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Abstract. Consider a semidefinite program (SDP) involving an n× n
positive semidefinite matrix X. The Burer-Monteiro method consists
in solving a nonconvex program in Y , where Y is an n × p matrix
such that X = Y Y T . Despite nonconvexity, Boumal et al. showed that
the method provably solves generic equality-constrained SDP’s when
p &
√

2m, where m is the number of constraints. We extend this result to
arbitrary SDP’s, possibly involving inequalities or multiple semidefinite
constraints. We illustrate applications to sensor network localization and
to matrix sensing.

1. Introduction

Consider a semidefinite program (SDP) in Sn, the space of n×n symmetric
matrices, with m=m1+m2 constraints (m1 equalities and m2 inequalities):

(SDP) min
X∈C

C •X, C := {X ∈ Sn+ : A(X)− b ∈ {0}m1×Rm2
+ }

where C∈Sn, b∈Rm and A : Sn→Rm, X 7→ (A1•X, . . . , Am•X) is a linear
map. We assume that C is nonempty and that the minimum is achieved.
Though interior point methods can solve (SDP) in polynomial time, they
typically run into memory problems for large values of n. This has motivated
the development of several new methods with lower memory requirements,
see e.g., [7–9, 11, 20]. Among them is the low rank factorization method,
pioneered by Burer and Monteiro [7, 8].

The Burer-Monteiro method consists in writing X = Y Y T for some
Y ∈ Rn×p, and solving the following nonconvex optimization problem:

(BM ) min
Y ∈Rn×p

C • Y Y T such that Y Y T ∈ C.

Let τ(k) :=
(
k+1
2

)
denote the k-th triangular number. Barvinok [1] and

Pataki [15] independently showed that (SDP) has an optimal solution of
rank r, with τ(r) ≤ m. Consequently, problems (SDP) and (BM ) have the
same optimal value for any p such that τ(p) ≥ m. But due to nonconvexity,
local optimization methods may not always recover the global optimum
of (BM ). Nonetheless, the Burer-Monteiro method performs very well in
several applications, see e.g., [7, 12,18].
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There has been much recent work in proving global guarantees for (BM ).
Most remarkably, Boumal et al. [5,6] showed that generic equality-constrained
SDP’s (m2=0) have no spurious local minima when τ(p)>m, under some
regularity conditions. Their result relies on a previous characterization of
the local minima of (BM ) by Burer and Monteiro [7]. These guarantees
have been recently extended to approximate local minima [2, 16], and the
bound on p was shown to be optimal [19]. Though other global guarantees
for (BM ) exist, e.g. [10, 14], their setting is more restrictive.

In this note we generalize the result from Boumal et al. [5, 6] to arbitrary
SDP’s, possibly involving inequalities or multiple positive semidefinite (PSD)
constraints. Though we focus on real valued SDP’s, all the results extend to
the complex case. The structure of this note is as follows.

Section 2 analyzes the Burer-Monteiro method for problem (SDP). We
show in Theorem 1 that if τ(p) > m and the cost is generic, then any
second-order critical point of (BM ) is globally optimal. If we further assume
regularity conditions (constraint qualifications), we may conclude that no
spurious local minima exist. Similar results might be proved even when the
cost matrix is not generic, see Theorem 5. We show applications to sensor
network localization and PSD matrix sensing.

Section 3 considers an SDP involving multiple PSD constraints. We study
the Burer-Monteiro method applied to a given subset of these constraints.
We prove in Theorem 7 that, generically, any critical point is globally optimal
when p satisfies a bound due to Pataki [15]. We illustrate an application to
symmetric matrix sensing (the restricted isometry property is not needed).

2. Inequality constrained SDP’s

Consider problems (SDP) and (BM ). For X ∈ C, recall that the i-th
constraint is active at X if Ai•X=bi. Let m′ = m′(C) be the largest number
of linearly independent constraints that can be simultaneously active. For
instance, if m2=0 then m′=rankA. We will show the following theorem.

Theorem 1. Let p such that τ(p) > m′. For a generic C, any critical point
Y of problem (BM ) is globally optimal, and Y Y T is optimal for (SDP).

By generic, we mean the following. For fixed A, b, the set of all C ∈ Sn for
which (BM ) has a spurious critical point has measure zero. Moreover, the
set of all such C is contained in a proper algebraic set of Sn, see Corollary 3.

We now recall the notion of critical points. Consider the nonlinear program
miny{f(y) : h(y)∈{0}m1×Rm2

+ }. We say that y is a critical point if there exist
multipliers λ∈Rm satisfying the KKT conditions. Let L(y, λ)=f(y)−λ·h(y)
be the Lagrangian function, and let I(y)⊂ [m] be the indices of the active
constraints at y. The first-order and second-order KKT conditions are:

y feasible, λ ∈ Rm1×Rm2
+ , ∇yL(y, λ)=0, λi=0 for i /∈I(y),(1a)

uT∇2
yyL(y, λ)u ≥ 0, ∀u such that ∇yhi(y)u=0 for i∈I(y).(1b)
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Remark (Local minima). The KKT conditions are necessary for local opti-
mality under suitable regularity assumptions [17]. Consequently, if we further
assume in Theorem 1 that the feasible set of (BM ) is regular everywhere,
then we may conclude that there are no spurious local minima. We ex-
plain this more carefully in Appendix A. As opposed to [6], we do not need
regularity to argue the absence of spurious critical points.

The optimality conditions for (BM ) are obtained by specializing (1). We
have h(Y )=A(Y Y T )−b and L(Y, λ)=S(λ)•Y Y T , where

S(λ) := C −A∗(λ) ∈ Sn is the slack matrix,

and A∗ : Rm→ Sn, λ 7→
∑

i λiAi is the adjoint of A. The first-order and
second-order conditions for (BM ) are:

Y Y T ∈ C, λ ∈ Rm1×Rm2
+ , S(λ)Y = 0, λi = 0 for i /∈ I(Y ),(2a)

S(λ) • UUT ≥ 0, ∀U ∈Rn×p such that Ai • UY T = 0 for i∈I(Y ).(2b)

We say that Y is a critical point of (BM ) if there is some λ ∈ Rm as above.
The critical point is spurious if Y Y T is not optimal for (SDP).

We proceed to prove Theorem 1. The next proposition says that any
spurious critical point must be full rank. This proposition was originally
shown in [8] and later in [6, 12]. Our assumptions are slightly different, since
we allow inequalities. We follow the proof strategy from [6,12], that relies
on constructing a dual certificate of optimality.

Proposition 2. Let Y be a critical point of (BM ). If Y is rank deficient
then Y Y T is optimal for (SDP).

Proof. The conic dual of (SDP) is maxλ{bTλ : S(λ)∈ Sn+, λ∈Rm1×Rm2
+ }.

Let λ̄ be the multiplier of Y , and let X̄ := Y Y T . We will show that the
primal/dual pair (X̄, λ̄) is optimal for the SDP. It suffices to show that the
following three conditions are met: X̄ is primal feasible, λ̄ is dual feasible,
and complementary slackness holds (i.e., S(λ̄)X̄=0 and λ̄i=0 for i/∈I(X̄)).
Primal feasibility and complementary slackness follow from (2a). As for dual
feasibility, we need to show that S(λ̄)∈Sn+. Let x∈Rn, and let us see that

xTS(λ̄)x ≥ 0. Since Y is rank deficient, there is a nonzero vector z ∈ Rp
such that Y z=0. The matrix U :=xzT satisfies UY T=0, so S(λ̄)•UUT≥0
by (2b). Since S(λ̄)•UUT =‖z‖2(xTS(λ̄)x), then xTS(λ̄)x ≥ 0. �

A consequence of the above proposition is that spurious critical points
may only exist when the cost matrix C lies in a certain algebraic set.

Corollary 3. If (BM ) has a spurious critical point then C ∈ Snn−p+L, with

Snn−p := {X : rankX ≤ n−p} ⊂ Sn,(3)

L :=
⋃

I
{A∗(λ) : λ∈Rm, λi=0 for i /∈I} ⊂ Sn,(4)

where the union is over the possible subsets of constraints I ⊂ [m] that can
be simultaneously active.
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Proof. Let (Y, λ) satisfy (2a) and rankY =p. Then S(λ)Y =0, which implies
S(λ)∈Snn−p, and also λi=0 for i /∈I(Y ). Thus C=S(λ)+A∗(λ)∈Snn−p+L. �

The above corollary characterizes the matrices C that may admit a spurious
critical point. It remains to show that such a set has measure zero.

Proof of Theorem 1. Note that dimSnn−p = τ(n)−τ(p), and that dimL = m′

by definition of m′. Since τ(p) > m′, then dimSnn−r+dimL < τ(n) = dimSn.
Therefore Snn−r+L is a proper algebraic set in Sn, and has measure zero. �

We now illustrate an application of Theorem 1.

Example 4 (Noisy sensor network localization). Let {xi}ni=1 ⊂ R` be posi-
tions of some unknown sensors, and let {ak}mk=1 ⊂ R` be some known anchors.
Consider finding {xi}i satisfying the interval constraints:

dij ≤ ‖xi−xj‖ ≤ dij for (i, j)∈Nx, dkj ≤ ‖ak−xj‖ ≤ dkj for (k, j)∈Na,

for given dij , dij , dkj , dkj . The following SDP relaxation was proposed in [3]:

find Z∈Sn+`+ s.t. d 2
ij≤

(
0

ei−ej
)
(0 eTi−eTj)•Z ≤ d

2
ij , d 2

kj≤
( ak
−ej
)
(aTk −e

T
j)•Z ≤ d

2
kj .

Since there is no cost function, we may choose a generic matrix C. By
Theorem 1, any critical point of the Burer-Monteiro problem is globally
optimal when τ(p)>m′. In particular, p≥

√
2|Nx∪Na| suffices.

To finish this section, we observe that Corollary 3 can be used even if
the cost matrix C is not generic. For instance, the next theorem assumes
that C is fixed and A is generic. Moreover, regularity is guaranteed when A
is generic, as shown in Proposition 13 of Appendix A, so we may conclude
that (BM ) has no spurious local minima.

Theorem 5. Let p such that τ(p)>m and rankC>n−p. For a generic A,
any local minimum Y of problem (BM ) is such that Y Y T is optimal for (SDP).

Proof. By Corollary 3 and Proposition 13, it suffices to see that C /∈ Snn−p+L.
Fix I⊂ [m], and let LI ⊂Sn be the I-th subspace in (4). Observe that LI
is generic among the subspaces of dimension |I|. Also note that dimSnn−p+
dimLI<dimSn by the calculation in the proof of Theorem 1. As C /∈Snn−p,
then C /∈ Snn−p+LI for a generic LI . The result follows from L =

⋃
I LI . �

Example 6 (Matrix sensing). Given a linear map A : Sn → Rm and a vector
b ∈ Rm, consider finding a low rank matrix X ∈ Sn such that A(X) = b.
A standard technique to promote low rank is to minimize the nuclear norm:

min
X∈Sn

‖X‖∗ such that A(X) = b.(5)

If we further assume that X that is PSD, the cost function is In •X. By
Theorem 5, if A is generic and τ(p)>m, then any local minimum of (BM )
is globally optimal. The PSD assumption will be relaxed in the next section.

Remark. Different guarantees about the Burer-Monteiro method for matrix
sensing were obtained in [14], relying on the restricted isometry property.
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3. General SDP’s

Let n :=(n1, . . . , n`) ∈ N` and d ∈ N. We consider an SDP involving PSD
matrices of sizes n1, . . . , n` and a free variable of dimension d. Let the Eu-
clidean space Sn := Sn1× · · ·×Sn` and the convex cone Sn+ := Sn1

+ × · · ·×S
n`
+ .

Given C ∈ Sn×Rd, b ∈ Rm, and a linear map A : Sn×Rd→Rm, consider:

(SDPn) min
X∈C
〈C,X〉, C := {X∈ Sn+×Rd : A(X)=b},

where X := (X1, . . . , X`, x) with Xj ∈ Snj , x ∈ Rd. As before, we assume
that C is nonempty and that the minimum is achieved.

We apply the Burer-Monteiro method to the first k matrices. Let Y :=
(Y1, . . . , Yk), with Yj ∈ Rnj×p, and let q(Y ) := (Y1Y

T
1 , . . . , YkY

T
k ). Notice

that we use the same rank p for all matrices. We denote

n :=(n1, ..., nk), n :=(nk+1, ..., n`), X := (Xk+1, ..., X`).

In particular, Sn = Sn × Sn. The Burer-Monteiro problem is:

(BMn) min
Y,X, x

〈C , (q(Y ), X, x) 〉 such that (q(Y ), X, x) ∈ C.

Pataki [15] showed that (SDPn) always has an optimal solution such that∑
j τ(rj)≤m−d, where rj := rankXj . It follows that (BMn) and (SDPn)

have the same optimal value when τ(p)≥m′k, with

m′k := max
rk+1,...,r`

m− d− τ(rk+1)− τ(rk+2)− · · · − τ(r`),

where the maximum is over the possible ranks rk+1, . . . , r`. We will show
that if τ(p)>m′k then, generically, there are no spurious critical points.

Theorem 7. Assume that τ(p)>m′k. For a generic C, any critical point

(Y,X, x) of problem (BMn) is such that (q(Y ), X, x) is optimal for (SDPn).

Example 8. Consider the inequality constrained problem (SDP). We may
view each of the m2 inequalities as a PSD constraint on a 1×1 matrix.
Therefore, this is a special instance of (SDPn) with k=1, `=m2+1, d=0, and
n2= . . .=n`=1. Note that ri+1=1 when the i-th inequality is inactive, and
is zero otherwise. Hence m′k = m−#(inactive constrs) = #(active constrs).
This is consistent with the results from Section 2.

Let us derive the optimality conditions for (BMn). More generally, con-
sider the conic nonlinear program minx,y{f(x, y) : h(x, y)=0, x∈K}, where
K is a closed convex cone. The Lagrangian function is L(x, y, λ, s) =
f(x, y)− λ·h(x, y)− s·x. The following first-order conditions are necessary
for optimality under suitable regularity conditions, see e.g., [4, §3.1]:

(x, y) feasible, s ∈ K∗, 〈s, x〉 = 0, ∇x,yL(x, y, λ, s) = 0.(6)

Though it is possible to obtain second-order conditions for conic programs,
it suffices for us to restrict the domain to pairs (x, y) with a fixed value of x.
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We get a nonlinear program in y, with second-order condition:

uT∇2
yyL(x, y, λ, s)u ≥ 0, ∀u such that ∇yh(x, y)u = 0.(7)

Optimality conditions for (BMn) are derived by specializing (6) and (7).
For λ ∈Rm, consider the slack variable S(λ) := C−A∗(λ) ∈ Sn×Rn. Let
Sj(λ) ∈ Snj be the j-th component of S(λ). Similarly define S(λ) ∈ Sn and

s(λ) ∈ Rd. The first-order and second-order conditions for (BMn) are:

(q(Y ), X, x)∈C, S(λ)∈Sn+, 〈S(λ), X〉=0, s(λ)=0, Sj(λ)Yj =0,(8a)

Sj(λ) • UjUTj ≥ 0, ∀Uj∈Rnj×p s.t. Aj(UjY T
j )=0 (for j∈ [k]).(8b)

We say that (Y,X, x) is a critical point if it there is some λ ∈ Rm as above.
The critical point is spurious if (q(Y ), X, x) is not optimal for (SDPn).

The strategy to prove Theorem 7 is identical to Theorem 1. We first
generalize Proposition 2, and show that a spurious critical point (Y,X, x)
must be have at least one matrix Yj of full rank. The proof is analogous.

Proposition 9. Let (Y,X, x) be a critical point of (BM ). If Yj is rank

deficient for all 1≤j≤k, then (q(Y ), X, x) is optimal for (SDP).

Recall the set Snr := {X∈Sn : rankX≤r} of dimension τ(n)− τ(n−r).

Corollary 10. If (BMn) has a spurious critical point, then C lies in the
algebraic set V ×V ×{0d}+ ImA∗ ⊂ Sn×Rd, with

V :=
⋃
j∈[k]

(Sn1×· · ·×Snj−1×Snj

nj−p×S
nj+1×· · ·×Sn`) ⊂ Sn,

V :=
⋃

rk+1,...,r`

(Snk+1
nk+1−rk+1

× · · · × Sn`
n`−r`) ⊂ Sn,

where the last union is over the possible ranks rk+1, . . . , r` in (SDPn).

Proof. Let (Y,X, x, λ) satisfy (8a), and let rankYj =p for some j∈ [k]. Since

Sj(λ)Yj =0 then Sj(λ) ∈ Snj

nj−p. Let (rk+1, . . . , r`) be the ranks of X. Since

〈S(λ), X〉 = 0 and both lie in Sn+, then S(λ) ⊂ Snk+1
nk+1−rk+1

×· · ·×Sn`
n`−r` . Then

S(λ) ∈ V×V×{0}, as s(λ)=0. The result follows from C = S(λ)+A∗(λ). �

The remaining part of Theorem 7 is a dimension counting.

Proof of Theorem 7. Let D := dim(Sn×Rd) = τ(n1)+ · · ·+τ(n`)+d. We
will show that V ×V ×{0}+ImA∗ has strictly smaller dimension. Note that

dim ImA∗ + dimV + dimV = m+
∑
j≤k

τ(nj)− τ(p) + max
rk+1...r`

∑
j>k

τ(nj)−τ(rj)

= D − τ(p) + max
rk+1,...,r`

{
m−d−

∑
j>k

τ(rj)
}

= D − τ(p) +m′k < D.

It follows that dim(V ×V ×{0}+ImA∗) < D. �

As illustrated next, Corollary 10 can be used even when C is not generic.
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Example 11 (Matrix sensing). We revisit the problem of sensing symmetric
matrices from Example 6. For X∈Sn, its nuclear norm satisfies:

‖X‖∗ = min
Y

In • Y such that Y +X ∈ Sn+, Y −X ∈ Sn+.

Let X1 := 1
2(Y+X), X2 := 1

2(Y−X). We can rewrite problem (5) as follows:

min
X1,X2

In•X1+In•X2 such that A(X1)−A(X2)=b, X1∈Sn+, X2∈Sn+.

Consider the Burer-Monteiro method applied to both matrices X1, X2, so
that k=`=2. We will prove that there are no spurious critical points when
A : Sn→Rm is generic and τ(p)>m. By Corollary 10, we need to show that

(In, In) /∈ V + (1,−1)⊗ ImA∗, where V := Snn−p×Sn ∪ Sn×Snn−p.

It suffices to see that In /∈ Snn−p+ImA∗. But this was shown in Theorem 5.

Acknowledgments. The author thanks Ankur Moitra, Pablo Parrilo, and
David Rosen for helpful discussions and comments.

Appendix A. Local minima and regularity

Let M := {Y ∈Rn×p : h(Y )∈ {0}m1×Rm2
+ } be the feasible set of (BM ),

where h(Y ) :=A(Y Y T )−b. Let Ȳ ∈M be a local minimum of (BM ). To
ensure that Ȳ is a critical point (i.e., satisfies (2)), we need that Ȳ is
sufficiently regular. Different regularity conditions, known as constraint
qualifications, have been proposed [17]. One of the simplest is:

{∇hi(Ȳ ) : i ∈ I(Ȳ )} are linearly independent,(LICQ)

where I(Ȳ )⊂ [m] are the active constraints. We say that M is regular if all
its points satisfy (LICQ), or some other constraint qualification. Regularity
allows us to restate Theorem 1 in terms of local minima, as follows:

Corollary 12. Assume that τ(p)>m′ and that M is regular. For generic C,
any local minimum Y of (BM ) is such that Y Y T is optimal for (SDP).

As shown next, regularity is guaranteed when A : Sn → Rm is generic.

Proposition 13. For fixed b and generic A, then M is regular.

Proof. Fix I⊂ [m], and let MI := {Y : hi(Y )=0 for i∈I}. We view MI as an

algebraic variety in Cn×p, parametrized by A∈Cm×τ(n). Note that A 7→MI

is a linear system with no base locus. By Bertini’s Theorem [13], the variety
MI is regular for generic A. So {∇hi(Y )}i∈I are linearly independent for all
Y ∈MI . Since this holds for any I⊂ [m], then (LICQ) also holds. �
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