the assertion.

For the sake of contradiction, suppose

{it, .., ig}U{ig+1,...,n} = E(C) C E(C) = {j1,-- -,y U{jr+1,...,n}.

Then C' C E(C) \ {ix + 1,...,n}. On the one hand, if i; < ji, this implies

CC gtV + 1 .oon)\ i+ 1,...,n}
= {7, \ ik + 1, i}
cC,
contradicting either |C| = |C|] or C # C.

On the other hand, if ix, > jg, then C C {j1,..., 0kt U{jrx + 1,... i}
Since |C] = |C] and C # C, the index j* := max{j € C \ C} exists
and a;, > aj, for every £ € [k]. Consequently, the knapsack weight of
C" = (C\ {ix}) U {y*} fulfills

B <a(C) <a(C) <a(C),
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which proves that C’ is a cover, and thus, contradicts C' being strong. By
combining both cases in the case distinction, we obtain E(C) € E(C). O

Example 21 (Example 5 continued). According to Example 16, the set of
all strong covers is & = {C4, C5, Cs, C7} with extensions given in Example 18.
Consequently, a minimum size 0/1-binary formulation of K @B ig

{x€{0,1}5:x1+x2+x3+x4—|—x5§2, To + x5 < 1,
x3 4+ 5 < 1, Ty+x5 <1},

In general, the minimum size |&| of a 0/1-binary formulation of K provided
by Theorem 19 can be exponential in n and may be complicated to compute
exactly. For this reason, we present a simple technique to produce lower
bounds on |&|. Let A := {a; : ¢ € [n]} be the set of different left-hand
side coefficients of the knapsack inequality a' 2 < 3. For every o € A, we
define A, :={i € [n] : a; = a}, i.e., A, contains all indices of variables with
coefficient « in the knapsack constraint. Moreover, define (‘sz) as the set
containing all subsets of A, with cardinality n.

Proposition 22. Let Assumption 11 hold for a € R, let 5 € Ry, C be a
strong cover of K% n, = |C N A,|, « € A, and define & = max{a € A :
ne > 0}. Then, for every choice of C!, € (Az), a € A\ {a}, the set

n

' = < U C&) U(C'NAg),

acA\{a}
is a strong cover of K.

Proof. Let C' = {i1,...,i;} be a strong cover and let C" = {7},...,i,.} be
defined as stated. Then ¢} = i; since elements in Ay are not modified.
Moreover, for every a € A there exists a bijection ¢,: Ay — A, that
maps C' N A, to C'N Ag, where ¢g is the identity on Ag. If C' is not strong,
then 8 < a(C’) — ay + aj holds for the maximum element j' € [i}] \ C”.
In particular, since C N Az = C' N Az and ¢,(C' N A,) = C N A, for
every a € A\ {a} by definition, we have

§ = 0, (7') € [Bali]\ C = [ik] \ C. (5)

This implies

B < Zai/—ai;%—aj/zz Z ai/—ai%+aj/

ieC’ a€A i/GC’ﬂAa
=D D ) — Geagy Ty = e —ai, +aj,
acAieC'NA. eC
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because j and j' have the same coefficient in the knapsack inequality by (5).
Thus, since j € [ig] \ C, we conclude that C' cannot be a strong cover, a
contradiction. For this reason, every set C’ that is generated as proposed
above is a strong cover. O

Proposition 22 implies that we can generate [ ], A\{a} (‘ﬁz') many strong
covers from one given strong cover. Thus, by guessing some strong covers,
Proposition 22 and Theorem 19 yield a lower bound on the number of
inequalities in a 0/1-binary formulation. In the following, we show two
applications of this result to derive exponential lower bounds for particular
knapsacks.

Example 23. Consider the knapsack inequality > " | z; + 2 Z?ﬁn i <n
written as a 'z < n, where n is even. Let I, := [k]U{n+1,...,n+ ”‘Tk_l} for

every odd k € [n]. Then, a” x'* =n — 1 implies that y/* € K. Furthermore,
adding any element with weight 2 to I increases the weight to n + 1. Thus,
the extended set is not in K. Consequently, the set Cj, := I U {n + 2=5+1}
is a minimal cover, and it is strong because every element in [n + Z=5FHL]\ Oy,
has weight 1. Hence, Proposition 22 shows that we can generate (Z) many
strong covers from C}% and they are pairwise different. For this reason, any
0/1-binary formulation of K contains at least

n
— 2n—1
> (3)
ke[n]:
k odd
inequalities. Thus, a restriction to inequalities with 0/1-coefficients leads to

a drastic increase of the number of necessary constraints in comparison to a
formulation with coefficients in {0, +1, £2}.

Example 24. Consider the knapsack inequality 21221 olif2l =1y, < on 1
written as a ' & < 8, which is associated with the so-called orbisack, introduced
by Kaibel and Loos [74]. Let C' = {i € [2n] : i odd or i = 2}. Because
a'x® =27, C is a minimal cover since all coefficients are greater than or
equal to 1.

Moreover, C' is strong: For n < 2, this follows by a case distinction.
Otherwise, if n > 2, we have that 2n — 2 is the index with the largest
coefficient not in C' for which we estimate

n
a(C)—agn-1+agn—2 =1+ 27 =27 1qgan 2 = gn_gn-lyon=2 <o,
=1

Thus, C is a strong cover.

Since C' contains all elements of weight 1, one element of weight 2"~ ! as
well as one of the two items of weight 2¢ for i € {1,...,n — 2}, Proposition 22
implies that we can generate 2”2 strong covers from C. This shows that we
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need exponentially many inequalities in any 0/1-binary formulation of K. In
fact, one can show that the exact number of strong covers is 2~!. Thus, by
guessing the single set C' we can generate one half of all strong covers.

(Q6) Theorem 19 implicitly uses bounds by requiring = € {0,1}". What is
the minimal size of a formulation Az < b with coefficients in {0, £1}
such that K = {x € Z" : Az < b}? An upper bound is |&| + 2n by
explicitly adding trivial inequalities.

(Q7) The lower bound on the number of strong covers is relying on the
representation of K via the knapsack inequality o'z < B. If all
coefficients in a are different, however, the bounding technique is not
applicable. Is there a simple mechanism to derive bounds on the number
of strong covers also in this situation?

3 Lifting

In this section, we consider lifting, an important concept to strengthen valid
inequalities for the knapsack polytope P = P%? with a € R?, 8 € R..
(Up-)lifting takes an inequality ), .gc;z; < 7 with S C [n] that is valid
for the restricted knapsack set Kg :={z € K : x; =0, i € [n] \ S} and
turns it into a valid inequality for K = K%P by lifting coefficients for the
variables x;, i ¢ S, from 0 to appropriate lifting coefficients. The goal is to
obtain a stronger or even facet defining inequality for P.

It is also possible to decrease coefficients of variables that are contained
in the initial inequality, so-called down-lifting. In the following, we discuss
up-lifting in detail and often write lifting instead of up-lifting. Down-Lifting
will be discussed in Section 3.2.

We first note that “trivial lifting” is always possible, i.e., the inequality
with 0 coefficients outside S is valid for K:

Lemma 25. Let a € R} and B € Ry. If Y ,cgcizi <y is valid for Kg,
then it is also valid for K.

Proof. Consider any solution & € K and define by z; = &; if i € S and
Z; = 0 otherwise. By monotonicity of K (Lemma 3(a)) and definition of Kg,
we find T € Kg. Since the inequality is valid for Kg, we obtain

dadi=Y azi <,
€S €S
which shows that the inequality is valid for K. O

There are two ways to compute the lifting coefficients: either iteratively,
one coeflicient in each step, by so-called sequential lifting or all coefficients in
one step, which is called simultaneous lifting.
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3.1 Sequential Up-Lifting

Sequential lifting fixes an ordering of [n]\ S. By iteratively solving a sequence
of optimization problems, the strongest possible lifting coefficients are com-
puted such that the inequality remains valid for the corresponding restricted
knapsack sets. In each iteration, all previously computed coefficients are
taken into account.

This procedure will first be described for general valid inequalities. Then
it is applied to minimal cover inequalities.

Lifting General Inequalities The sequential (up-)lifting procedure can
be defined for an arbitrary valid inequality

mei Sﬂ'o (6)

€S

for Kg with m > 0. Then for k € [n] \ S compute 7 so that

Wkiﬁk-I-Z?TixiS?To (7)
€S

is valid for Kgyg). Consider the lifting function ®g: Ry — R defined as

®g(u) = min {7['() — T a;x; < B — u} (8)
z€{0,1}5 ; ;

Theorem 26 (Padberg [99]). Let a € R, B € Ry, and let (6) be valid

for K. Then Inequality (7) is valid for Kgygy if 7 < ®s(ax). Moreover, if

dim(P) =n, 7, = Pg(ax), and (6) defines a face of dimension t of conv(Kg),

then (7) defines a face of conv(Kgyyy) of dimension at least t + 1.

After the lifting coefficient 7, = ®g(ay) for k € [n]\ S has been computed,
one can update S to be S U {k} and compute the next coefficient for a new
element of [n] \ S (as long as S # [n]). By iterating this process, the other
lifting coeflicients can be computed one after the other such that the resulting
inequality is valid for K. In general, the lifting function ®g can decrease as
more variables are lifted in. Thus, the lifting coefficients depend on the order
in which the variables are lifted. This lifting procedure is called sequential
lifting.

Note that since 7 > 0, ®g(u) < mp holds. Moreover, since (6) is valid
for Kg and every feasible solution = considered in (8) is contained in Ky if
u >0, Pg(u) > 0 follows. Thus, evaluating ®¢ in u amounts to solving a
0/1 knapsack problem whose objective value is contained in [0, 7p]. Applying
Theorem 26 iteratively, the resulting inequalities are valid for the larger sets
and therefore each intermediate objective value lies in the interval [0, mo].
Moreover, if the original inequality (6) has integral coefficients, the computed
lifting coefficients are integral as well.
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Therefore, if 7 and 7 are integral, ®g(u) can be computed by dynamic
programming in O(nm) time. The overall running time of computing all
lifting coefficients is thus in O(n? ).

Note that if @ and (3 are integral, ®g(u) can be computed in O(n j3) time,
since u > 0 and thus the right hand side is always at most 5. However,
usually mg < B, so the first way is faster; see also the next section.

Lifting Cover Inequalities One important class of valid inequalities is
given by lifting minimal cover inequalities, i.e., the starting inequality (6) is
given by z(C) < |C| — 1; in particular, S = C and 7y = |C| — 1. Consider
some order i1, ...,i; of [n] \ C, and define

ci=0C, C.=C,_1 U {ir—l} for r € {2, e k:}

Set a; = 1 for i € C and iteratively «;. = ®¢.(a;,) for r € [k]. The resulting

inequality
it Y awm<|Cl-1 (9)
icC ien)\C

is called a simple lifted cover inequality (LCI); “simple” refers to the fact that
we are only up-lifting here. Note that all coefficients in (9) are integral by
construction.

Recall that by Proposition 14, z(C') < |C|—1 defines a facet of conv(K¢),
which is affinely equivalent to Po. Thus, by Theorem 26, the resulting simple
LCI is valid for K and defines a facet of P = conv(K). However, as the
lifting coefficients depend on the ordering of [n] \ C, lifting one cover C' can
yield theoretically up to (n — |C|)! (not necessarily different) facets of P.

All lifting coefficients can be computed in O(n |C|?) time by the dynamic
programming approach mentioned above. In fact, this can even be improved
to O(n|C|) as shown by Zemel [131], i.e., computing all lifting coefficients
for minimal cover inequalities has the same complexity as computing a
single lifting coefficient. Moreover, Kaparis and Letchford [76] noted that by
combining the ideas of Balas and Zemel [12] and Gu et al. [60], most of the
lifting coefficients can be computed in time O(n + |C|log|C]).

Example 27 (Example 5 continued). Consider again the knapsack inequality
4dx1+5x2+6x3+ 724+ 925 < 13. The minimal cover inequality associated
to the minimal cover C' = {2,3,4} is given by z9 + x5 + x4 < 2. Lifting this
inequality, we have two choices in ordering [n] \ C' = {1, 5}.

If we use the ordering (i1,42) = (1, 5), i.e., first lift the variable z; and then
x5 into the cover inequality, we have C; = C' = {2,3,4} and Cy = {1,2,3,4}.
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In the first step, the lifting coefficient a;, = ®¢,(a;,) of x; is given by

O, (a;,) = xGI{%i,Ill}c {|C] -1- Zx, : Zaixi <pB- ail}

ieC e’
= min {2—2y—x3—x4 : Dxo+6x3+T7x4 <13 -4}
z€{0,1}¢
=2-1=1,

and we obtain the inequality 1 + zo + x3 + x4 < 1. The lifting coefficient
a;, = P, (a;,) of x5 is then given by

min {2—:L‘1—112—$3—:L‘4 : 4x1+5x2+6x3—|—7m4§13—9}
x€{0,1}C2
=2-1=1.

This yields the simple LCI 1 + 9 + 3 + x4 + x5 < 2.
Using the ordering (i1,72) = (5,1) gives:
aj; = min {2—xy—x3—24 : bxa+6x3+Txy <13 -9}
z€{0,1}¢
—2_0=2,

o, = min {2—$Q—x3—$4—2$5 :bx9+6x3+Tx4+ 925 < 13—4}
x€{0,1}°2

=2-2=0.
This yields the different simple LCI xo + x5 + x4 + 225 < 2.

To speed up the computation of lifting coefficients, Balas [10] presents a
weaker form of lifting that runs in linear time and which does not rely on
solving an optimization problem. The trade-off is that Balas’s simple LCIs
do not necessarily define facets of P.

Theorem 28 (Balas [10]). Let a € R}, 8 € Ry, let Assumption 11 hold,
and let C' be a minimal cover for P, E(C) the extension of C, and Cj, be
the set of the last h elements of C, h € {1,...,|C|}. Consider the parti-
tion No, N1,...,Nq, ¢ = |C| =1, of [n], where

No=[]\E(C), N =EQC)\|J N,
h=2
Nh:{jEE(C)t Zaigaj< Z CLZ}, h€{2,...,q},

1€Ch, 1€Chy1

and define

m; =h forall i € Ny, he {0,1,...,q}.
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Then, the inequality

x; + T T < |C| —1 (10)
PIEEEDD

ieC i€ln)\C

is valid for P. Furthermore, if

> ai<B-a; foraljeNy, he{01,...,q}, (11)
i€C\Chi1

then (10) defines a facet of P.

Recently, Letchford and Souli [83] introduced a modified lifting procedure
that can also be applied if the underlying cover C' is not minimal. If C' is min-
imal, it produces the same inequality as the lifting procedure of Theorem 28.
If C' is not minimal, it generates an inequality that is not weaker than (10)
and that can be stronger in some cases. In particular, Letchford’s and Souli’s
method can modify coefficients of variables with indices contained in C'.

Corollary 29 (Balas and Zemel [12]). Let C' be a minimal cover. If Con-
dition (11) holds, every lifting sequence leads to the same sequentially lifted
minimal cover inequality. This inequality is given by

Zzi—i- Z mix; < |C|—1,

ieC ien]\C

where m; is defined as in Theorem 28. Furthermore, it is the unique facet
defining inequality of P having coefficients equal to 1 for all i € C and a
right-hand side of |C| — 1.

Thus, provided Condition (11) is met, there is exactly one facet of P that
can be found via sequentially lifting the minimal cover inequality for C'. In
particular, an inequality defining this facet can be found by Balas’s procedure
and one need not rely on the sequential lifting approach.

Example 30 (Example 5 continued). Consider again the knapsack inequality
41+ 529+ 623+ Txs+ 925 < 13. For the minimal cover C' = {1, 2,3} and
its extension E(C) = {1,2,3,4,5}, the six sets C1, Cy, C3 and Ny, N1, Ny
defined in Theorem 28 are given by

G = {3}7 Co = {2a3}7 Cs = {172)3}1

No={jeEQC):5+6<a; <b+6+4} =0,

Nl = E(C) \N2 = {1>2737475}7

No = 5]\ E(C) = 2.

Thus, we obtain 74 = w5 = 1 and the valid inequality

T1+ 2o+ a3+ x4+ 25 < 2. (12)
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Since Ng = Ny = @, we need to check Condition (11) only for h = 1. Because
a1 < 13 — aj is true for all j € [5], the valid inequality (12) defines a facet
of P. Furthermore, by Corollary 29, it is the unique facet of P which can be
obtained from C by sequential lifting. In fact, (12) is the extension inequality
for the cover C' = {1, 2, 3}.

For the cover C = {2,3,4} and its extension E(C) = {2,3,4,5} the six
sets C1,Cs,C3 and No, N1, Ny are given by

Cl = {4}3 CQ = {374}3 03 = {273a4}a
No = @, Ny :{2,3,4,5}, Noz{l}

This results in the valid inequality
Ty + 23+ x4+ x5 < 2,

which is not facet defining for P, because it is dominated by the lifted
inequality in Example 27. Hence, if Condition (11) does not hold (as in
this example for h = 0 and j = 1), Theorem 28 does not necessarily yield
sequentially lifted facets.

In Example 30, we have seen that sequential lifting may generate the
extension inequality of a cover. The following corollary characterizes when
this can occur. Recall that a strong cover is a minimal cover by definition.

Corollary 31. Let Assumption 11 hold, and let C = {iy,... i} be a cover
of K, where i1 < io < -+ < i and k > 2. Then the extension inequality of C
is a sequentially lifted cover inequality of P if and only if C is a strong cover

and (4) holds.

Proof. Since lifted cover inequalities are facet defining for P, necessity follows
by Theorem 17. To see sufficiency, consider the quantity

ay = xerﬁ)&}ﬁc {:C(C) : iezcaixi <pB- aj}.
If j € {ig+1,...,n}, then aj > |C|—2 by (4) since a; < a, by Assumption 11.
Thus, af = [C| — 2 follows because a; > a;, and C is a minimal cover.
Consequently, the lifting coefficient of z; is 1. If j € [i] \ C, then ay = |Cl—1
since C' is a strong cover, and thus, the lifting coefficient is 0. Applying this
argument iteratively (for any lifting sequence) yields the assertion. O

(Q8) How strong (e.g., in terms of LP-gap) is the formulation using lifted
cover inequalities?
(Q9) How many lifted cover inequalities are there?

(Q10) In Theorem 28, the additional assumption (11) not only depends on the
knapsack polytope, but also on its representation via the knapsack in-
equality. Does there exist a similar characterization that is independent
from the knapsack inequality?
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3.2 Sequential Down-Lifting

The procedure described above is called up-lifting, because coefficients that
were zero in the initial inequality are potentially increased. Recall that
we assumed the initial inequality ZZ-G M TiTi < m to be valid for Kg, i.e.,
the variables not in S are at their lower bound. In contrast to this, the
down-lifting procedure assumes the initial inequality to be valid for the
set K% :={r €K :x;=1,i¢c[n]\S}ie., variables outside S are at their
upper bound. While the initial inequality in the up-lifting process is valid
for the whole knapsack set K, see Lemma 25, this inequality is typically not
valid for K in the down-lifting case.

The aim of down-lifting is to turn an inequality valid for K° into a
valid inequality for K. To this end, the down-lifting procedure identifies
coefficients m; for i € [n] \ S such that

n
Zﬂi xX; S 0 + Z v
i=1 i€[n]\S

is valid for K. To find such coefficients, analogously to the up-lifting case, a
lifting sequence has to be fixed and the up-lifting function ®°: Ry — R,

@S(u)zig?()g{meZ— Za1x1<ﬂ+u}
= max {mel—wo.Zalmz—{— Z al—u<ﬂ}

ve{0.1}* €S i€[n]\S

is considered. If xp, k € [n] \ S, is the first variable to be down-lifted,
the lifting procedure removes k from [n] \ S and determines the maximum
violation 7, = ®° (ag) of the initial inequality that can occur if xy is fixed at
its lower bound. Thus,

Wk$k+Z7TiCCi < mo + Tk
ieS

is valid for K5Y{%}. Note that this is in complete analogy to the up-lifting
case since the up-lifting function ®g can be equivalently defined as

(I)S(u):mlg}gg {770_271'7,%1 Zazngﬂ_u}

€S
Example 32 (Example 5 continued). Let S = {2,3,4,5}. Then z(S5) <1
is valid for K, however, it is invalid for K because it cuts off the feasible
solution (0,1,1,0,0)"
To make this inequality valid for K, we down-lift variable 1 by computing

m = ma{cg{:c(S) —1:4214+5294+6x3+7x4+925 < 13—1—4} =1,
zeK
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which results in the valid inequality z; + z(S) <141 =2.

Computing the lifting coefficient 7, exactly may be time-consuming, since
it requires to solve a knapsack problem. Alternatively, it is possible to down-
lift the initial inequality inexactly. Similar to the up-lifting case, we obtain
an analogue to Theorem 26.

Theorem 33 (Nemhauser and Wolsey [98]). Let a € R, 5 € Ry, and
let (6) be valid for K. If {x € K8} 1 2y = 0} # @ and m, > ®5(ay,),
then

kak—i-ZWil'iSﬂo—i-’/Tk (13)

€S

is wvalid for K59k Moreover, if m, = ®3(ai,) and (6) defines a face of
dimension t of conv(K®), then (13) defines a face of dimension at least t + 1
of conv (K SUIkY),

Note that both the up- and down-lifting procedure can be applied jointly
to one inequality. To illustrate this, consider up- and down-lifted minimal
cover inequalities. Let C' be a minimal cover and let (Cp, C1) be a partition
of C. The initial inequality for the lifting procedure is then z(Cy) < |Cy] — 1,
which is valid for K, but not for K¢, if C; # C. After fixing a lifting
sequence, the variables in [n] \ C are sequentially up- and the ones in Cy
down-lifted. This results in

Z Wixi-l-Zﬂixi—FinS‘Cl‘—l—l—Zﬂi, (14)

lE[n]\C iECO 1€Cq iECQ

which defines a facet of K, see Nemhauser and Wolsey [98]. In the literature,
one refers to inequalities of this kind as lifted cover inequalities (LCI), whereas
inequalities with Cy = @ are simple LCIs as before.

3.3 Sequence Independent Lifting and Superadditivity

The inequalities produced by sequential lifting may depend on the order, as
we have seen in Example 27. Another approach is to compute all coefficients
for variables with indices in [n] \ S simultaneously, which may be faster.
This concept is called sequence independent or simultaneous lifting. Since
superadditivity of the lifting function plays an important role, this procedure is
sometimes also called superadditive lifting. Note that Balas’s lifting procedure
in Theorem 28 can be considered as a simultaneous lifting approach, since it
yields valid inequalities with coefficients that do not depend on any ordering
of the indices i € [n] \ S.

We first describe simultaneous lifting in a general setting for arbitrary
valid inequalities, and afterwards, for cover inequalities more particularly.
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Lifting General Inequalities Let 7 € ]R[f]O and ), gmx; < m be a
valid inequality for Kg .= {x € K : z; = 0, i € [n]\ S} with S C [n].
Simultaneous lifting is performed via a function ¥: Ry — R such that

Z W (a;) ; + Zﬂ'i x; < o (15)

i€n]\S €S

is valid for K. Note that taking ¥(u) = ®g(u) does not lead to a valid
inequality in general, since the set S grows as more variables are lifted in.
Thus, if 41, .. .,k is the lifting order of [n]\ S chosen for the sequential lifting
approach, the lifting function (8) satisfies

Qs > Psuginy = Psufinin} = = Psufi,..in)
To overcome this issue, one needs superadditive functions.

Definition 34. A function f: R — R is superadditive on D C R if it satisfies
f(dy) + f(d2) < f(dy + dg) for all dy, ds € D.

Theorem 35 (Gu et al. [60], Wolsey [125]). Inequality (15) is valid for K if
the function ¥: R — R satisfies

(a) ¥(u) < ®g(u) for all u € [0, m] and

(b) ¥ is superadditive on [0, ).

Examples for superadditive lifting functions can be found, among others,
in Marchand et al. [87, Sec. 2.2.2], Gu et al. [60], or Letchford and Souli [83].

Lifting Cover Inequalities Let C' = {i1,...,it} with i1 < --- < i be
a minimal cover and let Assumption 11 hold. Let A; be the sum of the j
largest elements of {a;,,...,a; }, i.e., Aj = E?Zl @iy, _;, and define Ag =0
as well as A := ..~ a; — > 0. Then, the function

7, ifAi§u<AZ-+1—/\ fOI'iE{O,...,k’—l},
T(u)=1Q i+ F(u—4;), ifA—A<u<A; fori e {1,...,k—1},
k++(u—Ay), if Ay —X<u,

for u > 0 is dominated by ®¢(u) and is superadditive on Ry, see Marchand
et al. [87]. This leads to the valid inequality

Z \I/(az)x,—i—Za;Z < |C‘ — 1.

ie[n]\C icC

Example 36 (Example 5 continued). Consider again the knapsack inequality
4xy +5x2 + 623+ Txg + 925 < 13 and the minimal cover C' = {2,3,4}.
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Here, A\=5464+7—-13=5 Ag =0, A1 =7, Ay =13, A3 = 18, and the
superadditive function ¥(u) is given by

0, f0<u<?2,

+iu-17), if2<u<T,

1, f7<u<S§,

2+ Lu—13), if8<u<13
3+ Lu—18), if13<u.

This yields ¥(4) = 2 and ¥(9) = £, and thus, the valid inequality
Zri+aatagtas+ las <2 (16)

which is different from the facet defining inequality that we obtained from C
by sequential lifting in Example 27, and does not define a facet of P. However,
this is not always the case. For the minimal cover C' = {1,2,3} the above
method also yields the facet defining inequality (12).

Remark 37 (Remark for Examples 27, 30, 36). Note that for all minimal
covers with two elements w.r.t. 4x1 + dbxo + 6x3 + Txy + 925 < 13, i.e.,
C ={2,5}, C ={3,5} and C = {4,5}, all three lifting procedures (sequential
lifting in Theorem 26 and Theorem 28, as well as sequence independent lifting)
yield a coefficient of O for the remaining three variables. This is due to the
fact that all three covers are strong covers with E(C) = C, and it can easily
be seen that the cover inequalities in all three cases already define facets of P.

Easton and Hooker [35] present a procedure to simultaneously lift a set
of variables into a cover inequality. If the cover and the set of variables
to lift are sorted, this procedure only needs linear effort. Specifically, for a
cover C' C [n] and a set F' C [n] \ C, they define the (F, p)-simultaneously
lifted cover inequality (SLCI)

z(C)+pzx(F) <|C| -1,

which is valid if p > 0 is sufficiently small. An exact characterization is given
by Easton and Hooker [35, Theorem 2.1|. In general, SLCIs are not facet
defining, but only increase the dimension of the face that is defined by the
underlying cover inequality. However, Easton and Hooker [35, Theorem 2.3|
state sufficient conditions under which SLCIs are indeed facet defining for
Pour = conv(Keour).

3.4 Complete Characterization of Facets from Simple LCIs

Balas and Zemel [12] give a complete characterization of the facet defining
inequalities that can be obtained from a minimal cover by sequential or
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simultaneous lifting, which we describe in this section. A generalization
of this result for arbitrary 0/1 polytopes is provided by Peled [102] and
Zemel [130]. Wolsey [124] discusses lifting procedures for general integer
programs. In order to state the result of Balas and Zemel, additional notation
needs to be introduced.

Recall that Theorem 28 characterizes valid inequalities that are easy to
compute and that even are sequentially lifted minimal cover inequalities if
Condition (11) is satisfied. Let I be the set of indices j € [n] \ C that satisfy
Condition (11) and let J := [n] \ (C'UI). Given the set J, define

M(J)::{MQJ: Zajgﬁ,M;é@},

JEM
and for each M € M(J) define f), as

By == min {|0—1—x(0) : Zaixigﬁ—a(M)}.

C
z€{0,1} Pyt

Theorem 38 (Balas and Zemel [12, Theorem 9|). Let a € R}, 8 € Ry, and
let Assumption 11 hold, let C' be a minimal cover for P and let m; be defined
as in Theorem 28. Then the simple LCI

2(C)+ Y aiw <|C] -1,
i€[n\C
is facet defining for P if and only if
(a) for everyi € J there exists 6; € [0,1] such that

T4y (XS I?
Q; = .
m+0;, 1€ J,
and
(b) the vector 6 € R” is a vertex of the polyhedron

T:{5ERJZ ZQSBM—Z@,MGM(J)}

jeEM jEM

Corollary 39 (Balas and Zemel [12, Corollary 9.1]). The simple LCI (9) of a
minimal cover C' with lifting coefficients «; fulfilling (a) and (b) of Theorem 38
is a sequentially lifted minimal cover inequality if and only if § € {0,1}7.

This means that all facet defining simple LCIs with integer coefficients can
be generated by sequential lifting, whereas the simultaneously lifted minimal
cover inequalities that cannot be found by sequential lifting have fractional
coefficients. These can be obtained by computing the fractional vertices of
the polyhedron T'. Another implication is a characterization of the lifting
coeflicients of sequentially lifted facets.
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Corollary 40 (Balas and Zemel [12, Theorem 3|). Let (9) be a sequentially
simple lifted cover inequality that defines a facet of P. Then the lifting
coefficients ay, i € [n] \ C, satisfy

T, 1€ 1,
o = .
moor mp+1, 1€ J.

Moreover, Hartvigsen and Zemel [66] proved that one can decide in O(n?)
time whether the valid inequality ¢’z < v with ¢ € 7" is a (facet defin-
ing) simple lifted minimal cover inequality. However, if ¢ € R", deciding
whether ¢'z < ~ defines a valid inequality obtained by lifting a minimal
cover inequality is coNP-complete even if the underlying cover is known.

Example 41 (Example 5 continued). Consider again the knapsack inequality
41 +5xa+ 623+ Txs+ 925 < 13 and the minimal cover C' = {2,3,4}. As
in Example 30,

Cl = {4}7 02 = {354}a 03 = {273)4}5

and m = 0, 75 = 1. It follows that ] = @ and J = {1,5}. Moreover,
M(J) = {{1},{5},{1,5}}. For M = {1}, the coefficient 5}, = 6%1} is given
by

min {|C\—1—x(C’) : Zaixigﬁ—a(M)}

C
z€{0,1} Pyt

= min {2—x2—$3—x4:5x2+6x3+79§4§13—4}:1,
z€{0,1}¢

which implies the inequality
H<Py—-m=1-0=1.

For M = {5} and M = {1, 5}, the inequalities d5 < 1 and d; + 05 < 1 can be
derived analogously. By Theorem 38, the inequality

a1x] + a2+ w3+ x4+ a5y <2 (17)

is facet defining for P if and only if
(a) oy =7 + 61 =01,
as =75 + 05 = 1+ 05,
with 41, 5 € [0, 1], and
(b) § = (01,65)" € R2 is a vertex of the polyhedron

T = {((51,(55)T €R2 101 <1,05<1, 61 +d5 < 1}.
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Since T has the two vertices (1,0) " and (0,1), the only two facet defining
inequalities that can be obtained from the minimal cover C' = {2,3,4} by
sequential or simultaneous lifting are

T+ x3 + 24 + 225 < 2, (18)
x1+ 22+ 23+ x4 + 25 < 2, (19)

cf. Example 27. Here, Inequality (18) corresponds to the vertex (0,1)" and
Inequality (19) corresponds to the vertex (1,0)". Since T has only integral
vertices, Corollary 29 implies that both facet defining inequalities can be
obtained by sequential lifting.

For the minimal cover C' = {1, 2,3}, it holds I = {4,5} and J = @. Thus,
the inequality

1+ a0+ a3+ 24+ 25 <2

is the unique facet that can be obtained from sequential or simultaneous
up-lifting from C. We have already concluded this uniqueness—at least for
sequential lifting—in Example 30.

(Q11) Can one develop a similar theory for (sequentially or simultaneously)
lifted inequalities different from covers? For example, can one charac-
terize facet defining inequalities that arise from lifted pack inequalities
(see Section 4)?

4 Valid Inequalities, Separation and Computations

The previous sections concentrated on strong inequalities for knapsack prob-
lems that are (liftings of ) minimal cover inequalities. In practice, an important
aspect is the computational effort needed to generate violated valid inequal-
ities. In this context, there is often a trade-off between run time and the
strength of inequalities. Moreover, strong inequalities (in the sense that they
are facet defining) are not necessarily the best if applied in a branch-and-cut
approach, for example, if they are dense.

Cutting planes generated from knapsacks are very important for a good
performance of branch-and-cut based algorithms. This is highlighted by the
fact that besides mixed-integer rounding and Gomory mixed-integer cuts,
knapsack cuts are the most important class of cutting planes (the performance
of CPLEX 12.5 degrades by 14 % (35 % on affected instances) if knapsack
separation is turned off, see Achterberg and Wunderling [1]).

In this section, we present several families of valid inequalities and highlight
several computational aspects in connection with the generation of these
inequalities if we require that they cut off the current LP relaxation solution x*.
This approach was pioneered by Crowder et al. [29] and further developed by
many researchers as described below.
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Cover Inequalities The basis for most generated inequalities in branch-
and-cut codes are (minimal) cover inequalities (CIs). It turns out that the
separation problem for cover inequalities is NP-hard, see Ferreira [39]% and
Klabjan et al. |[78]. However, Crowder et al. [29] already observed that the
problem can be written as the knapsack problem

n
min 1—a%) Ty : a;y; > —i—l}.
Jmin {(1-2)Ty TS
Thus, it can be solved in pseudo-polynomial time O(n ) if the weights a
and § are integral. In practice, the cover is often found heuristically, e.g., by
greedily adding items in non-decreasing order of (1 — x7%)/a;, see Crowder et
al. [29].

Extended Cover Inequalities In practice, cover inequalities are almost
always lifted. One easy possibility is to consider extended cover inequalities
(ECI), see (3). Gabrel and Minoux 43| provided an exact separation algorithm
for ECIs. Kaparis and Letchford [76] presented an O(n ) time algorithm for
integral weights and several heuristics for the same problem.

Lifted Cover Inequalities The up-lifting procedure described in Section 3
yields simple lifted cover inequalities (9). Gu et al. [58] showed that the
separation problem for simple LCIs is NP-hard. Hunsaker and Tovey [71]
investigated the strength of these inequalities in practice. They showed that
even if all simple LCIs are added to a knapsack problem, there exist instances
that need exponentially many nodes in a branch-and-bound tree to solve
the problem. Note that “this result is not suggested by the NP-hardness
of binary knapsack problems, because cover inequality separation for these
problems is NP-hard” |71, page 219].

As discussed in Section 3.2, up- and down-lifting can be applied to produce
the possibly stronger inequalities (14). Gu et al. [57] adapted the algorithm
by Zemel [131] to obtain down-lifting in O(|C|n?) time.

If sequentially lifted cover inequalities are considered, a sequence of
lifting variables has to be fixed. Hoffman and Padberg [68], for example,
suggested to first up-lift variables with z% > 0, then down-lift variables
inD={jeC: x? = 1} and, finally, up-lift variables with x;‘ =0. Guet
al. [57] suggested an alternative heuristic; see also Martin [92]. Note that one
can use different (minimal) covers to start with and that the corresponding
cover inequality might not be violated before lifting.

Aspects of simultaneous lifting, in particular choices of lifting functions,
are discussed, e.g., by Gu et al. [60].

3The thesis [39] is cited by [40], but we could not access it online.
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(1, k)-Configurations A set N U {t} with N C [n] and ¢ € [n] \ N is
called a (1, k)-configuration for k € {2,...,|N|}, if a(N) < S and Q U {t} is
a minimal cover for every @@ C N with |Q| = k. Padberg [100] proved that
for any (1, k)-configuration N U {t}, the (1, k)-configuration inequality

(IS|—k+Da+a(s)<|Sl, SCN k<|s],

is valid for P and defines a facet of the knapsack polytope’s restriction
to N U {t}. Furthermore, Gottlieb and Rao [52] provide necessary and
sufficient conditions on two disjoint (1, k)-configurations to define facets of P.

Example 42. Consider K = {z € {0,1}* : 321 + 522 + 623 + Tay < 14},
Then a (1,2)-configuration is given by N = {1,2,3} and t = 4, since the
union of {4} and any two items of {1,2,3} forms a minimal cover.

If k= |NJ|, a (1, k)-configuration is a minimal cover. Since the separation
of minimal cover inequalities is NP-hard, Ferreira et al. [40] conjecture
that the separation problem for (1, k)-configuration inequalities is NP-hard,
too. For this reason, they present heuristics to separate these inequalities.
A proof /refutation of this conjecture, however, is missing, and thus, the
separation complexity is open.

Coefficient Increased Cover Inequalities Given a (not necessarily min-
imal) cover C, classical lifting procedures strengthen the cover inequal-
ity (C) < |C] — 1 by increasing O-coefficients of variables that are not
contained in C. Another way of inequality strengthening is described by
Dietrich and Escudero [33]|. They also allow to increase coefficients of cover
variables; their strengthening procedure runs in O(n log(n)) time.

Lifted Pack Inequalities Based on an idea of Weismantel [122], Atam-
tiirk [6] considered pack inequalities. A set P’ C [n] is a pack if a(P’) < .
Then the pack inequality

> aja; < a(P)

jep!

is trivially valid. It is dominated by the upper bounds z; < 1. However,
lifted pack inequalities (LPIs) are not necessarily dominated. For details on
the lifting procedure, we refer the reader to Atamtiirk [6].

Example 43 (Example 5 continued). Consider the running example with
knapsack inequality 41 + 5x9 + 63 + 724 + 95 < 13. A pack is given by
P’ ={1,5} with inequality 4z + 9 x5 < 13. Lifting x5 yields

Op/(5) =min {13 —4x1 — 925 : 41+ 925 <8, z1,25 € {0,1}} =9.
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This yields the lifted pack inequality 4 1 + 9x2 + 925 < 13, which does not
seem to be dominated by any lifted cover inequality.

Note that lifting 3 into the pack {1,2} yields 4x; + 529 + 423 < 9,
which is dominated by the minimal cover inequality x; 4+ x2 + x3 < 2. Thus,
not all lifted pack inequality are equally useful.

Weight Inequalities One particular example of LPIs was derived by
Weismantel [122]|. Let r = 8 — a(P’) be the residual capacity of the pack P’.
Then the coefficients with a; > r are up-lifted to obtain the so-called weight
inequalities (WIs):

Z a; i+ Z max {a; — r,0} z; < a(P').

jep’ JEMN\P

Weismantel also presented a variant of weight inequalities by reducing the
coefficient of one variable in the pack and modifying the coefficient for variables
in [n] \ P’. This larger class of inequalities contains weight inequalities and
Weismantel proved that it can be separated in pseudo-polynomial time.
His algorithm can also be used to separate weight inequalities itself. For
integral weights, Kaparis and Letchford [76] improved the running time to
O((n+a) B), where a = max{ay,...,a,}, and designed an effective heuristic.
The complexity of the separation problem for WIs seems to be open, although
Martin [92] claims that a more general version is NP-hard.

Atamtiirk [6] noted that stronger LPIs can be obtained by using superad-
ditive functions.

Example 44. Taking the pack {1,5} in the running example yields r = 0.
Thus, its weight inequality is just the original knapsack inequality. However,
the pack {1,2} yields the residual capacity r = 13 — 9 = 4 and the weight
inequality 4x1 + 522 4+ 223+ 324 + 525 < 9. Note that this is not equal to
the corresponding lifted pack inequality.

Further inequalities are the extended weight inequalities of Weisman-
tel [122], which are based on three mutually disjoint sets 7', I, and {k}. We
present the version with I = @ for brevity. In this case, P’ = T is a pack and
a(P") + ax, > 5. The inequality is then given by

Z z; + apz < | P,

jep’
where

aj = min {m(P’) : Z ajxj > ap — r}.
ze{0,1}7’ jep

Such inequalities can then be lifted to obtain lifted extended weight inequal-
ities (LEWIs). For a given extended weight inequality, Weismantel [122]
proved that, provided the knapsack data is integral, the lifting coefficients can
be computed in polynomial time, see Martin [92] for computational results.
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Example 45. Consider the knapsack inequality 221 +2z9+2x3+4x4 < 7.
Taking the pack P’ = {1,2,3} with » = 1 and k = 4 yields

a4 = min {xl—i—xg—i—xg:2w1+2x2+2x324—1:3}:2
ze{0,1}7

and the extended weight inequality x1 + z2 + 23 + 224 < 3, which is facet
defining but not a lifted cover inequality.

Surrogate Knapsack Cuts Let o'z < § be an n-dimensional knapsack
inequality and let J C [n]. Glover et al. [50] suggest to use the Gomory cuts

ZL)\oaj—F)\ijj—F Z L)\oajJCCjS LA05+ZAjJ,

jed F€m\J jed
where A € R_‘{_X {0}, as cutting planes. Based on surrogate analysis, they show

that these cutting planes can be separated in polynomial time. Furthermore,
they show how to strengthen these cutting planes and they argue that these
strengthenings cannot be found by classical lifting procedures.

Exact Separation Boyd [18, 19, 21| developed an algorithm to exactly sep-
arate inequalities for the knapsack polytope via the equivalence of separation
and optimization. Another exact separation approach using the concept of
polarity is described by Boccia [17] as stated by Kaparis and Letchford [76]*.
Yan and Boyd [129] also consider mixed-integer knapsack sets. This work
has been refined and extended by Kaparis and Letchford [76] for the 0/1-case
and Fukasawa and Goycoolea [42] for the mixed-integer case; see the Ph.D.
theses [55] and [41] for more information. Fukasawa and Goycoolea also
considered knapsacks resulting from tableau rows—note that all remaining
approaches use original rows only. Vasil’ev (= Vasilyev) [119] introduced
a different implementation with application to the generalized assignment
problem, see also the extensive computational study in Avella et al. [7]. Avella
et al. [8] consider MIPs in which the continuous variables are aggregated to a
single one. Vasilyev et al. [120] further improve the implementation for exact
knapsack separation.

Computations Wolter [127] performed a comparison with the framework
SCIP and concluded that LEWIs (with I = &) have the strongest impact on
the dual bound. Moreover, simultaneous lifting does not differ significantly
from sequential LClIs.

Kaparis and Letchford [76] compare different exact and heuristic knapsack
separation procedures to the exact separation procedure. On a subset of
sparse MIPLIB instances, LClIs closed a significant amount of gap with small

4We could not access Boccia’s article online.
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computational effort if the heuristics are used. Moreover, they perform much
better than ECIs or simple LCIs. On this test set, WIs and LPIs perform
worse, and the performance of ECIs and simple LClIs is very similar. However,
on a test set of dense multidimensional knapsack instances, LPIs perform
significantly better than Wls and LClIs.

Complementing these experiments, Fukasawa and Goycoolea [42] com-
pared the relative strength of the MIR-closure and the exact separation of
knapsack cuts on MIPLIB instances. They observe that often a significant
part of the gap is closed by MIR inequalities, making it hard to improve on
them.

(Q12) What is the complexity of separating (1, k)-configuration, lifted pack,
weight, and lifted extended weight inequalities?

(Q13) Can complementing variables help to strengthen inequalities similar to
complemented mixed-integer rounding, see Marchand and Wolsey [89]?

5 Complete Linear Descriptions of Particular
Knapsack Polytopes

In order to find complete linear descriptions of knapsack polytopes, we present
two approaches: In Section 5.1 extended formulations are constructed and in
Section 5.2 we consider special cases for which complete linear descriptions
in the original space are known.

5.1 Extended Formulations

A large part of the previous exposition considers the description of the convex
hull of the knapsack solutions via a system of linear inequalities, i.e., finding
some matrix A and vector b with P = {z € R" : Az < b}. One way of
dealing with the difficulty of finding such a system and its possibly exponential
size is to consider a higher dimensional representation, which can be projected
down onto P, i.e., P = {x € R"” : 3y € R? Az + By < b}. This higher
dimensional polytope is called an extended formulation of the initial polytope.
Surveys on extended formulations are given, e.g., by Conforti et al. [27] and
Kaibel [73].

Unfortunately, the possibility to introduce additional variables does in gen-
eral not allow to find exact polynomial sized formulations for knapsack poly-
topes, since there exist knapsack polytopes P C R that need Q(Q\/ﬁ) many
inequalities in any extended formulation, see Pokutta and Van Vyve [105].
Bienstock [16] was able to show, however, that for every ¢ € (0, 1) there exists
an e-approximate extended formulation ) of P of size (’)(sfln“kﬂw). A
formulation Q = {z € R" : 3y € R? Az + By < b} is called e-approzimate
extended formulation if PN {0,1}" = QN {0,1}" and

max{w'z : x € PN{0,1}"} > (1 —e)max{w'z : z € Q}
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holds for every w € R™. Note that Bienstock’s extended formulation is of
polynomial size in n for any fixed e, but grows exponentially in the inverse
approximation quahty . Moreover, while e-approximate formulations exist
in an extended space, Faenza and Sanita [38] proved that no e-approximate
formulation of size polynomial in n exists in the original space in general,
showing the power of extended formulations.

One possibility to find extended formulations of knapsack polytopes is
to exploit that knapsack problems can be solved via dynamic programming.
For general problems that admit a dynamic programming scheme, Martin
et al. [95] derived extended formulations for these problems’ solution set. In
the following, we present this extended formulation for knapsack problems,
where we follow the presentation of Conforti et al. [27].

Consider the 0/1 knapsack problem max {c'z : a'2 < 8, x € {0,1}"}
for integral weights a € Z7 and € Z,. For each integral 0 < g’ < 3
and k € [n], define the value function

f(k,B') == max {ch ca'z <P, re{0,1}, ;=0,ic{k+ 1,...,n}}.

Clearly, to solve the knapsack problem, one wants to compute f(n, /). This
can be done using the Bellman equation

f(kaﬁl) = max{f(k: - 175/)7 f(k - 1)6, - ak) + Ck:}a
with f(0,8") =0 and f(k,5') = —oc if 5 <0.

This dynamic programming algorithm is equivalent to finding a minimum
weight path from v to v, in the graph (V, A° U A) with nodes vy g
for k € [n]o, 0 < B < B, and two types of arcs. The arc subset AY consists
of the arcs (vg_1,p, v ) with weight 0, where k € [n] and 3’ € [8]o. The
arc subset A contains the arcs (vy—1,8—q,, vk ) of weight ¢, where k € [n]
and 5 € {ag,...,B}.

Applying the results of Martin et al. [95] to this graph, yields the following
theorem, where the y-variables model whether an arc is used in a minimum
weight path or not.

Theorem 46. Let a € Z"} and 8 € Z. An extended formulation of pap
of O(n pB) size is given by

2y — y({(Vh—1,8—ap> Vk,g) : ar < B < B}) =0, k € [n],
Y0~ (vnp)) =1,

y(0~ (vr,p) — y(67 (g, B’)) 0, vrp €V \{vo0vns},
0,

ae AUAY,

| \Y

where 5~ (v) and 5% (v) are the sets of in-coming and out-going arcs of a
node v, respectively.
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For particular knapsack polytopes, so-called orbisacks (described in more
detail in Section 5.2), Loos [85] shows how the extended formulation based
on a dynamic programming graph can be used to compute a complete
linear description in the original space. In general, however, this extended
formulation is too complicated to compute the projection to the original
x-variables or too large to be useful in practice.

(Q14) The knapsack problem admits a fully polynomial time approximation
scheme, but does the knapsack polytope admit also an e-approximate
extended formulation whose size grows polynomially in n and %?5

5.2 Complete Linear Descriptions

We now turn to special cases for which complete linear descriptions can be
derived by exploiting the particular combinatorial structure.

Weakly Super-Increasing Knapsack Polytopes. A knapsack is called
weakly super-increasing, if a([i — 1]) < a; for every i € [n], for example, if
a; = 2! for each i € [n]. Such knapsacks were investigated by Laurent and
Sassano [81] who showed that weakly super-increasing knapsack polytopes are
completely described by box constraints and O(n) minimal cover inequalities.
These covers can be constructed explicitly.

Sequential Knapsack Polytopes. A knapsack is called sequential, if a; is
a divisor of a;41 for every i € [n — 1]. In addition to a; = 2!, another example
for a sequential knapsack is a; = Hj’:l j. Pochet and Weismantel [103]
provided a complete linear description of sequential knapsack polytopes. The
description contains an inequality for every combination of a subset W C [n],
a partition B = B1 U---U By, of W, and a permutation of [m/|, and thus, is
very large. The separation complexity of this formulation is an open problem.

One Coefficient. Knapsacks whose inequality has exactly one weight,
ie, a = (\...,\)T, A € N, are equivalent to a cardinality constraint
172 < |B/A]. The complete description is given by this single inequality
and the trivial inequalities.

Two Coefficients. Knapsacks whose inequalities have two different coef-
ficients, i.e., there exists k € [n] such that the knapsack inequality is given
by

Ax([k]) + px({k+1,...,n}) <,

for A\, p, and § € IN, were investigated by Weismantel [121]; this includes
the special case of one coefficient if A = u. He developed a complete linear

>This question has already been posed by Van Vyve and Wolsey [118].
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description of exponential size that consists of eight families of inequalities.
The separation problem of this formulation is solvable in polynomial time.
The special case A = 1 was treated by Dahl and Foldnes [30], who proved
that in this case a complete linear description is given by four families of
inequalities via total dual integrality. Hartmann [65] showed that a complete
linear description of the knapsack polytope can be separated in linear time
in this case.

Small and Large Coefficients Bader et al. [9] considered knapsack in-
equalities a'2 < B whose coefficients are either relatively small or large
in comparison to the right-hand side. Let n, k € IN with 3 < k < n
and s € {k,...,n}. Assume that the coefficients satisfy kiil < a; < % for
every i € S = [s] and i—ﬁﬁ <a;<Pforeveryie€ L:={s+1,...,n}. Then
Bader et al. present the following complete linear description of the knapsack
polytope induced by a2z < B (without providing a proof):

JEL

S

Yowi+ Y ai+ (k-1 a; <k di€ls—k+1]

j=t jEL: jEL

aj>67ai
ai+ > aj+(RI-1)Y w4, <|Rl, RCL, |Rl€[k-1],
JER jJjeL: JjEL
a;j>B—ay(R)
x; >0, i€ [n],

where i(R) = min R is the index of an item in R with smallest coefficient a;(g).

(1, k)-Configurations. Recall the definition of (1, k)-configurations from
Section 4. Padberg [100] showed that if N = [n — 1] and ¢t = n form a
(1, k)-configuration w.r.t. the knapsack inequality a"z < /3, a complete linear
description of K is given by the (1, k)-configuration inequalities

(IS =k +1)z, +2(5) < |5]
for each subset S C [n—1] with k < || as well as box constraints and a' x < 3.

This result also extends to general packing or multidimensional knapsack
problems, see Section 10.1.

Gaps in Coefficients. Weismantel [122] considered knapsacks given by

B

j=1ieN;
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where Nj is the set of all items with weight j for j € [5]. He could derive
complete linear descriptions for the two special cases

(a) Nj=w@forall1<j<|[5]

(b) Nj=wgforalll <j< LgJ and N; = @ for all j > LgJ—I—l.
Examples for these special cases are

(a) a=(1,1,5,7,7,8)T, B =9,

(b) a=(1,1,1,4,4,5)", B = 10.

Matroids. If the knapsack defines a matroid, the knapsack polytope can be
described completely using the results of Edmonds [37]. In this case, the set
of all extensions of strong cover inequalities suffices to give a formulation, see
Wolsey [123]. A characterization of the cases in which the knapsack defines a
matroid is discussed in Section 7.

Graphic Knapsacks. Suppose Assumption 11 holds. Wolsey [123] called
a knapsack graphic if there exists ¢ € [n — 1] such that its knapsack inequality
satisfies aty1 + a; > S and a([t]) < B. Again, the set of all strong cover
inequalities provides a complete linear description, see Wolsey [123]. Note
that ¢ = 1 corresponds to the matroid case.

Further Cases. Gillmann and Kaibel [47] introduced reviez-initial poly-
topes, i.e., conv{x € {0,1}" : x <yjex v} for some v € {0, 1}", where “<yjex” is
the strict reverse lexicographic order. If a; = 2¢, i € [n], then this corresponds
to conv{z € {0,1}" : a'x < a'v — 1}, i.e., a knapsack polytope. Gillmann
and Kaibel provided a complete linear description with a polynomial number
of inequalities in n.

Related objects are orbisacks, i.e., the convex hull of 0/1-matrices of
size m X 2 such that the first column is lexicographically not smaller than
the second. Using the vector a as defined before, orbisacks can be seen to
be special knapsack polytopes conv{(z,y) € {0,1}™*2 : a'(y — z) < 0}
(after complementing variables). Kaibel and Loos [74] found a complete
linear description, and Loos [84] presented an algorithm for optimization
over orbisacks. The complete linear description has ©(3") facets and there
is a facet defining inequality such that the ratio of its largest and smallest
coefficient is 22,

Finally, in [70] so-called symresacks conv{z € {0,1}" : x =ex v(x)} for
some coordinate permutation vy are introduced, where “>.,” refers to the
lexicographic order. These polytopes are again knapsack polytopes (after
complementing variables) and depending on ~y, complete linear descriptions
can sometimes be derived [69].

Example 47 (Example 5 continued). A complete linear description of the
knapsack polytope conv{z € {0,1}5 : 421 +5x9+ 623+ T x4+ 925 < 13} is
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given by x; > 0,1 € [5], 21 < 1, the four extension inequalities of strong covers
(Example 21) as well as the lifted cover inequality xo + x3 + x4 + 225 < 2
(Example 27). This result is not implied by any of the cases discussed above.

(Q15) Are there further classes of knapsack polytopes for which one can
provide complete linear descriptions?

(Q16) Is there a common generalization of all the mentioned complete linear
descriptions?

6 Geometric Properties of Knapsack Polytopes

The preceding sections dealt with algebraic properties and descriptions of
knapsack polytopes. This section investigates their geometric properties.

Number of Vertices Since knapsack problems with integral weights can
be solved by dynamic programming, the number of vertices V(P) of P can
in principle be computed by a modification of the dynamic programming
algorithm with a zero objective. However, the running time of this procedure
may be exponentially large in n, since V(P) might be exponential.

To find approximations of V' (P), Dyer [34] presents a randomized algo-
rithm to approximately count vertices of P. That is, for every € > 0, the
algorithm returns a number within the range (1 — &)V (P) and (1 + )V (P)
with high probability. Dyer’s algorithm runs in O(n®/2,/log(ne=1) 4+ e~2n?)
time and is based on dynamic programming.

For an integer knapsack without upper bounds, i.e, K' = {z € Z7 :
a'z < B}, Hayes and Larman [67] show that the number of vertices of
conv(K’) is bounded from above by logh (%5). For the binary case, however,

a1
we are not aware of such an upper bound.

Adjacency Motivated by optimization algorithms that are based on local
improvements of sub-optimal solutions, Geist and Rodin [45] investigated
adjacency of vertices of P. They show that two distinct vertices u, v of P are
adjacent if and only if there do not exist further distinct vertices w!, w? of P
such that “T'H’ = wiw? They also show that deciding whether two vertices

2
are adjacent is NP-complete.

Distribution of Classes of Facets As mentioned in the previous sec-
tions, the most important classes of inequalities for P®# are given by trivial
inequalities 0 < x < 1 and simple lifted minimal cover inequalities (LCI).
As we have seen in Section 4, simple LCIs play an important role in solving
knapsack problems via branch-and-cut. However, it is unclear which amount
of non-trivial facets are defined by simple LCIs. To get an estimate for
this value, we enumerated all full-dimensional knapsack polytopes in small
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Table 1: Number of full-dimensional 0/1 polytopes and knapsack polytopes
in small dimensions.

dimension
type of 0/1 polytope 1 2 3 4 5
general 1 2 12 347 1226525
knapsack 1 2 5 17 92

dimensions, computed its facets, and checked which facets are defined by
simple LCIs. In the remainder of this section, we describe our investigation
in more detail.

In the following, we consider all possible 0/1 knapsack polytopes up to 0/1
equivalence, i.e., up to coordinate permutations and complementing variables.
Thus, if we refer to a knapsack polytope in the following, we in fact refer
to all members of its 0/1 equivalence class. To enumerate all equivalence
classes of full-dimensional knapsack polytopes in dimensions n € [5], we used
a tool by Aichholzer [2| that allows to access all equivalence classes of 0/1
polytopes in dimensions up to 5, which is available through his web page®.
Since the web tool allows to access at most 1000 polytopes per query, we
used an offline version that Aichholzer made accessible to us.

Using Aichholzer’s tool, we first generated a list of all (equivalence classes
of) 0/1 polytopes and removed all polytopes that are not full-dimensional. To
filter the knapsack polytopes from this list, we checked for each polytope P
whether there exists a linear inequality o'z < § that separates the vertices
of P from the remaining binary points by solving an LP, cf. Bradley et al. [23].
Note that we cannot restrict to inequalities o'z < B with non-negative
coefficients and a; < f3, i € [n], because we deal with equivalence classes of
polytopes. That is, we cannot guarantee that Assumption 1 holds. Moreover,
note that we classify [0, 1] as a knapsack polytope.

Table 1 shows that the vast majority of 0/1 polytopes are not knapsacks
if n > 4. In particular, only 92 out of 1226617 equivalence classes of 0/1
polytopes consist of knapsacks if n = 5. For smaller dimensions, all (n € [2])
or about half of all polytopes (n = 3) are knapsacks.

Let {Py,..., Py} be the set of representatives for each equivalence class of
full-dimensional knapsack polytopes. For each representative P;, we computed
a facet description of P; using POLYMAKE [44]. By iterating over all facet
defining inequalities of P;, we grouped the facets into two classes: trivial
facets defined by box constraints and non-trivial facets. For each non-trivial
facet, we checked whether it is the extension inequality of a strong cover
(and thus, a simple lifted cover inequality). For the remaining non-trivial
facets, we checked by hand whether there exists a minimal cover such that

Shttp://www.ist.tugraz.at/staff/aichholzer/research/rp/rcs/info01poly/
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Table 2: Statistical measures on distribution of simple lifted minimal cover
inequalities in set of non-trivial facet-defining inequalities in dimensions 2-5.

dimension
statistical measure 2 3 4 5
minimum 100.00 % 100.00 % 75.00 % 54.54 %
maximum 100.00 % 100.00 % 100.00 % 100.00 %
median 100.00 % 100.00 % 100.00 % 100.00 %
arithmetic mean 100.00 % 100.00 % 98.44 % 92.99%

the corresponding facet defining inequality is a sequentially simple LCI.

To evaluate the distribution of simple LCIs among the non-trivial facet
defining inequalities of P;, i € [N], let f;, t;, and ¢; be the number of all facets,
the number of trivial facets, the number of facets associated with simple LCls,
and the number of remaining facets, respectively. The fraction p; = %
describes the portion of non-trivial facets that are defined by simple LCIs.
For describing the distribution of non-trivial facets based on simple LCIs, we

used the statistical measures

> maximum: max{p; : i € [N]},
> minimum: min{p; : i € [N]},
> median: median{p; : i € [N]}, and
> arithmetic mean: % >ie[N] Pi-

Table 2 shows that in dimensions 2 and 3, every non-trivial facet defining
inequality is a simple LCI. In dimensions 4 and 5, the majority of all non-
trivial facets are defined by simple LClIs since the arithmetic mean is larger
than 90.0 % and the median value is even 100.0 % in both cases. However,
there are also equivalence classes in which only relatively few facets are
defined by simple LClIs, e.g., there exists a knapsack polytope in dimension 5
such that only about 54.5 % of all facet defining inequalities are simple LCIs.

Our experiments show that simple LCIs are important for describing
knapsack polytopes in small dimensions. These findings have also implications
for general binary programs. To strengthen a binary program, we can consider
the knapsack polytopes P defined by the inequalities of its constraint matrix
and separate valid inequalities for P. If the constraint matrix is sparse,
Table 2 indicates that separating simple LCIs is important to find strong
cutting planes for P, and thus, the binary program. This hypothesis is also
supported by the numerical experiments of Kaparis and Letchford [76] on
MIPLIB instances mentioned in Section 4. If the constraint matrix gets
denser, however, simple LCIs might not suffice to give tight formulations of
knapsack polytopes, cf. minimum percentage value in Table 2 for dimension 4
and 5.
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(Q17) Does there exist a strong lower/upper bound on the number of ver-
tices V(P) of binary knapsack polytopes?

(Q18) Is there a routine computing V' (P) that is faster than enumerating all
vertices of P?

(Q19) Is there a (recursive) scheme to construct all knapsack polytopes in
fixed dimension?

(Q20) What is the minimum percentage of non-trivial facets of a knapsack
polytope that can be described by simple LCIs? Does this tend to 0
for n — o0?

7 Independence Systems and Matroids

7.1 Independence Systems

An independence system is a tuple (F, T), where F is a finite set and Z C 2
such that (i) @ € Z and (ii) if X € Z, then Y € T for every Y C X.
The sets contained in Z are called independent, whereas sets in 2f" \ T are
called dependent. Let a € R', B € Ry, and consider the system Zx =
{I C [n] : a(I) < B} containing the index sets of feasible solutions of the
knapsack K = K%?. Due to Lemma 3, M = ([n],Zf) is an independence
system, which motivates the following natural question:
(Q21) Which independence systems can be represented as knapsack problems?
While this problem is open in general, a complete characterization is
available for the class of stable sets as we outline in the following. Given an
undirected graph G = (V, E), a stable set in G is a set S C V such that the
nodes in S are pairwise non-adjacent in G. Denote the set of all stable sets
in GbyZ(G), ie, Z(G) ={S CV : S is stable}. Clearly, S(G) := (V, Z(G))
is an independence system. We need the following concept.
Definition 48. A graph G = (V| E) is a threshold graph if and only if one
(and thus all) of the following equivalent properties holds:
(a) The graph G can be constructed from a one-vertex graph by repeated
application of the following two operations:
(i) Addition of a single isolated vertex to the graph.
(#4) Addition of a single vertex to the graph that is connected with all

other vertices.

(b) There exist a real number S as well as real vertex weights w(v) such that
for every pair of distinct vertices u, v € V' the pair {u, v} is an edge of G
if and only if w(u) +w(v) > S.

(¢) There exist a real number § and real vertex weights a(v) such that for
every S C V we have ) _ga(v) < B if and only if S is a stable set.

In particular, the property of being a threshold graph is closed under
taking induced subgraphs. Thus, once the construction sequence from (a) is
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Figure 1: An example for a threshold graph.

known, one can easily construct a knapsack inequality characterizing S(G):
Assume that the nodes of G are labeled 1, ..., |[V| in the order in which
they are added in the construction sequence. Let 25:1 a{ z; < B be the
inequality characterizing the graph constructed in step j, and let ; < 1 be
the inequality for the one-vertex graph. If we apply construction rule (7) to
obtain the (j + 1)-st graph, we define the (j + 1)-st inequality to be

J
QZagxi-i-xj-i-l <23;+1;
=1

if we apply construction rule (ii), we define the inequality

J
Zaf zi + Bj i1 < Bj.
=1
Theorem 49 (Chvatal and Hammer [26]). S(G) can be represented as a
knapsack problem if and only if G is a threshold graph.

Example 50. Figure 1 shows an example for a threshold graph. Using the
construction rules (7) and (77), this graph can be constructed in the following
order, which also yields the knapsack characterization for the corresponding
subgraphs.

> Starting with node 3. 3 <1
> Adding node 4 by (i1). x3+x4 <1
> Adding node 2 by (i). To + 2x3+ 224 < 3
> Adding node 1 by (i). T1 +2w9 + 4wy +4r, <7
> Adding node 5 by (i1). T1 4 2x9 +4xs + 4wy + Tas < 7
> Adding node 6 by (i7). T+ 229 +4x3 + 4wy + (s + Taxg < 7

Then the stable sets of the graph given in Figure 1 coincide with the
feasible solutions of the final knapsack inequality.

Generalizing the concept of being threshold to general independence
systems seems to be complicated. To the best of our knowledge, it is only
known for matroids, see Theorem 55 in the next subsection.
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7.2 Knapsacks and Matroids

In general, solving linear optimization problems over independence systems
is NP-hard. However, for the special case of matroids it can be solved very
efficiently by the greedy algorithm. Recall that an independence system (F, Z)
is a matroid if for every S C F', the maximal independent sets contained in .S
have the same size.

Since optimization over matroids is easy, a natural question concerning
knapsacks K is how to characterize whether the associated independence
system M = ([n|,Zx), where Zx == {I C [n] : a(l) < [}, is a matroid.

Definition 51. Suppose Assumption 11 holds. A maximal independent set
C C [n] is a ceiling of M if for all i € C' with i + 1 € [n] \ C it follows that

(C\{iH) U{i+1} ¢ Tk

Using the concept of ceilings, Wolsey [123| provides a full characteri-
zation of knapsacks that are representable via a matroid. Furthermore, a
characterization via strong covers exists due to Cerdeira and Barcia [24].

Theorem 52 (Cerdeira and Barcia [24], Wolsey [123]). The following state-
ments are equivalent:

(a) M = ([n],Zk) is a matroid.

(b) The number of strong covers of K is at most 2.

(¢) M has a unique ceiling.

Example 53 (Example 5 continued). The independence system correspond-
ing to the knapsack defined via 4x1 +5x0 + 6x3 + Tx4 + 925 < 13 has
two ceilings, namely {3,4} and {1,5}. Therefore, by Theorem 52(c¢), the
corresponding knapsack is not a matroid. Alternatively, this can be shown
by Theorem 52(b), since we have seen before that C; = {1, 2,3}, C5 = {2, 5},
Cs = {3,5} and C7 = {4,5} are strong covers for the knapsack.

Besides the two aforementioned results, Amado and Barcia [3] consider a
certain family F of matroids and they characterize whether a knapsack K is
contained in F. These findings are of particular interest if the coefficients
in the knapsack inequality are almost the same because such knapsacks are
typically hard to solve, see Martello and Toth [91, Section 2.10|. For such
knapsacks, Amado and Barcia used their findings to strengthen the standard
LP relaxation of knapsack problems.

While the previous results used the knapsack inequality to characterize
if K is a matroid, we can also pose the reverse question: which matroids are
knapsack representable? Therefore, we need to adapt the threshold property
that we defined for graphs in the last section to matroids. An independence
system (F,Z) is called threshold if there exists a € Ri and 8 € R4, such that
Z={ICF :a(l)<p},ie., Iisknapsack representable. To characterize
whether a matroid is threshold, we need a monotonicity property.

43



Definition 54. Let (F,Z) be an independence system and let R, S C F.
We say that R is greater than or equal to S, in formula R > S, if for
every T C F'\ (RUS)

(RUT)eZ = (SUT)eT.

The system (F,Z) is said to be k-monotone if for each pair (R, S) of subsets
of F with |[RU S| < k either R> S or R<S.

Theorem 55 (Giles and Kannan [46]). A matroid is threshold if and only if
1t 15 3-monotone.

Theorem 55 extends Theorem 52 by a third characterization of knapsacks
having the matroid property. A generalization to arbitrary independence
systems, and thus an answer to Question (Q21), is open.

8 Integer Knapsacks

For the integer knapsack problem, the variables are bounded and integer
valued:
max {¢'z:a'z<B,0<z<u, xeZl}.

Some authors, like Kellerer et al. [77], distinguish between bounded knapsack
problems with u; < co and unbounded knapsack problems with u; = oc.
Observe that each unbounded knapsack problem can be made bounded by
setting u; = |f/ai], provided a; > 0. Thus, complementing variables x;
by u; — z; is valid which generalizes Observation 2 to the integer case. For
this reason, we assume that Assumption 1 holds for the remainder of this
section.

Note that we can always reduce a (bounded) integer knapsack problem
to a corresponding binary one by replacing each integer item ¢ by u; binary
copies of it, but some of the structure may be lost in this transition and the
formulation may become large. Moreover, while every binary <-knapsack
can be transformed into a binary >-knapsack, see Section 1.1, such a trans-
formation does not exists if we consider integer knapsacks. The reason for
this is that integer <-knapsacks are bounded, whereas integer >-knapsacks
are unbounded. Thus, different polyhedral properties arise, as, for example,
investigated by Yaman [128].

Analogously to the binary case, complete linear descriptions of the in-
teger knapsack polytope conv{z € Z7 : a'z < B} fora € 7' can be
found by investigating faces of the master knapsack polytope conv{x € Z} :
Sonjix; < n}, see, e.g., Ardoz et al. [4], Shim et al. [113], or Tyber and
Johnson [116]. Although some facet defining inequalities are known, we are
far from fully understanding this polytope. Thus, as for binary knapsack
polytopes, investigations of particular knapsack polytopes are necessary to
find strong cutting planes.
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In contrast to the classical binary knapsack problem, there are only
few polyhedral investigations of the integer knapsack problem, see, e.g.,
Atamtirk [5, 6], Ceria et al. 25|, Pochet and Weismantel [103], or Pochet
and Wolsey [104]. Among others, Ceria et al. [25] discuss a generalization
of minimal cover inequalities to the general integer case. Following their
definition, an (integer) cover is a set C' C [n] with the property > ;. a; u; > 3.
A cover C is called minimal if no proper subset of C' is a cover. Analogously
to the binary case, every minimal integer cover C' gives rise to the (minimal)
(integer) cover inequality

z(C) <u(C) -1,

which states that not all variables of a (minimal) cover can simultaneously
be at their upper bound. In contrast to the binary setting, however, these
inequalities do not define an integer programming formulation of the integer
knapsack set in general.

Besides the straightforward generalization of minimal cover inequalities
above, Atamtiirk [6] discusses a richer class of inequalities derived from
covers C' C [n], showing that for any p > 0, the inequality

min{a;, A A
S|t ey > 2], (20)
ieC P P

where A = ), ~u; — /3, is valid for the integer knapsack polytope. For the
special case where p = ay, a complete characterization when (20) is facet

defining is available, using

o [mln{ai,)\}—‘ .
ay
Theorem 56 (Atamtiirk [6]). Let C C [n] be a cover and let ¢ € C be
such that . = ugag — A > 0. Inequality (20) with p = ay is facet defining
for the restriction of the knapsack polytope to variables in C if and only
if a; > min{\, kigag —r} for alli € C\ {{}, where r = p — |pu/ae]ay.

Moreover, there exist some families of integer knapsack polytopes for
which complete linear descriptions are available. These families generalize
weakly super-increasing and sequential binary knapsack polytopes to the
general case of bounded knapsack polytopes (see Section 5.2).

A bounded knapsack with defining inequality a'xz < B and upper bound
vector u is called weakly super-increasing if E;;ll a;ju; < a; for every i € [n].
Using this definition, the classical result for the binary case (Section 5.2) can
be generalized to the case of arbitrary integer variables.

Theorem 57 (Gupte [61]). A weakly super-increasing (not necessarily bi-
nary) knapsack polytope is completely described by box constraints and O(n)
inequalities. An explicit construction scheme of the facet defining inequalities
1s available.
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Furthermore, the complete linear description of sequential binary knapsack
polytopes, i.e., binary knapsacks with a; | ;41 for every i € [n — 1], can be
generalized to arbitrary integer knapsack polytopes fulfilling the divisibility
property, see Pochet and Weismantel [103]|. In general, this description is
very complicated. For the special case where no explicit upper bounds on
the variables are present, i.e., z; < Laﬁlj, Marcotte [90] derived a complete
linear description of the knapsack polytope of linear size.

Theorem 58 (Marcotte [90]). Let a € IN" such that a; | ait1 holds for
every i € [n — 1]. Then conv{x € Z} : a'x < B} is completely described by
non-negativity constraints and

x; < LiJ - z”: Z—ij, i€ [n].

(Q22) Most knapsack examples in practice are of binary form. Are there
interesting practical general integer examples?
(Q23) How can the integer knapsack case be best handled algorithmically?

9 Mixed-Integer Knapsacks

In this section, we discuss two variants of mixed-integer knapsacks: a general
model for mixed-integer knapsacks and a variant describing a generalized
flow model containing variable lower and upper bound constraints.

9.1 General Mixed-Integer Knapsacks

A general mixed-integer knapsack is the straightforward generalization of
integer knapsacks to the mixed-integer case, i.e.,

m n
Xix = {(:c,y) € ZmxR" : Zaim-kzbjyj <6, 0<z<u, OS?JSTL}
i=1 j=1

for non-negative vectors a, b, u, and % of appropriate dimensions. If u =1,
Xwmix is called a mized-binary knapsack, while it is called a mixed-integer
knapsack otherwise.

For mixed-integer knapsacks, Martin and Weismantel [93] derive the
family of weight inequalities

Zaixi—{—ijyj—}— Z max{0,a; —r(I,J)}z; <6 —r(l,J),

icl jed i€[m\I

where I C [m], J C [n], and r(I,J) is the residual capacity of the knapsack
if all variables in I and J are fixed at their upper bound, i.e., r(1,J) =
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0 — D ier @i — ZjeJ bjuj. Weight inequalities are valid for the mixed-
integer knapsack polytope Pyiix = conv(Xnix) and Martin and Weismantel
describe cases in which they define facets of Pygix.

The case of mixed-binary knapsacks is investigated by Richard et al. [106].
Besides providing basic polyhedral properties of Pyjix, they investigate the
lifting problem of continuous variables and present a pseudo-polynomial time
sequential lifting algorithm. In [107], the same authors adapt the concept
of simultaneous lifting via superadditive functions for classical knapsacks
to superlinear lifting functions for continuous variables in mixed-binary
knapsacks. This allows them to derive several facet defining inequalities
for Pyix-

Marchand and Wolsey [88] consider the special case of mixed-binary
knapsacks with exactly one unbounded continuous variable whose coefficient
is =1, ie,, Xl = {(z,y) € {0,1}" xRy : 3" aizi <0+ y}. Note
that X}, is not a classical knapsack set, since the continuous variable has a
negative coefficient. This model can be interpreted as an extension of the
classical binary knapsack, where the capacity bound can be violated using
the excess variable y.

In contrast to classical knapsack problems, the knapsack inequality of X{ ;.
always defines a facet of conv(Xj;, ), see Marchand and Wolsey [88]. Moreover,
they derive further valid inequalities. In the case that also some of the
coefficients of binary variables are allowed to be negative, Marchand and
Wolsey derive several facet defining inequalities and investigate their lifting
problem.

A variant of the latter is {(z,y) € {0,1}" xZ% : Y 4; < > i1 b Yi ts
the so-called integer capacity set. Mazur and Hall |96] provide basic polyhedral
properties of the corresponding polytope and they show how coefficients in its
formulation can be reduced, which is of particular interest in preprocessing.
Furthermore, they present facet defining inequalities that are based on certain
knapsack covers.

9.2 Generalized Flow Models

The most general form of a mixed-integer knapsack with variable bound
constraints is specified as follows. Let N} and Ny be (not necessarily disjoint)
sets, let @ € RM and b € R™M as well as ¢/, ' € RMYN2 and § € R. A
mized-integer knapsack with variable upper/lower bounds is a set

K = {(f’,y’) e RM x {0,132 3" ay 4+ D byl <6,

JEN JEN2
0 < f; <, J € N1\ Ny,
Gup < fj<ujy), € NiNNa}.

47



The last families of inequalities in this definition are called variable lower
and upper bound constraints, because depending on the value of y; they are
active (y; = 1) or inactive (y; = 0). Note that we use ¢’ and v’ instead of ¢
and u for the bounds, since we will adapt this notation below. Moreover,
since we will interpret the continuous variables as flow values, we refer to the
continuous variables as f-variables.

To simplify the analysis of such mixed-integer knapsacks, one typically
transforms K, into a set with an easier integer formulation, which we present
next and whose presentation follows Van Roy and Wolsey [108]. By appro-
priate substitutions of variables and bounds, they showed that K}, can be
represented as

{(f,y) e RN x {0, 1} ¢ f(M1) — f(Ma) <6, Ly; < fj <ujy;, j €N},

where N := Nj U Ny and (M, Ms) is a partition of N. This model is the
so-called standard form of a mixed-integer knapsack, denoted by Kr. In
particular, one can assume w.l.o.g. that 0 < ¢ < u.

The mixed-integer knapsack in standard form can be interpreted as a
model of a flow network that consists of a single node v as well as a set of
arcs Mj that point into v and a set of arcs My that leave v. The variable f;
models the flow value on arc j and variable y; encodes via the generalized
lower and upper bound constraints whether arc j can be used. Finally,
the first inequality in K, to which we refer to as flow knapsack inequality,
expresses that the net outflow of node v is at most 9.

To strengthen the formulation Kz of Pr = conv(KFr), Van Roy and
Wolsey [108] introduced generalized flow cover cuts. A pair (C,Cs), with
C1 C My and Cy C Moy, is called a generalized cover if

A= ’U,(Cl) — 6(02) -0 > 07

i.e., fixing variables in C at their upper and variables in Cs at their lower
bound violates the flow knapsack inequality. Let

@ > max {\, max{u;}}, u; = max{a,u;},
JEC1
Zj = max{u,(;}, L= min{a, £;},
and ot = max{0, a} for a real value a.

Given a generalized flow cover (Cy,C2), let L; € M; \ C;, i € {1,2}.
Following the presentation of Gu et al. [59], the simple generalized flow cover
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inequality for (Cy, L1, Co, Lo) is

5> (fi+ (=N —yp) + D (fi — (@, — Nyy)

jeC Jj€l

=Y (f+min{ly, 4 = AN (=) — > (f5 = 4 — N Ty)
j€Cs JEL2
JEM2\(C2ULy)

which is a valid inequality for Pr. Moreover, a generalization to so-called
extended generalized flow cover inequality exists, see, e.g., Gu et al. [59].

Van Roy and Wolsey [108] investigate cases in which generalized flow cover
inequalities define facets of Pr and they investigate their separation problems.
Stallaert [114] derives a class of inequalities, so-called p-inequalities, that
complements flow cover inequalities. He further analyzes their separation
problem and experimentally finds that using both generalized flow cover
inequalities and p-inequalities closes the integrality gap by 75 % while using
either of these classes reduces the gap by 65 % only. An extensive study of
the lifting problem of generalized flow cover inequalities as well as numerical
experiments are provided by Gu et al. [59].

10 Variants of the Knapsack Problem

In this section, we briefly discuss polyhedral aspects of variants of the knapsack
problem. For algorithmic aspects of the variants discussed in Sections 10.1—
10.4, we again refer the reader to the book of Kellerer et al. [77].

10.1 Multidimensional Knapsack Problem

A multidimensional knapsack set K1 is defined by m knapsack constraints
instead of a single knapsack constraint, i.e.,

Kpuy = {x €{0,1}" : Az < b},

where A € Z"*" and b € Z'. That is, a multidimensional knapsack Kyl
is the intersection of m knapsacks K; and thus an independence system.
Conversely, every independence system has a representation as a multidimen-
sional knapsack via the cuts z(C) < |C| — 1 for every minimal dependent
set C. Therefore, every result on general polytopes associated with indepen-
dence systems holds also for multidimensional knapsack polytopes Py, e.g.,
characterization of facets by maximal cliques in conflict hypergraphs, see
Easton et al. [36].

The concept of cover inequalities for classical knapsacks directly transfers
to the multidimensional case by considering each constraint in Az < b
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separately. Bektas and Oguz [14] suggested an IP model to separate violated
cover inequalities for Py;. Lifted cover inequalities have been investigated by
Kaparis and Letchford [75]. By a straightforward generalization of minimal
covers of a single constraint in K¢ to minimal covers of the complete
system Az < b, Balas and Zemel [13] show that every non-trivial facet
defining inequality of Py can be found by complementing variables x;, ¢ € S,
for an appropriately chosen set S C [n], detecting a suitable minimal cover
of the complemented knapsack, and (sequentially or simultaneously) lifting
the corresponding minimal cover inequality. Thus, a theoretical mechanism
to find a complete linear description of Py is known.

Martin and Weismantel [94] considered a more general version of the
multidimensional knapsack problem, where the upper bounds on variables are
arbitrary positive integers. That is, they investigated the case of intersecting
several integer knapsacks instead of binary ones, but of course, their results are
applicable in the binary case. They derived so-called feasible set inequalities
that are valid for (2, K; but not necessarily for every Kj, and they derived
bounds on the lifting coefficients of these inequalities. If the knapsacks K;
i € [m], can be labeled such that K; N K = @ whenever |i — k| > 2, Martin
and Weismantel completely characterized whether a facet defining inequality
for some conv(Kj;) also defines a facet of Py;.

10.2 Cardinality Constrained Knapsack Problem

The cardinality constrained knapsack set K< consists of an ordinary knapsack
inequality together with the additional constraint that at most k items may
be selected, i.e.,

Ke={zec{0,1}" : a'x < B, x([n]) <k}.

A cardinality constrained knapsack is a special case of a multidimensional
knapsack with two knapsack constraints, i.e., the intersection of two classical
knapsacks. Polyhedral aspects of the cardinality constraint knapsack have
been investigated by Louveaux and Weismantel [86] who developed so-called
incomplete set inequalities to exploit structure of the intersection that is
not already present in the separate knapsacks. Moreover, all of the results
mentioned in Section 10.1 also apply to the cardinality constrained case.

Glover and Sherali [49, 111] derive special cover inequalities that exploit
the cardinality constraint. For integer programs containing a cardinality
constraint, Bienstock [15] introduced mixed-integer rounding inequalities,
disjunctive cuts, and critical set inequalities. Zeng and Richard [132, 133]
generalize the above problem by introducing several cardinality constraints
on different variables and give a lifting scheme. If all variables are continuous,
De Farias and Nemhauser [32] investigate a variant of K< in which the
cardinality constraint is replaced by the condition that at most k variables
attain positive values.
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10.3 Generalized Upper Bound Constraints

Given a set J C [n] of indices of variables € {0,1}", a constraint z(J) < 1is
called a generalized upper bound (GUB). In many applications such constraints
are combined with knapsack constraints. To this end, consider a partition
of [n] into k sets Q1, ..., Qk, ie, Q1U---UQ, = [n] and Q; N Q; = @ for
all distinct 4, j € [k]. Then the knapsack set with (non-overlapping) GUB
constraints is

Kqup = {x € {0,1}" : a'z < B, Z x; <1, j€ [k:]}
iEQj

Note that by adding @);’s of cardinality 1, the assumption that the (); cover
the set [n] is without loss of generality.

Similarly to the basic case, a set C' C [n] is a (minimal) GUB cover if C'is a
(minimal) cover for the knapsack constraint and no two elements of C' belong to
the same @Q;, i.e., a(C) > fand |C N Q;| < 1foralli € [k]. The corresponding
GUB cover inequality x(C) < |C| —1 is valid for Pqup = conv(Kgup). Note
that ordinary cover inequalities are also valid, but are either GUB covers or
are redundant for integer solutions.

Wolsey [126] considers knapsacks with GUB constraints in which the knap-
sack contains positive as well as negative coefficients and introduces GUB
covers. He also investigates special cases in which Pgyp can be described
completely, extensions of GUB cover inequalities, and the GUB analogue
of flow covers. Note that negative coefficients can be eliminated by comple-
menting to reach the above form, see Johnson and Padberg [72] for more
details”.

Sherali and Lee [112] investigate polyhedral properties of Pgup. In
particular, they characterize when minimal GUB cover inequalities define
facets and investigate when sequential and simultaneous lifting of these
inequalities defines facets. Moreover, they derive bounds on the lifting
coefficients, which can be computed in time O(n k). These results provide a
generalization of the classical case discussed in Section 3.4. In particular, for
the case of a knapsack set without GUB constraints, i.e., |Q;| = 1 for all i € [k],
the characterization provided by Sherali and Lee [112, Proposition 4.2| reduces
to Theorem 38.

Independently, Nemhauser and Vance [97] characterize the cases in which
the sequentially lifted minimal GUB cover inequality

2(C)+ Y ajz; <|C] -1
el

defines a facet of Pqup. Here, o = 7 + 1 or a; = 7; (see Theorem 28 and
Theorem 38). This result both improves Corollary 40 for knapsack problems

7 Johnson and Padberg also treat the related case of Kgup with continuous variables.
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without GUB constraints and generalizes Corollary 40 in the presence of
GUB constraints.

Gu et al. [59] discuss algorithmic and practical aspects of lifting GUB
cover inequalities. For instance, one can up- and down-lift these inequalities.
The lifting problem, however, becomes more involved, see Gu [56].

Gokce and Wilhelm [51] consider the >-form, i.e., a'z > 3, of Kgup and
define (strong) a-covers C,.® They show that the corresponding inequali-
ties > jec, ©j = « are valid and characterize when they are facet defining.
Furthermore, they describe sequential and sequence independent lifting for
Q-COvers.

(Q24) Can one transfer some of the mentioned results to the case in which
the sets (); are overlapping? This would correspond to a combination
of a stable set and a knapsack problem.

10.4 Precedence Constrained Knapsack Problem

This variant of the knapsack problem adds precedence constraints x; > x; to
the ordinary binary knapsack problem, enforcing that item j may only be
added to the knapsack if item i is also taken. This leads to the knapsack set

Kpree = {x € {0,1}" : a2 < B, x; > xj (i,5) € A},

where A is a set consisting of ordered pairs from [n]. Note that the set A
can be interpreted as the arcs of a directed graph with node set [n].

Boyd [20] investigates basic polyhedral properties of Pprec := conv(Kprec)
and generalizes the concept of cover inequalities. Moreover, based on the
graph defined by the precedence constraints, Boyd derives classes of facet
defining inequalities. Park and Park [101] discuss lifted cover inequalities
for the precedence constrained knapsack problem and they characterize
in which cases these inequalities are facet defining for P,ec. They also
discuss properties of the LP relaxation of Kprec. Van de Leensel et al. [117]
investigate the complexity of lifting several classes of valid inequalities, e.g.,
(1, k)-configurations or (generalizations of) cover inequalities.

10.5 Generalized Assignment Problem

The generalized assignment problem is a variant of the multiple knapsack
problem that has an application in scheduling. There are m knapsacks
(machines) and each of the n items has to be assigned to exactly one machine,
leading to the knapsack set

n m
Kaap = {x €{0,1}" = > ajjwi; < Bj, i €[m], and Y @y =1, j€ [n]}
=1 i=1

8Note that complementing variables does not necessarily yield a set Kqup with the
same Q;.
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A polyhedral investigation of Pgap = conv(Kgap) is provided by Gott-
lieb and Rao [54]. They also investigate properties of the LP relaxation
of Kgap. In [53], the same authors focus on facet defining properties of (1, k)-
configurations. Trick [115] also investigates the LP relaxation of Kgap and
uses his findings to develop efficient primal heuristics.

11 Conclusions

This overview article demonstrates the high level of research on knapsack
polytopes in the literature. Nevertheless, there are still some open questions,
some of which we stated in the course of this article. From a theoretical side,
one would expect more special cases in which a complete linear description can
be determined. On the computational side, the handling of dense knapsack
constraints would be an interesting topic.
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